Changes between Version 2 and Version 3 of doc/tec/1dmodel


Ignore:
Timestamp:
Jul 1, 2016 10:03:48 AM (8 years ago)
Author:
Giersch
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/tec/1dmodel

    v2 v3  
     1= 1-D model for precursor runs =
    12
    2 == 1d-model ==
     3The initial profiles of the horizontal wind components in PALM can be prescribed by the user by piecewise linear gradients or by directly
     4using observational data. Alternatively, a 1-D model can be employed to calculate stationary boundary-layer wind profiles. This is particularly useful in neutral stratification, where inertial oscillations can persist for several days in case that non-balanced profiles are used for initialization. By employing the embedded computationally inexpensive 1-D model with a Reynolds-average based turbulence parametrization, these oscillations can be significantly damped. A stationary state of the wind profiles can thus be provided much faster in the 3-D model. The arrays of the 3-D variables are then initialized with the (stationary) solution of the 1-D model. These variables are ''u'',,i,, where ''i ∈ {1, 2}'', ''e'', ''K'',,h,,, ''K'',,m,, and, with MOST applied between the surface and the first vertical grid level, also ''L'', ''u'',,∗,, as well as
     5{{{
     6#!Latex
     7$\overline{u_i^{\prime\prime} u_3^{\prime\prime}}$
     8}}}
     9(where ''i ∈ {1, 2}'').
    310
    4 A description of the 1d-model will follow.
     11The 1-D model assumes the profiles of ''θ'' and ''q'',,v,,, as prescribed by the user, to be constant in time. The model solves the prognostic equations for ''u'',,i,, and ''e'':
     12{{{
     13#!Latex
     14\begin{align*}
     15  & \frac{\partial u_i}{\partial t} = -\varepsilon_{i3j}f_3 u_j +
     16  \varepsilon_{i3j}f_3 {u_{\mathrm{g},j}} - \frac{\partial
     17    \overline{u_i^{\prime\prime}u_3^{\prime\prime}}}{\partial x_3}
     18\end{align*}
     19}}}
     20and
     21{{{
     22#!Latex
     23\begin{align*}
     24  & \frac{\partial e}{\partial t} = - \frac{\partial
     25    \overline{u^{\prime\prime}w^{\prime\prime}}}{\partial z} -
     26  \frac{\partial \overline{v^{\prime\prime}w^{\prime\prime}}}{\partial
     27    z} - \frac{g}{\theta} \frac{\partial
     28    \overline{w^{\prime\prime}\theta^{\prime\prime}}}{\partial z} -
     29  \frac{\partial \overline{w^{\prime\prime}e^{\prime\prime}}}{\partial
     30    z} - \epsilon\;.
     31\end{align*}
     32}}}
     33The dissipation rate is parametrized by
     34{{{
     35#!Latex
     36\begin{align*}
     37  & \epsilon = 0.064 \frac{e^{\frac{3}{2}}}{l}
     38\end{align*}
     39}}}
     40after [#detering1985 Detering and Etling (1985)]. The mixing length is calculated after [#blackadar1997 Blackadar (1997)] as
     41{{{
     42#!Latex
     43\begin{align*}
     44  & l = \frac{\kappa z}{1 + \frac{\kappa
     45      z}{l_{\text{Bl}}}}\,\;\text{with}\,\;l_{\text{Bl}} = 2.7\times
     46      10^{-4}\sqrt{u_{\mathrm{g}}^2 + v_{\mathrm{g}}^2}\;.
     47\end{align*}
     48}}}
     49The turbulent fluxes are calculated using a 1st-order closure:
     50{{{
     51#!Latex
     52\begin{align*}
     53  & \overline{u_i^{\prime\prime}u_3^{\prime\prime}} = - K_\mathrm{m}
     54  \frac{\partial u_i}{\partial
     55    x_3}\;,\;\overline{w^{\prime\prime}\theta^{\prime\prime}} = -
     56  K_\mathrm{h} \frac{\partial \theta}{\partial z}
     57  \;,\,\overline{w^{\prime\prime}e^{\prime\prime}} = - K_\mathrm{m}
     58  \frac{\partial e}{\partial z}\;,
     59\end{align*}
     60}}}
     61where ''K'',,m,, and ''K'',,h,, are calculated as
     62{{{
     63#!Latex
     64\begin{align*}
     65 K_\mathrm{m} = c_\mathrm{m}\;\sqrt{e}\
     66  \begin{cases}         l & \text{for~}  \textit{Ri} \geq 0\\
     67    l_{\text{Bl}} & \text{for~}  \textit{Ri} < 0\\
     68  \end{cases}\;,\\
     69  &K_\mathrm{h} = \frac{\Phi_\mathrm{h}}{\Phi_\mathrm{m}} K_\mathrm{m}
     70\end{align*}
     71}}}
     72with the similarity functions ''Φ'',,h,, and ''Φ'',,m,, (see Eqs. in Sect [wiki:/doc/tec/bc boundary conditions]), using the gradient Richardson number:
     73{{{
     74#!Latex
     75\begin{align*}
     76  & \textit{Ri} =
     77  \frac{\frac{g}{\theta_\mathrm{v}}\frac{\partial\theta}{\partial
     78      z}}{\left[\left(\frac{\partial u}{\partial z}\right)^2 +
     79      \left(\frac{\partial v}{\partial z}\right)^2 \right]} \cdot
     80  \begin{cases}
     81    1\,\;&\text{for~}\,\;\textit{Ri} \geq 0\;,\\
     82    (1 - 16 \cdot
     83    \textit{Ri})^{\frac{1}{4}}\,\;&\text{for~}\,\;\textit{Ri} < 0\;.
     84  \end{cases}
     85\end{align*}
     86}}}
     87Note that the distinction of cases in the Eq. above is done with the value of ''Ri'' from the previous time step.
     88
     89Moreover, a Rayleigh damping can be switched on to speed up the damping of inertial oscillations. The 1-D model is discretized in space using finite differences. Discretization in time is achieved using the 3rd-order Runge--Kutta time-stepping scheme ([#williamson1980 Williamson, 1980]). Dirichlet boundary conditions are used at the top and bottom boundaries of the model, except for ''e'', for which Neumann conditions are set at the surface (see also Sect. [wiki:/doc/tec/bc boundary conditions]).
     90
     91
     92
     93== References ==
     94* [=#detering1985] '''Detering HW, Etling D.''' 1985. Application of the ''E''-''ε'' turbulence model to the atmospheric boundary layer. Bound.-Lay. Meteorol. 33: 113–133.
     95
     96* [=#blackadar1997] '''Blackadar AK.''' 1997. Turbulence and Diffusion in the Atmosphere. Springer. Berlin. Heidelberg. NewYork. 185 pp.
     97
     98* [=#williamson1980]'''Williamson JH.''' 1980. Low-storage Runge–Kutta schemes. J. Comput. Phys. 35: 48–56.