Changes between Version 8 and Version 9 of doc/tec/biomet/uv_basic_model


Ignore:
Timestamp:
Jul 25, 2019 11:27:09 AM (5 years ago)
Author:
Schrempf
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/biomet/uv_basic_model

    v8 v9  
    55[[NoteBox(note,This page is part of the **UV Exposure Model** (UVEM) documentation. \\ It contains a documentation about the basic parameters of the exposure model. \\ For an overview of all UVEM-related pages\, see the **[wiki:doc/tec/uvem UV Exposure Model main page]**.)]]
    66
    7 Seckmeyer et al. (2013) defined the biologically weighted exposure Exweighted _ [J] as the radiant energy received by exposed body surfaces of a human who stands on a horizontal plane.
     7Seckmeyer et al. (2013) defined the biologically weighted exposure Ex,,weighted,, [J] as the radiant energy received by exposed body surfaces of a human who stands on a horizontal plane.
    88
    9 Exweighted can be calculated by integrating the spectral radiance weighted with a biological action spectrum and the geometry of a human over all azimuth and zenith angles of the upper hemisphere and the exposure time. The complete equation of Exweighted, considering all dependencies, is complex and the calculation can be quite demanding. Therefore, multiple simplifying assumptions have been made, which are described in detail in Seckmeyer et al. 2013. The simpliffed equation of Exweighted, used in this model, is given as:
     9Ex,,weighted,, can be calculated by integrating the spectral radiance weighted with a biological action spectrum and the geometry of a human over all azimuth and zenith angles of the upper hemisphere and the exposure time. The complete equation of Ex,,weighted,,, considering all dependencies, is complex and the calculation can be quite demanding. Therefore, multiple simplifying assumptions have been made, which are described in detail in Seckmeyer et al. 2013. The simpliffed equation of Ex,,weighted,,, used in this model, is given as:
    1010
    1111
    1212[[Image(Bild1.png, 600px)]]
    1313
    14 where L is the radiance, S the biological action spectrum and A_proj the human geometry. The solid angle dOmega  represents the different directions in the sky and is defined as = sin _ d_d' , with _theta as the zenith angle.\\\\
     14where L is the radiance, S the biological action spectrum and A,,proj,, the human geometry. The solid angle d''Ω''  represents the different directions in the sky and depends on the azimuth angle and the zenith angle.\\\\\\\\
    1515
    1616
    1717== Definition of Radiance and Irradiance ==
    18 The spectral radiance L is defined as Formel,
    19 which depends on the wavelength lambda, the time t, the azimuth angle and the incident angle, which is defined as the angle between incident light beam and horizontal plane. In addition, dQ represents the radiant energy, dA the area element and dOmega the solid angle. For a receiver that is not orientated normal to the source, the area element dA must be weighted with the cosine of the angle between the direction of the beam and the normal to the area dA (WMO, 2008; CIE, 2011). The radiance can be a source or a receiver based quantity. However, in this model the radiance is used as a receiver based quantity only. This can be best visualized by a reversed cone with the given solid angle d as its base and the vertex on the area dA. See schematic diagram in Figure 1.1.
    20 In comparison the spectral irradiance E_lambda is defined as the radiant energy dQ arriving per time interval dt, per wavelength interval d_ and per area dA from any origin incident onto a horizontally oriented area element (Seckmeyer et al., 2010) The quantity irradiance is sometimes also referred to as radiative flux.
     18The spectral radiance L is defined as:
     19{{{
     20#!Latex
     21\begin{equation*}
     22L_{\lambda}\;=\; \frac{\text{d}Q}{\text{d}t\cdot \text{d}\lambda \cdot \text{d}A\cdot cos\,\alpha\cdot \text{d}\Omega}, \quad \left[\frac{\text{W}}{\text{m}^{2} \;\text{nm} \;\text{sr}}\right].
     23\end{equation*}
     24}}}
     25which depends on the wavelength ''λ'', the time t and the incident angle which is defined as the angle between incident light beam and horizontal plane. In addition, dQ represents the radiant energy, dA the area element and d''Ω'' the solid angle. For a receiver that is not orientated normal to the source, the area element dA must be weighted with the cosine of the angle between the direction of the beam and the normal to the area dA (WMO, 2008; CIE, 2011). The radiance can be a source or a receiver based quantity. However, in this model the radiance is used as a receiver based quantity only. This can be best visualized by a reversed cone with the given solid angle d''Ω'' as its base and the vertex on the area dA. See schematic diagram in Figure 1.1.
     26In comparison the spectral irradiance E_lambda is defined as the radiant energy dQ arriving per time interval dt, per wavelength ''λ'' and per area dA from any origin incident onto a horizontally oriented area element (Seckmeyer et al., 2010) The quantity irradiance is sometimes also referred to as radiative flux.
    2127
    2228
     
