Changes between Initial Version and Version 1 of doc/app/indoorequ


Ignore:
Timestamp:
Jul 29, 2019 6:06:08 PM (6 years ago)
Author:
srissman
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • doc/app/indoorequ

    v1 v1  
     1== Overview ==
     2
     3[[NoteBox(note,This page is part of the ** Indoor climate and energy demand model ** (ICM) documentation. \\ It contains fundamental principles and the equations used in the model. \\ For an Overview of all ICM-related pages\, see the  **[wiki:doc/tec/indoor Indoor model main page]**.)]]
     4
     5PALM offers an embedded indoor model. It takes account of the heat transfer through exterior walls, the shortwave solar gains and the heat transport by ventilation. It also considers internal heat gains, the energy demand for heating and cooling of the building. According to the building energy concept, the energy demand results in an (anthropogenic) waste heat, that is directly transferred to the urban environment.\\
     6
     7The ICM has to work in tandem with the Urban surface model (USM) and the indoor model is only available if the USM activated. The used parameters for ICM can be find in the building database in the USM.\\
     8
     9= Geometrical calculations =
     10
     11For the initialization stage, it is important to calculate the vital main geometrics of the domain. Every grid point indicates if there is a building and what type. Furthermore, they store the presents of horizontal or vertical façade elements placed at the grid point. With the knowledge of these parameters from every grid point it is possible to assemble the complete façade of a building as sum of single horizontal and vertical façades elements.\\
     12
     13A single façade element is the area of one grid point.\\
     14
     15{{{
     16#!Latex
     17\begin{align*}
     18 & A_{fac,el}  =  dx * dy,
     19\end{align*}
     20}}}
     21
     22The total area of the façade is the sum of all single areas where a façade is located.
     23{{{
     24#!Latex
     25\begin{align*}
     26  & A_{fac,tot} = A_{fac,el} \cdot \left( \sum_{i=0}^{n_h}\ n_{fac,h}i + \sum_{i=0}^{n_v} + n_{fac,v}i \right)
     27\end{align*}
     28}}}
     29
     30To represent the opaque wall and transparent window areas in buildings, a window fraction for horizontal and vertical surfaces gives the ratio of window to wall at a single façade element. The sum  of each elemental ratio gives the ratio of the entire building. The ratio of the window area ''x'',,win,hv,, is a parameter of the USM.\\
     31
     32{{{
     33#!Latex
     34\begin{align*}
     35  & A_{fac,win}= \sum_{i=0}^{n} \ A_{fac,el}i \cdot x_{win,hv}
     36\end{align*}
     37}}}
     38
     39The total volume of a building is the sum of all elemental grid volumes where a building is located.
     40
     41{{{
     42#!Latex
     43\begin{align*}
     44  & V_{tot}= \sum_{i=1}^{n} \ xi \cdot yi \cdot zi
     45\end{align*}
     46}}}
     47
     48To take respect of an non rectangular building a virtual façade area specific indoor volume shown in figure 1, created.
     49
     50FIGURE 1
     51
     52{{{
     53#!Latex
     54\begin{align*}
     55  & V_{fac,el}^{indoor} = \frac{V_{tot}}{\sum_{i=0}^{n_h}\ n_{fac,h}i \cdot xi \cdot yi  + \sum_{i=0}^{n_v} \ n_{fac,v}i \cdot xi \cdot zi }\
     56\end{align*}
     57}}}
     58
     59To calculate all façade elements of the whole façade, it is necessary to create an indoor surface area per façade element.
     60
     61{{{
     62#!Latex
     63\begin{align*}
     64  & A_{fac,floor} = \sum_{i=0}^n \ \frac{V_{fac,el}^{indoor}}{zi}\
     65\end{align*}
     66}}}
     67
     68The complete ground surface of a building involves every storey gets a ground surface. To represent this, a net floor area is calculated. The height of the storey ''h'',,storey,, is a parameter of USM
     69
     70{{{
     71#!Latex
     72\begin{align*}
     73  & A_{nfa} = \frac{V_{tot}}{h_{storey}}\
     74\end{align*}
     75}}}
     76
     77The effective mass of a specific area takes respect of surfaces like ceilings, walls and furnishing.
