1 | !> @file surface_layer_fluxes_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
7 | ! (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
11 | ! Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
14 | ! <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: surface_layer_fluxes_mod.f90 4750 2020-10-16 14:27:48Z schwenkel $ |
---|
27 | ! Revision of 10-cm temperature at vertical walls - assume grid-cell temperature rather than employ |
---|
28 | ! MOST |
---|
29 | ! |
---|
30 | ! 4717 2020-09-30 22:27:40Z pavelkrc |
---|
31 | ! Fixes and optimizations of OpenMP parallelization, formatting of OpenMP |
---|
32 | ! directives (J. Resler) |
---|
33 | ! |
---|
34 | ! 4691 2020-09-22 14:38:38Z suehring |
---|
35 | ! Bugfix for commit 4593 in vector branch of calc_ol |
---|
36 | ! |
---|
37 | ! 4671 2020-09-09 20:27:58Z pavelkrc |
---|
38 | ! Implementation of downward facing USM and LSM surfaces |
---|
39 | ! |
---|
40 | ! 4594 2020-07-09 15:01:00Z suehring |
---|
41 | ! Include k index in OMP PRIVATE statements |
---|
42 | ! |
---|
43 | ! 4593 2020-07-09 12:48:18Z suehring |
---|
44 | ! - Pre-calculate ln(z/z0) at each timestep in order to reduce the number of log-calculations |
---|
45 | ! - Bugfix - add missing density to fluxes of passive-scalars, chemistry and cloud-phyiscal |
---|
46 | ! quantities at upward-facing surfaces |
---|
47 | ! - Move if-statement out of inner loop |
---|
48 | ! - Remove unnecessary index referencing |
---|
49 | ! |
---|
50 | ! 4562 2020-06-12 08:38:47Z raasch |
---|
51 | ! File re-formatted to follow the PALM coding standard |
---|
52 | ! |
---|
53 | ! 4519 2020-05-05 17:33:30Z suehring |
---|
54 | ! Add missing computation of passive scalar scaling parameter |
---|
55 | ! |
---|
56 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
57 | ! Bugfix: openacc porting for vector version of OL calculation added |
---|
58 | ! |
---|
59 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
60 | ! Vector version for calculation of Obukhov length via Newton iteration added |
---|
61 | ! |
---|
62 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
63 | ! Calculation of diagnostic-only 2-m potential temperature moved to diagnostic_output_quantities. |
---|
64 | ! |
---|
65 | ! 4298 2019-11-21 15:59:16Z suehring |
---|
66 | ! Calculation of 2-m temperature adjusted to the case the 2-m level is above the first grid point. |
---|
67 | ! |
---|
68 | ! 4258 2019-10-07 13:29:08Z suehring |
---|
69 | ! Initialization of Obukhov lenght also at vertical surfaces (if allocated). |
---|
70 | ! |
---|
71 | ! 4237 2019-09-25 11:33:42Z knoop |
---|
72 | ! Added missing OpenMP directives |
---|
73 | ! |
---|
74 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
75 | ! - To enable limitation of Obukhov length, move it before exit-cycle construct. |
---|
76 | ! Further, change the limit to 10E-5 in order to get rid-off unrealistic peaks in the heat fluxes |
---|
77 | ! during nighttime |
---|
78 | ! - Unused variable removed |
---|
79 | ! |
---|
80 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
81 | ! Corrected "Former revisions" section |
---|
82 | ! |
---|
83 | ! 3987 2019-05-22 09:52:13Z kanani |
---|
84 | ! Introduce alternative switch for debug output during timestepping |
---|
85 | ! |
---|
86 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
87 | ! Changes related to global restructuring of location messages and introduction of additional debug |
---|
88 | ! messages |
---|
89 | ! |
---|
90 | ! 3881 2019-04-10 09:31:22Z suehring |
---|
91 | ! Assure that Obukhov length does not become zero |
---|
92 | ! |
---|
93 | ! 3834 2019-03-28 15:40:15Z forkel |
---|
94 | ! Added USE chem_gasphase_mod |
---|
95 | ! |
---|
96 | ! 3787 2019-03-07 08:43:54Z raasch |
---|
97 | ! Unused variables removed |
---|
98 | ! |
---|
99 | ! 3745 2019-02-15 18:57:56Z suehring |
---|
100 | ! Bugfix, missing calculation of 10cm temperature at vertical building walls, required for indoor |
---|
101 | ! model |
---|
102 | ! |
---|
103 | ! 3744 2019-02-15 18:38:58Z suehring |
---|
104 | ! Some interface calls moved to module_interface + cleanup |
---|
105 | ! |
---|
106 | ! 3668 2019-01-14 12:49:24Z maronga |
---|
107 | ! Removed methods "circular" and "lookup" |
---|
108 | ! |
---|
109 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
110 | ! OpenACC port for SPEC |
---|
111 | ! |
---|
112 | ! Revision 1.1 1998/01/23 10:06:06 raasch |
---|
113 | ! Initial revision |
---|
114 | ! |
---|
115 | ! |
---|
116 | ! Description: |
---|
117 | ! ------------ |
---|
118 | !> Diagnostic computation of vertical fluxes in the constant flux layer from the values of the |
---|
119 | !> variables at grid point k=1 based on Newton iteration. |
---|
120 | !> |
---|
121 | !> @todo (Re)move large_scale_forcing actions |
---|
122 | !> @todo Check/optimize OpenMP directives |
---|
123 | !> @todo Simplify if conditions (which flux need to be computed in which case) |
---|
124 | !--------------------------------------------------------------------------------------------------! |
---|
125 | MODULE surface_layer_fluxes_mod |
---|
126 | |
---|
127 | USE arrays_3d, & |
---|
128 | ONLY: d_exner, & |
---|
129 | drho_air_zw, & |
---|
130 | e, & |
---|
131 | kh, & |
---|
132 | nc, & |
---|
133 | nr, & |
---|
134 | pt, & |
---|
135 | q, & |
---|
136 | ql, & |
---|
137 | qc, & |
---|
138 | qr, & |
---|
139 | s, & |
---|
140 | u, & |
---|
141 | v, & |
---|
142 | vpt, & |
---|
143 | w, & |
---|
144 | zu, & |
---|
145 | zw, & |
---|
146 | rho_air_zw |
---|
147 | |
---|
148 | |
---|
149 | USE basic_constants_and_equations_mod, & |
---|
150 | ONLY: g, & |
---|
151 | kappa, & |
---|
152 | lv_d_cp, & |
---|
153 | pi, & |
---|
154 | rd_d_rv |
---|
155 | |
---|
156 | USE chem_gasphase_mod, & |
---|
157 | ONLY: nvar |
---|
158 | |
---|
159 | USE chem_modules, & |
---|
160 | ONLY: constant_csflux |
---|
161 | |
---|
162 | USE cpulog |
---|
163 | |
---|
164 | USE control_parameters, & |
---|
165 | ONLY: air_chemistry, & |
---|
166 | cloud_droplets, & |
---|
167 | constant_heatflux, & |
---|
168 | constant_scalarflux, & |
---|
169 | constant_waterflux, & |
---|
170 | coupling_mode, & |
---|
171 | debug_output_timestep, & |
---|
172 | humidity, & |
---|
173 | ibc_e_b, & |
---|
174 | ibc_pt_b, & |
---|
175 | indoor_model, & |
---|
176 | land_surface, & |
---|
177 | large_scale_forcing, & |
---|
178 | loop_optimization, & |
---|
179 | lsf_surf, & |
---|
180 | message_string, & |
---|
181 | neutral, & |
---|
182 | passive_scalar, & |
---|
183 | pt_surface, & |
---|
184 | q_surface, & |
---|
185 | run_coupled, & |
---|
186 | surface_pressure, & |
---|
187 | simulated_time, & |
---|
188 | time_since_reference_point, & |
---|
189 | urban_surface, & |
---|
190 | use_free_convection_scaling, & |
---|
191 | zeta_max, & |
---|
192 | zeta_min |
---|
193 | |
---|
194 | USE grid_variables, & |
---|
195 | ONLY: dx, & |
---|
196 | dy |
---|
197 | |
---|
198 | USE indices, & |
---|
199 | ONLY: nzt |
---|
200 | |
---|
201 | USE kinds |
---|
202 | |
---|
203 | USE bulk_cloud_model_mod, & |
---|
204 | ONLY: bulk_cloud_model, & |
---|
205 | microphysics_morrison, & |
---|
206 | microphysics_seifert |
---|
207 | |
---|
208 | USE pegrid |
---|
209 | |
---|
210 | USE land_surface_model_mod, & |
---|
211 | ONLY: aero_resist_kray, & |
---|
212 | skip_time_do_lsm |
---|
213 | |
---|
214 | USE surface_mod, & |
---|
215 | ONLY : surf_def_h, & |
---|
216 | surf_def_v, & |
---|
217 | surf_lsm_h, & |
---|
218 | surf_lsm_v, & |
---|
219 | surf_type, & |
---|
220 | surf_usm_h, & |
---|
221 | surf_usm_v |
---|
222 | |
---|
223 | |
---|
224 | IMPLICIT NONE |
---|
225 | |
---|
226 | INTEGER(iwp) :: i !< loop index x direction |
---|
227 | INTEGER(iwp) :: j !< loop index y direction |
---|
228 | INTEGER(iwp) :: k !< loop index z direction |
---|
229 | INTEGER(iwp) :: l !< loop index for surf type |
---|
230 | |
---|
231 | LOGICAL :: coupled_run !< Flag for coupled atmosphere-ocean runs |
---|
232 | LOGICAL :: downward = .FALSE. !< Flag indicating downward-facing horizontal surface |
---|
233 | LOGICAL :: mom_uv = .FALSE. !< Flag indicating calculation of usvs and vsus at vertical surfaces |
---|
234 | LOGICAL :: mom_w = .FALSE. !< Flag indicating calculation of wsus and wsvs at vertical surfaces |
---|
235 | LOGICAL :: mom_tke = .FALSE. !< Flag indicating calculation of momentum fluxes at vertical surfaces used for TKE production |
---|
236 | LOGICAL :: surf_vertical !< Flag indicating vertical surfaces |
---|
237 | |
---|
238 | REAL(wp) :: e_s !< Saturation water vapor pressure |
---|
239 | REAL(wp) :: ol_max = 1.0E6_wp !< Maximum Obukhov length |
---|
240 | REAL(wp) :: z_mo !< Height of the constant flux layer where MOST is assumed |
---|
241 | |
---|
242 | TYPE(surf_type), POINTER :: surf !< surf-type array, used to generalize subroutines |
---|
243 | |
---|
244 | |
---|
245 | SAVE |
---|
246 | |
---|
247 | PRIVATE |
---|
248 | |
---|
249 | PUBLIC init_surface_layer_fluxes, & |
---|
250 | phi_m, & |
---|
251 | psi_h, & |
---|
252 | psi_m, & |
---|
253 | surface_layer_fluxes |
---|
254 | |
---|
255 | INTERFACE init_surface_layer_fluxes |
---|
256 | MODULE PROCEDURE init_surface_layer_fluxes |
---|
257 | END INTERFACE init_surface_layer_fluxes |
---|
258 | |
---|
259 | INTERFACE phi_m |
---|
260 | MODULE PROCEDURE phi_m |
---|
261 | END INTERFACE phi_m |
---|
262 | |
---|
263 | INTERFACE psi_h |
---|
264 | MODULE PROCEDURE psi_h |
---|
265 | END INTERFACE psi_h |
---|
266 | |
---|
267 | INTERFACE psi_m |
---|
268 | MODULE PROCEDURE psi_m |
---|
269 | END INTERFACE psi_m |
---|
270 | |
---|
271 | INTERFACE surface_layer_fluxes |
---|
272 | MODULE PROCEDURE surface_layer_fluxes |
---|
273 | END INTERFACE surface_layer_fluxes |
---|
274 | |
---|
275 | |
---|
276 | CONTAINS |
---|
277 | |
---|
278 | |
---|
279 | !--------------------------------------------------------------------------------------------------! |
---|
280 | ! Description: |
---|
281 | ! ------------ |
---|
282 | !> Main routine to compute the surface fluxes. |
---|
283 | !--------------------------------------------------------------------------------------------------! |
---|
284 | SUBROUTINE surface_layer_fluxes |
---|
285 | |
---|
286 | IMPLICIT NONE |
---|
287 | |
---|
288 | |
---|
289 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'start' ) |
---|
290 | |
---|
291 | surf_vertical = .FALSE. !< flag indicating vertically orientated surface elements |
---|
292 | downward = .FALSE. !< flag indicating downward-facing surface elements |
---|
293 | ! |
---|
294 | !-- First, precalculate ln(z/z0) for all surfaces. This is done each timestep, in order to account |
---|
295 | !-- for time-dependent roughness or user-modifications. |
---|
296 | DO l = 0, 1 |
---|
297 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
298 | surf => surf_def_h(l) |
---|
299 | CALL calc_ln |
---|
300 | ENDIF |
---|
301 | IF ( surf_lsm_h(l)%ns >= 1 ) THEN |
---|
302 | surf => surf_lsm_h(l) |
---|
303 | CALL calc_ln |
---|
304 | ENDIF |
---|
