[2338] | 1 | !> @file model_1d_mod.f90 |
---|
[4677] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4677] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4677] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4677] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4677] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1036] | 18 | ! |
---|
[254] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[4586] | 21 | ! |
---|
| 22 | ! |
---|
[1961] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: model_1d_mod.f90 4677 2020-09-14 07:55:28Z schwenkel $ |
---|
[4677] | 26 | ! file re-formatted to follow the PALM coding standard |
---|
| 27 | ! |
---|
| 28 | ! 4586 2020-07-01 16:16:43Z gronemeier |
---|
[4586] | 29 | ! renamed Richardson flux number into gradient Richardson number |
---|
| 30 | ! |
---|
| 31 | ! 4449 2020-03-09 14:43:16Z suehring |
---|
[4449] | 32 | ! Set intermediate_timestep_count back to zero after 1D-model integration. |
---|
| 33 | ! This is required e.g. for initial calls of calc_mean_profile. |
---|
| 34 | ! |
---|
| 35 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 36 | ! Corrected "Former revisions" section |
---|
[4449] | 37 | ! |
---|
[4182] | 38 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3274] | 39 | ! Modularization of all bulk cloud physics code components |
---|
[1961] | 40 | ! |
---|
[4182] | 41 | ! Revision 1.1 1998/03/09 16:22:10 raasch |
---|
| 42 | ! Initial revision |
---|
| 43 | ! |
---|
| 44 | ! |
---|
[1] | 45 | ! Description: |
---|
| 46 | ! ------------ |
---|
[1682] | 47 | !> 1D-model to initialize the 3D-arrays. |
---|
[4449] | 48 | !> The temperature profile is set as steady and a corresponding steady solution |
---|
[1682] | 49 | !> of the wind profile is being computed. |
---|
| 50 | !> All subroutines required can be found within this file. |
---|
[1691] | 51 | !> |
---|
| 52 | !> @todo harmonize code with new surface_layer_fluxes module |
---|
[1709] | 53 | !> @bug 1D model crashes when using small grid spacings in the order of 1 m |
---|
[2965] | 54 | !> @fixme option "as_in_3d_model" seems to be an inappropriate option because |
---|
[2918] | 55 | !> the 1D model uses different turbulence closure approaches at least if |
---|
| 56 | !> the 3D model is set to LES-mode. |
---|
[4677] | 57 | !--------------------------------------------------------------------------------------------------! |
---|
[2338] | 58 | MODULE model_1d_mod |
---|
[1] | 59 | |
---|
[4677] | 60 | USE arrays_3d, & |
---|
| 61 | ONLY: dd2zu, ddzu, ddzw, dzu, dzw, pt_init, q_init, ug, u_init, vg, v_init, zu |
---|
[3274] | 62 | |
---|
[4677] | 63 | USE basic_constants_and_equations_mod, & |
---|
[3274] | 64 | ONLY: g, kappa, pi |
---|
[4449] | 65 | |
---|
[4677] | 66 | USE control_parameters, & |
---|
| 67 | ONLY: constant_diffusion, constant_flux_layer, dissipation_1d, f, humidity, ibc_e_b, & |
---|
| 68 | intermediate_timestep_count, intermediate_timestep_count_max, km_constant, & |
---|
| 69 | message_string, mixing_length_1d, prandtl_number, roughness_length, & |
---|
| 70 | run_description_header, simulated_time_chr, timestep_scheme, tsc, z0h_factor |
---|
[2338] | 71 | |
---|
[4677] | 72 | USE indices, & |
---|
[2338] | 73 | ONLY: nzb, nzb_diff, nzt |
---|
[4449] | 74 | |
---|
[1320] | 75 | USE kinds |
---|
[1] | 76 | |
---|
[4677] | 77 | USE pegrid, & |
---|
[3083] | 78 | ONLY: myid |
---|
[2338] | 79 | |
---|
[4449] | 80 | |
---|
[1] | 81 | IMPLICIT NONE |
---|
| 82 | |
---|
[2338] | 83 | INTEGER(iwp) :: current_timestep_number_1d = 0 !< current timestep number (1d-model) |
