1 | !> @file singleton_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
7 | ! (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
11 | ! Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
14 | ! <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: singleton_mod.f90 4591 2020-07-06 15:56:08Z schwenkel $ |
---|
27 | ! File re-formatted to follow the PALM coding standard |
---|
28 | ! |
---|
29 | ! |
---|
30 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
31 | ! Corrected "Former revisions" section |
---|
32 | ! |
---|
33 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
34 | ! Statement added to prevent compiler warning about unused variables |
---|
35 | ! |
---|
36 | ! Revision 1.1 2002/05/02 18:56:59 raasch |
---|
37 | ! Initial revision |
---|
38 | ! |
---|
39 | ! |
---|
40 | !--------------------------------------------------------------------------------------------------! |
---|
41 | ! Description: |
---|
42 | ! ------------ |
---|
43 | !> Multivariate Fast Fourier Transform |
---|
44 | !> |
---|
45 | !> Fortran 90 Implementation of Singleton's mixed-radix algorithm, RC Singleton, Stanford Research |
---|
46 | !> Institute, Sept. 1968. |
---|
47 | !> |
---|
48 | !> Adapted from fftn.c, translated from Fortran 66 to C by Mark Olesen and John Beale. |
---|
49 | !> |
---|
50 | !> Fourier transforms can be computed either in place, using assumed size arguments, or by generic |
---|
51 | !> function, using assumed shape arguments. |
---|
52 | !> |
---|
53 | !> Public: |
---|
54 | !> |
---|
55 | !> fftkind kind parameter of complex arguments and function results. |
---|
56 | !> |
---|
57 | !> fft(array, dim, inv, stat) generic transform function |
---|
58 | !> COMPLEX(fftkind), DIMENSION(:,...,:), INTENT(IN) :: array |
---|
59 | !> INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
60 | !> LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
61 | !> INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
62 | !> |
---|
63 | !> fftn(array, shape, dim, inv, stat) in place transform subroutine |
---|
64 | !> COMPLEX(fftkind), DIMENSION(*), INTENT(INOUT) :: array |
---|
65 | !> INTEGER, DIMENSION(:), INTENT(IN) :: shape |
---|
66 | !> INTEGER, DIMENSION(:), INTENT(IN), OPTIONAL:: dim |
---|
67 | !> LOGICAL, INTENT(IN), OPTIONAL:: inv |
---|
68 | !> INTEGER, INTENT(OUT), OPTIONAL:: stat |
---|
69 | !> |
---|
70 | !> |
---|
71 | !> Formal Parameters: |
---|
72 | !> |
---|
73 | !> array The complex array to be transformed. Array can be of arbitrary rank (i.e. up to seven). |
---|
74 | !> |
---|
75 | !> shape With subroutine fftn, the shape of the array to be transformed has to be passed |
---|
76 | !> separately, since fftradix - the internal transformation routine - will always treat |
---|
77 | !> array as one dimensional. The product of elements in shape must be the number of |
---|
78 | !> elements in array. |
---|
79 | !> Although passing array with assumed shape would have been nicer, I prefered assumed |
---|
80 | !> size in order to prevent the compiler from using a copy-in-copy-out mechanism. That |
---|
81 | !> would generally be necessary with fftn passing array to fftradix and with fftn being |
---|
82 | !> prepared for accepting non consecutive array sections. Using assumed size, it's up to |
---|
83 | !> the user to pass an array argument, that can be addressed as continous one dimensional |
---|
84 | !> array without copying. Otherwise, transformation will not really be performed in place. |
---|
85 | !> On the other hand, since the rank of array and the size of shape needn't match, fftn |
---|
86 | !> is appropriate for handling more than seven dimensions. As far as function fft is |
---|
87 | !> concerned all this doesn't matter, because the argument will be copied anyway. Thus no |
---|
88 | !> extra shape argument is needed for fft. |
---|
89 | !> |
---|
90 | !> Optional Parameters: |
---|
91 | !> |
---|
92 | !> dim One dimensional integer array, containing the dimensions to be transformed. Default |
---|
93 | !> is (/1,...,N/) with N being the rank of array, i.e. complete transform. dim can |
---|
94 | !> restrict transformation to a subset of available dimensions. Its size must not exceed |
---|
95 | !> the rank of array or the size of shape respectivly. |
---|
96 | !> |
---|
97 | !> inv If .true., inverse transformation will be performed. Default is .false., i.e. forward |
---|
98 | !> transformation. |
---|
99 | !> |
---|
100 | !> stat If present, a system dependent nonzero status value will be returned in stat, if |
---|
101 | !> allocation of temporary storage failed. |
---|
102 | !> |
---|
103 | !> |
---|
104 | !> Scaling: |
---|
105 | !> |
---|
106 | !> Transformation results will always be scaled by the square root of the product of sizes of each |
---|
107 | !> dimension in dim. (See examples below) |
---|
108 | !> |
---|
109 | !> |
---|
110 | !> Examples: |
---|
111 | !> |
---|
112 | !> Let A be a L*M*N three dimensional complex array. Then |
---|
113 | !> |
---|
114 | !> result = fft(A) |
---|
115 | !> |
---|
116 | !> will produce a three dimensional transform, scaled by sqrt(L*M*N), while |
---|
117 | !> |
---|
118 | !> call fftn(A, SHAPE(A)) |
---|
119 | !> |
---|
120 | !> will do the same in place. |
---|
121 | !> |
---|
122 | !> result = fft(A, dim=(/1,3/)) |
---|
123 | !> |
---|
124 | !> will transform with respect to the first and the third dimension, scaled by sqrt(L*N). |
---|
125 | !> |
---|
