Changes between Version 4 and Version 5 of doc/tec/lcm


Ignore:
Timestamp:
Jun 27, 2016 7:22:33 PM (9 years ago)
Author:
Giersch
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/lcm

    v4 v5  
    1717== Diffusional growth ==
    1818
     19The growth of a particle by diffusion of water vapor, i.e., condensation and evaporation, is described by
     20{{{
     21#!Latex
     22\begin{align*}
     23  r \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{f_\mathrm{v}}{F_\mathrm{D} + F_\mathrm{k}}
     24  \left(S - S_{\text{eq}} \right),
     25\end{align*}
     26}}}
     27with the coefficients
     28{{{
     29#!Latex
     30\begin{align*}
     31   F_\mathrm{D} =\frac{R_\mathrm{v}T}{K_\mathrm{v}p_\text{v,
     32      s}(T)}\,\rho_{\mathrm{l},0}~\text{and~}\,F_\mathrm{k} =
     33  \left(\frac{L_\mathrm{V}}{R_\mathrm{v} T}-1\right)
     34  \frac{L_\mathrm{V}}{\lambda_\mathrm{h},T}\,\rho_{\mathrm{l},0},
     35\end{align*}
     36}}}
     37depending primarily on the diffusion of water vapor in air and heat conductivity of air, respectively. ''f'',,v,, is the ventilation factor, which accounts for the increased diffusion of water vapor, particularly the accelerated evaporation of large drops precipitating from a cloud ([#pruppacher1997 e.g., Pruppacher and Klett, 1997, Chap. 13.2.3]):
     38{{{
     39#!Latex
     40\begin{align*}
     41  & f_\mathrm{v} = \begin{cases}
     42    1 + 0.09 \cdot {Re}_\mathrm{p} & \text{for~} \quad {Re}_\mathrm{p} < 2.5,\\
     43    0.78 + 0.28 \cdot\,{Re}_\mathrm{p}^{0.5} & \text{otherwise}.
     44  \end{cases}
     45\end{align*}
     46}}}
     47Here, ''Re'',,p,, is particle Reynolds number. The relative water supersaturation ''S'' is computed from the LES values of ''θ'' and ''q'',,v,,, tri-linearly interpolated to the particle's position. The equilibrium saturation term ''S'',,eq,, considers the impact of surface tension as well as the physical and chemical properties of the solute aerosol on the equilibrium saturation of the droplet. In order to take into account these effects, the optional activation model for fully soluble aerosols must be switched on:
     48{{{
     49#!Latex
     50\begin{align*}
     51  S_{\text{eq}} =
     52  \begin{cases}
     53    0 &\text{without activation},\\
     54    A_{\text{eq}} r^{-1} - B_{\text{eq}} r^{-3} &\text{with activation},
     55  \end{cases}
     56\end{align*}
     57}}}
     58with coefficients for surface tension
     59{{{
     60#!Latex
     61\begin{align*}
     62  & A_{\text{eq}}=\frac{2
     63    \vartheta}{\rho_{\mathrm{l},0}\,R_\mathrm{v}\,T},
     64\end{align*}
     65}}}
     66and physical and chemical properties
     67{{{
     68#!Latex
     69\begin{align*}
     70  B_{\text{eq}}=\frac{F_{\text{vH}}\,m_\mathrm{s}\,M_\mathrm{l}}{\frac{4}{3}\,\pi\,\rho_{\mathrm{l},0}\,M_\mathrm{s}}.
     71\end{align*}
     72}}}
     73Here, ''ϑ'' is the temperature-dependent surface tension, and ''M'',,l,,'' = 18.01528'' g mol^-1^ the molecular mass of water. Depending on the simulation setup (e.g., continental or maritime conditions), the physical and chemical properties of the aerosol, its mass ''m'',,s,,, molecular mass ''M'',,s,,, and the van't Hoff factor ''F'',,vH,,, indicating the degree of the solute aerosol's dissociation, are prescribed. As discussed by [#hoffmann2015a Hoffmann et al. (2015)], the aerosol mass (or equivalently aerosol radius) can be specified by an additional particle feature allowing the initialization of aerosol mass distributions, i.e., varying aerosol masses among the simulated particle ensemble.
     74
     75In summary, diffusional growth is the major coupling between the LES and LCM model. The change of water vapor during one time step is
     76considered in the prognostic equations for potential temperature (see Eq. three in Sect. [wiki:/doc/tec/gov governing equations]) and specific humidity (see Eq. four in Sect. [wiki:/doc/tec/gov governing equations]) by
     77{{{
     78#!Latex
     79\begin{align*}
     80   \Psi_{q_\mathrm{v}}=\frac{1}{\Delta
     81    t}\,\frac{\frac{4}{3}\,\pi \rho_{\mathrm{l},0}}{\rho_0\Delta
     82    V}\,\sum\limits_{n=1}^{N_\mathrm{p}} A_n (r_n^{\ast\,3}-r_n^3).
     83\end{align*}
     84}}}
     85Here, ''r'',,n,, and ''r'',,n,,^∗^ are the radius of the ''n''th droplet before and after diffusional growth, respectively. Since the
     86diffusional growth (see first Eq. in Sect. [/doc/tec/lcm#Diffusionalgrowth diffusional growth]) is a stiff differential equation, we use a 4th-order Rosenbrock-method ([#press1996 Press et al., 1996;] [#grabowski2011 Grabowski et al., 2011]), adapting its internal time step for both a computationally efficient and numerically accurate solution.
     87
    1988== Collision and coalescence ==
    2089
     
    2998* [=#soelch2010] ''' Sölch I, Kärcher B.''' 2010. A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking. Q. J. Roy. Meteor. Soc. 136: 2074–2093.
    3099
     100* [=#pruppacher1997]'''Pruppacher HR, and Klett JD.''' 1997. Microphysics of Clouds and Precipitation. 2nd Edn. Kluwer Academic Publishers. Dordrecht.
    31101
     102* [=#hoffmann2015a]'''Hoffmann F, Raasch S, Noh Y.''' 2015.  Entrainment of aerosols and their activation in a shallow cumulus cloud studied with a coupled LCM-LES approach. Atmos. Res. 156: 43–57. [http://dx.doi.org/10.1016/j.atmosres.2014.12.008 doi]
     103
     104* [=#press1996]'''Press WH, Teukolsky SA, Vetterling WT, and Flannery BP.''' 1996. Numerical Recipes in Fortran 90: the Art of Parallel Scientific Computing. 2nd Edn. Cambridge University Press. Cambridge.
     105
     106* [=#grabowski2011] ''' Grabowski WM, Andrejczuk M, Wang L-P.''' 2011. Droplet growth in a bin warm-rain scheme with Twomey CCN activation. Atmos. Res. 99: 290–301.