---|
[2696] | 84 | INTEGER(iwp) :: damp_level_ind_1d !< lower grid index of damping layer (1d-model) |
---|
[2338] | 85 | |
---|
| 86 | LOGICAL :: run_control_header_1d = .FALSE. !< flag for output of run control header (1d-model) |
---|
| 87 | LOGICAL :: stop_dt_1d = .FALSE. !< termination flag, used in case of too small timestep (1d-model) |
---|
| 88 | |
---|
[3083] | 89 | REAL(wp) :: alpha_buoyancy !< model constant according to Koblitz (2013) |
---|
[3126] | 90 | REAL(wp) :: c_0 = 0.416179145_wp !< = 0.03^0.25; model constant according to Koblitz (2013) |
---|
[3083] | 91 | REAL(wp) :: c_1 = 1.52_wp !< model constant according to Koblitz (2013) |
---|
| 92 | REAL(wp) :: c_2 = 1.83_wp !< model constant according to Koblitz (2013) |
---|
| 93 | REAL(wp) :: c_3 !< model constant |
---|
| 94 | REAL(wp) :: c_mu !< model constant |
---|
[2696] | 95 | REAL(wp) :: damp_level_1d = -1.0_wp !< namelist parameter |
---|
[2338] | 96 | REAL(wp) :: dt_1d = 60.0_wp !< dynamic timestep (1d-model) |
---|
| 97 | REAL(wp) :: dt_max_1d = 300.0_wp !< timestep limit (1d-model) |
---|
[2696] | 98 | REAL(wp) :: dt_pr_1d = 9999999.9_wp !< namelist parameter |
---|
| 99 | REAL(wp) :: dt_run_control_1d = 60.0_wp !< namelist parameter |
---|
| 100 | REAL(wp) :: end_time_1d = 864000.0_wp !< namelist parameter |
---|
[3083] | 101 | REAL(wp) :: lambda !< maximum mixing length |
---|
[2338] | 102 | REAL(wp) :: qs1d !< characteristic humidity scale (1d-model) |
---|
| 103 | REAL(wp) :: simulated_time_1d = 0.0_wp !< updated simulated time (1d-model) |
---|
[3083] | 104 | REAL(wp) :: sig_diss = 2.95_wp !< model constant according to Koblitz (2013) |
---|
| 105 | REAL(wp) :: sig_e = 2.95_wp !< model constant according to Koblitz (2013) |
---|
[2338] | 106 | REAL(wp) :: time_pr_1d = 0.0_wp !< updated simulated time for profile output (1d-model) |
---|
| 107 | REAL(wp) :: time_run_control_1d = 0.0_wp !< updated simulated time for run-control output (1d-model) |
---|
| 108 | REAL(wp) :: ts1d !< characteristic temperature scale (1d-model) |
---|
[2696] | 109 | REAL(wp) :: us1d !< friction velocity (1d-model) |
---|
| 110 | REAL(wp) :: usws1d !< u-component of the momentum flux (1d-model) |
---|
| 111 | REAL(wp) :: vsws1d !< v-component of the momentum flux (1d-model) |
---|
[2338] | 112 | REAL(wp) :: z01d !< roughness length for momentum (1d-model) |
---|
| 113 | REAL(wp) :: z0h1d !< roughness length for scalars (1d-model) |
---|
| 114 | |
---|
[2696] | 115 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d !< tke dissipation rate (1d-model) |
---|
| 116 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diss1d_p !< prognostic value of tke dissipation rate (1d-model) |
---|
| 117 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d !< tke (1d-model) |
---|
[2338] | 118 | REAL(wp), DIMENSION(:), ALLOCATABLE :: e1d_p !< prognostic value of tke (1d-model) |
---|
[2696] | 119 | REAL(wp), DIMENSION(:), ALLOCATABLE :: kh1d !< turbulent diffusion coefficient for heat (1d-model) |
---|
| 120 | REAL(wp), DIMENSION(:), ALLOCATABLE :: km1d !< turbulent diffusion coefficient for momentum (1d-model) |
---|
| 121 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d !< mixing length for turbulent diffusion coefficients (1d-model) |
---|
[2918] | 122 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_init !< initial mixing length (1d-model) |
---|
[2338] | 123 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l1d_diss !< mixing length for dissipation (1d-model) |
---|
[4586] | 124 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ri1d !< gradient Richardson number (1d-model) |