126 | !> result = fft(fft(A), inv=.true.) |
---|
127 | !> |
---|
128 | !> should (approximately) reproduce A. |
---|
129 | !> With B having the same shape as A |
---|
130 | !> |
---|
131 | !> result = fft(fft(A) * CONJG(fft(B)), inv=.true.) |
---|
132 | !> |
---|
133 | !> will correlate A and B. |
---|
134 | !> |
---|
135 | !> |
---|
136 | !> Remarks: |
---|
137 | !> |
---|
138 | !> Following changes have been introduced with respect to fftn.c: |
---|
139 | !> - Complex arguments and results are of type complex, rather than real an imaginary part |
---|
140 | !> separately. |
---|
141 | !> - Increment parameter (magnitude of isign) has been dropped, inc is always one, direction of |
---|
142 | !> transform is given by inv. |
---|
143 | !> - maxf and maxp have been dropped. The amount of temporary storage needed is determined by the |
---|
144 | !> fftradix routine. Both fftn and fft can handle any size of array. (Maybe they take a lot of |
---|
145 | !> time and memory, but they will do it) |
---|
146 | !> |
---|
147 | !> Redesigning fftradix in a way, that it handles assumed shape arrays would have been desirable. |
---|
148 | !> However, I found it rather hard to do this in an efficient way. Problems were: |
---|
149 | !> - To prevent stride multiplications when indexing arrays. At least our compiler was not clever |
---|
150 | !> enough to discover that in fact additions would do the job as well. On the other hand, I |
---|
151 | !> haven't been clever enough to find an implementation using array operations. |
---|
152 | !> - fftradix is rather large and different versions would be necessaray for each possible rank of |
---|
153 | !> array. |
---|
154 | !> Consequently, in place transformation still needs the argument stored in a consecutive bunch of |
---|
155 | !> memory and can't be performed on array sections like A(100:199:-3, 50:1020). Calling fftn with |
---|
156 | !> such sections will most probably imply copy-in-copy-out. However, the function fft works with |
---|
157 | !> everything it gets and should be convenient to use. |
---|
158 | !> |
---|
159 | !> Michael Steffens, 09.12.96, <Michael.Steffens@mbox.muk.uni-hannover.de> |
---|
160 | !> Restructured fftradix for better optimization. M. Steffens, 4 June 1997 |
---|
161 | !--------------------------------------------------------------------------------------------------! |
---|
162 | MODULE singleton |
---|
163 | |
---|
164 | |
---|
165 | USE kinds |
---|
166 | |
---|
167 | IMPLICIT NONE |
---|
168 | |
---|
169 | PRIVATE |
---|
170 | PUBLIC :: fft !< |
---|
171 | PUBLIC :: fftn !< |
---|
172 | |
---|
173 | REAL(wp), PARAMETER :: cos72 = 0.30901699437494742_wp !< |
---|
174 | REAL(wp), PARAMETER :: pi = 3.14159265358979323_wp !< |
---|
175 | REAL(wp), PARAMETER :: sin60 = 0.86602540378443865_wp !< |
---|
176 | REAL(wp), PARAMETER :: sin72 = 0.95105651629515357_wp !< |
---|
177 | |
---|
178 | INTERFACE fft |
---|
179 | MODULE PROCEDURE fft1d |
---|
180 | MODULE PROCEDURE fft2d |
---|
181 | MODULE PROCEDURE fft3d |
---|
182 | MODULE PROCEDURE fft4d |
---|
183 | MODULE PROCEDURE fft5d |
---|
184 | MODULE PROCEDURE fft6d |
---|
185 | MODULE PROCEDURE fft7d |
---|
186 | END INTERFACE |
---|
187 | |
---|
188 | |
---|
189 | CONTAINS |
---|
190 | |
---|
191 | |
---|
192 | !--------------------------------------------------------------------------------------------------! |
---|
193 | ! Description: |
---|
194 | ! ------------ |
---|
195 | !> @todo Missing function description. |
---|
196 | !--------------------------------------------------------------------------------------------------! |
---|
197 | FUNCTION fft1d( array, dim, inv, stat ) RESULT( ft ) |
---|
198 | ! |
---|
199 | !-- Formal parameters |
---|
200 | COMPLEX(wp), DIMENSION(:), INTENT(IN) :: array !< |
---|
201 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< |
---|
202 | INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< |
---|
203 | LOGICAL, INTENT(IN), OPTIONAL :: inv !< |
---|
204 | ! |
---|
205 | !-- Function result |
---|
206 | COMPLEX(wp), DIMENSION(SIZE(array, 1)) :: ft !< |
---|
207 | |
---|
208 | INTEGER(iwp) :: idum !< |
---|
209 | INTEGER(iwp) :: ishape(1) !< |
---|
210 | |
---|
211 | ! |
---|
212 | !-- Intrinsics used |
---|
213 | INTRINSIC SIZE, SHAPE |
---|
214 | |
---|
215 | ft = array |
---|
216 | ishape = SHAPE( array ) |
---|
217 | CALL fftn( ft, ishape, inv = inv, stat = stat ) |
---|
218 | ! |
---|
219 | !-- Next statement to prevent compiler warning about unused variable |
---|
220 | IF ( PRESENT( dim ) ) idum = 1 |
---|
221 | |
---|
222 | END FUNCTION fft1d |
---|
223 | |
---|
224 | |
---|
225 | !--------------------------------------------------------------------------------------------------! |
---|
226 | ! Description: |
---|
227 | ! ------------ |
---|
228 | !> @todo Missing function description. |
---|
229 | !--------------------------------------------------------------------------------------------------! |
---|
230 | FUNCTION fft2d( array, dim, inv, stat ) RESULT( ft ) |
---|
231 | ! |
---|
232 | !-- Formal parameters |
---|
233 | COMPLEX(wp), DIMENSION(:,:), INTENT(IN) :: array !< |
---|
234 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< |
---|
235 | INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< |
---|
236 | LOGICAL, INTENT(IN), OPTIONAL :: inv !< |
---|
237 | ! |
---|
238 | !-- Function result |
---|
239 | COMPLEX(wp), DIMENSION(SIZE(array, 1), SIZE(array, 2)) :: ft !< |