305 | IF ( surf_usm_h(l)%ns >= 1 ) THEN |
---|
306 | surf => surf_usm_h(l) |
---|
307 | CALL calc_ln |
---|
308 | ENDIF |
---|
309 | ENDDO |
---|
310 | |
---|
311 | DO l = 0, 3 |
---|
312 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
313 | surf => surf_def_v(l) |
---|
314 | CALL calc_ln |
---|
315 | ENDIF |
---|
316 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
317 | surf => surf_lsm_v(l) |
---|
318 | CALL calc_ln |
---|
319 | ENDIF |
---|
320 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
321 | surf => surf_usm_v(l) |
---|
322 | CALL calc_ln |
---|
323 | ENDIF |
---|
324 | ENDDO |
---|
325 | ! |
---|
326 | !-- Derive potential temperature and specific humidity at first grid level from the fields pt and q |
---|
327 | DO l = 0, 1 |
---|
328 | !-- First call for horizontal default-type surfaces (l=0 - upward facing, l=1 - downward facing) |
---|
329 | IF ( surf_def_h(l)%ns >= 1 ) THEN |
---|
330 | surf => surf_def_h(l) |
---|
331 | CALL calc_pt_q |
---|
332 | IF ( .NOT. neutral ) THEN |
---|
333 | CALL calc_pt_surface |
---|
334 | IF ( humidity ) THEN |
---|
335 | CALL calc_q_surface |
---|
336 | CALL calc_vpt_surface |
---|
337 | ENDIF |
---|
338 | ENDIF |
---|
339 | ENDIF |
---|
340 | ! |
---|
341 | !-- Call for natural-type horizontal surfaces |
---|
342 | IF ( surf_lsm_h(l)%ns >= 1 ) THEN |
---|
343 | surf => surf_lsm_h(l) |
---|
344 | CALL calc_pt_q |
---|
345 | ENDIF |
---|
346 | ! |
---|
347 | !-- Call for urban-type horizontal surfaces |
---|
348 | IF ( surf_usm_h(l)%ns >= 1 ) THEN |
---|
349 | surf => surf_usm_h(l) |
---|
350 | CALL calc_pt_q |
---|
351 | ENDIF |
---|
352 | ENDDO |
---|
353 | ! |
---|
354 | !-- Call for natural-type vertical surfaces |
---|
355 | DO l = 0, 3 |
---|
356 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
357 | surf => surf_lsm_v(l) |
---|
358 | CALL calc_pt_q |
---|
359 | ENDIF |
---|
360 | |
---|
361 | !-- Call for urban-type vertical surfaces |
---|
362 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
363 | surf => surf_usm_v(l) |
---|
364 | CALL calc_pt_q |
---|
365 | ENDIF |
---|
366 | ENDDO |
---|
367 | |
---|
368 | ! |
---|
369 | !-- First, calculate the new Obukhov length from precalculated values of log(z/z0) and wind speeds. |
---|
370 | !-- As a second step, then calculate new friction velocity, followed by the new scaling |
---|
371 | !-- parameters (th*, q*, etc.), and the new surface fluxes, if required. Note, each routine is called |
---|
372 | !-- for different surface types. First call for default-type horizontal surfaces, for natural- and |
---|
373 | !-- urban-type surfaces. Note, here only upward-facing horizontal surfaces are treated. |
---|
374 | !-- Note, calculation of log(z/z0) is redone each timestep, in order to account for time-dependent |
---|
375 | !-- values. |
---|
376 | !-- Start with default-type upward-facing horizontal surfaces |
---|
377 | IF ( surf_def_h(0)%ns >= 1 ) THEN |
---|
378 | surf => surf_def_h(0) |
---|
379 | CALL calc_uvw_abs |
---|
380 | IF ( .NOT. neutral ) CALL calc_ol |
---|
381 | CALL calc_us |
---|
382 | CALL calc_scaling_parameters |
---|
383 | CALL calc_surface_fluxes |
---|
384 | ENDIF |
---|
385 | ! |
---|
386 | !-- Natural-type horizontal surfaces |
---|
387 | IF ( surf_lsm_h(0)%ns >= 1 ) THEN |
---|
388 | surf => surf_lsm_h(0) |
---|
389 | CALL calc_uvw_abs |
---|
390 | IF ( .NOT. neutral ) CALL calc_ol |
---|
391 | CALL calc_us |
---|
392 | CALL calc_scaling_parameters |
---|
393 | CALL calc_surface_fluxes |
---|
394 | ENDIF |
---|
395 | ! |
---|
396 | !-- Urban-type horizontal surfaces |
---|
397 | IF ( surf_usm_h(0)%ns >= 1 ) THEN |
---|
398 | surf => surf_usm_h(0) |
---|
399 | CALL calc_uvw_abs |
---|
400 | IF ( .NOT. neutral ) CALL calc_ol |
---|
401 | CALL calc_us |
---|
402 | CALL calc_scaling_parameters |
---|
403 | CALL calc_surface_fluxes |
---|
404 | ! |
---|
405 | !-- Calculate 10cm temperature, required in indoor model |
---|
406 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
407 | ENDIF |
---|
408 | |
---|
409 | ! |
---|
410 | !-- Treat downward-facing horizontal surfaces. |
---|
411 | !-- Stratification is not considered in this case, hence, no further distinction between different |
---|
412 | !-- most_method is required. |
---|
413 | downward = .TRUE. |
---|
414 | !-- Default type. |
---|
415 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
416 | surf => surf_def_h(1) |
---|
417 | CALL calc_uvw_abs |
---|
418 | CALL calc_us |
---|
419 | CALL calc_surface_fluxes |
---|
420 | ENDIF |
---|
421 | !-- Natural surface type. |
---|
422 | IF ( surf_lsm_h(1)%ns >= 1 ) THEN |
---|
423 | surf => surf_lsm_h(1) |
---|
424 | CALL calc_uvw_abs |
---|
425 | CALL calc_us |
---|
426 | CALL calc_surface_fluxes |
---|
427 | ENDIF |
---|
428 | !-- Urban surface type. |
---|
429 | IF ( surf_usm_h(1)%ns >= 1 ) THEN |
---|
430 | surf => surf_usm_h(1) |
---|
431 | CALL calc_uvw_abs |
---|
432 | CALL calc_us |
---|
433 | CALL calc_surface_fluxes |
---|
434 | ENDIF |
---|
435 | downward = .FALSE. |
---|
436 | ! |
---|
437 | !-- Calculate surfaces fluxes at vertical surfaces for momentum and subgrid-scale TKE. No stability |
---|
438 | !-- is considered. Therefore, scaling parameters and Obukhov length do not need to be calculated and |
---|
439 | !-- no distinction in 'circular', 'Newton' or 'lookup' is necessary so far. Note, this will change |
---|
440 | !-- if stability is once considered. |
---|
441 | surf_vertical = .TRUE. |
---|
442 | ! |
---|
443 | !-- Calculate horizontal momentum fluxes at north- and south-facing surfaces(usvs). |
---|
444 | !-- For default-type surfaces |
---|
445 | mom_uv = .TRUE. |
---|
446 | DO l = 0, 1 |
---|
447 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
448 | surf => surf_def_v(l) |
---|
449 | ! |
---|
450 | !-- Compute surface-parallel velocity |
---|
451 | CALL calc_uvw_abs_v_ugrid |
---|
452 | ! |
---|
453 | !-- Compute respective friction velocity on staggered grid |
---|
454 | CALL calc_us |
---|
455 | ! |
---|
456 | !-- Compute respective surface fluxes for momentum and TKE |
---|
457 | CALL calc_surface_fluxes |
---|
458 | ENDIF |
---|
459 | ENDDO |
---|
460 | ! |
---|
461 | !-- For natural-type surfaces. Please note, even though stability is not considered for the |
---|
462 | !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukhov length are |
---|
463 | !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization |
---|
464 | !-- of heat flux in land-surface model in case that aero_resist_kray is not true. |
---|
465 | IF ( .NOT. aero_resist_kray ) THEN |
---|
466 | DO l = 0, 1 |
---|
467 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
468 | surf => surf_lsm_v(l) |
---|
469 | ! |
---|
470 | !-- Compute surface-parallel velocity |
---|
471 | CALL calc_uvw_abs_v_ugrid |
---|
472 | ! |
---|
473 | !-- Compute Obukhov length |
---|
474 | IF ( .NOT. neutral ) CALL calc_ol |
---|
475 | ! |
---|
476 | !-- Compute respective friction velocity on staggered grid |
---|
477 | CALL calc_us |
---|
478 | ! |
---|
479 | !-- Compute scaling parameters |
---|
480 | CALL calc_scaling_parameters |
---|
481 | ! |
---|
482 | !-- Compute respective surface fluxes for momentum and TKE |
---|
483 | CALL calc_surface_fluxes |
---|
484 | ENDIF |
---|
485 | ENDDO |
---|
486 | ! |
---|
487 | !-- No ts is required, so scaling parameters and Obukhov length do not need to be computed. |
---|
488 | ELSE |
---|
489 | DO l = 0, 1 |
---|
490 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
491 | surf => surf_lsm_v(l) |
---|
492 | ! |
---|
493 | !-- Compute surface-parallel velocity |
---|
494 | CALL calc_uvw_abs_v_ugrid |
---|
495 | ! |
---|
496 | !-- Compute respective friction velocity on staggered grid |
---|
497 | CALL calc_us |
---|
498 | ! |
---|
499 | !-- Compute respective surface fluxes for momentum and TKE |
---|
500 | CALL calc_surface_fluxes |
---|
501 | ENDIF |
---|
502 | ENDDO |
---|
503 | ENDIF |
---|
504 | ! |
---|
505 | !-- For urban-type surfaces |
---|
506 | DO l = 0, 1 |
---|
507 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
508 | surf => surf_usm_v(l) |
---|
509 | ! |
---|
510 | !-- Compute surface-parallel velocity |
---|
511 | CALL calc_uvw_abs_v_ugrid |
---|
512 | ! |
---|
513 | !-- Compute respective friction velocity on staggered grid |
---|
514 | CALL calc_us |
---|
515 | ! |
---|
516 | !-- Compute respective surface fluxes for momentum and TKE |
---|
517 | CALL calc_surface_fluxes |
---|
518 | ! |
---|
519 | !-- Calculate 10cm temperature, required in indoor model |
---|
520 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
521 | ENDIF |
---|
522 | ENDDO |
---|
523 | ! |
---|
524 | !-- Calculate horizontal momentum fluxes at east- and west-facing surfaces (vsus). |
---|
525 | !-- For default-type surfaces |
---|
526 | DO l = 2, 3 |
---|
527 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
528 | surf => surf_def_v(l) |
---|
529 | ! |
---|
530 | !-- Compute surface-parallel velocity |
---|
531 | CALL calc_uvw_abs_v_vgrid |
---|
532 | ! |
---|
533 | !-- Compute respective friction velocity on staggered grid |
---|
534 | CALL calc_us |
---|
535 | ! |
---|
536 | !-- Compute respective surface fluxes for momentum and TKE |
---|
537 | CALL calc_surface_fluxes |
---|
538 | ENDIF |
---|
539 | ENDDO |
---|
540 | ! |
---|
541 | !-- For natural-type surfaces. Please note, even though stability is not considered for the |
---|
542 | !-- calculation of momentum fluxes at vertical surfaces, scaling parameters and Obukov length are |
---|
543 | !-- calculated nevertheless in this case. This is due to the requirement of ts in parameterization |
---|
544 | !-- of heat flux in land-surface model in case that aero_resist_kray is not true. |
---|
545 | IF ( .NOT. aero_resist_kray ) THEN |
---|
546 | DO l = 2, 3 |
---|
547 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
548 | surf => surf_lsm_v(l) |
---|
549 | ! |
---|
550 | !-- Compute surface-parallel velocity |
---|
551 | CALL calc_uvw_abs_v_vgrid |
---|
552 | ! |
---|
553 | !-- Compute Obukhov length |
---|
554 | IF ( .NOT. neutral ) CALL calc_ol |
---|
555 | ! |
---|
556 | !-- Compute respective friction velocity on staggered grid |
---|
557 | CALL calc_us |
---|
558 | ! |
---|
559 | !-- Compute scaling parameters |
---|
560 | CALL calc_scaling_parameters |
---|
561 | ! |
---|
562 | !-- Compute respective surface fluxes for momentum and TKE |
---|
563 | CALL calc_surface_fluxes |
---|
564 | ENDIF |
---|
565 | ENDDO |
---|
566 | ELSE |
---|
567 | DO l = 2, 3 |
---|
568 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
569 | surf => surf_lsm_v(l) |
---|
570 | ! |
---|
571 | !-- Compute surface-parallel velocity |
---|
572 | CALL calc_uvw_abs_v_vgrid |
---|
573 | ! |
---|
574 | !-- Compute respective friction velocity on staggered grid |
---|
575 | CALL calc_us |
---|
576 | ! |
---|
577 | !-- Compute respective surface fluxes for momentum and TKE |
---|
578 | CALL calc_surface_fluxes |
---|
579 | ENDIF |
---|
580 | ENDDO |
---|
581 | ENDIF |
---|
582 | ! |
---|
583 | !-- For urban-type surfaces |