     78
     79{{{
     80#!Latex
     81\begin{align*}
     82  & A_{m} = a\cdot A_{nfa}\cdot \frac{A_{fac,el}}{A_{fac,tot}}\ \Lambda_{AT}
     83\end{align*}
     84}}}
     85The ratio of effective area Λ𝐴𝑇 and the dynamic parameter of specific effective surface 𝑎 are parameters of the USM\\
     86
     87= Model scheme =
     88
     89The ICM is based on an analytical solution of Fourier’s law considering a resistance model with five resistances ''R'' [K/W] and one heat capacity ''C'' [J/K] as seen in figure 2.
     90
     91FIGURE 2
     92
     93The solution is based on a Crank-Nicolson scheme for a one-hour time step. Since the calculations are based on heat transfer coefficients, ''H'' [W/K] all figures and equations are based on heat transfer coefficients. This is the reciprocal value of ''R'' and takes short wave, long wave, convective and conductive heat transfer and heat transport (by air) into account.
     94
     95'''Resistance and capacity calculations'''\\
     96From a numerical perspective, this network consists of five reciprocal resistances ''H'' and one heat storage capacity ''C'':\\
     97''H'',,v,, is the heat transport by ventilation between surface-near exterior air ''ϑ'',,n,, and indoor air ''ϑ'',,i,,. It is calculated with,
     98
     99{{{
     100#!Latex
     101\begin{align*}
     102  & H_{v} = \left (c_{ACH,high} \cdot Z_{sched} + c_{ACH,low} \right) \cdot V_{fac,el}^{indoor} \cdot \rho_{air} \cdot c_p \cdot \left (1-\eta_v \right)
     103\end{align*}
     104}}}
     105
     106The volumetric heat capacity of air  ''ρ'',,air,,⋅''c'',,p,, is assumed as 0.33⋅W h K^−1^  m^-3^. The schedule on-time ''Z'',,sched,, , the airflow time of occupancy ''c'',,ACH,high,, , the airflow time of no occupancy ''c'',,ACH,low,, and the efficiency of heat recovery in the ventilation ''η'',,v,, are parameters of the USM.\\
     107
     108''H'',,t,is,, is the connective heat transfer between indoor air ''ϑ'',,i,, and interior surface ''ϑ'',,s,, considering all room-enclosing surfaces.
     109
     110{{{
     111#!Latex
     112\begin{align*}
     113  & H_{t,is} = A_{fac,tot}\cdot h_{is}
     114\end{align*}
     115}}}
     116
     117''H'',,t,es,, is the heat transfer through windows between exterior air ''ϑ'',,e,, and interior surfaces ''ϑ'',,s,, .
     118
     119{{{
     120#!Latex
     121\begin{align*}
     122  & H_{t,es} = A_{fac,win}\cdot h_{es}
     123\end{align*}
     124}}}
     125''h'',,es,, is the specific heat transfer coefficient through windows between exterior air and interior surface. Because of the model structure the specific heat transfer coefficient between indoor air and interior surface is removed.//
     126''H'',,t,ms,, is the conductive heat transfer between interior surface ''ϑ'',,s,, and interior mass node ''ϑ'',,m,, .
     127
     128{{{
     129#!Latex
     130\begin{align*}
     131  & H_{t,ms} = A_{m}\cdot h_{ms}
     132\end{align*}
     133}}}
     134''H'',,t,wm,, is the conductive heat transfer between wall ''ϑ'',,w,, and interior mass node ''ϑ'',,m,, .
     135
     136{{{
     137#!Latex
     138\begin{align*}
     139  & H_{t,wm} = \frac{1}{ \frac{1}{H_{t,wall}} \ - \frac{1}{H_{t,ms}} \ } \
     140\end{align*}
     141}}}
     142
     143With ''H'',,t,wall,, as heat transfer of opaque components.