---|
240 | |
---|
241 | INTEGER(iwp) :: ishape(2) !< |
---|
242 | ! |
---|
243 | !-- Intrinsics used |
---|
244 | INTRINSIC SIZE, SHAPE |
---|
245 | |
---|
246 | ft = array |
---|
247 | ishape = SHAPE( array ) |
---|
248 | CALL fftn( ft, ishape, dim, inv, stat ) |
---|
249 | |
---|
250 | END FUNCTION fft2d |
---|
251 | |
---|
252 | |
---|
253 | !--------------------------------------------------------------------------------------------------! |
---|
254 | ! Description: |
---|
255 | ! ------------ |
---|
256 | !> @todo Missing function description. |
---|
257 | !--------------------------------------------------------------------------------------------------! |
---|
258 | FUNCTION fft3d( array, dim, inv, stat ) RESULT( ft ) |
---|
259 | ! |
---|
260 | !-- Formal parameters |
---|
261 | COMPLEX(wp), DIMENSION(:,:,:), INTENT(IN) :: array !< |
---|
262 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< |
---|
263 | INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< |
---|
264 | LOGICAL, INTENT(IN), OPTIONAL :: inv !< |
---|
265 | ! |
---|
266 | !-- Function result |
---|
267 | COMPLEX(wp), DIMENSION(SIZE(array, 1), SIZE(array, 2), SIZE(array, 3)) :: ft !< |
---|
268 | |
---|
269 | INTEGER(iwp) :: ishape(3) !< |
---|
270 | |
---|
271 | ! |
---|
272 | !-- Intrinsics used |
---|
273 | INTRINSIC SIZE, SHAPE |
---|
274 | |
---|
275 | ft = array |
---|
276 | ishape = SHAPE( array) |
---|
277 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
278 | |
---|
279 | END FUNCTION fft3d |
---|
280 | |
---|
281 | |
---|
282 | !--------------------------------------------------------------------------------------------------! |
---|
283 | ! Description: |
---|
284 | ! ------------ |
---|
285 | !> @todo Missing function description. |
---|
286 | !--------------------------------------------------------------------------------------------------! |
---|
287 | FUNCTION fft4d( array, dim, inv, stat ) RESULT( ft ) |
---|
288 | ! |
---|
289 | !-- Formal parameters |
---|
290 | COMPLEX(wp), DIMENSION(:,:,:,:), INTENT(IN) :: array !< |
---|
291 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< |
---|
292 | INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< |
---|
293 | LOGICAL, INTENT(IN), OPTIONAL :: inv !< |
---|
294 | ! |
---|
295 | !-- Function result |
---|
296 | COMPLEX(wp), DIMENSION(SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4)) :: ft !< |
---|
297 | |
---|
298 | INTEGER(iwp) :: ishape(4) !< |
---|
299 | ! |
---|
300 | !-- Intrinsics used |
---|
301 | INTRINSIC SIZE, SHAPE |
---|
302 | |
---|
303 | ft = array |
---|
304 | ishape = SHAPE( array ) |
---|
305 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
306 | |
---|
307 | END FUNCTION fft4d |
---|
308 | |
---|
309 | |
---|
310 | !--------------------------------------------------------------------------------------------------! |
---|
311 | ! Description: |
---|
312 | ! ------------ |
---|
313 | !> @todo Missing function description. |
---|
314 | !--------------------------------------------------------------------------------------------------! |
---|
315 | FUNCTION fft5d( array, dim, inv, stat ) RESULT( ft ) |
---|
316 | ! |
---|
317 | !-- Formal parameters |
---|
318 | COMPLEX(wp), DIMENSION(:,:,:,:,:), INTENT(IN) :: array !< |
---|
319 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< |
---|
320 | INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< |
---|
321 | LOGICAL, INTENT(IN), OPTIONAL :: inv !< |
---|
322 | ! |
---|
323 | !-- Function result |
---|
324 | COMPLEX(wp), DIMENSION(SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), SIZE(array, 5)) :: ft !< |
---|
325 | |
---|
326 | INTEGER(iwp) :: ishape(5) !< |
---|
327 | |
---|
328 | ! |
---|
329 | !-- Intrinsics used |
---|
330 | INTRINSIC SIZE, SHAPE |
---|
331 | |
---|
332 | ft = array |
---|
333 | ishape = SHAPE( array ) |
---|
334 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
335 | |
---|
336 | END FUNCTION fft5d |
---|
337 | |
---|
338 | |
---|
339 | !--------------------------------------------------------------------------------------------------! |
---|
340 | ! Description: |
---|
341 | ! ------------ |
---|
342 | !> @todo Missing function description. |
---|
343 | !--------------------------------------------------------------------------------------------------! |
---|
344 | FUNCTION fft6d( array, dim, inv, stat ) RESULT( ft ) |
---|
345 | ! |
---|
346 | !-- Formal parameters |
---|
347 | COMPLEX(wp), DIMENSION(:,:,:,:,:,:), INTENT(IN) :: array !< |
---|
348 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< |
---|
349 | INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< |
---|
350 | LOGICAL, INTENT(IN), OPTIONAL :: inv !< |
---|
351 | ! |
---|
352 | !-- Function result |
---|
353 | COMPLEX(wp), DIMENSION( SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), & |
---|
354 | SIZE(array, 5), SIZE(array, 6)) :: ft !< |
---|
355 | |
---|
356 | INTEGER(iwp) :: ishape(6) !< |
---|
357 | |
---|
358 | ! |
---|
359 | !-- Intrinsics used |
---|
360 | INTRINSIC SIZE, SHAPE |
---|
361 | |
---|
362 | ft = array |
---|
363 | ishape = SHAPE( array ) |
---|
364 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
365 | |
---|
366 | END FUNCTION fft6d |
---|
367 | |
---|
368 | |
---|
369 | !--------------------------------------------------------------------------------------------------! |
---|
370 | ! Description: |
---|
371 | ! ------------ |
---|
372 | !> @todo Missing function description. |