---|
584 | DO l = 2, 3 |
---|
585 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
586 | surf => surf_usm_v(l) |
---|
587 | ! |
---|
588 | !-- Compute surface-parallel velocity |
---|
589 | CALL calc_uvw_abs_v_vgrid |
---|
590 | ! |
---|
591 | !-- Compute respective friction velocity on staggered grid |
---|
592 | CALL calc_us |
---|
593 | ! |
---|
594 | !-- Compute respective surface fluxes for momentum and TKE |
---|
595 | CALL calc_surface_fluxes |
---|
596 | ! |
---|
597 | !-- Calculate 10cm temperature, required in indoor model |
---|
598 | IF ( indoor_model ) CALL calc_pt_near_surface ( '10cm' ) |
---|
599 | ENDIF |
---|
600 | ENDDO |
---|
601 | mom_uv = .FALSE. |
---|
602 | ! |
---|
603 | !-- Calculate horizontal momentum fluxes of w (wsus and wsvs) at vertial surfaces. |
---|
604 | mom_w = .TRUE. |
---|
605 | ! |
---|
606 | !-- Default-type surfaces |
---|
607 | DO l = 0, 3 |
---|
608 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
609 | surf => surf_def_v(l) |
---|
610 | CALL calc_uvw_abs_v_wgrid |
---|
611 | CALL calc_us |
---|
612 | CALL calc_surface_fluxes |
---|
613 | ENDIF |
---|
614 | ENDDO |
---|
615 | ! |
---|
616 | !-- Natural-type surfaces |
---|
617 | DO l = 0, 3 |
---|
618 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
619 | surf => surf_lsm_v(l) |
---|
620 | CALL calc_uvw_abs_v_wgrid |
---|
621 | CALL calc_us |
---|
622 | CALL calc_surface_fluxes |
---|
623 | ENDIF |
---|
624 | ENDDO |
---|
625 | ! |
---|
626 | !-- Urban-type surfaces |
---|
627 | DO l = 0, 3 |
---|
628 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
629 | surf => surf_usm_v(l) |
---|
630 | CALL calc_uvw_abs_v_wgrid |
---|
631 | CALL calc_us |
---|
632 | CALL calc_surface_fluxes |
---|
633 | ENDIF |
---|
634 | ENDDO |
---|
635 | mom_w = .FALSE. |
---|
636 | ! |
---|
637 | !-- Calculate momentum fluxes usvs, vsus, wsus and wsvs at vertical surfaces for TKE production. |
---|
638 | !-- Note, here, momentum fluxes are defined at grid center and are not staggered as before. |
---|
639 | mom_tke = .TRUE. |
---|
640 | ! |
---|
641 | !-- Default-type surfaces |
---|
642 | DO l = 0, 3 |
---|
643 | IF ( surf_def_v(l)%ns >= 1 ) THEN |
---|
644 | surf => surf_def_v(l) |
---|
645 | CALL calc_uvw_abs_v_sgrid |
---|
646 | CALL calc_us |
---|
647 | CALL calc_surface_fluxes |
---|
648 | ENDIF |
---|
649 | ENDDO |
---|
650 | ! |
---|
651 | !-- Natural-type surfaces |
---|
652 | DO l = 0, 3 |
---|
653 | IF ( surf_lsm_v(l)%ns >= 1 ) THEN |
---|
654 | surf => surf_lsm_v(l) |
---|
655 | CALL calc_uvw_abs_v_sgrid |
---|
656 | CALL calc_us |
---|
657 | CALL calc_surface_fluxes |
---|
658 | ENDIF |
---|
659 | ENDDO |
---|
660 | ! |
---|
661 | !-- Urban-type surfaces |
---|
662 | DO l = 0, 3 |
---|
663 | IF ( surf_usm_v(l)%ns >= 1 ) THEN |
---|
664 | surf => surf_usm_v(l) |
---|
665 | CALL calc_uvw_abs_v_sgrid |
---|
666 | CALL calc_us |
---|
667 | CALL calc_surface_fluxes |
---|
668 | ENDIF |
---|
669 | ENDDO |
---|
670 | mom_tke = .FALSE. |
---|
671 | |
---|
672 | IF ( debug_output_timestep ) CALL debug_message( 'surface_layer_fluxes', 'end' ) |
---|
673 | |
---|
674 | END SUBROUTINE surface_layer_fluxes |
---|
675 | |
---|
676 | |
---|
677 | !--------------------------------------------------------------------------------------------------! |
---|
678 | ! Description: |
---|
679 | ! ------------ |
---|
680 | !> Initializing actions for the surface layer routine. |
---|
681 | !--------------------------------------------------------------------------------------------------! |
---|
682 | SUBROUTINE init_surface_layer_fluxes |
---|
683 | |
---|
684 | IMPLICIT NONE |
---|
685 | |
---|
686 | INTEGER(iwp) :: l !< running index for vertical surface orientation |
---|
687 | |
---|
688 | CALL location_message( 'initializing surface layer', 'start' ) |
---|
689 | |
---|
690 | ! |
---|
691 | !-- In case of runs with neutral statification, set Obukhov length to a large value |
---|
692 | IF ( neutral ) THEN |
---|
693 | DO l = 0, 1 |
---|
694 | IF ( surf_def_h(l)%ns >= 1 .AND. & |
---|
695 | ALLOCATED( surf_def_h(l)%ol ) ) surf_def_h(l)%ol = 1.0E10_wp |
---|
696 | IF ( surf_lsm_h(l)%ns >= 1 .AND. & |
---|
697 | ALLOCATED( surf_lsm_h(l)%ol ) ) surf_lsm_h(l)%ol = 1.0E10_wp |
---|
698 | IF ( surf_usm_h(l)%ns >= 1 .AND. & |
---|
699 | ALLOCATED( surf_usm_h(l)%ol ) ) surf_usm_h(l)%ol = 1.0E10_wp |
---|
700 | ENDDO |
---|
701 | DO l = 0, 3 |
---|
702 | IF ( surf_def_v(l)%ns >= 1 .AND. & |
---|
703 | ALLOCATED( surf_def_v(l)%ol ) ) surf_def_v(l)%ol = 1.0E10_wp |
---|
704 | IF ( surf_lsm_v(l)%ns >= 1 .AND. & |
---|
705 | ALLOCATED( surf_lsm_v(l)%ol ) ) surf_lsm_v(l)%ol = 1.0E10_wp |
---|
706 | IF ( surf_usm_v(l)%ns >= 1 .AND. & |
---|
707 | ALLOCATED( surf_usm_v(l)%ol ) ) surf_usm_v(l)%ol = 1.0E10_wp |
---|
708 | ENDDO |
---|
709 | |
---|
710 | ENDIF |
---|
711 | |
---|
712 | CALL location_message( 'initializing surface layer', 'finished' ) |
---|
713 | |
---|
714 | END SUBROUTINE init_surface_layer_fluxes |
---|
715 | |
---|
716 | |
---|
717 | !--------------------------------------------------------------------------------------------------! |
---|
718 | ! Description: |
---|
719 | ! ------------ |
---|
720 | !> Compute ln(z/z0). |
---|
721 | !--------------------------------------------------------------------------------------------------! |
---|
722 | SUBROUTINE calc_ln |
---|
723 | |
---|
724 | INTEGER(iwp) :: m !< running index surface elements |
---|
725 | |
---|
726 | ! |
---|
727 | !-- Note, ln(z/z0h) and ln(z/z0q) is also calculated even if neural simulations are applied. |
---|
728 | !-- This is because the scalar coefficients are also used for other scalars such as passive scalars, |
---|
729 | !-- chemistry and aerosols. |
---|
730 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
731 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
732 | !$ACC PRESENT(surf) |
---|
733 | DO m = 1, surf%ns |
---|
734 | z_mo = surf%z_mo(m) |
---|
735 | surf%ln_z_z0(m) = LOG( z_mo / surf%z0(m) ) |
---|
736 | surf%ln_z_z0h(m) = LOG( z_mo / surf%z0h(m) ) |
---|
737 | surf%ln_z_z0q(m) = LOG( z_mo / surf%z0q(m) ) |
---|
738 | ENDDO |
---|
739 | |
---|
740 | END SUBROUTINE calc_ln |
---|
741 | |
---|
742 | !--------------------------------------------------------------------------------------------------! |
---|
743 | ! Description: |
---|
744 | ! ------------ |
---|
745 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
746 | !> surface elements. This is required by all methods. |
---|
747 | !--------------------------------------------------------------------------------------------------! |
---|
748 | SUBROUTINE calc_uvw_abs |
---|
749 | |
---|
750 | IMPLICIT NONE |
---|
751 | |
---|
752 | INTEGER(iwp) :: i !< running index x direction |
---|
753 | INTEGER(iwp) :: ibit !< flag to mask computation of relative velocity in case of downward-facing surfaces |
---|
754 | INTEGER(iwp) :: j !< running index y direction |
---|
755 | INTEGER(iwp) :: k !< running index z direction |
---|
756 | INTEGER(iwp) :: m !< running index surface elements |
---|
757 | |
---|
758 | REAL(wp) :: w_lfc !< local free convection velocity scale |
---|
759 | ! |
---|
760 | !-- ibit is 1 for upward-facing surfaces, zero for downward-facing surfaces. |
---|
761 | ibit = MERGE( 1, 0, .NOT. downward ) |
---|
762 | |
---|
763 | IF ( use_free_convection_scaling ) THEN |
---|
764 | !$OMP PARALLEL DO PRIVATE(i, j, k, w_lfc) |
---|
765 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, w_lfc) & |
---|
766 | !$ACC PRESENT(surf, u, v) |
---|
767 | DO m = 1, surf%ns |
---|
768 | i = surf%i(m) |
---|
769 | j = surf%j(m) |
---|
770 | k = surf%k(m) |
---|
771 | |
---|
772 | ! |
---|
773 | !-- Calculate free convection velocity scale w_lfc is use_free_convection_scaling = .T.. This |
---|
774 | !-- will maintain a horizontal velocity even for very weak wind convective conditions. SIGN is |
---|
775 | !-- used to set w_lfc to zero under stable conditions. |
---|
776 | w_lfc = ABS(g / surf%pt1(m) * surf%z_mo(m) * surf%shf(m)) |
---|
777 | w_lfc = ( 0.5_wp * ( w_lfc + SIGN(w_lfc,surf%shf(m)) ) )**(0.33333_wp) |
---|
778 | ! |
---|
779 | !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the |
---|
780 | !-- lower surface is the ocean). Please note, in new surface modelling concept the index values |
---|
781 | !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first |
---|
782 | !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations |
---|
783 | !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used |
---|
784 | !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. |
---|
785 | !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. |
---|
786 | surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
787 | ) * ibit ) & |
---|
788 | )**2 & |
---|
789 | + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
790 | ) * ibit ) & |
---|
791 | )**2 + w_lfc**2 ) |
---|
792 | ENDDO |
---|
793 | ELSE |
---|
794 | !$OMP PARALLEL DO PRIVATE(i, j, k) |
---|
795 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
796 | !$ACC PRESENT(surf, u, v) |
---|
797 | DO m = 1, surf%ns |
---|
798 | i = surf%i(m) |
---|
799 | j = surf%j(m) |
---|
800 | k = surf%k(m) |
---|
801 | ! |
---|
802 | !-- Compute the absolute value of the horizontal velocity. (relative to the surface in case the |
---|
803 | !-- lower surface is the ocean). Please note, in new surface modelling concept the index values |
---|
804 | !-- changed, i.e. the reference grid point is not the surface-grid point itself but the first |
---|
805 | !-- grid point outside of the topography. Note, in case of coupled ocean-atmosphere simulations |
---|
806 | !-- relative velocity with respect to the ocean surface is used, hence, (k-1,j,i) values are used |
---|
807 | !-- to calculate the absolute velocity. However, this does not apply for downward-facing walls. |
---|
808 | !-- To mask this, use ibit, which checks for upward/downward-facing surfaces. |
---|
809 | surf%uvw_abs(m) = SQRT( ( 0.5_wp * ( u(k,j,i) + u(k,j,i+1) - ( u(k-1,j,i) + u(k-1,j,i+1) & |
---|
810 | ) * ibit ) & |
---|
811 | )**2 & |
---|
812 | + ( 0.5_wp * ( v(k,j,i) + v(k,j+1,i) - ( v(k-1,j,i) + v(k-1,j+1,i) & |
---|
813 | ) * ibit ) & |
---|
814 | )**2 ) |
---|
815 | ENDDO |
---|
816 | ENDIF |
---|
817 | |
---|
818 | END SUBROUTINE calc_uvw_abs |
---|
819 | |
---|
820 | |
---|
821 | !--------------------------------------------------------------------------------------------------! |
---|
822 | ! Description: |
---|
823 | ! ------------ |
---|
824 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
825 | !> surface elements. This is required by all methods. |
---|
826 | !--------------------------------------------------------------------------------------------------! |
---|
827 | SUBROUTINE calc_uvw_abs_v_ugrid |
---|
828 | |
---|
829 | IMPLICIT NONE |
---|
830 | |
---|
831 | INTEGER(iwp) :: i !< running index x direction |
---|
832 | INTEGER(iwp) :: j !< running index y direction |
---|
833 | INTEGER(iwp) :: k !< running index z direction |
---|
