Changes between Version 13 and Version 14 of doc/app/runtime_parameters
- Timestamp:
- Sep 13, 2010 1:05:23 PM (15 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
doc/app/runtime_parameters
v13 v14 69 69 In order to speed-up performance, the Poisson equation for perturbation pressure (see [[psolver]]) can be called only at the last substep of multistep Runge-Kutta timestep schemes (see [[timestep_scheme]]) by setting '''call_psolver_at_all_substeps''' = ''.F.''. In many cases, this sufficiently reduces the divergence of the velocity field. Nevertheless, small-scale ripples (2-delta-x) may occur. In this case and in case of non-cyclic lateral boundary conditions, '''call_psolver_at_all_timesteps''' = ''.T.'' should be used. 70 70 }}} 71 {{{#!td style="vertical-align:top" 72 [=#cfl_factor '''cfl_factor'''] 73 }}} 74 {{{#!td style="vertical-align:top" 75 R 76 }}} 77 {{{#!td style="vertical-align:top" 78 0.1, 0.8 or 0.9 (see right) 79 }}} 80 {{{#!td 81 Time step limiting factor.\\\\ 82 In the model, the maximum allowed time step according to CFL and diffusion-criterion [[dt_max]] is reduced by dt = dt_max * '''cfl_factor''' in order to avoid stability problems which may arise in the vicinity of the maximum allowed timestep. The condition 0.0 < '''cfl_factor''' < 1.0 applies.\\\\ 83 }}} 71 84 72 85 73 74 75 Table row with nesting:\\76 86 {{{#!td style="vertical-align:top" 77 [=# <insert_parameter_name> '''<insert_parameter_name>''']87 [=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps'''] 78 88 }}} 79 89 {{{#!td style="vertical-align:top" 80 <insert type> 90 L 81 91 }}} 82 92 {{{#!td style="vertical-align:top" 83 <insert value> 93 .T. 84 94 }}} 85 95 {{{#!td 86 <insert explanation>87 ||=C1 =||=C2 =||88 ||Text1 ||Text2 ||89 <insert explanation>90 96 }}} 91 97 {{{#!td style="vertical-align:top" 98 [=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps'''] 99 }}} 100 {{{#!td style="vertical-align:top" 101 L 102 }}} 103 {{{#!td style="vertical-align:top" 104 .T. 105 }}} 106 {{{#!td 107 }}} 108 {{{#!td style="vertical-align:top" 109 [=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps'''] 110 }}} 111 {{{#!td style="vertical-align:top" 112 L 113 }}} 114 {{{#!td style="vertical-align:top" 115 .T. 116 }}} 117 {{{#!td 118 }}} 119 {{{#!td style="vertical-align:top" 120 [=#call_psolver_at_all_substeps '''call_psolver_at_all_substeps'''] 121 }}} 122 {{{#!td style="vertical-align:top" 123 L 124 }}} 125 {{{#!td style="vertical-align:top" 126 .T. 127 }}} 128 {{{#!td 129 }}}