---|
373 | !--------------------------------------------------------------------------------------------------! |
---|
374 | FUNCTION fft7d( array, dim, inv, stat ) RESULT( ft ) |
---|
375 | ! |
---|
376 | !-- Formal parameters |
---|
377 | COMPLEX(wp), DIMENSION(:,:,:,:,:,:,:), INTENT(IN) :: array !< |
---|
378 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< |
---|
379 | INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< |
---|
380 | LOGICAL, INTENT(IN), OPTIONAL :: inv !< |
---|
381 | ! |
---|
382 | !-- Function result |
---|
383 | COMPLEX(wp), DIMENSION( SIZE(array, 1), SIZE(array, 2), SIZE(array, 3), SIZE(array, 4), & |
---|
384 | SIZE(array, 5), SIZE(array, 6), SIZE(array, 7)) :: ft !< |
---|
385 | |
---|
386 | INTEGER(iwp) :: ishape(7) !< |
---|
387 | |
---|
388 | ! |
---|
389 | !-- Intrinsics used |
---|
390 | INTRINSIC SIZE, SHAPE |
---|
391 | |
---|
392 | ft = array |
---|
393 | ishape = SHAPE( array ) |
---|
394 | CALL fftn(ft, ishape, dim, inv, stat) |
---|
395 | |
---|
396 | END FUNCTION fft7d |
---|
397 | |
---|
398 | |
---|
399 | !--------------------------------------------------------------------------------------------------! |
---|
400 | ! Description: |
---|
401 | ! ------------ |
---|
402 | !> @todo Missing subroutine description. |
---|
403 | !--------------------------------------------------------------------------------------------------! |
---|
404 | SUBROUTINE fftn( array, shape, dim, inv, stat ) |
---|
405 | ! |
---|
406 | !-- Formal parameters |
---|
407 | COMPLEX(wp), DIMENSION(*), INTENT(INOUT) :: array !< |
---|
408 | INTEGER(iwp), DIMENSION(:), INTENT(IN) :: shape !< |
---|
409 | INTEGER(iwp), DIMENSION(:), INTENT(IN), OPTIONAL :: dim !< |
---|
410 | INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< |
---|
411 | LOGICAL, INTENT(IN), OPTIONAL :: inv !< |
---|
412 | ! |
---|
413 | !-- Local arrays |
---|
414 | INTEGER(iwp), DIMENSION(SIZE(shape)) :: d !< |
---|
415 | ! |
---|
416 | !-- Local scalars |
---|
417 | LOGICAL :: inverse !< |
---|
418 | INTEGER(iwp) :: i, ndim, ntotal !< |
---|
419 | REAL(wp) :: scale !< |
---|
420 | ! |
---|
421 | !-- Intrinsics used |
---|
422 | INTRINSIC PRESENT, MIN, PRODUCT, SIZE, SQRT |
---|
423 | |
---|
424 | ! |
---|
425 | !-- Optional parameter settings |
---|
426 | IF ( PRESENT( inv ) ) THEN |
---|
427 | inverse = inv |
---|
428 | ELSE |
---|
429 | inverse = .FALSE. |
---|
430 | END IF |
---|
431 | IF ( PRESENT( dim ) ) THEN |
---|
432 | ndim = MIN( SIZE( dim ), SIZE( d ) ) |
---|
433 | d(1:ndim) = DIM( 1:ndim ) |
---|
434 | ELSE |
---|
435 | ndim = SIZE( d ) |
---|
436 | d = (/( i, i = 1, SIZE( d ) )/) |
---|
437 | END IF |
---|
438 | |
---|
439 | ntotal = PRODUCT( shape ) |
---|
440 | scale = SQRT( 1.0_wp / PRODUCT( shape( d(1:ndim) ) ) ) |
---|
441 | DO i = 1, ntotal |
---|
442 | array(i) = CMPLX( REAL( array(i) ) * scale, AIMAG( array(i) ) * scale, KIND = wp ) |
---|
443 | END DO |
---|
444 | |
---|
445 | DO i = 1, ndim |
---|
446 | CALL fftradix( array, ntotal, shape( d(i) ), PRODUCT( shape( 1:d(i) ) ), inverse, stat ) |
---|
447 | IF ( PRESENT( stat ) ) THEN |
---|
448 | IF ( stat /= 0 ) RETURN |
---|
449 | END IF |
---|
450 | END DO |
---|
451 | |
---|
452 | END SUBROUTINE fftn |
---|
453 | |
---|
454 | |
---|
455 | !--------------------------------------------------------------------------------------------------! |
---|
456 | ! Description: |
---|
457 | ! ------------ |
---|
458 | !> @todo Missing subroutine description. |
---|
459 | !--------------------------------------------------------------------------------------------------! |
---|
460 | SUBROUTINE fftradix( array, ntotal, npass, nspan, inv, stat ) |
---|
461 | ! |
---|
462 | !-- Formal parameters |
---|
463 | COMPLEX(wp), DIMENSION(*), INTENT(INOUT) :: array !< |
---|
464 | INTEGER(iwp), INTENT(IN) :: ntotal, npass, nspan !< |
---|
465 | INTEGER(iwp), INTENT(OUT), OPTIONAL :: stat !< |
---|
466 | LOGICAL, INTENT(IN) :: inv !< |
---|
467 | ! |
---|
468 | !-- Local arrays |
---|
469 | COMPLEX(wp), DIMENSION(:), ALLOCATABLE :: ctmp !< |
---|
470 | INTEGER(iwp), DIMENSION(BIT_SIZE(0)) :: factor !< |
---|
471 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: perm !< |
---|
472 | REAL(wp), DIMENSION(:), ALLOCATABLE :: sine, cosine !< |
---|
473 | ! |
---|
474 | !-- Local scalars |
---|
475 | INTEGER(iwp) :: maxfactor, nfactor, nsquare, nperm !< |
---|
476 | ! |
---|
477 | !-- Intrinsics used |
---|
478 | INTRINSIC MAXVAL, MOD, PRESENT, ISHFT, BIT_SIZE, SIN, COS, CMPLX, REAL, AIMAG |
---|
479 | |
---|
480 | IF ( npass <= 1 ) RETURN |
---|
481 | |
---|
482 | CALL factorize( npass, factor, nfactor, nsquare ) |
---|
483 | |
---|
484 | maxfactor = MAXVAL( factor(:nfactor) ) |
---|
485 | IF ( nfactor - ISHFT( nsquare, 1 ) > 0 ) THEN |
---|
486 | nperm = MAX( nfactor + 1, PRODUCT( factor(nsquare+1: nfactor-nsquare) ) - 1 ) |
---|
487 | ELSE |
---|
488 | nperm = nfactor + 1 |
---|
489 | END IF |
---|
490 | |
---|
491 | IF ( PRESENT( stat ) ) THEN |
---|
492 | ALLOCATE( ctmp(maxfactor), sine(maxfactor), cosine(maxfactor), STAT = stat ) |
---|
493 | IF ( stat /= 0 ) RETURN |
---|
494 | CALL transform( array, ntotal, npass, nspan, factor, nfactor, ctmp, sine, cosine, inv ) |
---|
495 | DEALLOCATE( sine, cosine, STAT = stat ) |
---|
496 | IF ( stat /= 0 ) RETURN |
---|
497 | ALLOCATE( perm(nperm), STAT = stat ) |
---|
498 | IF ( stat /= 0 ) RETURN |
---|
499 | CALL permute( array, ntotal, npass, nspan, factor, nfactor, nsquare, maxfactor, ctmp, perm ) |