834 | INTEGER(iwp) :: m !< running index surface elements |
---|
835 | |
---|
836 | REAL(wp) :: u_i !< u-component on xu-grid |
---|
837 | REAL(wp) :: w_i !< w-component on xu-grid |
---|
838 | |
---|
839 | |
---|
840 | DO m = 1, surf%ns |
---|
841 | i = surf%i(m) |
---|
842 | j = surf%j(m) |
---|
843 | k = surf%k(m) |
---|
844 | ! |
---|
845 | !-- Compute the absolute value of the surface parallel velocity on u-grid. |
---|
846 | u_i = u(k,j,i) |
---|
847 | w_i = 0.25_wp * ( w(k-1,j,i-1) + w(k-1,j,i) + w(k,j,i-1) + w(k,j,i) ) |
---|
848 | |
---|
849 | surf%uvw_abs(m) = SQRT( u_i**2 + w_i**2 ) |
---|
850 | ENDDO |
---|
851 | |
---|
852 | END SUBROUTINE calc_uvw_abs_v_ugrid |
---|
853 | |
---|
854 | !--------------------------------------------------------------------------------------------------! |
---|
855 | ! Description: |
---|
856 | ! ------------ |
---|
857 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
858 | !> surface elements. This is required by all methods. |
---|
859 | !--------------------------------------------------------------------------------------------------! |
---|
860 | SUBROUTINE calc_uvw_abs_v_vgrid |
---|
861 | |
---|
862 | IMPLICIT NONE |
---|
863 | |
---|
864 | INTEGER(iwp) :: i !< running index x direction |
---|
865 | INTEGER(iwp) :: j !< running index y direction |
---|
866 | INTEGER(iwp) :: k !< running index z direction |
---|
867 | INTEGER(iwp) :: m !< running index surface elements |
---|
868 | |
---|
869 | REAL(wp) :: v_i !< v-component on yv-grid |
---|
870 | REAL(wp) :: w_i !< w-component on yv-grid |
---|
871 | |
---|
872 | |
---|
873 | DO m = 1, surf%ns |
---|
874 | i = surf%i(m) |
---|
875 | j = surf%j(m) |
---|
876 | k = surf%k(m) |
---|
877 | |
---|
878 | v_i = u(k,j,i) |
---|
879 | w_i = 0.25_wp * ( w(k-1,j-1,i) + w(k-1,j,i) + w(k,j-1,i) + w(k,j,i) ) |
---|
880 | |
---|
881 | surf%uvw_abs(m) = SQRT( v_i**2 + w_i**2 ) |
---|
882 | ENDDO |
---|
883 | |
---|
884 | END SUBROUTINE calc_uvw_abs_v_vgrid |
---|
885 | |
---|
886 | !--------------------------------------------------------------------------------------------------! |
---|
887 | ! Description: |
---|
888 | ! ------------ |
---|
889 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
890 | !> surface elements. This is required by all methods. |
---|
891 | !--------------------------------------------------------------------------------------------------! |
---|
892 | SUBROUTINE calc_uvw_abs_v_wgrid |
---|
893 | |
---|
894 | IMPLICIT NONE |
---|
895 | |
---|
896 | INTEGER(iwp) :: i !< running index x direction |
---|
897 | INTEGER(iwp) :: j !< running index y direction |
---|
898 | INTEGER(iwp) :: k !< running index z direction |
---|
899 | INTEGER(iwp) :: m !< running index surface elements |
---|
900 | |
---|
901 | REAL(wp) :: u_i !< u-component on x-zw-grid |
---|
902 | REAL(wp) :: v_i !< v-component on y-zw-grid |
---|
903 | REAL(wp) :: w_i !< w-component on zw-grid |
---|
904 | ! |
---|
905 | !-- North- (l=0) and south-facing (l=1) surfaces |
---|
906 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
907 | DO m = 1, surf%ns |
---|
908 | i = surf%i(m) |
---|
909 | j = surf%j(m) |
---|
910 | k = surf%k(m) |
---|
911 | |
---|
912 | u_i = 0.25_wp * ( u(k+1,j,i+1) + u(k+1,j,i) + u(k,j,i+1) + u(k,j,i) ) |
---|
913 | v_i = 0.0_wp |
---|
914 | w_i = w(k,j,i) |
---|
915 | |
---|
916 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
917 | ENDDO |
---|
918 | ! |
---|
919 | !-- East- (l=2) and west-facing (l=3) surfaces |
---|
920 | ELSE |
---|
921 | DO m = 1, surf%ns |
---|
922 | i = surf%i(m) |
---|
923 | j = surf%j(m) |
---|
924 | k = surf%k(m) |
---|
925 | |
---|
926 | u_i = 0.0_wp |
---|
927 | v_i = 0.25_wp * ( v(k+1,j+1,i) + v(k+1,j,i) + v(k,j+1,i) + v(k,j,i) ) |
---|
928 | w_i = w(k,j,i) |
---|
929 | |
---|
930 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
931 | ENDDO |
---|
932 | ENDIF |
---|
933 | |
---|
934 | END SUBROUTINE calc_uvw_abs_v_wgrid |
---|
935 | |
---|
936 | !--------------------------------------------------------------------------------------------------! |
---|
937 | ! Description: |
---|
938 | ! ------------ |
---|
939 | !> Compute the absolute value of the horizontal velocity (relative to the surface) for horizontal |
---|
940 | !> surface elements. This is required by all methods. |
---|
941 | !--------------------------------------------------------------------------------------------------! |
---|
942 | SUBROUTINE calc_uvw_abs_v_sgrid |
---|
943 | |
---|
944 | IMPLICIT NONE |
---|
945 | |
---|
946 | INTEGER(iwp) :: i !< running index x direction |
---|
947 | INTEGER(iwp) :: j !< running index y direction |
---|
948 | INTEGER(iwp) :: k !< running index z direction |
---|
949 | INTEGER(iwp) :: m !< running index surface elements |
---|
950 | |
---|
951 | REAL(wp) :: u_i !< u-component on scalar grid |
---|
952 | REAL(wp) :: v_i !< v-component on scalar grid |
---|
953 | REAL(wp) :: w_i !< w-component on scalar grid |
---|
954 | |
---|
955 | ! |
---|
956 | !-- North- (l=0) and south-facing (l=1) walls |
---|
957 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
958 | DO m = 1, surf%ns |
---|
959 | i = surf%i(m) |
---|
960 | j = surf%j(m) |
---|
961 | k = surf%k(m) |
---|
962 | |
---|
963 | u_i = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
964 | v_i = 0.0_wp |
---|
965 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
966 | |
---|
967 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
968 | ENDDO |
---|
969 | ! |
---|
970 | !-- East- (l=2) and west-facing (l=3) walls |
---|
971 | ELSE |
---|
972 | DO m = 1, surf%ns |
---|
973 | i = surf%i(m) |
---|
974 | j = surf%j(m) |
---|
975 | k = surf%k(m) |
---|
976 | |
---|
977 | u_i = 0.0_wp |
---|
978 | v_i = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
979 | w_i = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
980 | |
---|
981 | surf%uvw_abs(m) = SQRT( u_i**2 + v_i**2 + w_i**2 ) |
---|
982 | ENDDO |
---|
983 | ENDIF |
---|
984 | |
---|
985 | END SUBROUTINE calc_uvw_abs_v_sgrid |
---|
986 | |
---|
987 | |
---|
988 | !--------------------------------------------------------------------------------------------------! |
---|
989 | ! Description: |
---|
990 | ! ------------ |
---|
991 | !> Calculate the Obukhov length (L) and Richardson flux number (z/L) |
---|
992 | !--------------------------------------------------------------------------------------------------! |
---|
993 | SUBROUTINE calc_ol |
---|
994 | |
---|
995 | IMPLICIT NONE |
---|
996 | |
---|
997 | INTEGER(iwp) :: iter !< Newton iteration step |
---|
998 | INTEGER(iwp) :: m !< loop variable over all horizontal wall elements |
---|
999 | |
---|
1000 | LOGICAL, DIMENSION(surf%ns) :: convergence_reached !< convergence switch for vectorization |
---|
1001 | !$ACC DECLARE CREATE( convergence_reached ) |
---|
1002 | |
---|
1003 | REAL(wp) :: f !< Function for Newton iteration: f = Ri - [...]/[...]^2 = 0 |
---|
1004 | REAL(wp) :: f_d_ol !< Derivative of f |
---|
1005 | REAL(wp) :: ol_l !< Lower bound of L for Newton iteration |
---|
1006 | REAL(wp) :: ol_m !< Previous value of L for Newton iteration |
---|
1007 | REAL(wp) :: ol_old !< Previous time step value of L |
---|
1008 | REAL(wp) :: ol_u !< Upper bound of L for Newton iteration |
---|
1009 | |
---|
1010 | REAL(wp), DIMENSION(surf%ns) :: ol_old_vec !< temporary array required for vectorization |
---|
1011 | REAL(wp), DIMENSION(surf%ns) :: z_mo_vec !< temporary array required for vectorization |
---|
1012 | !$ACC DECLARE CREATE( ol_old_vec, z_mo_vec ) |
---|
1013 | |
---|
1014 | ! |
---|
1015 | !-- Evaluate bulk Richardson number (calculation depends on definition based on setting of boundary |
---|
1016 | !-- conditions) |
---|
1017 | IF ( ibc_pt_b /= 1 ) THEN |
---|
1018 | IF ( humidity ) THEN |
---|
1019 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
1020 | DO m = 1, surf%ns |
---|
1021 | z_mo = surf%z_mo(m) |
---|
1022 | surf%rib(m) = g * z_mo * ( surf%vpt1(m) - surf%vpt_surface(m) ) / & |
---|
1023 | ( surf%uvw_abs(m)**2 * surf%vpt1(m) + 1.0E-20_wp ) |
---|
1024 | ENDDO |
---|
1025 | ELSE |
---|
1026 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
1027 | DO m = 1, surf%ns |
---|
1028 | z_mo = surf%z_mo(m) |
---|
1029 | surf%rib(m) = g * z_mo * ( surf%pt1(m) - surf%pt_surface(m) ) / & |
---|
1030 | ( surf%uvw_abs(m)**2 * surf%pt1(m) + 1.0E-20_wp ) |
---|
1031 | ENDDO |
---|
1032 | ENDIF |
---|
1033 | ELSE |
---|
1034 | IF ( humidity ) THEN |
---|
1035 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
1036 | DO m = 1, surf%ns |
---|
1037 | k = surf%k(m) |
---|
1038 | z_mo = surf%z_mo(m) |
---|
1039 | surf%rib(m) = - g * z_mo * ( ( 1.0_wp + 0.61_wp * surf%qv1(m) ) * & |
---|
1040 | surf%shf(m) + 0.61_wp * surf%pt1(m) * surf%qsws(m) ) * & |
---|
1041 | drho_air_zw(k-1) / ( surf%uvw_abs(m)**3 * surf%vpt1(m) * kappa**2 & |
---|
1042 | + 1.0E-20_wp ) |
---|
1043 | ENDDO |
---|
1044 | ELSE |
---|
1045 | !$OMP PARALLEL DO PRIVATE( k, z_mo ) |
---|
1046 | !$ACC PARALLEL LOOP PRIVATE(k, z_mo) & |
---|
1047 | !$ACC PRESENT(surf, drho_air_zw) |
---|
1048 | DO m = 1, surf%ns |
---|
1049 | k = surf%k(m) |
---|
1050 | z_mo = surf%z_mo(m) |
---|
1051 | surf%rib(m) = - g * z_mo * surf%shf(m) * drho_air_zw(k-1) / & |
---|
1052 | ( surf%uvw_abs(m)**3 * surf%pt1(m) * kappa**2 + 1.0E-20_wp ) |
---|
1053 | ENDDO |
---|
1054 | ENDIF |
---|
1055 | ENDIF |
---|
1056 | |
---|
1057 | IF ( loop_optimization == 'cache' ) THEN |
---|
1058 | ! |
---|
1059 | !-- Calculate the Obukhov length using Newton iteration |
---|
1060 | !$OMP PARALLEL DO PRIVATE(i, j, z_mo, ol_old, iter, ol_m, ol_l, ol_u, f, f_d_ol) |
---|
1061 | !$ACC PARALLEL LOOP PRIVATE(i, j, z_mo) & |
---|
1062 | !$ACC PRIVATE(ol_old, ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
1063 | !$ACC PRESENT(surf) |
---|
1064 | DO m = 1, surf%ns |
---|
1065 | i = surf%i(m) |
---|
1066 | j = surf%j(m) |
---|
1067 | |
---|
1068 | z_mo = surf%z_mo(m) |
---|
1069 | |
---|
1070 | ! |
---|
1071 | !-- Store current value in case the Newton iteration fails |
---|
1072 | ol_old = surf%ol(m) |
---|
1073 | |
---|
1074 | ! |
---|
1075 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
1076 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
1077 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
1078 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
1079 | ENDIF |
---|
1080 | ! |
---|
1081 | !-- Iteration to find Obukhov length |
---|
1082 | iter = 0 |
---|
1083 | DO |
---|
1084 | iter = iter + 1 |
---|
1085 | ! |
---|
1086 | !-- In case of divergence, use the value of the previous time step |
---|
1087 | IF ( iter > 1000 ) THEN |
---|
1088 | surf%ol(m) = ol_old |
---|
1089 | EXIT |
---|
1090 | ENDIF |
---|
1091 | |
---|
1092 | ol_m = surf%ol(m) |
---|
1093 | ol_l = ol_m - 0.001_wp * ol_m |
---|
1094 | ol_u = ol_m + 0.001_wp * ol_m |
---|
1095 | |
---|
1096 | |
---|
1097 | IF ( ibc_pt_b /= 1 ) THEN |
---|
1098 | ! |
---|
1099 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
1100 | f = surf%rib(m) - ( z_mo / ol_m ) * ( surf%ln_z_z0h(m) & |
---|
