Changes between Version 8 and Version 9 of doc/tec/rk3


Ignore:
Timestamp:
Jan 10, 2011 3:01:06 PM (14 years ago)
Author:
suehring
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/rk3

    v8 v9  
    1616}}}
    1717The coefficients can written in a Butcher-Tableau in the following way:
    18 || α,,1,, || β,,1,1,, || 0 || ... || || ||
    19 || α,,2,, || β,,2,1,, || β,,2,2,, || 0 || ... || ||
     18|| α,,1,, || β,,1,1,, || {{{0}}} || ... || || ||
     19|| α,,2,, || β,,2,1,, || β,,2,2,, || {{{0}}} || ... || ||
    2020|| ...    ||  ... || ||  ||  || ||
    21 || α,,N,, || β,,N,1,, || β,,N,2,, || ... || β,,N,N-1,, || 0 ||
     21|| α,,N,, || β,,N,1,, || β,,N,2,, || ... || β,,N,N-1,, || {{{0}}} ||
    2222||        || β,,N+1,1,, || β,,N+1,2,, || ... || β,,N+1,N-1,, ||  β,,N+1,N,, ||
    2323
    2424The appendant coefficients for the used Runge-Kutta scheme reads:
    25 ||   0  ||   0   ||   0   ||   0  ||
    26 ||  1/3 ||    1/3 ||    0  ||  0   ||
    27 || 1/2  ||  -3/16 || 15/16 ||  0  ||
    28 ||      ||  1/6  ||  3/10 || 8/15 ||
     25||   {{{0}}}  ||   {{{0}}}   ||   {{{0}}}  ||   {{{0}}}  ||
     26||  {{{1/3}}} ||    {{{1/3}}} ||    {{{0}}}  ||  {{{0}}}   ||
     27|| {{{1/2}}}  ||  {{{-3/16}}} || {{{15/16}}} ||  {{{0}}}  ||
     28||      ||  {{{1/6}}}  ||  {{{3/10}}} || {{{8/15}}} ||
    2929
    3030For the implementation it is advantageous to compute ψ^N^ from the intermediate solutions ψ^1^ and ψ^2^ and combine the local tendencies in one array after the second substep to save storage (therefor low-storage scheme) as follows:
     
    3737}}}
    3838
    39 For reasons of clarity the time integration for several schemes (further schemes are: Leap-frog, Euler and 2^nd^ order Runge-Kutta scheme) is implemented as following (here for example the u-component of velocity):
     39For reasons of clarity the [../../app/inipar#timestep_scheme time integration] for several schemes (further schemes are: Leapfrog, Euler and 2^nd^ order Runge-Kutta scheme) is implemented as following (here for example the u-component of velocity):
    4040
    4141{{{
     
    4444 \textnormal{u}\_\textnormal{p}\left(k,j,i\right) = \left(1.0 - \textnormal{tsc}\left(1\right) \right) * \textnormal{u}\_\textnormal{m}\left(k,j,i\right) + \textnormal{tsc}\left(1\right) * \textnormal{u}\left(k,j,i\right) + \textnormal{dt}\_\textnormal{3d}* \left( \\
    4545                             \textnormal{tsc}\left(2\right) * \textnormal{tend}\left(k,j,i\right) + \textnormal{tsc}\left(3\right) * \textnormal{tu}\_\textnormal{m}\left(k,j,i\right)  \\
    46                              + \textnormal{tsc}\left(4\right) * \left(\textnormal{p}\left(k,j,i)\right) - \textnormal{p}\left(k,j,i-1\right) \right) * ddx \ \ ) \\
     46                             + \textnormal{tsc}\left(4\right) * \left(\textnormal{p}\left(k,j,i)\right) - \textnormal{p}\left(k,j,i-1\right) \right) * \textnormal{ddx} \ \ ) \\
    4747                             - \textnormal{tsc}\left(5\right) * \textnormal{rdf}\left(k\right) * \left(\textnormal{u}\left(k,j,i) - \textnormal{ug} \right)
    4848\end{split}
    4949}}}
    5050
    51 and steered by the array tsc(1:5)
     51and steered by the array {{{tsc(1:5)}}}
    5252
    53 || tsc(1) || tsc(2) || tsc(3) || tsc(4) || tsc(5) ||
    54 || 1 || 1/3 || 0 || 0 || 0 || 1^st^ substep
    55 || 1 || 15/16 || -25/48 || 0 || 0 || 2^nd^ substep
    56 || 1 || 8/15 || 1/15 || 0 || 1 || 3^rd^ substep
     53|| {{{tsc(1)}}} || {{{tsc(2)}}} || {{{tsc(3)}}} || {{{tsc(4)}}} || {{{tsc(5)}}} ||
     54|| {{{1}}} || {{{1/3}}} || {{{0}}} || {{{0}}} || {{{0}}} || 1^st^ substep
     55|| {{{1}}} || {{{15/16}}} || {{{-25/48}}} || {{{0}}} || {{{0}}} || 2^nd^ substep
     56|| {{{1}}} || {{{8/15}}} || {{{1/15}}} || {{{0}}} || {{{1}}} || 3^rd^ substep
    5757
    58 
    59 
    60 Sorry for incompleteness. A further description will follow in the next days.
     58{{{u_p}}} is the prognosticated and {{{u}}} the current velocity at each substep. {{{u_m}}} denotes the velocity of the last substep (needed for Leapfrog). {{{tend}}} is the current tendency and {{{tu_m}}} the combined tendencies of the prior substeps. {{{tsc(4)}}} steers the preconditioning of the [../../app/inipar#psolver pressure solver] and {{{tsc(5)}}} the [../../app/inipar#rayleigh_damping_factor rayleigh damping].