---|
500 | DEALLOCATE( perm, ctmp, STAT = stat ) |
---|
501 | IF ( stat /= 0 ) RETURN |
---|
502 | ELSE |
---|
503 | ALLOCATE( ctmp(maxfactor), sine(maxfactor), cosine(maxfactor) ) |
---|
504 | CALL transform( array, ntotal, npass, nspan, factor, nfactor, ctmp, sine, cosine, inv ) |
---|
505 | DEALLOCATE( sine, cosine ) |
---|
506 | ALLOCATE( perm(nperm) ) |
---|
507 | CALL permute( array, ntotal, npass, nspan, factor, nfactor, nsquare, maxfactor, ctmp, perm ) |
---|
508 | DEALLOCATE( perm, ctmp ) |
---|
509 | END IF |
---|
510 | |
---|
511 | |
---|
512 | CONTAINS |
---|
513 | |
---|
514 | |
---|
515 | !--------------------------------------------------------------------------------------------------! |
---|
516 | ! Description: |
---|
517 | ! ------------ |
---|
518 | !> @todo Missing subroutine description. |
---|
519 | !--------------------------------------------------------------------------------------------------! |
---|
520 | SUBROUTINE factorize( npass, factor, nfactor, nsquare ) |
---|
521 | ! |
---|
522 | !-- Formal parameters |
---|
523 | INTEGER(iwp), INTENT(IN) :: npass !< |
---|
524 | INTEGER(iwp), INTENT(OUT) :: nfactor, nsquare !< |
---|
525 | INTEGER(iwp), DIMENSION(*), INTENT(OUT) :: factor !< |
---|
526 | ! |
---|
527 | !-- Local scalars |
---|
528 | INTEGER(iwp) :: j, jj, k !< |
---|
529 | |
---|
530 | nfactor = 0 |
---|
531 | k = npass |
---|
532 | DO WHILE ( MOD( k, 16 ) == 0 ) |
---|
533 | nfactor = nfactor + 1 |
---|
534 | factor(nfactor) = 4 |
---|
535 | k = k / 16 |
---|
536 | END DO |
---|
537 | j = 3 |
---|
538 | jj = 9 |
---|
539 | DO |
---|
540 | DO WHILE ( MOD( k, jj ) == 0 ) |
---|
541 | nfactor = nfactor + 1 |
---|
542 | factor(nfactor) = j |
---|
543 | k = k / jj |
---|
544 | END DO |
---|
545 | j = j + 2 |
---|
546 | jj = j * j |
---|
547 | IF ( jj > k ) EXIT |
---|
548 | END DO |
---|
549 | IF ( k <= 4 ) THEN |
---|
550 | nsquare = nfactor |
---|
551 | factor(nfactor + 1) = k |
---|
552 | IF ( k /= 1 ) nfactor = nfactor + 1 |
---|
553 | ELSE |
---|
554 | IF ( k - ISHFT( k / 4, 2 ) == 0 ) THEN |
---|
555 | nfactor = nfactor + 1 |
---|
556 | factor(nfactor) = 2 |
---|
557 | k = k / 4 |
---|
558 | END IF |
---|
559 | nsquare = nfactor |
---|
560 | j = 2 |
---|
561 | DO |
---|
562 | IF ( MOD(k, j) == 0 ) THEN |
---|
563 | nfactor = nfactor + 1 |
---|
564 | factor(nfactor) = j |
---|
565 | k = k / j |
---|
566 | END IF |
---|
567 | j = ISHFT( (j + 1) / 2, 1 ) + 1 |
---|
568 | IF ( j > k ) EXIT |
---|
569 | END DO |
---|
570 | END IF |
---|
571 | IF ( nsquare > 0 ) THEN |
---|
572 | j = nsquare |
---|
573 | DO |
---|
574 | nfactor = nfactor + 1 |
---|
575 | factor(nfactor) = factor(j) |
---|
576 | j = j - 1 |
---|
577 | IF ( j == 0 ) EXIT |
---|
578 | END DO |
---|
579 | END IF |
---|
580 | |
---|
581 | END SUBROUTINE factorize |
---|
582 | |
---|
583 | |
---|
584 | !--------------------------------------------------------------------------------------------------! |
---|
585 | ! Description: |
---|
586 | ! ------------ |
---|
587 | !> @todo Missing subroutine description. |
---|
588 | !--------------------------------------------------------------------------------------------------! |
---|
589 | SUBROUTINE transform( array, ntotal, npass, nspan, factor, nfactor, ctmp, sine, cosine, inv ) |
---|
590 | !-- Compute fourier transform |
---|
591 | |
---|
592 | ! |
---|
593 | !-- Formal parameters |
---|
594 | COMPLEX(wp), DIMENSION(*), INTENT(IN OUT) :: array !< |
---|
595 | COMPLEX(wp), DIMENSION(*), INTENT(OUT) :: ctmp !< |
---|
596 | INTEGER(iwp), INTENT(IN) :: ntotal, npass, nspan !< |
---|
597 | INTEGER(iwp), DIMENSION(*), INTENT(IN) :: factor !< |
---|
598 | INTEGER(iwp), INTENT(IN) :: nfactor !< |
---|
599 | LOGICAL, INTENT(IN) :: inv !< |
---|
600 | REAL(wp), DIMENSION(*), INTENT(OUT) :: sine, cosine !< |
---|
601 | ! |
---|
602 | !-- Local scalars |
---|
603 | COMPLEX(wp) :: cc, cj, ck, cjp, cjm, ckp, ckm !< |
---|
604 | INTEGER(iwp) :: ii, ispan !< |
---|
605 | INTEGER(iwp) :: j, jc, jf, jj !< |
---|
606 | INTEGER(iwp) :: k, kk, kspan, k1, k2, k3, k4 !< |
---|
607 | INTEGER(iwp) :: nn, nt !< |
---|
608 | REAL(wp) :: s60, c72, s72, pi2, radf !< |
---|
609 | REAL(wp) :: c1, s1, c2, s2, c3, s3, cd, sd, ak !< |
---|
610 | |
---|
611 | c72 = cos72 |
---|
612 | IF ( inv ) THEN |
---|
613 | s72 = sin72 |
---|
614 | s60 = sin60 |
---|
615 | pi2 = pi |
---|
616 | ELSE |
---|
617 | s72 = - sin72 |
---|
618 | s60 = - sin60 |
---|
619 | pi2 = - pi |
---|
620 | END IF |
---|
621 | |
---|
622 | nt = ntotal |
---|
623 | nn = nt - 1 |
---|
624 | kspan = nspan |
---|
625 | jc = nspan / npass |
---|
626 | radf = pi2 * jc |
---|
627 | pi2 = pi2 * 2.0_wp !-- Use 2 PI from here on |
---|
628 | |
---|
629 | ii = 0 |
---|
630 | jf = 0 |
---|
631 | DO |
---|
632 | sd = radf / kspan |
---|
633 | cd = SIN( sd ) |
---|
634 | cd = 2.0_wp * cd * cd |
---|
635 | sd = SIN( sd + sd ) |
---|
636 | kk = 1 |
---|
637 | ii = ii + 1 |
---|
638 | |
---|
639 | SELECT CASE ( factor(ii) ) |
---|
640 | CASE ( 2 ) |
---|
641 | ! |
---|
642 | !-- Transform for factor of 2 (including rotation factor) |
---|
643 | kspan = kspan / 2 |
---|
644 | k1 = kspan + 2 |
---|
645 | DO |
---|
646 | DO |
---|
647 | k2 = kk + kspan |
---|
648 | ck = array(k2) |
---|
649 | array(k2) = array(kk) - ck |
---|
650 | array(kk) = array(kk) + ck |
---|
651 | kk = k2 + kspan |
---|
652 | IF ( kk > nn ) EXIT |
---|
653 | END DO |
---|