1101 | - psi_h( z_mo / ol_m ) & |
---|
1102 | + psi_h( surf%z0h(m) / ol_m ) ) / & |
---|
1103 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_m ) & |
---|
1104 | + psi_m( surf%z0(m) / ol_m ) )**2 |
---|
1105 | |
---|
1106 | ! |
---|
1107 | !-- Calculate df/dL |
---|
1108 | f_d_ol = ( - ( z_mo / ol_u ) * ( surf%ln_z_z0h(m) & |
---|
1109 | - psi_h( z_mo / ol_u ) & |
---|
1110 | + psi_h( surf%z0h(m) / ol_u ) ) / & |
---|
1111 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_u ) & |
---|
1112 | + psi_m( surf%z0(m) / ol_u ) )**2 & |
---|
1113 | + ( z_mo / ol_l ) * ( surf%ln_z_z0h(m) - psi_h( z_mo / ol_l ) & |
---|
1114 | + psi_h( surf%z0h(m) / ol_l ) ) /& |
---|
1115 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_l ) & |
---|
1116 | + psi_m( surf%z0(m) / ol_l ) )**2 ) / ( ol_u - ol_l ) |
---|
1117 | ELSE |
---|
1118 | ! |
---|
1119 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
1120 | f = surf%rib(m) - ( z_mo / ol_m ) / & |
---|
1121 | ( surf%ln_z_z0(m) - psi_m( z_mo / ol_m ) + psi_m( surf%z0(m) / ol_m ) )**3 |
---|
1122 | |
---|
1123 | ! |
---|
1124 | !-- Calculate df/dL |
---|
1125 | f_d_ol = ( - ( z_mo / ol_u ) / ( surf%ln_z_z0(m) & |
---|
1126 | - psi_m( z_mo / ol_u ) & |
---|
1127 | + psi_m( surf%z0(m) / ol_u ) & |
---|
1128 | )**3 & |
---|
1129 | + ( z_mo / ol_l ) / ( surf%ln_z_z0(m) & |
---|
1130 | - psi_m( z_mo / ol_l ) & |
---|
1131 | + psi_m( surf%z0(m) / ol_l ) & |
---|
1132 | )**3 & |
---|
1133 | ) / ( ol_u - ol_l ) |
---|
1134 | ENDIF |
---|
1135 | ! |
---|
1136 | !-- Calculate new L |
---|
1137 | surf%ol(m) = ol_m - f / f_d_ol |
---|
1138 | |
---|
1139 | ! |
---|
1140 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and |
---|
1141 | !-- ensure convergence. |
---|
1142 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
1143 | ! |
---|
1144 | !-- If unrealistic value occurs, set L to the maximum value that is allowed |
---|
1145 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
1146 | surf%ol(m) = ol_max |
---|
1147 | EXIT |
---|
1148 | ENDIF |
---|
1149 | ! |
---|
1150 | !-- Assure that Obukhov length does not become zero. If the limit is reached, exit the loop. |
---|
1151 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
1152 | surf%ol(m) = SIGN( 1E-5_wp, surf%ol(m) ) |
---|
1153 | EXIT |
---|
1154 | ENDIF |
---|
1155 | ! |
---|
1156 | !-- Check for convergence |
---|
1157 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) EXIT |
---|
1158 | ENDDO |
---|
1159 | ENDDO |
---|
1160 | |
---|
1161 | ! |
---|
1162 | !-- Vector Version |
---|
1163 | ELSE |
---|
1164 | ! |
---|
1165 | !-- Calculate the Obukhov length using Newton iteration |
---|
1166 | !-- First set arrays required for vectorization |
---|
1167 | !$ACC PARALLEL LOOP & |
---|
1168 | !$ACC PRESENT(surf) |
---|
1169 | DO m = 1, surf%ns |
---|
1170 | z_mo_vec(m) = surf%z_mo(m) |
---|
1171 | ! |
---|
1172 | !-- Store current value in case the Newton iteration fails |
---|
1173 | ol_old_vec(m) = surf%ol(m) |
---|
1174 | ! |
---|
1175 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign |
---|
1176 | IF ( surf%rib(m) * surf%ol(m) < 0.0_wp .OR. ABS( surf%ol(m) ) == ol_max ) THEN |
---|
1177 | IF ( surf%rib(m) > 1.0_wp ) surf%ol(m) = 0.01_wp |
---|
1178 | IF ( surf%rib(m) < 0.0_wp ) surf%ol(m) = -0.01_wp |
---|
1179 | ENDIF |
---|
1180 | ! |
---|
1181 | !-- Initialize convergence flag |
---|
1182 | convergence_reached(m) = .FALSE. |
---|
1183 | ENDDO |
---|
1184 | |
---|
1185 | ! |
---|
1186 | !-- Iteration to find Obukhov length |
---|
1187 | iter = 0 |
---|
1188 | DO |
---|
1189 | iter = iter + 1 |
---|
1190 | ! |
---|
1191 | !-- In case of divergence, use the value(s) of the previous time step |
---|
1192 | IF ( iter > 1000 ) THEN |
---|
1193 | !$ACC PARALLEL LOOP & |
---|
1194 | !$ACC PRESENT(surf) |
---|
1195 | DO m = 1, surf%ns |
---|
1196 | IF ( .NOT. convergence_reached(m) ) surf%ol(m) = ol_old_vec(m) |
---|
1197 | ENDDO |
---|
1198 | EXIT |
---|
1199 | ENDIF |
---|
1200 | |
---|
1201 | !$ACC PARALLEL LOOP PRIVATE(ol_m, ol_l, ol_u, f, f_d_ol) & |
---|
1202 | !$ACC PRESENT(surf) |
---|
1203 | DO m = 1, surf%ns |
---|
1204 | IF ( convergence_reached(m) ) CYCLE |
---|
1205 | |
---|
1206 | ol_m = surf%ol(m) |
---|
1207 | ol_l = ol_m - 0.001_wp * ol_m |
---|
1208 | ol_u = ol_m + 0.001_wp * ol_m |
---|
1209 | |
---|
1210 | |
---|
1211 | IF ( ibc_pt_b /= 1 ) THEN |
---|
1212 | ! |
---|
1213 | !-- Calculate f = Ri - [...]/[...]^2 = 0 |
---|
1214 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) * ( surf%ln_z_z0h(m) & |
---|
1215 | - psi_h( z_mo_vec(m) / ol_m ) & |
---|
1216 | + psi_h( surf%z0h(m) / ol_m ) & |
---|
1217 | ) / & |
---|
1218 | ( surf%ln_z_z0(m) & |
---|
1219 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
1220 | + psi_m( surf%z0(m) / ol_m ) & |
---|
1221 | )**2 |
---|
1222 | |
---|
1223 | ! |
---|
1224 | !-- Calculate df/dL |
---|
1225 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) * ( surf%ln_z_z0h(m) & |
---|
1226 | - psi_h( z_mo_vec(m) / ol_u ) & |
---|
1227 | + psi_h( surf%z0h(m) / ol_u ) & |
---|
1228 | ) / & |
---|
1229 | ( surf%ln_z_z0(m) & |
---|
1230 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
1231 | + psi_m( surf%z0(m) / ol_u ) & |
---|
1232 | )**2 & |
---|
1233 | + ( z_mo_vec(m) / ol_l ) * ( surf%ln_z_z0h(m) & |
---|
1234 | - psi_h( z_mo_vec(m) / ol_l ) & |
---|
1235 | + psi_h( surf%z0h(m) / ol_l ) & |
---|
1236 | ) / & |
---|
1237 | ( surf%ln_z_z0(m) & |
---|
1238 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
1239 | + psi_m( surf%z0(m) / ol_l ) & |
---|
1240 | )**2 & |
---|
1241 | ) / ( ol_u - ol_l ) |
---|
1242 | ELSE |
---|
1243 | ! |
---|
1244 | !-- Calculate f = Ri - 1 /[...]^3 = 0 |
---|
1245 | f = surf%rib(m) - ( z_mo_vec(m) / ol_m ) / ( surf%ln_z_z0(m) & |
---|
1246 | - psi_m( z_mo_vec(m) / ol_m ) & |
---|
1247 | + psi_m( surf%z0(m) / ol_m ) & |
---|
1248 | )**3 |
---|
1249 | |
---|
1250 | ! |
---|
1251 | !-- Calculate df/dL |
---|
1252 | f_d_ol = ( - ( z_mo_vec(m) / ol_u ) / ( surf%ln_z_z0(m) & |
---|
1253 | - psi_m( z_mo_vec(m) / ol_u ) & |
---|
1254 | + psi_m( surf%z0(m) / ol_u ) & |
---|
1255 | )**3 & |
---|
1256 | + ( z_mo_vec(m) / ol_l ) / ( surf%ln_z_z0(m) & |
---|
1257 | - psi_m( z_mo_vec(m) / ol_l ) & |
---|
1258 | + psi_m( surf%z0(m) / ol_l ) & |
---|
1259 | )**3 & |
---|
1260 | ) / ( ol_u - ol_l ) |
---|
1261 | ENDIF |
---|
1262 | ! |
---|
1263 | !-- Calculate new L |
---|
1264 | surf%ol(m) = ol_m - f / f_d_ol |
---|
1265 | |
---|
1266 | ! |
---|
1267 | !-- Ensure that the bulk Richardson number and the Obukhov length have the same sign and |
---|
1268 | !-- ensure convergence. |
---|
1269 | IF ( surf%ol(m) * ol_m < 0.0_wp ) surf%ol(m) = ol_m * 0.5_wp |
---|
1270 | |
---|
1271 | ! |
---|
1272 | !-- Check for convergence |
---|
1273 | !-- This check does not modify surf%ol, therefore this is done first |
---|
1274 | IF ( ABS( ( surf%ol(m) - ol_m ) / surf%ol(m) ) < 1.0E-4_wp ) THEN |
---|
1275 | convergence_reached(m) = .TRUE. |
---|
1276 | ENDIF |
---|
1277 | ! |
---|
1278 | !-- If unrealistic value occurs, set L to the maximum allowed value |
---|
1279 | IF ( ABS( surf%ol(m) ) > ol_max ) THEN |
---|
1280 | surf%ol(m) = ol_max |
---|
1281 | convergence_reached(m) = .TRUE. |
---|
1282 | ENDIF |
---|
1283 | ENDDO |
---|
1284 | ! |
---|
1285 | !-- Assure that Obukhov length does not become zero |
---|
1286 | !$ACC PARALLEL LOOP & |
---|
1287 | !$ACC PRESENT(surf) |
---|
1288 | DO m = 1, surf%ns |
---|
1289 | IF ( convergence_reached(m) ) CYCLE |
---|
1290 | IF ( ABS( surf%ol(m) ) < 1E-5_wp ) THEN |
---|
1291 | surf%ol(m) = SIGN( 10E-6_wp, surf%ol(m) ) |
---|
1292 | convergence_reached(m) = .TRUE. |
---|
1293 | ENDIF |
---|
1294 | ENDDO |
---|
1295 | |
---|
1296 | IF ( ALL( convergence_reached ) ) EXIT |
---|
1297 | |
---|
1298 | ENDDO ! End of iteration loop |
---|
1299 | |
---|
1300 | ENDIF ! End of vector branch |
---|
1301 | |
---|
1302 | END SUBROUTINE calc_ol |
---|
1303 | |
---|
1304 | |
---|
1305 | !--------------------------------------------------------------------------------------------------! |
---|
1306 | ! Description: |
---|
1307 | ! ------------ |
---|
1308 | !> Calculate friction velocity u*. |
---|
1309 | !--------------------------------------------------------------------------------------------------! |
---|
1310 | SUBROUTINE calc_us |
---|
1311 | |
---|
1312 | IMPLICIT NONE |
---|
1313 | |
---|
1314 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1315 | |
---|
1316 | ! |
---|
1317 | !-- Compute u* at horizontal surfaces at the scalars' grid points |
---|
1318 | IF ( .NOT. surf_vertical ) THEN |
---|
1319 | ! |
---|
1320 | !-- Compute u* at upward-facing surfaces |
---|
1321 | IF ( .NOT. downward ) THEN |
---|
1322 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
1323 | !$ACC PARALLEL LOOP PRIVATE(z_mo) & |
---|
1324 | !$ACC PRESENT(surf) |
---|
1325 | DO m = 1, surf%ns |
---|
1326 | z_mo = surf%z_mo(m) |
---|
1327 | ! |
---|
1328 | !-- Compute u* at the scalars' grid points |
---|
1329 | surf%us(m) = kappa * surf%uvw_abs(m) / ( surf%ln_z_z0(m) & |
---|
1330 | - psi_m( z_mo / surf%ol(m) ) & |
---|
1331 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
1332 | ENDDO |
---|
1333 | ! |
---|
1334 | !-- Compute u* at downward-facing surfaces. This case, do not consider any stability. |
---|
1335 | ELSE |
---|
1336 | !$OMP PARALLEL DO |
---|
1337 | !$ACC PARALLEL LOOP & |
---|
1338 | !$ACC PRESENT(surf) |
---|
1339 | DO m = 1, surf%ns |
---|
1340 | ! |
---|
1341 | !-- Compute u* at the scalars' grid points |
---|
1342 | surf%us(m) = kappa * surf%uvw_abs(m) / surf%ln_z_z0(m) |
---|
1343 | ENDDO |
---|
1344 | ENDIF |
---|
1345 | ! |
---|
1346 | !-- Compute u* at vertical surfaces at the u/v/v grid, respectively. |
---|
1347 | !-- No stability is considered in this case. |
---|
1348 | ELSE |
---|
1349 | !$OMP PARALLEL DO |
---|
1350 | !$ACC PARALLEL LOOP & |
---|
1351 | !$ACC PRESENT(surf) |
---|
1352 | DO m = 1, surf%ns |
---|
1353 | surf%us(m) = kappa * surf%uvw_abs(m) / surf%ln_z_z0(m) |
---|
1354 | ENDDO |
---|
1355 | ENDIF |
---|
1356 | |
---|
1357 | END SUBROUTINE calc_us |
---|
1358 | |
---|
1359 | !--------------------------------------------------------------------------------------------------! |
---|
1360 | ! Description: |
---|
1361 | ! ------------ |
---|
1362 | !> Calculate potential temperature, specific humidity, and virtual potential temperature at first |
---|
1363 | !> grid level. |
---|
1364 | !--------------------------------------------------------------------------------------------------! |
---|
1365 | SUBROUTINE calc_pt_q |
---|
1366 | |
---|
1367 | IMPLICIT NONE |
---|
1368 | |
---|
1369 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1370 | |
---|
1371 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1372 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
1373 | !$ACC PRESENT(surf, pt) |
---|
1374 | DO m = 1, surf%ns |
---|
1375 | i = surf%i(m) |
---|
1376 | j = surf%j(m) |
---|
1377 | k = surf%k(m) |
---|
1378 | |
---|
1379 | #ifndef _OPENACC |
---|
1380 | IF ( bulk_cloud_model ) THEN |