     144
     145{{{
     146#!Latex
     147\begin{align*}
     148  & H_{t,wall} = \frac{1}{ \frac{1}{ \left(A_{fac,el}-A_{fac,win}\right)\cdot \frac {\lambda_{layer4}}{d_{layer4}} \ \cdot 0.5} + \frac{1}{H_{t,ms}} \ } \
     149\end{align*}
     150}}}
     151The thickness ''𝑑'',,𝑙𝑎𝑦𝑒𝑟4,, and the thermal heat conductivity ''𝜆'',,𝑙𝑎𝑦𝑒𝑟4,, of the fourth layer are a parameter of USM.\\
     152''H'',,t,1,, , ''H'',,t,2,, and ''H'',,t,3,, are auxiliary variables for calculation of the heat transport.
     153
     154{{{
     155#!Latex
     156\begin{align*}
     157  & H_{t,1} = \frac{1}{ \frac{1}{H_{v}} \ + \frac{1}{H_{t,is}} \ } \
     158\end{align*}
     159}}}
     160{{{
     161#!Latex
     162\begin{align*}
     163  & H_{t,2} = H_{t,1} + H_{t,es}
     164\end{align*}
     165}}}
     166{{{
     167#!Latex
     168\begin{align*}
     169  & H_{t,3} = \frac{1}{ \frac{1}{H_{t,2}} \ + \frac{1}{H_{t,ms}} \ } \
     170\end{align*}
     171}}}
     172
     173''C'',,m,, is the internal heat capacity.
     174{{{
     175#!Latex
     176\begin{align*}
     177  & C_{m} = c \cdot A_{nfa} \cdot \frac{A_{fac,el}}{A_{fac,tot}} \
     178\end{align*}
     179}}}
     180
     181'''Thermal load and temperature calculations'''\\
     182
     183The internal air load is calculated with the internal heat gains with respect of occupancy of the building. The schedule is a parameter of the USM.
     184{{{
     185#!Latex
     186\begin{align*}
     187  & \Phi_{ia} = 0.5 \cdot \left ( \left(q_{int,high} \cdot Z_{sched} + q_{int,low}\right) \cdot A_{fac,floor}\right)
     188\end{align*}
     189}}}
     190''Φ'',,sol,, is the heat load from shortwave radiation through all windows in respect of automatic window shutters. At a value of 300 W m^-2^ shortwave radiation, the automatic window shutters are set as on. With activated the shutters the shading factor ''f'',,c,, of the sun protection take effect. The shading factor ''f'',,c,, and the g-value ''g'',,win,, are parameters of the USM.
     191
     192{{{
     193#!Latex
     194\begin{align*}
     195  & \Phi_{sol} = \left ( \left(A_{fac,win} \cdot R_{net,sw} \cdot c_{sunprot,off} + A_{fac,win} \cdot R_{net,sw} \cdot f_c \cdot c_{sunprotec,on}\right) \cdot A_{fac,floor}\right)
     196\end{align*}
     197}}}
     198
     199''Φ'',,st,, is the mass specific heat load (without thermal mass).
     200{{{
     201#!Latex
     202\begin{align*}
     203  & \Phi_{st} = \left ( 1- \frac{A_m}{A_{nfa}} \ - \frac {H_{t,es}}{9.1 \cdot A_{nfa}} \ \right) \cdot \left ( \Phi_{ia} \cdot \Phi_{sol} \right)
     204\end{align*}
     205}}}
     206''Φ'',,m,, is the mass specific heat load for internal and external heat sources of the inner node.
     207{{{
     208#!Latex
     209\begin{align*}
     210  & \Phi_{m} = \frac{A_m}{A_{nfa}}\ \cdot \left(\Phi_{ia}+\Phi_{sol}\right)
     211\end{align*}
     212}}}
     213''ϑ'',,ind,wall,win,, is the weighted temperature of innermost wall and window layer.
     214{{{
     215#!Latex
     216\begin{align*}
     217  & \vartheta_{ind,wall,win} = x_{wall,veg}\cdot\vartheta_{wall,veg}+x_{win,hv}\cdot\vartheta_{win}
     218\end{align*}
     219}}}
     220The fractions for wall/vegetation ''𝑥'',,𝑤𝑎𝑙𝑙,𝑣𝑒𝑔,, and window ''𝑥'',,𝑤𝑖𝑛,ℎ𝑣,, are parameters of the SURFACEMOD.
     221The temperatures for of wall/vegetation ''𝜗'',,𝑤𝑎𝑙𝑙,𝑣𝑒𝑔,, and for windows ''𝜗'',,𝑤𝑖𝑛,, are parameters of USM.\\
     222''Φ'',,𝑚,𝑡𝑜𝑡,, is the of total mass specific thermal load, internal and external.