654 | kk = kk - nn |
---|
655 | IF ( kk > jc ) EXIT |
---|
656 | END DO |
---|
657 | IF ( kk > kspan ) RETURN |
---|
658 | DO |
---|
659 | c1 = 1.0_wp - cd |
---|
660 | s1 = sd |
---|
661 | DO |
---|
662 | DO |
---|
663 | DO |
---|
664 | k2 = kk + kspan |
---|
665 | ck = array(kk) - array(k2) |
---|
666 | array(kk) = array(kk) + array(k2) |
---|
667 | array(k2) = ck * CMPLX( c1, s1, KIND = wp ) |
---|
668 | kk = k2 + kspan |
---|
669 | IF ( kk >= nt ) EXIT |
---|
670 | END DO |
---|
671 | k2 = kk - nt |
---|
672 | c1 = - c1 |
---|
673 | kk = k1 - k2 |
---|
674 | IF ( kk <= k2 ) EXIT |
---|
675 | END DO |
---|
676 | ak = c1 - (cd * c1 + sd * s1) |
---|
677 | s1 = sd * c1 - cd * s1 + s1 |
---|
678 | c1 = 2.0_wp - ( ak * ak + s1 * s1 ) |
---|
679 | s1 = s1 * c1 |
---|
680 | c1 = c1 * ak |
---|
681 | kk = kk + jc |
---|
682 | IF ( kk >= k2 ) EXIT |
---|
683 | END DO |
---|
684 | k1 = k1 + 1 + 1 |
---|
685 | kk = ( k1 - kspan ) / 2 + jc |
---|
686 | IF ( kk > jc + jc ) EXIT |
---|
687 | END DO |
---|
688 | ! |
---|
689 | !-- Transform for factor of 4 |
---|
690 | CASE ( 4 ) |
---|
691 | ispan = kspan |
---|
692 | kspan = kspan / 4 |
---|
693 | |
---|
694 | DO |
---|
695 | c1 = 1.0_wp |
---|
696 | s1 = 0.0_wp |
---|
697 | DO |
---|
698 | DO |
---|
699 | k1 = kk + kspan |
---|
700 | k2 = k1 + kspan |
---|
701 | k3 = k2 + kspan |
---|
702 | ckp = array(kk) + array(k2) |
---|
703 | ckm = array(kk) - array(k2) |
---|
704 | cjp = array(k1) + array(k3) |
---|
705 | cjm = array(k1) - array(k3) |
---|
706 | array(kk) = ckp + cjp |
---|
707 | cjp = ckp - cjp |
---|
708 | IF ( inv ) THEN |
---|
709 | ckp = ckm + CMPLX( - AIMAG( cjm ), REAL( cjm ), KIND = wp ) |
---|
710 | ckm = ckm + CMPLX( AIMAG( cjm ), - REAL( cjm ), KIND = wp ) |
---|
711 | ELSE |
---|
712 | ckp = ckm + CMPLX( AIMAG( cjm ), - REAL( cjm ), KIND = wp ) |
---|
713 | ckm = ckm + CMPLX( - AIMAG( cjm ), REAL( cjm ), KIND = wp ) |
---|
714 | END IF |
---|
715 | ! |
---|
716 | !-- Avoid useless multiplies |
---|
717 | IF ( s1 == 0.0_wp ) THEN |
---|
718 | array(k1) = ckp |
---|
719 | array(k2) = cjp |
---|
720 | array(k3) = ckm |
---|
721 | ELSE |
---|
722 | array(k1) = ckp * CMPLX( c1, s1, KIND = wp ) |
---|
723 | array(k2) = cjp * CMPLX( c2, s2, KIND = wp ) |
---|
724 | array(k3) = ckm * CMPLX( c3, s3, KIND = wp ) |
---|
725 | END IF |
---|
726 | kk = k3 + kspan |
---|
727 | IF ( kk > nt ) EXIT |
---|
728 | END DO |
---|
729 | |
---|
730 | c2 = c1 - ( cd * c1 + sd * s1 ) |
---|
731 | s1 = sd * c1 - cd * s1 + s1 |
---|
732 | c1 = 2.0_wp - ( c2 * c2 + s1 * s1 ) |
---|
733 | s1 = s1 * c1 |
---|
734 | c1 = c1 * c2 |
---|
735 | ! |
---|
736 | !-- Values of c2, c3, s2, s3 that will get used next time |
---|
737 | c2 = c1 * c1 - s1 * s1 |
---|
738 | s2 = 2.0_wp * c1 * s1 |
---|
739 | c3 = c2 * c1 - s2 * s1 |
---|
740 | s3 = c2 * s1 + s2 * c1 |
---|
741 | kk = kk - nt + jc |
---|
742 | IF ( kk > kspan ) EXIT |
---|
743 | END DO |
---|
744 | kk = kk - kspan + 1 |
---|
745 | IF ( kk > jc ) EXIT |
---|
746 | END DO |
---|
747 | IF ( kspan == jc ) RETURN |
---|
748 | |
---|
749 | CASE default |
---|
750 | ! |
---|
751 | !-- Transform for odd factors |
---|
752 | k = factor(ii) |
---|
753 | ispan = kspan |
---|
754 | kspan = kspan / k |
---|
755 | |
---|
756 | SELECT CASE ( k ) |
---|
757 | ! |
---|
758 | !-- Transform for factor of 3 (optional code) |
---|
759 | CASE ( 3 ) |
---|
760 | DO |
---|
761 | DO |
---|
762 | k1 = kk + kspan |
---|
763 | k2 = k1 + kspan |
---|
764 | ck = array(kk) |
---|
765 | cj = array(k1) + array(k2) |
---|
766 | array(kk) = ck + cj |
---|
767 | ck = ck - CMPLX( 0.5_wp * REAL( cj ), 0.5_wp * AIMAG( cj ), KIND = wp ) |
---|
768 | cj = CMPLX( ( REAL( array(k1) ) - REAL( array(k2) ) ) * s60, & |
---|
769 | ( AIMAG( array(k1) ) - AIMAG( array(k2) ) ) * s60, KIND = wp ) |
---|
770 | array(k1) = ck + CMPLX( - AIMAG( cj ), REAL( cj ), KIND = wp ) |
---|
771 | array(k2) = ck + CMPLX( AIMAG( cj ), - REAL( cj ), KIND = wp ) |
---|
772 | kk = k2 + kspan |
---|
773 | IF ( kk >= nn ) EXIT |
---|
774 | END DO |
---|
775 | kk = kk - nn |
---|
776 | IF ( kk > kspan ) EXIT |
---|
777 | END DO |
---|
778 | ! |
---|
779 | !-- Transform for factor of 5 (optional code) |
---|
780 | CASE ( 5 ) |
---|
781 | c2 = c72 * c72 - s72 * s72 |
---|
782 | s2 = 2.0_wp * c72 * s72 |
---|
783 | DO |
---|
784 | DO |
---|
785 | k1 = kk + kspan |
---|
786 | k2 = k1 + kspan |
---|
787 | k3 = k2 + kspan |
---|
788 | k4 = k3 + kspan |
---|
789 | ckp = array(k1) + array(k4) |
---|
790 | ckm = array(k1) - array(k4) |
---|
791 | cjp = array(k2) + array(k3) |
---|
792 | cjm = array(k2) - array(k3) |
---|
793 | cc = array(kk) |
---|
794 | array(kk) = cc + ckp + cjp |
---|
795 | ck = CMPLX( REAL( ckp ) * c72, AIMAG( ckp ) * c72, KIND = wp ) + & |
---|
796 | CMPLX( REAL( cjp ) * c2, AIMAG( cjp ) * c2, KIND = wp ) + cc |
---|
797 | cj = CMPLX( REAL( ckm ) * s72, AIMAG( ckm ) * s72, KIND = wp) + & |
---|
798 | CMPLX( REAL( cjm ) * s2, AIMAG( cjm ) * s2, KIND = wp ) |
---|
799 | array(k1) = ck + CMPLX( - AIMAG( cj ), REAL( cj ), KIND = wp ) |
---|
800 | array(k4) = ck + CMPLX( AIMAG( cj ), - REAL( cj ), KIND = wp ) |
---|
801 | ck = CMPLX( REAL( ckp ) * c2, AIMAG( ckp ) * c2, KIND = wp ) + & |
---|
802 | CMPLX( REAL( cjp ) * c72, AIMAG( cjp ) * c72, KIND = wp ) + cc |
---|
803 | cj = CMPLX( REAL( ckm ) * s2, AIMAG( ckm ) * s2, KIND = wp ) - & |
---|
804 | CMPLX( REAL( cjm ) * s72, AIMAG( cjm ) * s72, KIND = wp ) |
---|