---|
1381 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
1382 | surf%qv1(m) = q(k,j,i) - ql(k,j,i) |
---|
1383 | ELSEIF( cloud_droplets ) THEN |
---|
1384 | surf%pt1(m) = pt(k,j,i) + lv_d_cp * d_exner(k) * ql(k,j,i) |
---|
1385 | surf%qv1(m) = q(k,j,i) |
---|
1386 | ELSE |
---|
1387 | #endif |
---|
1388 | surf%pt1(m) = pt(k,j,i) |
---|
1389 | #ifndef _OPENACC |
---|
1390 | IF ( humidity ) THEN |
---|
1391 | surf%qv1(m) = q(k,j,i) |
---|
1392 | ELSE |
---|
1393 | #endif |
---|
1394 | surf%qv1(m) = 0.0_wp |
---|
1395 | #ifndef _OPENACC |
---|
1396 | ENDIF |
---|
1397 | ENDIF |
---|
1398 | |
---|
1399 | IF ( humidity ) THEN |
---|
1400 | surf%vpt1(m) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
1401 | ENDIF |
---|
1402 | #endif |
---|
1403 | ENDDO |
---|
1404 | |
---|
1405 | END SUBROUTINE calc_pt_q |
---|
1406 | |
---|
1407 | |
---|
1408 | !--------------------------------------------------------------------------------------------------! |
---|
1409 | ! Description: |
---|
1410 | ! ------------ |
---|
1411 | !> Set potential temperature at surface grid level( only for upward-facing surfs ). |
---|
1412 | !--------------------------------------------------------------------------------------------------! |
---|
1413 | SUBROUTINE calc_pt_surface |
---|
1414 | |
---|
1415 | IMPLICIT NONE |
---|
1416 | |
---|
1417 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
1418 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1419 | |
---|
1420 | k_off = surf%koff |
---|
1421 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1422 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
1423 | !$ACC PRESENT(surf, pt) |
---|
1424 | DO m = 1, surf%ns |
---|
1425 | i = surf%i(m) |
---|
1426 | j = surf%j(m) |
---|
1427 | k = surf%k(m) |
---|
1428 | surf%pt_surface(m) = pt(k+k_off,j,i) |
---|
1429 | ENDDO |
---|
1430 | |
---|
1431 | END SUBROUTINE calc_pt_surface |
---|
1432 | |
---|
1433 | ! |
---|
1434 | !-- Set mixing ratio at surface grid level. ( Only for upward-facing surfs. ) |
---|
1435 | SUBROUTINE calc_q_surface |
---|
1436 | |
---|
1437 | IMPLICIT NONE |
---|
1438 | |
---|
1439 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
1440 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1441 | |
---|
1442 | k_off = surf%koff |
---|
1443 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1444 | DO m = 1, surf%ns |
---|
1445 | i = surf%i(m) |
---|
1446 | j = surf%j(m) |
---|
1447 | k = surf%k(m) |
---|
1448 | surf%q_surface(m) = q(k+k_off,j,i) |
---|
1449 | ENDDO |
---|
1450 | |
---|
1451 | END SUBROUTINE calc_q_surface |
---|
1452 | |
---|
1453 | !--------------------------------------------------------------------------------------------------! |
---|
1454 | ! Description: |
---|
1455 | ! ------------ |
---|
1456 | !> Set virtual potential temperature at surface grid level ( only for upward-facing surfs ). |
---|
1457 | !--------------------------------------------------------------------------------------------------! |
---|
1458 | SUBROUTINE calc_vpt_surface |
---|
1459 | |
---|
1460 | IMPLICIT NONE |
---|
1461 | |
---|
1462 | INTEGER(iwp) :: k_off !< index offset between surface and atmosphere grid point (-1 for upward-, +1 for downward-facing walls) |
---|
1463 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1464 | |
---|
1465 | k_off = surf%koff |
---|
1466 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1467 | DO m = 1, surf%ns |
---|
1468 | i = surf%i(m) |
---|
1469 | j = surf%j(m) |
---|
1470 | k = surf%k(m) |
---|
1471 | surf%vpt_surface(m) = vpt(k+k_off,j,i) |
---|
1472 | |
---|
1473 | ENDDO |
---|
1474 | |
---|
1475 | END SUBROUTINE calc_vpt_surface |
---|
1476 | |
---|
1477 | !--------------------------------------------------------------------------------------------------! |
---|
1478 | ! Description: |
---|
1479 | ! ------------ |
---|
1480 | !> Calculate the other MOST scaling parameters theta*, q*, (qc*, qr*, nc*, nr*) |
---|
1481 | !--------------------------------------------------------------------------------------------------! |
---|
1482 | SUBROUTINE calc_scaling_parameters |
---|
1483 | |
---|
1484 | IMPLICIT NONE |
---|
1485 | |
---|
1486 | |
---|
1487 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
1488 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1489 | ! |
---|
1490 | !-- Compute theta* at horizontal surfaces |
---|
1491 | IF ( constant_heatflux .AND. .NOT. surf_vertical ) THEN |
---|
1492 | ! |
---|
1493 | !-- For a given heat flux in the surface layer: |
---|
1494 | |
---|
1495 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1496 | !$ACC PARALLEL LOOP PRIVATE(i, j, k) & |
---|
1497 | !$ACC PRESENT(surf, drho_air_zw) |
---|
1498 | DO m = 1, surf%ns |
---|
1499 | i = surf%i(m) |
---|
1500 | j = surf%j(m) |
---|
1501 | k = surf%k(m) |
---|
1502 | surf%ts(m) = -surf%shf(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) |
---|
1503 | ! |
---|
1504 | !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing |
---|
1505 | !-- ol further below |
---|
1506 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
1507 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
1508 | ENDDO |
---|
1509 | |
---|
1510 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
1511 | ! |
---|
1512 | !-- For a given surface temperature: |
---|
1513 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
1514 | |
---|
1515 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1516 | DO m = 1, surf%ns |
---|
1517 | i = surf%i(m) |
---|
1518 | j = surf%j(m) |
---|
1519 | k = surf%k(m) |
---|
1520 | pt(k-1,j,i) = pt_surface |
---|
1521 | ENDDO |
---|
1522 | ENDIF |
---|
1523 | |
---|
1524 | !$OMP PARALLEL DO PRIVATE( z_mo ) |
---|
1525 | DO m = 1, surf%ns |
---|
1526 | z_mo = surf%z_mo(m) |
---|
1527 | surf%ts(m) = kappa * ( surf%pt1(m) - surf%pt_surface(m) ) & |
---|
1528 | / ( surf%ln_z_z0h(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
1529 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
1530 | ENDDO |
---|
1531 | |
---|
1532 | ENDIF |
---|
1533 | ! |
---|
1534 | !-- Compute theta* at vertical surfaces. This is only required in case of land-surface model, in |
---|
1535 | !-- order to compute aerodynamical resistance. |
---|
1536 | IF ( surf_vertical ) THEN |
---|
1537 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1538 | DO m = 1, surf%ns |
---|
1539 | i = surf%i(m) |
---|
1540 | j = surf%j(m) |
---|
1541 | surf%ts(m) = -surf%shf(m) / ( surf%us(m) + 1E-30_wp ) |
---|
1542 | ! |
---|
1543 | !-- ts must be limited, because otherwise overflow may occur in case of us=0 when computing ol |
---|
1544 | !-- further below |
---|
1545 | IF ( surf%ts(m) < -1.05E5_wp ) surf%ts(m) = -1.0E5_wp |
---|
1546 | IF ( surf%ts(m) > 1.0E5_wp ) surf%ts(m) = 1.0E5_wp |
---|
1547 | ENDDO |
---|
1548 | ENDIF |
---|
1549 | |
---|
1550 | ! |
---|
1551 | !-- If required compute q* at horizontal surfaces |
---|
1552 | IF ( humidity ) THEN |
---|
1553 | IF ( constant_waterflux .AND. .NOT. surf_vertical ) THEN |
---|
1554 | ! |
---|
1555 | !-- For a given water flux in the surface layer |
---|
1556 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1557 | DO m = 1, surf%ns |
---|
1558 | i = surf%i(m) |
---|
1559 | j = surf%j(m) |
---|
1560 | k = surf%k(m) |
---|
1561 | surf%qs(m) = -surf%qsws(m) * drho_air_zw(k-1) / ( surf%us(m) + 1E-30_wp ) |
---|
1562 | ENDDO |
---|
1563 | |
---|
1564 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
1565 | coupled_run = ( coupling_mode == 'atmosphere_to_ocean' .AND. run_coupled ) |
---|
1566 | |
---|
1567 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
1568 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1569 | DO m = 1, surf%ns |
---|
1570 | i = surf%i(m) |
---|
1571 | j = surf%j(m) |
---|
1572 | k = surf%k(m) |
---|
1573 | q(k-1,j,i) = q_surface |
---|
1574 | |
---|
1575 | ENDDO |
---|
1576 | ENDIF |
---|
1577 | |
---|
1578 | ! |
---|
1579 | !-- Assume saturation for atmosphere coupled to ocean (but not in case of precursor runs) |
---|
1580 | IF ( coupled_run ) THEN |
---|
1581 | !$OMP PARALLEL DO PRIVATE( i, j, k, e_s ) |
---|
1582 | DO m = 1, surf%ns |
---|
1583 | i = surf%i(m) |
---|
1584 | j = surf%j(m) |
---|
1585 | k = surf%k(m) |
---|
1586 | e_s = 6.1_wp * EXP( 0.07_wp * ( MIN( pt(k-1,j,i), pt(k,j,i) ) - 273.15_wp ) ) |
---|
1587 | q(k-1,j,i) = rd_d_rv * e_s / ( surface_pressure - e_s ) |
---|
1588 | ENDDO |
---|
1589 | ENDIF |
---|
1590 | |
---|
1591 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
1592 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1593 | DO m = 1, surf%ns |
---|
1594 | i = surf%i(m) |
---|
1595 | j = surf%j(m) |
---|
1596 | k = surf%k(m) |
---|
1597 | z_mo = surf%z_mo(m) |
---|
1598 | surf%qs(m) = kappa * ( surf%qv1(m) - surf%q_surface(m) ) & |
---|
1599 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
1600 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
1601 | ENDDO |
---|
1602 | ELSE |
---|
1603 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1604 | DO m = 1, surf%ns |
---|
1605 | i = surf%i(m) |
---|
1606 | j = surf%j(m) |
---|
1607 | k = surf%k(m) |
---|
1608 | z_mo = surf%z_mo(m) |
---|
1609 | surf%qs(m) = kappa * ( q(k,j,i) - q(k-1,j,i) ) & |
---|
1610 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
1611 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
1612 | ENDDO |
---|
1613 | ENDIF |
---|
1614 | ENDIF |
---|
1615 | ! |
---|
1616 | !-- Compute q* at vertical surfaces |
---|
1617 | IF ( surf_vertical ) THEN |
---|
1618 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1619 | DO m = 1, surf%ns |
---|
1620 | |
---|
1621 | i = surf%i(m) |
---|
1622 | j = surf%j(m) |
---|
1623 | surf%qs(m) = -surf%qsws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
1624 | |
---|
1625 | ENDDO |
---|
1626 | ENDIF |
---|
1627 | ENDIF |
---|
1628 | |
---|
1629 | ! |
---|
1630 | !-- If required compute s* |
---|
1631 | IF ( passive_scalar ) THEN |
---|
1632 | ! |
---|
1633 | !-- At horizontal surfaces |
---|
1634 | IF ( constant_scalarflux .AND. .NOT. surf_vertical ) THEN |
---|
1635 | ! |
---|
1636 | !-- For a given scalar flux in the surface layer |
---|
1637 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1638 | DO m = 1, surf%ns |
---|
1639 | i = surf%i(m) |
---|
1640 | j = surf%j(m) |
---|
1641 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
1642 | ENDDO |
---|
1643 | ELSEIF ( .NOT. surf_vertical ) THEN |
---|
1644 | |
---|
1645 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1646 | DO m = 1, surf%ns |
---|
1647 | i = surf%i(m) |
---|
1648 | j = surf%j(m) |
---|
1649 | k = surf%k(m) |
---|
1650 | z_mo = surf%z_mo(m) |
---|
1651 | |
---|
1652 | surf%ss(m) = kappa * ( s(k,j,i) - s(k-1,j,i) ) & |
---|
1653 | / ( surf%ln_z_z0h(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
1654 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
1655 | ENDDO |
---|
1656 | ENDIF |
---|
1657 | ! |
---|
1658 | !-- At vertical surfaces |
---|
1659 | IF ( surf_vertical ) THEN |
---|
1660 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1661 | DO m = 1, surf%ns |
