Changes between Version 5 and Version 6 of doc/app/plant_canopy_parameters


Ignore:
Timestamp:
Jul 18, 2014 1:52:34 PM (10 years ago)
Author:
kanani
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/app/plant_canopy_parameters

    v5 v6  
    11== Canopy Parameters ==
    22[[TracNav(doc/app/partoc|nocollapse)]] ---UNDER CONSTRUCTION---\\\\
    3 The canopy model embedded in PALM can be used to simulate the flow across vegetation canopies.\\ Thereby, the canopy is modeled as a porous viscous medium that removes momentum from the flow (according to Shaw & Schumann, 1992; Watanabe, 2004). The presentation [/wiki/doc/tut/job/canopy#Canopymodel "Canopy model"] provides detailed information on canopy-flow theory and the functionality of the canopy model. An example how to model the flow across a simple canopy block can be found under exercise [/wiki/doc/tut/job/canopy#Exercise9:Canopyflow "Canopy flow"].\\\\
    4 Since revision 13XX all components of the canopy model are modularized into module [/browser/palm/trunk/SOURCE/plant_canopy_model.f90 plant_canopy_model_mod]. In this context, the steering parameters for the canopy model are, since revision 13XX, part of the new package {{{canopy_par}}}.\\\\
    5 The package and the application of the canopy model is automatically activated by adding the NAMELIST {{{canopy_par}}} to your parameter file, subsequently to the NAMELIST {{{d3par}}}.
     3
     4The canopy model embedded in PALM can be used to simulate the effect of vegetation canopies on a turbulent flow.\\ Thereby, the canopy is modeled as a porous viscous medium that removes momentum from the flow (according to Shaw & Schumann, 1992; Watanabe, 2004). The presentation [/wiki/doc/tut/job/canopy#Canopymodel "Canopy model"] provides detailed information on canopy-flow theory and the functionality of the canopy model. An example on how to model the flow across a simple canopy block can be found under exercise [/wiki/doc/tut/job/canopy#Exercise9:Canopyflow "Canopy flow"].\\\\
     5
     6Starting at revision 13XX (oder Release XX), all parts of the canopy-model-related PALM code are modularized in module [/browser/palm/trunk/SOURCE/plant_canopy_model.f90 plant_canopy_model_mod]. In this context, the newly created package {{{canopy_par}}} now contains all canopy-related input parameters. This means that the canopy model is now steered using the NAMELIST {{{canopy_par}}}, and no longer over the {{{inipar}}}-NAMELIST. Hence, in order to automatically enable the canopy model, NAMELIST {{{canopy_par}}} and the respective canopy parameters must be added to the parameter file ({{{_p3d}}}), subsequently to the NAMELIST {{{d3par}}}.
    67\\\\\\\\\\
    78'''NAMELIST group name: canopy_par''' \\
     