805 | array(k2) = ck + CMPLX( -AIMAG( cj ), REAL( cj ), KIND = wp ) |
---|
806 | array(k3) = ck + CMPLX( AIMAG( cj ), - REAL( cj ), KIND = wp ) |
---|
807 | kk = k4 + kspan |
---|
808 | IF ( kk >= nn ) EXIT |
---|
809 | END DO |
---|
810 | kk = kk - nn |
---|
811 | IF ( kk > kspan ) EXIT |
---|
812 | END DO |
---|
813 | |
---|
814 | CASE default |
---|
815 | IF ( k /= jf ) THEN |
---|
816 | jf = k |
---|
817 | s1 = pi2 / k |
---|
818 | c1 = COS( s1 ) |
---|
819 | s1 = SIN( s1 ) |
---|
820 | cosine(jf) = 1.0_wp |
---|
821 | sine(jf) = 0.0_wp |
---|
822 | j = 1 |
---|
823 | DO |
---|
824 | cosine(j) = cosine(k) * c1 + sine(k) * s1 |
---|
825 | sine(j) = cosine(k) * s1 - sine(k) * c1 |
---|
826 | k = k - 1 |
---|
827 | cosine(k) = cosine(j) |
---|
828 | sine(k) = - sine(j) |
---|
829 | j = j + 1 |
---|
830 | IF ( j >= k ) EXIT |
---|
831 | END DO |
---|
832 | END IF |
---|
833 | DO |
---|
834 | DO |
---|
835 | k1 = kk |
---|
836 | k2 = kk + ispan |
---|
837 | cc = array(kk) |
---|
838 | ck = cc |
---|
839 | j = 1 |
---|
840 | k1 = k1 + kspan |
---|
841 | DO |
---|
842 | k2 = k2 - kspan |
---|
843 | j = j + 1 |
---|
844 | ctmp(j) = array(k1) + array(k2) |
---|
845 | ck = ck + ctmp(j) |
---|
846 | j = j + 1 |
---|
847 | ctmp(j) = array(k1) - array(k2) |
---|
848 | k1 = k1 + kspan |
---|
849 | IF ( k1 >= k2 ) EXIT |
---|
850 | END DO |
---|
851 | array(kk) = ck |
---|
852 | k1 = kk |
---|
853 | k2 = kk + ispan |
---|
854 | j = 1 |
---|
855 | DO |
---|
856 | k1 = k1 + kspan |
---|
857 | k2 = k2 - kspan |
---|
858 | jj = j |
---|
859 | ck = cc |
---|
860 | cj = ( 0.0_wp, 0.0_wp ) |
---|
861 | k = 1 |
---|
862 | DO |
---|
863 | k = k + 1 |
---|
864 | ck = ck + CMPLX( REAL( ctmp(k) ) * cosine(jj), AIMAG( ctmp(k) ) * & |
---|
865 | cosine(jj), KIND = wp ) |
---|
866 | k = k + 1 |
---|
867 | cj = cj + CMPLX( REAL( ctmp(k) ) * sine(jj), AIMAG( ctmp(k) ) * sine(jj), & |
---|
868 | KIND = wp ) |
---|
869 | jj = jj + j |
---|
870 | IF ( jj > jf ) jj = jj - jf |
---|
871 | IF ( k >= jf ) EXIT |
---|
872 | END DO |
---|
873 | k = jf - j |
---|
874 | array(k1) = ck + CMPLX( - AIMAG( cj ), REAL( cj ), KIND = wp ) |
---|
875 | array(k2) = ck + CMPLX( AIMAG( cj ), -REAL( cj ), KIND = wp ) |
---|
876 | j = j + 1 |
---|
877 | IF ( j >= k ) EXIT |
---|
878 | END DO |
---|
879 | kk = kk + ispan |
---|
880 | IF ( kk > nn ) EXIT |
---|
881 | END DO |
---|
882 | kk = kk - nn |
---|
883 | IF ( kk > kspan ) EXIT |
---|
884 | END DO |
---|
885 | |
---|
886 | END SELECT |
---|
887 | ! |
---|
888 | !-- Multiply by rotation factor (except for factors of 2 and 4) |
---|
889 | IF ( ii == nfactor ) RETURN |
---|
890 | kk = jc + 1 |
---|
891 | DO |
---|
892 | c2 = 1.0_wp - cd |
---|
893 | s1 = sd |
---|
894 | DO |
---|
895 | c1 = c2 |
---|
896 | s2 = s1 |
---|
897 | kk = kk + kspan |
---|
898 | DO |
---|
899 | DO |
---|
900 | array(kk) = CMPLX( c2, s2, KIND = wp ) * array(kk) |
---|
901 | kk = kk + ispan |
---|
902 | IF ( kk > nt ) EXIT |
---|
903 | END DO |
---|
904 | ak = s1 * s2 |
---|
905 | s2 = s1 * c2 + c1 * s2 |
---|
906 | c2 = c1 * c2 - ak |
---|
907 | kk = kk - nt + kspan |
---|
908 | IF ( kk > ispan ) EXIT |
---|
909 | END DO |
---|
910 | c2 = c1 - ( cd * c1 + sd * s1 ) |
---|
911 | s1 = s1 + sd * c1 - cd * s1 |
---|
912 | c1 = 2.0_wp - ( c2 * c2 + s1 * s1 ) |
---|
913 | s1 = s1 * c1 |
---|
914 | c2 = c2 * c1 |
---|
915 | kk = kk - ispan + jc |
---|
916 | IF ( kk > kspan ) EXIT |
---|
917 | END DO |
---|
918 | kk = kk - kspan + jc + 1 |
---|
919 | IF ( kk > jc + jc ) EXIT |
---|
920 | END DO |
---|
921 | |
---|
922 | END SELECT |
---|
923 | END DO |
---|
924 | END SUBROUTINE transform |
---|
925 | |
---|
926 | |
---|
927 | !--------------------------------------------------------------------------------------------------! |
---|
928 | ! Description: |
---|
929 | ! ------------ |
---|
930 | !> @todo Missing subroutine description. |
---|
931 | !--------------------------------------------------------------------------------------------------! |
---|
932 | SUBROUTINE permute( array, ntotal, npass, nspan, factor, nfactor, nsquare, maxfactor, ctmp, perm ) |
---|
933 | ! |
---|
934 | !-- Formal parameters |
---|
935 | COMPLEX(wp), DIMENSION(*), INTENT(IN OUT) :: array !< |
---|
936 | COMPLEX(wp), DIMENSION(*), INTENT(OUT) :: ctmp !< |
---|
937 | INTEGER(iwp), INTENT(IN) :: ntotal, npass, nspan !< |
---|
938 | INTEGER(iwp), INTENT(IN) :: nfactor, nsquare !< |
---|
939 | INTEGER(iwp), INTENT(IN) :: maxfactor !< |
---|
940 | INTEGER(iwp), DIMENSION(*), INTENT(IN OUT) :: factor !< |
---|
941 | INTEGER(iwp), DIMENSION(*), INTENT(OUT) :: perm !< |
---|
942 | ! |
---|
943 | !-- Local scalars |
---|
944 | COMPLEX(wp) :: ck !< |
---|
945 | INTEGER(iwp) :: ii, ispan !< |
---|
946 | INTEGER(iwp) :: j, jc, jj !< |
---|
947 | INTEGER(iwp) :: k, kk, kspan, kt, k1, k2, k3 !< |
---|
948 | INTEGER(iwp) :: nn, nt !< |
---|
949 | ! |
---|
950 | !-- Permute the results to normal order---done in two stages |
---|
951 | !-- Permutation for square factors of n |
---|
952 | |
---|
953 | nt = ntotal |
---|
954 | nn = nt - 1 |
---|
955 | kt = nsquare |
---|
956 | kspan = nspan |
---|
957 | jc = nspan / npass |
---|
958 | |
---|
959 | perm (1) = nspan |
---|
960 | IF ( kt > 0 ) THEN |
---|
961 | k = kt + kt + 1 |
---|
962 | IF ( nfactor < k ) k = k - 1 |
---|
963 | j = 1 |
---|
964 | perm(k + 1) = jc |
---|
965 | DO |
---|
966 | perm(j + 1) = perm(j) / factor(j) |
---|
967 | perm(k) = perm(k + 1) * factor(j) |
---|
968 | j = j + 1 |
---|
