Changes between Version 8 and Version 9 of doc/tec/rk3
- Timestamp:
- Jan 10, 2011 3:01:06 PM (14 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
doc/tec/rk3
v8 v9 16 16 }}} 17 17 The coefficients can written in a Butcher-Tableau in the following way: 18 || α,,1,, || β,,1,1,, || 0|| ... || || ||19 || α,,2,, || β,,2,1,, || β,,2,2,, || 0|| ... || ||18 || α,,1,, || β,,1,1,, || {{{0}}} || ... || || || 19 || α,,2,, || β,,2,1,, || β,,2,2,, || {{{0}}} || ... || || 20 20 || ... || ... || || || || || 21 || α,,N,, || β,,N,1,, || β,,N,2,, || ... || β,,N,N-1,, || 0||21 || α,,N,, || β,,N,1,, || β,,N,2,, || ... || β,,N,N-1,, || {{{0}}} || 22 22 || || β,,N+1,1,, || β,,N+1,2,, || ... || β,,N+1,N-1,, || β,,N+1,N,, || 23 23 24 24 The appendant coefficients for the used Runge-Kutta scheme reads: 25 || 0 || 0 || 0 || 0||26 || 1/3 || 1/3 || 0 || 0||27 || 1/2 || -3/16 || 15/16 || 0||28 || || 1/6 || 3/10 || 8/15||25 || {{{0}}} || {{{0}}} || {{{0}}} || {{{0}}} || 26 || {{{1/3}}} || {{{1/3}}} || {{{0}}} || {{{0}}} || 27 || {{{1/2}}} || {{{-3/16}}} || {{{15/16}}} || {{{0}}} || 28 || || {{{1/6}}} || {{{3/10}}} || {{{8/15}}} || 29 29 30 30 For the implementation it is advantageous to compute ψ^N^ from the intermediate solutions ψ^1^ and ψ^2^ and combine the local tendencies in one array after the second substep to save storage (therefor low-storage scheme) as follows: … … 37 37 }}} 38 38 39 For reasons of clarity the time integration for several schemes (further schemes are: Leap-frog, Euler and 2^nd^ order Runge-Kutta scheme) is implemented as following (here for example the u-component of velocity):39 For reasons of clarity the [../../app/inipar#timestep_scheme time integration] for several schemes (further schemes are: Leapfrog, Euler and 2^nd^ order Runge-Kutta scheme) is implemented as following (here for example the u-component of velocity): 40 40 41 41 {{{ … … 44 44 \textnormal{u}\_\textnormal{p}\left(k,j,i\right) = \left(1.0 - \textnormal{tsc}\left(1\right) \right) * \textnormal{u}\_\textnormal{m}\left(k,j,i\right) + \textnormal{tsc}\left(1\right) * \textnormal{u}\left(k,j,i\right) + \textnormal{dt}\_\textnormal{3d}* \left( \\ 45 45 \textnormal{tsc}\left(2\right) * \textnormal{tend}\left(k,j,i\right) + \textnormal{tsc}\left(3\right) * \textnormal{tu}\_\textnormal{m}\left(k,j,i\right) \\ 46 + \textnormal{tsc}\left(4\right) * \left(\textnormal{p}\left(k,j,i)\right) - \textnormal{p}\left(k,j,i-1\right) \right) * ddx\ \ ) \\46 + \textnormal{tsc}\left(4\right) * \left(\textnormal{p}\left(k,j,i)\right) - \textnormal{p}\left(k,j,i-1\right) \right) * \textnormal{ddx} \ \ ) \\ 47 47 - \textnormal{tsc}\left(5\right) * \textnormal{rdf}\left(k\right) * \left(\textnormal{u}\left(k,j,i) - \textnormal{ug} \right) 48 48 \end{split} 49 49 }}} 50 50 51 and steered by the array tsc(1:5)51 and steered by the array {{{tsc(1:5)}}} 52 52 53 || tsc(1) || tsc(2) || tsc(3) || tsc(4) || tsc(5)||54 || 1 || 1/3 || 0 || 0 || 0|| 1^st^ substep55 || 1 || 15/16 || -25/48 || 0 || 0|| 2^nd^ substep56 || 1 || 8/15 || 1/15 || 0 || 1|| 3^rd^ substep53 || {{{tsc(1)}}} || {{{tsc(2)}}} || {{{tsc(3)}}} || {{{tsc(4)}}} || {{{tsc(5)}}} || 54 || {{{1}}} || {{{1/3}}} || {{{0}}} || {{{0}}} || {{{0}}} || 1^st^ substep 55 || {{{1}}} || {{{15/16}}} || {{{-25/48}}} || {{{0}}} || {{{0}}} || 2^nd^ substep 56 || {{{1}}} || {{{8/15}}} || {{{1/15}}} || {{{0}}} || {{{1}}} || 3^rd^ substep 57 57 58 59 60 Sorry for incompleteness. A further description will follow in the next days. 58 {{{u_p}}} is the prognosticated and {{{u}}} the current velocity at each substep. {{{u_m}}} denotes the velocity of the last substep (needed for Leapfrog). {{{tend}}} is the current tendency and {{{tu_m}}} the combined tendencies of the prior substeps. {{{tsc(4)}}} steers the preconditioning of the [../../app/inipar#psolver pressure solver] and {{{tsc(5)}}} the [../../app/inipar#rayleigh_damping_factor rayleigh damping].