---|
[2696] | 125 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_diss !< tendency of diss (1d-model) |
---|
| 126 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_dissm !< weighted tendency of diss for previous sub-timestep (1d-model) |
---|
[2338] | 127 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_e !< tendency of e (1d-model) |
---|
| 128 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_em !< weighted tendency of e for previous sub-timestep (1d-model) |
---|
| 129 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_u !< tendency of u (1d-model) |
---|
| 130 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_um !< weighted tendency of u for previous sub-timestep (1d-model) |
---|
| 131 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_v !< tendency of v (1d-model) |
---|
| 132 | REAL(wp), DIMENSION(:), ALLOCATABLE :: te_vm !< weighted tendency of v for previous sub-timestep (1d-model) |
---|
[2696] | 133 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d !< u-velocity component (1d-model) |
---|
[2338] | 134 | REAL(wp), DIMENSION(:), ALLOCATABLE :: u1d_p !< prognostic value of u-velocity component (1d-model) |
---|
[2696] | 135 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d !< v-velocity component (1d-model) |
---|
[2338] | 136 | REAL(wp), DIMENSION(:), ALLOCATABLE :: v1d_p !< prognostic value of v-velocity component (1d-model) |
---|
| 137 | |
---|
| 138 | ! |
---|
| 139 | !-- Initialize 1D model |
---|
| 140 | INTERFACE init_1d_model |
---|
| 141 | MODULE PROCEDURE init_1d_model |
---|
| 142 | END INTERFACE init_1d_model |
---|
| 143 | |
---|
| 144 | ! |
---|
| 145 | !-- Print profiles |
---|
| 146 | INTERFACE print_1d_model |
---|
| 147 | MODULE PROCEDURE print_1d_model |
---|
| 148 | END INTERFACE print_1d_model |
---|
| 149 | |
---|
| 150 | ! |
---|
| 151 | !-- Print run control information |
---|
| 152 | INTERFACE run_control_1d |
---|
| 153 | MODULE PROCEDURE run_control_1d |
---|
| 154 | END INTERFACE run_control_1d |
---|
| 155 | |
---|
| 156 | ! |
---|
| 157 | !-- Main procedure |
---|
| 158 | INTERFACE time_integration_1d |
---|
| 159 | MODULE PROCEDURE time_integration_1d |
---|
| 160 | END INTERFACE time_integration_1d |
---|
| 161 | |
---|
| 162 | ! |
---|
| 163 | !-- Calculate time step |
---|
| 164 | INTERFACE timestep_1d |
---|
| 165 | MODULE PROCEDURE timestep_1d |
---|
| 166 | END INTERFACE timestep_1d |
---|
| 167 | |
---|
| 168 | SAVE |
---|
| 169 | |
---|
| 170 | PRIVATE |
---|
| 171 | ! |
---|
| 172 | !-- Public interfaces |
---|
| 173 | PUBLIC init_1d_model |
---|
| 174 | |
---|
| 175 | ! |
---|
| 176 | !-- Public variables |
---|
[4677] | 177 | PUBLIC damp_level_1d, damp_level_ind_1d, diss1d, dt_pr_1d, dt_run_control_1d, e1d, & |
---|
| 178 | end_time_1d, kh1d, km1d, l1d, ri1d, u1d, us1d, usws1d, v1d, vsws1d |
---|
[2338] | 179 | |
---|
| 180 | |
---|
| 181 | CONTAINS |
---|
| 182 | |
---|
| 183 | SUBROUTINE init_1d_model |
---|
[4449] | 184 | |
---|
[4677] | 185 | USE grid_variables, & |
---|
[2918] | 186 | ONLY: dx, dy |
---|
| 187 | |
---|
[2338] | 188 | IMPLICIT NONE |
---|
| 189 | |
---|
[2696] | 190 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
| 191 | |
---|
| 192 | INTEGER(iwp) :: k !< loop index |
---|
[1] | 193 | |
---|
| 194 | ! |
---|
| 195 | !-- Allocate required 1D-arrays |
---|
[4677] | 196 | ALLOCATE( diss1d(nzb:nzt+1), diss1d_p(nzb:nzt+1), & |
---|
| 197 | e1d(nzb:nzt+1), e1d_p(nzb:nzt+1), kh1d(nzb:nzt+1), & |
---|
| 198 | km1d(nzb:nzt+1), l1d(nzb:nzt+1), l1d_init(nzb:nzt+1), & |
---|