969 | k = k - 1 |
---|
970 | IF ( j >= k ) EXIT |
---|
971 | END DO |
---|
972 | k3 = perm(k + 1) |
---|
973 | kspan = perm(2) |
---|
974 | kk = jc + 1 |
---|
975 | k2 = kspan + 1 |
---|
976 | j = 1 |
---|
977 | |
---|
978 | IF ( npass /= ntotal ) THEN |
---|
979 | permute_multi: DO |
---|
980 | DO |
---|
981 | DO |
---|
982 | k = kk + jc |
---|
983 | DO |
---|
984 | ! |
---|
985 | !-- Swap array(kk) <> array(k2) |
---|
986 | ck = array(kk) |
---|
987 | array(kk) = array(k2) |
---|
988 | array(k2) = ck |
---|
989 | kk = kk + 1 |
---|
990 | k2 = k2 + 1 |
---|
991 | IF ( kk >= k ) EXIT |
---|
992 | END DO |
---|
993 | kk = kk + nspan - jc |
---|
994 | k2 = k2 + nspan - jc |
---|
995 | IF ( kk >= nt ) EXIT |
---|
996 | END DO |
---|
997 | kk = kk - nt + jc |
---|
998 | k2 = k2 - nt + kspan |
---|
999 | IF ( k2 >= nspan ) EXIT |
---|
1000 | END DO |
---|
1001 | DO |
---|
1002 | DO |
---|
1003 | k2 = k2 - perm(j) |
---|
1004 | j = j + 1 |
---|
1005 | k2 = perm(j + 1) + k2 |
---|
1006 | IF ( k2 <= perm(j) ) EXIT |
---|
1007 | END DO |
---|
1008 | j = 1 |
---|
1009 | DO |
---|
1010 | IF ( kk < k2 ) CYCLE permute_multi |
---|
1011 | kk = kk + jc |
---|
1012 | k2 = k2 + kspan |
---|
1013 | IF ( k2 >= nspan ) EXIT |
---|
1014 | END DO |
---|
1015 | IF ( kk >= nspan ) EXIT |
---|
1016 | END DO |
---|
1017 | EXIT |
---|
1018 | END DO permute_multi |
---|
1019 | ELSE |
---|
1020 | permute_single: DO |
---|
1021 | DO |
---|
1022 | ! |
---|
1023 | !-- Swap array(kk) <> array(k2) |
---|
1024 | ck = array(kk) |
---|
1025 | array(kk) = array(k2) |
---|
1026 | array(k2) = ck |
---|
1027 | kk = kk + 1 |
---|
1028 | k2 = k2 + kspan |
---|
1029 | IF ( k2 >= nspan ) EXIT |
---|
1030 | END DO |
---|
1031 | DO |
---|
1032 | DO |
---|
1033 | k2 = k2 - perm(j) |
---|
1034 | j = j + 1 |
---|
1035 | k2 = perm(j + 1) + k2 |
---|
1036 | IF ( k2 <= perm(j) ) EXIT |
---|
1037 | END DO |
---|
1038 | j = 1 |
---|
1039 | DO |
---|
1040 | IF ( kk < k2 ) CYCLE permute_single |
---|
1041 | kk = kk + 1 |
---|
1042 | k2 = k2 + kspan |
---|
1043 | IF ( k2 >= nspan ) EXIT |
---|
1044 | END DO |
---|
1045 | IF ( kk >= nspan ) EXIT |
---|
1046 | END DO |
---|
1047 | EXIT |
---|
1048 | END DO permute_single |
---|
1049 | END IF |
---|
1050 | jc = k3 |
---|
1051 | END IF |
---|
1052 | |
---|
1053 | IF ( ISHFT( kt, 1 ) + 1 >= nfactor ) RETURN |
---|
1054 | |
---|
1055 | ispan = perm(kt + 1) |
---|
1056 | ! |
---|
1057 | !-- Permutation for square-free factors of n |
---|
1058 | j = nfactor - kt |
---|
1059 | factor( j + 1 ) = 1 |
---|
1060 | DO |
---|
1061 | factor(j) = factor(j) * factor(j+1) |
---|
1062 | j = j - 1 |
---|
1063 | IF ( j == kt ) EXIT |
---|
1064 | END DO |
---|
1065 | kt = kt + 1 |
---|
1066 | nn = factor( kt ) - 1 |
---|
1067 | j = 0 |
---|
1068 | jj = 0 |
---|
1069 | DO |
---|
1070 | k = kt + 1 |
---|
1071 | k2 = factor(kt) |
---|
1072 | kk = factor(k) |
---|
1073 | j = j + 1 |
---|
1074 | IF ( j > nn ) EXIT !-- Exit infinite loop |
---|
1075 | jj = jj + kk |
---|
1076 | DO WHILE ( jj >= k2 ) |
---|
1077 | jj = jj - k2 |
---|
1078 | k2 = kk |
---|
1079 | k = k + 1 |
---|
1080 | kk = factor(k) |
---|
1081 | jj = jj + kk |
---|
1082 | END DO |
---|
1083 | perm(j) = jj |
---|
1084 | END DO |
---|
1085 | ! |
---|
1086 | !-- Determine the permutation cycles of length greater than 1 |
---|
1087 | j = 0 |
---|
1088 | DO |
---|
1089 | DO |
---|
1090 | j = j + 1 |
---|
1091 | kk = perm(j) |
---|
1092 | IF ( kk >= 0 ) EXIT |
---|
1093 | END DO |
---|
1094 | IF ( kk /= j ) THEN |
---|
1095 | DO |
---|
1096 | k = kk |
---|
1097 | kk = perm(k) |
---|
1098 | perm(k) = - kk |
---|
1099 | IF ( kk == j ) EXIT |
---|
1100 | END DO |
---|
1101 | k3 = kk |
---|
1102 | ELSE |
---|
1103 | perm(j) = - j |
---|
1104 | IF ( j == nn ) EXIT !-- Exit infinite loop |
---|
1105 | END IF |
---|
1106 | END DO |
---|
1107 | ! |
---|
1108 | !-- Reorder a and b, following the permutation cycles |
---|
1109 | DO |
---|
1110 | j = k3 + 1 |
---|
1111 | nt = nt - ispan |
---|
1112 | ii = nt - 1 + 1 |
---|
1113 | IF ( nt < 0 ) EXIT !-- Exit infinite loop |
---|
1114 | DO |
---|
1115 | DO |
---|
1116 | j = j - 1 |
---|
1117 | IF ( perm(j) >= 0 ) EXIT |
---|
1118 | END DO |
---|
1119 | jj = jc |
---|
1120 | DO |
---|
1121 | kspan = jj |
---|
1122 | IF ( jj > maxfactor ) kspan = maxfactor |
---|
1123 | jj = jj - kspan |
---|
1124 | k = perm(j) |
---|
1125 | kk = jc * k + ii + jj |
---|
1126 | k1 = kk + kspan |
---|
1127 | k2 = 0 |
---|
1128 | DO |
---|
1129 | k2 = k2 + 1 |
---|
1130 | ctmp(k2) = array(k1) |
---|
1131 | k1 = k1 - 1 |
---|
1132 | IF ( k1 == kk ) EXIT |
---|
1133 | END DO |
---|
1134 | DO |
---|
1135 | k1 = kk + kspan |
---|
1136 | k2 = k1 - jc * ( k + perm(k) ) |
---|
1137 | k = - perm(k) |
---|
1138 | DO |
---|
1139 | array(k1) = array(k2) |
---|
1140 | k1 = k1 - 1 |
---|
1141 | k2 = k2 - 1 |
---|
1142 | IF ( k1 == kk ) EXIT |
---|
1143 | END DO |
---|
1144 | kk = k2 |
---|
1145 | IF ( k == j ) EXIT |
---|
1146 | END DO |
---|
1147 | k1 = kk + kspan |
---|
1148 | k2 = 0 |
---|
1149 | DO |
---|
1150 | k2 = k2 + 1 |
---|
1151 | array(k1) = ctmp(k2) |
---|
1152 | k1 = k1 - 1 |
---|
1153 | IF ( k1 == kk ) EXIT |
---|
1154 | END DO |
---|
1155 | IF ( jj == 0 ) EXIT |
---|
1156 | END DO |
---|
1157 | IF ( j == 1 ) EXIT |
---|
1158 | END DO |
---|
1159 | END DO |
---|
1160 | |
---|
1161 | END SUBROUTINE permute |
---|
1162 | |
---|
1163 | END SUBROUTINE fftradix |
---|
1164 | |
---|
1165 | END MODULE singleton |
---|