     223{{{
     224#!Latex
     225\begin{align*}
     226  & \Phi_{m,tot}=\Phi_m+H_{t,wm}\cdot\vartheta_{ind,wall,win}+H_{t,3}\cdot \frac{\Phi_{st}+H_{t,es}\cdot\vartheta_{amb}+H_{t,1} \left( \frac{\Phi_{ia}+\Phi_{HC,nd}}{H_v} +\vartheta_{near,fac} \right)}{H_{t,2}} \
     227\end{align*}
     228}}}
     229The ambient temperature ''𝜗'',,𝑎𝑚𝑏,, is the undisturbed outside temperature and an input of PALM Model. The near façade temperature ''𝜗'',,𝑛𝑒𝑎𝑟,𝑓𝑎𝑐,, is the outside air temperature 10 cm away from the façade and an input of the Surface mod.\\
     230
     231''ϑ'',,m,t,, is the (fictive) component temperature at actual time step.
     232{{{
     233#!Latex
     234\begin{align*}
     235  & \vartheta_{m,t}=\frac{\vartheta_{m,t,prev} \cdot \left( \frac{C_m}{3600} \ -0.5\cdot \left(H_{t,3}+H_{t,wm} \right) \right)+\Phi_{m,tot}}{ \frac{C_m}{3600} \ +0.5 \cdot \left(H_{t,3}+H_{t,wm}\right)} \
     236\end{align*}
     237}}}
     238''ϑ'',,m,t,prev,, is the (fictive) component temperature at previous time step.\\
     239''ϑ'',,s,, is the surface temperature at actual time step.
     240{{{
     241#!Latex
     242\begin{align*}
     243  & \vartheta_{s}=\frac{H_{t,ms}\cdot\vartheta_m+\Phi_{st}+H_{t,es}\cdot\vartheta_{amb}+H_{t,1}\cdot\left(\vartheta_{near,fac}+\frac{\Phi_{ia}+\Phi_{HC,nd}}{H_v}\ \right)}{H_{t,ms}+H_{t,es}+H_{t,1}}\
     244\end{align*}
     245}}}
     246''ϑ'',,air,, is the indoor air temperature.
     247{{{
     248#!Latex
     249\begin{align*}
     250  & \vartheta_{air}=\frac{H_{t,is}\cdot\vartheta_s+H_v\cdot\vartheta_{near,fac}+\Phi_{ia}+\Phi_{HC,nd}}{H_{t,is}+H_v} \
     251\end{align*}
     252}}}
     253''ϑ'',,op,, is the operative temperature. The operative temperature is a weighted average of the indoor air temperature and mean radiation temperature.
     254{{{
     255#!Latex
     256\begin{align*}
     257  & \vartheta_{op}=0.3\cdot\vartheta_{air}+0.7\cdot\vartheta_s
     258\end{align*}
     259}}}
     260'''Heating and Cooling Demand'''\\
     261The heating and cooling demand ''Φ'',,HC,nd,, is disposed in 5 different stages as shown in figure 3. \\
     262FIGURE 3\\
     263Stage 1: No heating or cooling necessary, because room temperature ''ϑ'',,air,, is between the set comfort temperatures when heating ''ϑ'',,heat,set,, or cooling ''ϑ'',,cool,set,, is needed.
     264In this case the demand is:
     265{{{
     266#!Latex
     267\begin{align*}
     268  & \Phi_{HC,nd}=0
     269\end{align*}
     270}}}
     271The calculated indoor air temperature is described as ''ϑ'',,air,0,, .\\
     272Stage 2: If the room temperature is outside the comfort threshold, heating or cooling are needed. Then the heating/cooling power is calculated with 10 W m^-2^ as ''Φ'',,HC,10,, .
     273{{{
     274#!Latex
     275\begin{align*}
     276  & \Phi_{HC,10}=10\cdot A_{fac,floor}
     277\end{align*}
     278}}}
     279The indoor air temperature ''ϑ'',,air,10,, is calculated again with ''Φ'',,HC,10,, .\\
     280''ϑ'',,air,set,, is the intended air temperature depended of heating ''ϑ'',,h,set,, and cooling ''ϑ'',,c,set,, .