| 199 | l1d_diss(nzb:nzt+1), ri1d(nzb:nzt+1), te_diss(nzb:nzt+1), & |
---|
| 200 | te_dissm(nzb:nzt+1), te_e(nzb:nzt+1), & |
---|
| 201 | te_em(nzb:nzt+1), te_u(nzb:nzt+1), te_um(nzb:nzt+1), & |
---|
| 202 | te_v(nzb:nzt+1), te_vm(nzb:nzt+1), u1d(nzb:nzt+1), & |
---|
[2338] | 203 | u1d_p(nzb:nzt+1), v1d(nzb:nzt+1), v1d_p(nzb:nzt+1) ) |
---|
[1] | 204 | |
---|
| 205 | ! |
---|
| 206 | !-- Initialize arrays |
---|
| 207 | IF ( constant_diffusion ) THEN |
---|
[1001] | 208 | km1d = km_constant |
---|
| 209 | kh1d = km_constant / prandtl_number |
---|
[1] | 210 | ELSE |
---|
[2696] | 211 | diss1d = 0.0_wp; diss1d_p = 0.0_wp |
---|
[1353] | 212 | e1d = 0.0_wp; e1d_p = 0.0_wp |
---|
| 213 | kh1d = 0.0_wp; km1d = 0.0_wp |
---|
[4586] | 214 | ri1d = 0.0_wp |
---|
[1] | 215 | ! |
---|
| 216 | !-- Compute the mixing length |
---|
[2918] | 217 | l1d_init(nzb) = 0.0_wp |
---|
[1] | 218 | |
---|
| 219 | IF ( TRIM( mixing_length_1d ) == 'blackadar' ) THEN |
---|
| 220 | ! |
---|
| 221 | !-- Blackadar mixing length |
---|
[1353] | 222 | IF ( f /= 0.0_wp ) THEN |
---|
[4677] | 223 | lambda = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / ABS( f ) + 1E-10_wp |
---|
[1] | 224 | ELSE |
---|
[1353] | 225 | lambda = 30.0_wp |
---|
[1] | 226 | ENDIF |
---|
| 227 | |
---|
| 228 | DO k = nzb+1, nzt+1 |
---|
[2918] | 229 | l1d_init(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / lambda ) |
---|
[1] | 230 | ENDDO |
---|
| 231 | |
---|
| 232 | ELSEIF ( TRIM( mixing_length_1d ) == 'as_in_3d_model' ) THEN |
---|
| 233 | ! |
---|
[2918] | 234 | !-- Use the same mixing length as in 3D model (LES-mode) |
---|
[3083] | 235 | !> @todo rename (delete?) this option |
---|
| 236 | !> As the mixing length is different between RANS and LES mode, it |
---|
| 237 | !> must be distinguished here between these modes. For RANS mode, |
---|
| 238 | !> the mixing length is calculated accoding to Blackadar, which is |
---|
| 239 | !> the other option at this point. |
---|
| 240 | !> Maybe delete this option entirely (not appropriate in LES case) |
---|
| 241 | !> 2018-03-20, gronemeier |
---|
[2918] | 242 | DO k = nzb+1, nzt |
---|
| 243 | l1d_init(k) = ( dx * dy * dzw(k) )**0.33333333333333_wp |
---|
| 244 | ENDDO |
---|
| 245 | l1d_init(nzt+1) = l1d_init(nzt) |
---|
[1] | 246 | |
---|
| 247 | ENDIF |
---|
| 248 | ENDIF |
---|
[2918] | 249 | l1d = l1d_init |
---|
| 250 | l1d_diss = l1d_init |
---|
[2337] | 251 | u1d = u_init |
---|
| 252 | u1d_p = u_init |
---|
| 253 | v1d = v_init |
---|
| 254 | v1d_p = v_init |
---|
[1] | 255 | |
---|
| 256 | ! |
---|
[4677] | 257 | !-- Set initial horizontal velocities at the lowest grid levels to a very small value in order to |
---|
| 258 | !-- avoid too small time steps caused by the diffusion limit in the initial phase of a run (at k=1, |
---|
| 259 | !-- dz/2 occurs in the limiting formula!) |
---|
[1353] | 260 | u1d(0:1) = 0.1_wp |
---|
| 261 | u1d_p(0:1) = 0.1_wp |
---|
| 262 | v1d(0:1) = 0.1_wp |
---|
| 263 | v1d_p(0:1) = 0.1_wp |
---|
[1] | 264 | |
---|
| 265 | ! |
---|
| 266 | !-- For u*, theta* and the momentum fluxes plausible values are set |
---|
[1691] | 267 | IF ( constant_flux_layer ) THEN |
---|
[1353] | 268 | us1d = 0.1_wp ! without initial friction the flow would not change |
---|
[1] | 269 | ELSE |
---|
[3083] | 270 | diss1d(nzb+1) = 0.001_wp |
---|
[1353] | 271 | e1d(nzb+1) = 1.0_wp |
---|
| 272 | km1d(nzb+1) = 1.0_wp |
---|
| 273 | us1d = 0.0_wp |
---|
[1] | 274 | ENDIF |
---|
[1353] | 275 | ts1d = 0.0_wp |
---|
| 276 | usws1d = 0.0_wp |
---|
| 277 | vsws1d = 0.0_wp |
---|
[996] | 278 | z01d = roughness_length |