---|
1662 | i = surf%i(m) |
---|
1663 | j = surf%j(m) |
---|
1664 | surf%ss(m) = -surf%ssws(m) / ( surf%us(m) + 1E-30_wp ) |
---|
1665 | ENDDO |
---|
1666 | ENDIF |
---|
1667 | ENDIF |
---|
1668 | |
---|
1669 | ! |
---|
1670 | !-- If required compute cs* (chemical species) |
---|
1671 | IF ( air_chemistry ) THEN |
---|
1672 | ! |
---|
1673 | !-- At horizontal surfaces |
---|
1674 | DO lsp = 1, nvar |
---|
1675 | IF ( constant_csflux(lsp) .AND. .NOT. surf_vertical ) THEN |
---|
1676 | !-- For a given chemical species' flux in the surface layer |
---|
1677 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1678 | DO m = 1, surf%ns |
---|
1679 | i = surf%i(m) |
---|
1680 | j = surf%j(m) |
---|
1681 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
1682 | ENDDO |
---|
1683 | ENDIF |
---|
1684 | ENDDO |
---|
1685 | ! |
---|
1686 | !-- At vertical surfaces |
---|
1687 | IF ( surf_vertical ) THEN |
---|
1688 | DO lsp = 1, nvar |
---|
1689 | !$OMP PARALLEL DO PRIVATE( i, j ) |
---|
1690 | DO m = 1, surf%ns |
---|
1691 | i = surf%i(m) |
---|
1692 | j = surf%j(m) |
---|
1693 | surf%css(lsp,m) = -surf%cssws(lsp,m) / ( surf%us(m) + 1E-30_wp ) |
---|
1694 | ENDDO |
---|
1695 | ENDDO |
---|
1696 | ENDIF |
---|
1697 | ENDIF |
---|
1698 | |
---|
1699 | ! |
---|
1700 | !-- If required compute qc* and nc* |
---|
1701 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. surf_vertical ) THEN |
---|
1702 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1703 | DO m = 1, surf%ns |
---|
1704 | i = surf%i(m) |
---|
1705 | j = surf%j(m) |
---|
1706 | k = surf%k(m) |
---|
1707 | |
---|
1708 | z_mo = surf%z_mo(m) |
---|
1709 | |
---|
1710 | surf%qcs(m) = kappa * ( qc(k,j,i) - qc(k-1,j,i) ) & |
---|
1711 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
1712 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
1713 | |
---|
1714 | surf%ncs(m) = kappa * ( nc(k,j,i) - nc(k-1,j,i) ) & |
---|
1715 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
1716 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
1717 | ENDDO |
---|
1718 | |
---|
1719 | ENDIF |
---|
1720 | |
---|
1721 | ! |
---|
1722 | !-- If required compute qr* and nr* |
---|
1723 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. surf_vertical ) THEN |
---|
1724 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1725 | DO m = 1, surf%ns |
---|
1726 | i = surf%i(m) |
---|
1727 | j = surf%j(m) |
---|
1728 | k = surf%k(m) |
---|
1729 | |
---|
1730 | z_mo = surf%z_mo(m) |
---|
1731 | |
---|
1732 | surf%qrs(m) = kappa * ( qr(k,j,i) - qr(k-1,j,i) ) & |
---|
1733 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
1734 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
1735 | |
---|
1736 | surf%nrs(m) = kappa * ( nr(k,j,i) - nr(k-1,j,i) ) & |
---|
1737 | / ( surf%ln_z_z0q(m) - psi_h( z_mo / surf%ol(m) ) & |
---|
1738 | + psi_h( surf%z0q(m) / surf%ol(m) ) ) |
---|
1739 | ENDDO |
---|
1740 | |
---|
1741 | ENDIF |
---|
1742 | |
---|
1743 | END SUBROUTINE calc_scaling_parameters |
---|
1744 | |
---|
1745 | |
---|
1746 | |
---|
1747 | !--------------------------------------------------------------------------------------------------! |
---|
1748 | ! Description: |
---|
1749 | ! ------------ |
---|
1750 | !> Calculate surface fluxes usws, vsws, shf, qsws, (qcsws, qrsws, ncsws, nrsws) |
---|
1751 | !--------------------------------------------------------------------------------------------------! |
---|
1752 | SUBROUTINE calc_surface_fluxes |
---|
1753 | |
---|
1754 | IMPLICIT NONE |
---|
1755 | |
---|
1756 | INTEGER(iwp) :: lsp !< running index for chemical species |
---|
1757 | INTEGER(iwp) :: m !< loop variable over all horizontal surf elements |
---|
1758 | |
---|
1759 | REAL(wp) :: dum !< dummy to precalculate logarithm |
---|
1760 | REAL(wp) :: flag_u !< flag indicating u-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
1761 | REAL(wp) :: flag_v !< flag indicating v-grid, used for calculation of horizontal momentum fluxes at vertical surfaces |
---|
1762 | |
---|
1763 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u_i !< u-component interpolated onto scalar grid point, required for momentum fluxes |
---|
1764 | !< at vertical surfaces |
---|
1765 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v_i !< v-component interpolated onto scalar grid point, required for momentum fluxes |
---|
1766 | !< at vertical surfaces |
---|
1767 | REAL(wp), DIMENSION(:), ALLOCATABLE :: w_i !< w-component interpolated onto scalar grid point, required for momentum fluxes |
---|
1768 | !< at vertical surfaces |
---|
1769 | |
---|
1770 | ! |
---|
1771 | !-- Calcuate surface fluxes at horizontal walls |
---|
1772 | IF ( .NOT. surf_vertical ) THEN |
---|
1773 | ! |
---|
1774 | !-- Compute u'w' for the total model domain at upward-facing surfaces. First compute the |
---|
1775 | !-- corresponding component of u* and square it. |
---|
1776 | IF ( .NOT. downward ) THEN |
---|
1777 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1778 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
1779 | !$ACC PRESENT(surf, u, rho_air_zw) |
---|
1780 | DO m = 1, surf%ns |
---|
1781 | i = surf%i(m) |
---|
1782 | j = surf%j(m) |
---|
1783 | k = surf%k(m) |
---|
1784 | |
---|
1785 | z_mo = surf%z_mo(m) |
---|
1786 | |
---|
1787 | surf%usws(m) = kappa * ( u(k,j,i) - u(k-1,j,i) ) & |
---|
1788 | / ( surf%ln_z_z0(m) - psi_m( z_mo / surf%ol(m) ) & |
---|
1789 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
1790 | ! |
---|
1791 | !-- Please note, the computation of usws is not fully accurate. Actually a further |
---|
1792 | !-- interpolation of us onto the u-grid, where usws is defined, is required. However, this |
---|
1793 | !-- is not done as this would require several data transfers between 2D-grid and the |
---|
1794 | !-- surf-type. The impact of the missing interpolation is negligible as several tests have |
---|
1795 | !-- shown. Same also for ol. |
---|
1796 | surf%usws(m) = -surf%usws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1797 | ENDDO |
---|
1798 | ! |
---|
1799 | !-- At downward-facing surfaces |
---|
1800 | ELSE |
---|
1801 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1802 | DO m = 1, surf%ns |
---|
1803 | i = surf%i(m) |
---|
1804 | j = surf%j(m) |
---|
1805 | k = surf%k(m) |
---|
1806 | |
---|
1807 | surf%usws(m) = kappa * u(k,j,i) / surf%ln_z_z0(m) |
---|
1808 | surf%usws(m) = surf%usws(m) * surf%us(m) * rho_air_zw(k) |
---|
1809 | ENDDO |
---|
1810 | ENDIF |
---|
1811 | |
---|
1812 | ! |
---|
1813 | !-- Compute v'w' for the total model domain. First compute the corresponding component of u* and |
---|
1814 | !-- square it. |
---|
1815 | !-- Upward-facing surfaces |
---|
1816 | IF ( .NOT. downward ) THEN |
---|
1817 | !$OMP PARALLEL DO PRIVATE( i, j, k, z_mo ) |
---|
1818 | !$ACC PARALLEL LOOP PRIVATE(i, j, k, z_mo) & |
---|
1819 | !$ACC PRESENT(surf, v, rho_air_zw) |
---|
1820 | DO m = 1, surf%ns |
---|
1821 | i = surf%i(m) |
---|
1822 | j = surf%j(m) |
---|
1823 | k = surf%k(m) |
---|
1824 | |
---|
1825 | z_mo = surf%z_mo(m) |
---|
1826 | |
---|
1827 | surf%vsws(m) = kappa * ( v(k,j,i) - v(k-1,j,i) ) & |
---|
1828 | / ( surf%ln_z_z0(m) - psi_m( z_mo / surf%ol(m) ) & |
---|
1829 | + psi_m( surf%z0(m) / surf%ol(m) ) ) |
---|
1830 | ! |
---|
1831 | !-- Please note, the computation of vsws is not fully accurate. Actually a further |
---|
1832 | !-- interpolation of us onto the v-grid, where vsws is defined, is required. However, this |
---|
1833 | !-- is not done as this would require several data transfers between 2D-grid and the |
---|
1834 | !-- surf-type. The impact of the missing interpolation is negligible as several tests have |
---|
1835 | !-- shown. Same also for ol. |
---|
1836 | surf%vsws(m) = -surf%vsws(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1837 | ENDDO |
---|
1838 | ! |
---|
1839 | !-- Downward-facing surfaces |
---|
1840 | ELSE |
---|
1841 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1842 | DO m = 1, surf%ns |
---|
1843 | i = surf%i(m) |
---|
1844 | j = surf%j(m) |
---|
1845 | k = surf%k(m) |
---|
1846 | |
---|
1847 | surf%vsws(m) = kappa * v(k,j,i) / surf%ln_z_z0(m) |
---|
1848 | surf%vsws(m) = surf%vsws(m) * surf%us(m) * rho_air_zw(k) |
---|
1849 | ENDDO |
---|
1850 | ENDIF |
---|
1851 | ! |
---|
1852 | !-- Compute the vertical kinematic heat flux. Note, only upward-facing surfaces are considered, |
---|
1853 | !-- at downward-facing surfaces the flux is not parametrized with a scaling parameter. |
---|
1854 | IF ( .NOT. constant_heatflux .AND. ( ( time_since_reference_point <= skip_time_do_lsm & |
---|
1855 | .AND. simulated_time > 0.0_wp ) .OR. .NOT. land_surface ) .AND. & |
---|
1856 | .NOT. urban_surface .AND. .NOT. downward ) THEN |
---|
1857 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
1858 | DO m = 1, surf%ns |
---|
1859 | k = surf%k(m) |
---|
1860 | surf%shf(m) = -surf%ts(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1861 | ENDDO |
---|
1862 | ENDIF |
---|
1863 | ! |
---|
1864 | !-- Compute the vertical water flux |
---|
1865 | IF ( .NOT. constant_waterflux .AND. humidity .AND. & |
---|
1866 | ( ( time_since_reference_point <= skip_time_do_lsm .AND. simulated_time > 0.0_wp ) & |
---|
1867 | .OR. .NOT. land_surface ) .AND. .NOT. urban_surface .AND. .NOT. downward ) & |
---|
1868 | THEN |
---|
1869 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
1870 | DO m = 1, surf%ns |
---|
1871 | k = surf%k(m) |
---|
1872 | surf%qsws(m) = -surf%qs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1873 | ENDDO |
---|
1874 | ENDIF |
---|
1875 | ! |
---|
1876 | !-- Compute the vertical scalar flux |
---|
1877 | IF ( .NOT. constant_scalarflux .AND. passive_scalar .AND. .NOT. downward ) THEN |
---|
1878 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
1879 | DO m = 1, surf%ns |
---|
1880 | k = surf%k(m) |
---|
1881 | surf%ssws(m) = -surf%ss(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1882 | ENDDO |
---|
1883 | ENDIF |
---|
1884 | ! |
---|
1885 | !-- Compute the vertical chemical species' flux |
---|
1886 | DO lsp = 1, nvar |
---|
1887 | IF ( .NOT. constant_csflux(lsp) .AND. air_chemistry .AND. .NOT. downward ) THEN |
---|
1888 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
1889 | DO m = 1, surf%ns |
---|
1890 | k = surf%k(m) |
---|
1891 | surf%cssws(lsp,m) = -surf%css(lsp,m) * surf%us(m) * rho_air_zw(k-1) |
---|
1892 | ENDDO |
---|
1893 | ENDIF |
---|
1894 | ENDDO |
---|
1895 | |
---|
1896 | ! |
---|
1897 | !-- Compute (turbulent) fluxes of cloud water content and cloud drop conc. |
---|
1898 | IF ( bulk_cloud_model .AND. microphysics_morrison .AND. .NOT. downward) THEN |
---|
1899 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
1900 | DO m = 1, surf%ns |
---|
1901 | k = surf%k(m) |
---|
1902 | surf%qcsws(m) = -surf%qcs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1903 | surf%ncsws(m) = -surf%ncs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1904 | ENDDO |
---|
1905 | ENDIF |
---|
1906 | ! |
---|
1907 | !-- Compute (turbulent) fluxes of rain water content and rain drop conc. |