    1920}}}
    2021{{{#!td
    21 Dimensionless coefficient for the construction of the leaf area density (lad) profile, using this beta probability density function (following XXcite):\\\\
    22 {{{
    23 #!Latex
    24 \[ lad(z/H) = , \]
    25 }}}
    26 This parameter steers together with [/wiki/doc/app/canpar#beta_lad beta_lad] the vertical distribution of leaf area within the canopy volume. [/wiki/doc/app/canpar#alpha_lad alpha_lad] can take values from XX to XX. Furthermore, the desired leaf area index (lai) has to be prescribed by setting [/wiki/doc/app/canpar#lai_beta lai_beta] to a non-zero value.\\\\
    27 The leaf area density profile can also be constructed by prescribing vertical gradients ([/wiki/doc/app/canpar#lad_vertical_gradient_level lad_vertical_gradient_level], [/wiki/doc/app/canpar#lad_vertical_gradient lad_vertical_gradient]) of the leaf area density, starting from the prescribed surface value [/wiki/doc/app/canpar#lad_surface lad_surface].
     22Dimensionless coefficient required for the construction of the leaf area density (LAD) profile, using following beta probability density function (following XXcite):\\\\
     23{{{
     24#!Latex
     25\[ f_{PDF}(\frac{z}{H},\alpha,\beta) = \frac{(\frac{z}{H})^{\alpha-1}\;(1-\frac{z}{H})^{\beta-1}}{\int_{0}^{1}\;(\frac{z}{H})^{\alpha-1}\;(1-\frac{z}{H})^{\beta-1}\;d(\frac{z}{H})}, \]
     26}}}
     27where ''z'' is the height above ground, ''H'' is canopy height, and alpha and beta are the coefficients to be presribed. The actual leaf area density values follow from:
     28{{{
     29#!Latex
     30\[ LAD(\frac{z}{H},\alpha,\beta) = LAI * f_{PDF}(\frac{z}{H},\alpha,\beta), \]
     31}}}
     32with LAI being the prescribed leaf area index [/wiki/doc/app/canpar#beta_lai \beta_lai] (LAI is the vertical integral over the LAD profile).
     33
     34[/wiki/doc/app/canpar#beta_lai \beta_lai] has to be set to a non-zero value in order to use the beta probability density function for the LAD-profile construction.
     35[/wiki/doc/app/canpar#alpha_lad alpha_lad] steers together with [/wiki/doc/app/canpar#beta_lad beta_lad] the vertical distribution of leaf area within the canopy volume. [/wiki/doc/app/canpar#alpha_lad alpha_lad] can take values from XX to XX. \\\\
     36
     37The LAD profile can also be constructed by prescribing vertical gradients ([/wiki/doc/app/canpar#lad_vertical_gradient_level lad_vertical_gradient_level], [/wiki/doc/app/canpar#lad_vertical_gradient lad_vertical_gradient]) of the leaf area density, starting from the prescribed surface value [/wiki/doc/app/canpar#lad_surface lad_surface].
    2838}}}
    2939|----------------
     
    3848}}}
    3949{{{#!td
    40 Dimensionless coefficient for the construction of the leaf area density (lad) profile, using this beta probability density function (following XXcite):\\\\
    41 {{{
    42 #!Latex
    43 \[ lad(z/H) = , \]
    44 }}}
    45 This parameter steers together with [/wiki/doc/app/canpar#alpha_lad alpha_lad] the vertical distribution of leaf area within the canopy volume. [/wiki/doc/app/canpar#beta_lad beta_lad] can take values from XX to XX. Furthermore, the desired leaf area index (lai) has to be prescribed by setting [/wiki/doc/app/canpar#lai_beta lai_beta] to a non-zero value.\\\\
     50Dimensionless coefficient required for the construction of the leaf area density (LAD) profile, using following beta probability density function (following XXcite):\\\\
     51{{{
     52#!Latex
     53\[ f_{PDF}(\frac{z}{H},\alpha,\beta) = \frac{(\frac{z}{H})^{\alpha-1}\;(1-\frac{z}{H})^{\beta-1}}{\int_{0}^{1}\;(\frac{z}{H})^{\alpha-1}\;(1-\frac{z}{H})^{\beta-1}\;d(\frac{z}{H})}, \]
     54}}}
     55where ''z'' is the height above ground, ''H'' is canopy height, and alpha and beta are the coefficients to be presribed. The actual leaf area density values follow from:
     56{{{
     57#!Latex
     58\[ LAD(\frac{z}{H},\alpha,\beta) = LAI * f_{PDF}(\frac{z}{H},\alpha,\beta), \]
     59}}}
     60with LAI being the prescribed leaf area index [/wiki/doc/app/canpar#beta_lai \beta_lai] (LAI is the vertical integral over the LAD profile).
     61
     62[/wiki/doc/app/canpar#beta_lai \beta_lai] has to be set to a non-zero value in order to use the beta probability density function for the LAD-profile construction.
     63[/wiki/doc/app/canpar#beta_lad beta_lad] steers together with [/wiki/doc/app/canpar#alpha_lad alpha_lad] the vertical distribution of leaf area within the canopy volume. [/wiki/doc/app/canpar#beta_lad beta_lad] can take values from XX to XX. \\\\
     64
    4665The leaf area density profile can also be constructed by prescribing vertical gradients ([/wiki/doc/app/canpar#lad_vertical_gradient_level lad_vertical_gradient_level], [/wiki/doc/app/canpar#lad_vertical_gradient lad_vertical_gradient]) of the leaf area density, starting from the prescribed surface value [/wiki/doc/app/canpar#lad_surface lad_surface].
    4766}}}