---|
[4449] | 279 | z0h1d = z0h_factor * z01d |
---|
[1960] | 280 | IF ( humidity ) qs1d = 0.0_wp |
---|
[1] | 281 | |
---|
| 282 | ! |
---|
[3083] | 283 | !-- Tendencies must be preset in order to avoid runtime errors |
---|
| 284 | te_diss = 0.0_wp |
---|
[2696] | 285 | te_dissm = 0.0_wp |
---|
[3083] | 286 | te_e = 0.0_wp |
---|
[1353] | 287 | te_em = 0.0_wp |
---|
| 288 | te_um = 0.0_wp |
---|
| 289 | te_vm = 0.0_wp |
---|
[46] | 290 | |
---|
| 291 | ! |
---|
[2338] | 292 | !-- Set model constant |
---|
[3083] | 293 | IF ( dissipation_1d == 'as_in_3d_model' ) c_0 = 0.1_wp |
---|
| 294 | c_mu = c_0**4 |
---|
[2338] | 295 | |
---|
| 296 | ! |
---|
[1] | 297 | !-- Set start time in hh:mm:ss - format |
---|
| 298 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 299 | |
---|
| 300 | ! |
---|
[2337] | 301 | !-- Integrate the 1D-model equations using the Runge-Kutta scheme |
---|
[1] | 302 | CALL time_integration_1d |
---|
| 303 | |
---|
| 304 | |
---|
| 305 | END SUBROUTINE init_1d_model |
---|
| 306 | |
---|
| 307 | |
---|
| 308 | |
---|
[4677] | 309 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 310 | ! Description: |
---|
| 311 | ! ------------ |
---|
[2338] | 312 | !> Runge-Kutta time differencing scheme for the 1D-model. |
---|
[4677] | 313 | !--------------------------------------------------------------------------------------------------! |
---|
[4449] | 314 | |
---|
[1682] | 315 | SUBROUTINE time_integration_1d |
---|
[1] | 316 | |
---|
| 317 | IMPLICIT NONE |
---|
| 318 | |
---|
[2696] | 319 | CHARACTER (LEN=9) :: time_to_string !< function to transform time from real to character string |
---|
| 320 | |
---|
[2338] | 321 | INTEGER(iwp) :: k !< loop index |
---|
[2696] | 322 | |
---|
[2338] | 323 | REAL(wp) :: a !< auxiliary variable |
---|
| 324 | REAL(wp) :: b !< auxiliary variable |
---|
| 325 | REAL(wp) :: dpt_dz !< vertical temperature gradient |
---|
| 326 | REAL(wp) :: flux !< vertical temperature gradient |
---|
| 327 | REAL(wp) :: kmzm !< Km(z-dz/2) |
---|
| 328 | REAL(wp) :: kmzp !< Km(z+dz/2) |
---|
| 329 | REAL(wp) :: l_stable !< mixing length for stable case |
---|
| 330 | REAL(wp) :: pt_0 !< reference temperature |
---|
| 331 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
[1] | 332 | |
---|
| 333 | ! |
---|
[4677] | 334 | !-- Determine the time step at the start of a 1D-simulation and determine and printout quantities |
---|
| 335 | !-- used for run control |
---|
[3083] | 336 | dt_1d = 0.01_wp |
---|
[1] | 337 | CALL run_control_1d |
---|
| 338 | |
---|
| 339 | ! |
---|
| 340 | !-- Start of time loop |
---|
| 341 | DO WHILE ( simulated_time_1d < end_time_1d .AND. .NOT. stop_dt_1d ) |
---|
| 342 | |
---|
| 343 | ! |
---|
[4677] | 344 | !-- Depending on the timestep scheme, carry out one or more intermediate timesteps |
---|
[1] | 345 | |
---|
| 346 | intermediate_timestep_count = 0 |
---|
[4677] | 347 | DO WHILE ( intermediate_timestep_count < intermediate_timestep_count_max ) |
---|
[1] | 348 | |
---|
| 349 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 350 | |
---|
| 351 | CALL timestep_scheme_steering |
---|
| 352 | |
---|
| 353 | ! |
---|
[4677] | 354 | !-- Compute all tendency terms. If a constant-flux layer is simulated, k starts at nzb+2. |
---|
[1] | 355 | DO k = nzb_diff, nzt |
---|
| 356 | |
---|
[1353] | 357 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 358 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[1] | 359 | ! |
---|
| 360 | !-- u-component |
---|
[4677] | 361 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 362 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) & |