---|
1908 | IF ( bulk_cloud_model .AND. microphysics_seifert .AND. .NOT. downward) THEN |
---|
1909 | !$OMP PARALLEL DO PRIVATE( k ) |
---|
1910 | DO m = 1, surf%ns |
---|
1911 | k = surf%k(m) |
---|
1912 | surf%qrsws(m) = -surf%qrs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1913 | surf%nrsws(m) = -surf%nrs(m) * surf%us(m) * rho_air_zw(k-1) |
---|
1914 | ENDDO |
---|
1915 | ENDIF |
---|
1916 | |
---|
1917 | ! |
---|
1918 | !-- Bottom boundary condition for the TKE. |
---|
1919 | IF ( ibc_e_b == 2 ) THEN |
---|
1920 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1921 | DO m = 1, surf%ns |
---|
1922 | i = surf%i(m) |
---|
1923 | j = surf%j(m) |
---|
1924 | k = surf%k(m) |
---|
1925 | |
---|
1926 | e(k,j,i) = ( surf%us(m) / 0.1_wp )**2 |
---|
1927 | ! |
---|
1928 | !-- As a test: cm = 0.4 |
---|
1929 | ! e(k,j,i) = ( us(j,i) / 0.4_wp )**2 |
---|
1930 | e(k-1,j,i) = e(k,j,i) |
---|
1931 | |
---|
1932 | ENDDO |
---|
1933 | ENDIF |
---|
1934 | ! |
---|
1935 | !-- Calcuate surface fluxes at vertical surfaces. No stability is considered. |
---|
1936 | !-- Further, no density needs to be considered here. |
---|
1937 | ELSE |
---|
1938 | ! |
---|
1939 | !-- Compute usvs l={0,1} and vsus l={2,3} |
---|
1940 | IF ( mom_uv ) THEN |
---|
1941 | ! |
---|
1942 | !-- Generalize computation by introducing flags. At north- and south-facing surfaces |
---|
1943 | !-- u-component is used, at east- and west-facing surfaces v-component is used. |
---|
1944 | flag_u = MERGE( 1.0_wp, 0.0_wp, l == 0 .OR. l == 1 ) |
---|
1945 | flag_v = MERGE( 1.0_wp, 0.0_wp, l == 2 .OR. l == 3 ) |
---|
1946 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1947 | DO m = 1, surf%ns |
---|
1948 | i = surf%i(m) |
---|
1949 | j = surf%j(m) |
---|
1950 | k = surf%k(m) |
---|
1951 | |
---|
1952 | surf%mom_flux_uv(m) = kappa * ( flag_u * u(k,j,i) + flag_v * v(k,j,i) ) / & |
---|
1953 | surf%ln_z_z0(m) |
---|
1954 | |
---|
1955 | surf%mom_flux_uv(m) = - surf%mom_flux_uv(m) * surf%us(m) |
---|
1956 | ENDDO |
---|
1957 | ENDIF |
---|
1958 | ! |
---|
1959 | !-- Compute wsus l={0,1} and wsvs l={2,3} |
---|
1960 | IF ( mom_w ) THEN |
---|
1961 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1962 | DO m = 1, surf%ns |
---|
1963 | i = surf%i(m) |
---|
1964 | j = surf%j(m) |
---|
1965 | k = surf%k(m) |
---|
1966 | |
---|
1967 | surf%mom_flux_w(m) = kappa * w(k,j,i) / surf%ln_z_z0(m) |
---|
1968 | |
---|
1969 | surf%mom_flux_w(m) = - surf%mom_flux_w(m) * surf%us(m) |
---|
1970 | ENDDO |
---|
1971 | ENDIF |
---|
1972 | ! |
---|
1973 | !-- Compute momentum fluxes used for subgrid-scale TKE production at vertical surfaces. In |
---|
1974 | !-- constrast to the calculated momentum fluxes at vertical surfaces before, which are defined on |
---|
1975 | !-- the u/v/w-grid, respectively), the TKE fluxes are defined at the scalar grid. |
---|
1976 | !-- |
---|
1977 | IF ( mom_tke ) THEN |
---|
1978 | ! |
---|
1979 | !-- Precalculate velocity components at scalar grid point. |
---|
1980 | ALLOCATE( u_i(1:surf%ns) ) |
---|
1981 | ALLOCATE( v_i(1:surf%ns) ) |
---|
1982 | ALLOCATE( w_i(1:surf%ns) ) |
---|
1983 | |
---|
1984 | IF ( l == 0 .OR. l == 1 ) THEN |
---|
1985 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1986 | DO m = 1, surf%ns |
---|
1987 | i = surf%i(m) |
---|
1988 | j = surf%j(m) |
---|
1989 | k = surf%k(m) |
---|
1990 | |
---|
1991 | u_i(m) = 0.5_wp * ( u(k,j,i) + u(k,j,i+1) ) |
---|
1992 | v_i(m) = 0.0_wp |
---|
1993 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
1994 | ENDDO |
---|
1995 | ELSE |
---|
1996 | !$OMP PARALLEL DO PRIVATE( i, j, k ) |
---|
1997 | DO m = 1, surf%ns |
---|
1998 | i = surf%i(m) |
---|
1999 | j = surf%j(m) |
---|
2000 | k = surf%k(m) |
---|
2001 | |
---|
2002 | u_i(m) = 0.0_wp |
---|
2003 | v_i(m) = 0.5_wp * ( v(k,j,i) + v(k,j+1,i) ) |
---|
2004 | w_i(m) = 0.5_wp * ( w(k,j,i) + w(k-1,j,i) ) |
---|
2005 | ENDDO |
---|
2006 | ENDIF |
---|
2007 | |
---|
2008 | !$OMP PARALLEL DO PRIVATE( i, j, dum ) |
---|
2009 | DO m = 1, surf%ns |
---|
2010 | i = surf%i(m) |
---|
2011 | j = surf%j(m) |
---|
2012 | |
---|
2013 | dum = kappa / surf%ln_z_z0(m) |
---|
2014 | ! |
---|
2015 | !-- usvs (l=0,1) and vsus (l=2,3) |
---|
2016 | surf%mom_flux_tke(0,m) = dum * ( u_i(m) + v_i(m) ) |
---|
2017 | ! |
---|
2018 | !-- wsvs (l=0,1) and wsus (l=2,3) |
---|
2019 | surf%mom_flux_tke(1,m) = dum * w_i(m) |
---|
2020 | |
---|
2021 | surf%mom_flux_tke(0:1,m) = - surf%mom_flux_tke(0:1,m) * surf%us(m) |
---|
2022 | ENDDO |
---|
2023 | ! |
---|
2024 | !-- Deallocate temporary arrays |
---|
2025 | DEALLOCATE( u_i ) |
---|
2026 | DEALLOCATE( v_i ) |
---|
2027 | DEALLOCATE( w_i ) |
---|
2028 | ENDIF |
---|
2029 | ENDIF |
---|
2030 | |
---|
2031 | END SUBROUTINE calc_surface_fluxes |
---|
2032 | |
---|
2033 | |
---|
2034 | !--------------------------------------------------------------------------------------------------! |
---|
2035 | ! Description: |
---|
2036 | ! ------------ |
---|
2037 | !> Calculates temperature near surface (10 cm) for indoor model or 2 m temperature for output. |
---|
2038 | !--------------------------------------------------------------------------------------------------! |
---|
2039 | SUBROUTINE calc_pt_near_surface ( z_char ) |
---|
2040 | |
---|
2041 | IMPLICIT NONE |
---|
2042 | |
---|
2043 | CHARACTER(LEN = *), INTENT(IN) :: z_char !< string identifier to identify z level |
---|
2044 | |
---|
2045 | INTEGER(iwp) :: m !< running index for surface elements |
---|
2046 | |
---|
2047 | SELECT CASE ( z_char) |
---|
2048 | |
---|
2049 | CASE ( '10cm' ) |
---|
2050 | ! |
---|
2051 | !-- For horizontal upward-facing surfaces 10-cm temperature can be calculated using MOST. |
---|
2052 | IF ( .NOT. downward .AND. .NOT. surf_vertical ) THEN |
---|
2053 | DO m = 1, surf%ns |
---|
2054 | surf%pt_10cm(m) = surf%pt_surface(m) + surf%ts(m) / kappa & |
---|
2055 | * ( LOG( 0.1_wp / surf%z0h(m) ) - psi_h( 0.1_wp / surf%ol(m) ) & |
---|
2056 | + psi_h( surf%z0h(m) / surf%ol(m) ) ) |
---|
2057 | ENDDO |
---|
2058 | ! |
---|
2059 | !-- At vertical surfaces 10-cm temperature cannot be calculated via MOST as the Obukhov length |
---|
2060 | !-- and temperature scaling parameter are not calculated. Hence, set 10-cm temperature to |
---|
2061 | !-- the grid-cell temperature. |
---|
2062 | ELSE |
---|
2063 | DO m = 1, surf%ns |
---|
2064 | surf%pt_10cm(m) = pt(surf%k(m)+surf%koff,surf%j(m)+surf%joff,surf%i(m)+surf%ioff) |
---|
2065 | ENDDO |
---|
2066 | ENDIF |
---|
2067 | |
---|
2068 | END SELECT |
---|
2069 | |
---|
2070 | END SUBROUTINE calc_pt_near_surface |
---|
2071 | |
---|
2072 | |
---|
2073 | !--------------------------------------------------------------------------------------------------! |
---|
2074 | ! Description: |
---|
2075 | ! ------------ |
---|
2076 | !> Integrated stability function for momentum. |
---|
2077 | !--------------------------------------------------------------------------------------------------! |
---|
2078 | FUNCTION psi_m( zeta ) |
---|
2079 | !$ACC ROUTINE SEQ |
---|
2080 | |
---|
2081 | USE kinds |
---|
2082 | |
---|
2083 | IMPLICIT NONE |
---|
2084 | |
---|
2085 | REAL(wp) :: psi_m !< Integrated similarity function result |
---|
2086 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
2087 | REAL(wp) :: x !< dummy variable |
---|
2088 | |
---|
2089 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
2090 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
2091 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
2092 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
2093 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
2094 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
2095 | |
---|
2096 | |
---|
2097 | IF ( zeta < 0.0_wp ) THEN |
---|
2098 | x = SQRT( SQRT( 1.0_wp - 16.0_wp * zeta ) ) |
---|
2099 | psi_m = pi * 0.5_wp - 2.0_wp * ATAN( x ) + LOG( ( 1.0_wp + x )**2 & |
---|
2100 | * ( 1.0_wp + x**2 ) * 0.125_wp ) |
---|
2101 | ELSE |
---|
2102 | |
---|
2103 | psi_m = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - a * zeta - bc_d_d |
---|
2104 | ! |
---|
2105 | !-- Old version for stable conditions (only valid for z/L < 0.5) psi_m = - 5.0_wp * zeta |
---|
2106 | |
---|
2107 | ENDIF |
---|
2108 | |
---|
2109 | END FUNCTION psi_m |
---|
2110 | |
---|
2111 | |
---|
2112 | !--------------------------------------------------------------------------------------------------! |
---|
2113 | ! Description: |
---|
2114 | !------------ |
---|
2115 | !> Integrated stability function for heat and moisture. |
---|
2116 | !--------------------------------------------------------------------------------------------------! |
---|
2117 | FUNCTION psi_h( zeta ) |
---|
2118 | !$ACC ROUTINE SEQ |
---|
2119 | |
---|
2120 | USE kinds |
---|
2121 | |
---|
2122 | IMPLICIT NONE |
---|
2123 | |
---|
2124 | REAL(wp) :: psi_h !< Integrated similarity function result |
---|
2125 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
2126 | REAL(wp) :: x !< dummy variable |
---|
2127 | |
---|
2128 | REAL(wp), PARAMETER :: a = 1.0_wp !< constant |
---|
2129 | REAL(wp), PARAMETER :: b = 0.66666666666_wp !< constant |
---|
2130 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
2131 | REAL(wp), PARAMETER :: d = 0.35_wp !< constant |
---|
2132 | REAL(wp), PARAMETER :: c_d_d = c / d !< constant |
---|
2133 | REAL(wp), PARAMETER :: bc_d_d = b * c / d !< constant |
---|
2134 | |
---|
2135 | |
---|
2136 | IF ( zeta < 0.0_wp ) THEN |
---|
2137 | x = SQRT( 1.0_wp - 16.0_wp * zeta ) |
---|
2138 | psi_h = 2.0_wp * LOG( (1.0_wp + x ) / 2.0_wp ) |
---|
2139 | ELSE |
---|
2140 | psi_h = - b * ( zeta - c_d_d ) * EXP( -d * zeta ) - (1.0_wp & |
---|
2141 | + 0.66666666666_wp * a * zeta )**1.5_wp - bc_d_d + 1.0_wp |
---|
2142 | ! |
---|
2143 | !-- Old version for stable conditions (only valid for z/L < 0.5) |
---|
2144 | !-- psi_h = - 5.0_wp * zeta |
---|
2145 | ENDIF |
---|
2146 | |
---|
2147 | END FUNCTION psi_h |
---|
2148 | |
---|
2149 | |
---|
2150 | !--------------------------------------------------------------------------------------------------! |
---|
2151 | ! Description: |
---|
2152 | ! ------------ |
---|
2153 | !> Calculates stability function for momentum |
---|
2154 | !> |
---|
2155 | !> @author Hauke Wurps |
---|
2156 | !--------------------------------------------------------------------------------------------------! |
---|
2157 | FUNCTION phi_m( zeta ) |
---|
2158 | !$ACC ROUTINE SEQ |
---|
2159 | |
---|
2160 | IMPLICIT NONE |
---|
2161 | |
---|
2162 | REAL(wp) :: phi_m !< Value of the function |
---|
2163 | REAL(wp) :: zeta !< Stability parameter z/L |
---|
2164 | |
---|
2165 | REAL(wp), PARAMETER :: a = 16.0_wp !< constant |
---|
2166 | REAL(wp), PARAMETER :: c = 5.0_wp !< constant |
---|
2167 | |
---|
2168 | IF ( zeta < 0.0_wp ) THEN |
---|
2169 | phi_m = 1.0_wp / SQRT( SQRT( 1.0_wp - a * zeta ) ) |
---|
2170 | ELSE |
---|
2171 | phi_m = 1.0_wp + c * zeta |
---|
2172 | ENDIF |
---|
2173 | |
---|
2174 | END FUNCTION phi_m |
---|
2175 | |
---|
2176 | END MODULE surface_layer_fluxes_mod |
---|