     281
     282{{{
     283#!Latex
     284\begin{align*}
     285  & \vartheta_{air,set} \begin{cases} \vartheta_{h,set}   \\  \vartheta_{c,set}  \end{cases}
     286\end{align*}
     287}}}
     288The intended air temperatures for heating ϑ_(h,set) and for cooling ''ϑ'',,c,set,, are parameters of USM. \\
     289To estimate the needed amount of heating/ cooling, the unlimited heating/cooling demand ''Φ'',,HC,nd,un,, is calculated without the consideration of the maximum thermal capacity.
     290{{{
     291#!Latex
     292\begin{align*}
     293  & \Phi_{HC,nd,un}=\Phi_{HC,10}\cdot \frac {\vartheta_{air,set}-\vartheta_{air,0}}{\vartheta_{air,10}-\vartheta_{air,0}} \
     294\end{align*}
     295}}}
     296Stage 3: Checking if the unlimited heating/cooling demand ''Φ'',,HC,nd,un,, lower as the maximal heating ''Φ'',,heat,max,, or cooling ''Φ'',,cool,max,, power, than is the heat/cooling demand ''Φ'',,HC,nd,, equal the unlimited heating/cooling demand ''Φ'',,HC,nd,un,, .
     297{{{
     298#!Latex
     299\begin{align*}
     300  & \Phi_{HC,nd}=\Phi_{HC,nd,un}
     301\end{align*}
     302}}}
     303Stage 4: If the unlimited heating or cooling demand is higher than the maximal heating ''Φ'',,heat,max,, or cooling ''Φ'',,cool,max,, power the heating demand is assumed as the maximum heating flux.
     304{{{
     305#!Latex
     306\begin{align*}
     307  & \Phi_{HC,nd}=\Phi_{heat,max}
     308\end{align*}
     309}}}
     310And the cooling demand is maximum cooling heat flux.
     311{{{
     312#!Latex
     313\begin{align*}
     314  & \Phi_{HC,nd}=\Phi_{cool,max}
     315\end{align*}
     316}}}
     317The maximal heating ''Φ'',,heat,max,, and cooling ''Φ'',,cool,max,, power is calculated with the heat flux ''q'',,h,max,, and ''q'',,c,max,, which are parameters of USM.
     318{{{
     319#!Latex
     320\begin{align*}
     321  & \Phi_{heat,max}=q_{h,max} \cdot A_{fac,el} \\
     322  & \Phi_{cool,max}=q_{c,max} \cdot A_{fac,el} \\
     323\end{align*}
     324}}}
     325In this case, the set indoor temperature is not reachable. It will get higher than the requested indoor temperature in summer (cooling) cases and colder in winter (heating) cases. \\
     326'''Heat fluxes and waste heat'''\\
     327''q'',,wall,win,, is the heat flux through the walls and windows.
     328{{{
     329#!Latex
     330\begin{align*}
     331  & q_{wall,win}=H_{t,ms} \cdot \frac {\vartheta_s-\vartheta_m}{A_{fac,el}-A_{fac,win}}
     332\end{align*}
     333}}}
     334''q'',,waste,, is the waste heat through walls/windows with respect on heating/cooling demand and the efficiency of heating/cooling technology. ''c'',,heat,on,, and ''c'',,cool,on,, are flags to separate heating and cooling technology. Whilst the possible values for ''c'',,heat,on,, are 0 and 1 the possible values for ''c'',,cool,on,, are 0 and -1 because the Cooling demand ''Φ'',,HC,nd,, is negative, but anthropogenic waste heat ''q'',,waste,, always be positive.
     335{{{
     336#!Latex
     337\begin{align*}
     338  & q_{waste}=\frac {\Phi_{HC,nd} \cdot \left ( c_{waste,heat}\cdot c_{heat,on}+c_{waste,cool}\cdot c_{cool,on} \right) }{A_{fac,el}}
     339\end{align*}
     340}}}
     341The anthropogenic heat parameter for heating c_(waste,heat) and cooling c_(waste,cool) are parameters of USM.\\
     342
     343TABLE 1