    3036To calculate the biologically-weighted UV exposure the spectral radiance L is weighted with a biological action spectrum. In this model, the action spectra for erythema, defined by the CIE (1998),and the action spectra for the vitamin D3 synthesis is used.
    3137
    32 In Figure 2.1, the simulated (diffuse) sky radiance weighted with the vitamin D3 action spectrum is shown for Hannover on 21 March at solar noon. The radiance in Figure 2.1 is visualized as a polar plot, where the zenith is located in the center and the azimuth angles are marked around the plot. It should be noted, that similar to an astronomical map, the directions of east and west are inverted.\\\\
     38In Figure 2.1, the simulated (diffuse) sky radiance weighted with the vitamin D,,3,, action spectrum is shown for Hannover on 21 March at solar noon. The radiance in Figure 2.1 is visualized as a polar plot, where the zenith is located in the center and the azimuth angles are marked around the plot. It should be noted, that similar to an astronomical map, the directions of east and west are inverted.\\\\
    3339
    34 Distribution of vitamin D3-weighted sky radiance in Hannover on 21 March at
     40Distribution of vitamin D,,3,,-weighted sky radiance in Hannover on 21 March at
    3541solar noon. The position of the sun is marked with a black asterisk. Please note that the
    3642high values around the sun position are caused by the high diffuse (scattered) radiation.
     
    4551== Human Geometry ==
    4652For the calculation of the exposure, the human geometry is taken into account. This is done by using projection areas of all uncovered surface areas of the human. For the calculation of the projection areas a, 3D voxel (volumetric pixel) model, segmented from data of a whole-body computed tomography scan of a patient, is used. The person was 38 years old, 176 cm of height and had a weight of 68.9 kg, thus approximately representing an average male adult (Valentin, 2002).
    47 In Figure 2.2, a two-dimensional projection of the voxel model is shown for three different viewpoints. Additionally, the projection areas of a human with no clothing, summer clothing and winter clothing are visualized as function of the azimuth and zenith angle in form of polar plots.\\\\
     53In the Figure 2.2 (on the right), a two-dimensional projection of the voxel model is shown for three different viewpoints. Additionally, the projection areas of a human with no clothing, summer clothing and winter clothing are visualized as function of the azimuth and zenith angle in form of polar plots.\\\\
    4854 
    49 Figure 2.2: (a) Projection of the 3D voxel model with winter clothing, visualized for incident angles 30_, 60_ and 85_, with the front turned by 30_ in azimuth direction. Only hands and face are exposed to UV radiation, which is shown in light gray color and clothing shown in dark gray. (b)-(d) projection areas of the 3D voxel model oriented towards 180_/south, as a function of incident and azimuth angles. The minimal projection area in each plot is located in the middle of each picture, representing a view from the zenith at an incident angle of 90_. (b) Projection area of a human with winter clothing. The three asterisks mark the projections shown in (a). (c) Projection area of a human without any clothing, which results in nearly identical projection areas between the front and back of the human. (d) Projection area of a human with summer clothing, where face, hands, neck and arms are exposed.\\
     55Figure 2.2: (a) Projection of the 3D voxel model with winter clothing, visualized for incident angles 30°, 60° and 85°, with the front turned by 30° in azimuth direction. Only hands and face are exposed to UV radiation, which is shown in light gray color and clothing shown in dark gray. (b)-(d) projection areas of the 3D voxel model oriented towards 180° (south), as a function of incident and azimuth angles. The minimal projection area in each plot is located in the middle of each picture, representing a view from the zenith at an incident angle of 90°. (b) Projection area of a human with winter clothing. The three asterisks mark the projections shown in (a). (c) Projection area of a human without any clothing, which results in nearly identical projection areas between the front and back of the human. (d) Projection area of a human with summer clothing, where face, hands, neck and arms are exposed.\\
    5056}}}
    5157{{{#!td style="text-align:left;style=width: 50px"
     
    5662== Calculation of exposure ==
    5763
    58 To calculate the human exposure the weighted radiances Lweighted("; '; t) must be integrated over all directions of the upper hemisphere and the exposure period t. In order to receive the total human exposure, the biologically-weighted direct normal irradiance multiplied with the projection area of the corresponding sun position is added to Exweighted.
    59 In order to convert the calculated human exposure from Joule into IU, a conversion factor of 70.97 [IU J^-1] (i.e. IU per Joule of vitamin D3-weighted UV) is used (Seckmeyer et al. 2013)
     64To calculate the human exposure the weighted radiances must be integrated over all directions of the upper hemisphere and the exposure period t. In order to receive the total human exposure, the biologically-weighted direct normal irradiance multiplied with the projection area of the corresponding sun position is added to the diffuse exposure Ex,,weighted,,.
     65In order to convert the calculated human exposure from Joule into IU, a conversion factor of 70.97 [IU J^-1^] (i.e. IU per Joule of vitamin D,,3,,-weighted UV) is used (Seckmeyer et al. 2013)
    6066
    6167