Changes between Version 13 and Version 14 of doc/app/runtime_parameters


Ignore:
Timestamp:
Sep 13, 2010 1:05:23 PM (15 years ago)
Author:
weinreis
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/app/runtime_parameters

    v13 v14  
    6969In order to speed-up performance, the Poisson equation for perturbation pressure (see [[psolver]]) can be called only at the last substep of multistep Runge-Kutta timestep schemes (see [[timestep_scheme]]) by setting '''call_psolver_at_all_substeps''' = ''.F.''. In many cases, this sufficiently reduces the divergence of the velocity field. Nevertheless, small-scale ripples (2-delta-x) may occur. In this case and in case of non-cyclic lateral boundary conditions, '''call_psolver_at_all_timesteps''' = ''.T.'' should be used.
    7070}}}
     71{{{#!td style="vertical-align:top"
     72[=#cfl_factor '''cfl_factor''']
     73}}}
     74{{{#!td style="vertical-align:top"
     75R
     76}}}
     77{{{#!td style="vertical-align:top"
     780.1, 0.8 or 0.9 (see right)
     79}}}
     80{{{#!td
     81Time step limiting factor.\\\\
     82In the model, the maximum allowed time step according to CFL and diffusion-criterion [[dt_max]] is reduced by dt = dt_max * '''cfl_factor''' in order to avoid stability problems which may arise in the vicinity of the maximum allowed timestep. The condition 0.0 < '''cfl_factor''' < 1.0 applies.\\\\
     83}}}
    7184
    7285
    73 
    74 
    75 Table row with nesting:\\
    7686{{{#!td style="vertical-align:top"
    77 [=#<insert_parameter_name> '''<insert_parameter_name>''']
     87[=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps''']
    7888}}}
    7989{{{#!td style="vertical-align:top"
    80 <insert type>
     90L
    8191}}}
    8292{{{#!td style="vertical-align:top"
    83 <insert value>
     93.T.
    8494}}}
    8595{{{#!td
    86 <insert explanation>
    87 ||=C1   =||=C2    =||
    88 ||Text1  ||Text2  ||
    89 <insert explanation>
    9096}}}
    91 
     97{{{#!td style="vertical-align:top"
     98[=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps''']
     99}}}
     100{{{#!td style="vertical-align:top"
     101L
     102}}}
     103{{{#!td style="vertical-align:top"
     104.T.
     105}}}
     106{{{#!td
     107}}}
     108{{{#!td style="vertical-align:top"
     109[=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps''']
     110}}}
     111{{{#!td style="vertical-align:top"
     112L
     113}}}
     114{{{#!td style="vertical-align:top"
     115.T.
     116}}}
     117{{{#!td
     118}}}
     119{{{#!td style="vertical-align:top"
     120[=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps''']
     121}}}
     122{{{#!td style="vertical-align:top"
     123L
     124}}}
     125{{{#!td style="vertical-align:top"
     126.T.
     127}}}
     128{{{#!td
     129}}}