---|
| 363 | - kmzm * ( u1d(k) - u1d(k-1) ) * ddzu(k) & |
---|
[1001] | 364 | ) * ddzw(k) |
---|
[1] | 365 | ! |
---|
| 366 | !-- v-component |
---|
[4677] | 367 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 368 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) & |
---|
| 369 | - kmzm * ( v1d(k) - v1d(k-1) ) * ddzu(k) & |
---|
[1001] | 370 | ) * ddzw(k) |
---|
[1] | 371 | ENDDO |
---|
| 372 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 373 | DO k = nzb_diff, nzt |
---|
| 374 | ! |
---|
[2696] | 375 | !-- TKE and dissipation rate |
---|
[1353] | 376 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 377 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 378 | IF ( .NOT. humidity ) THEN |
---|
[1] | 379 | pt_0 = pt_init(k) |
---|
| 380 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 381 | ELSE |
---|
[1353] | 382 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
[4677] | 383 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
| 384 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
| 385 | pt_init(k-1) * q_init(k-1) ) & |
---|
[2337] | 386 | ) * dd2zu(k) |
---|
[1] | 387 | ENDIF |
---|
| 388 | |
---|
[2696] | 389 | ! |
---|
[4677] | 390 | !-- Calculate dissipation rate if no prognostic equation is used for dissipation rate. |
---|
[1] | 391 | IF ( dissipation_1d == 'detering' ) THEN |
---|
[3083] | 392 | diss1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 393 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[4677] | 394 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l1d_init(k) ) & |
---|
| 395 | * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 396 | ENDIF |
---|
[2696] | 397 | ! |
---|
| 398 | !-- TKE |
---|
[4677] | 399 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 400 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 401 | ) & |
---|
| 402 | - g / pt_0 * kh1d(k) * flux & |
---|
| 403 | + ( & |
---|
| 404 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 405 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
| 406 | ) * ddzw(k) / sig_e & |
---|
[2696] | 407 | - diss1d(k) |
---|
| 408 | |
---|
| 409 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 410 | ! |
---|
| 411 | !-- dissipation rate |
---|
[4586] | 412 | IF ( ri1d(k) >= 0.0_wp ) THEN |
---|
[3083] | 413 | alpha_buoyancy = 1.0_wp - l1d(k) / lambda |
---|
| 414 | ELSE |
---|
[4677] | 415 | alpha_buoyancy = 1.0_wp - ( 1.0_wp + ( c_2 - 1.0_wp ) & |
---|
| 416 | / ( c_2 - c_1 ) ) & |
---|
[3083] | 417 | * l1d(k) / lambda |
---|
| 418 | ENDIF |
---|
[3135] | 419 | c_3 = ( c_1 - c_2 ) * alpha_buoyancy + 1.0_wp |
---|
[4677] | 420 | te_diss(k) = ( km1d(k) * & |
---|
| 421 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 422 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 423 | ) * ( c_1 + (c_2 - c_1) * l1d(k) / lambda ) & |
---|
| 424 | - g / pt_0 * kh1d(k) * flux * c_3 & |
---|
| 425 | - c_2 * diss1d(k) & |
---|
| 426 | ) * diss1d(k) / ( e1d(k) + 1.0E-20_wp ) & |
---|
| 427 | + ( kmzp * ( diss1d(k+1) - diss1d(k) ) & |
---|
| 428 | * ddzu(k+1) & |
---|
| 429 | - kmzm * ( diss1d(k) - diss1d(k-1) ) & |
---|
| 430 | * ddzu(k) & |
---|
[3083] | 431 | ) * ddzw(k) / sig_diss |
---|
[2696] | 432 | |
---|
| 433 | ENDIF |
---|
| 434 | |
---|
[1] | 435 | ENDDO |
---|
| 436 | ENDIF |
---|
| 437 | |
---|
| 438 | ! |
---|
[2696] | 439 | !-- Tendency terms at the top of the constant-flux layer. |
---|
[4677] | 440 | !-- Finite differences of the momentum fluxes are computed using half the normal grid length |
---|
| 441 | !-- (2.0*ddzw(k)) for the sake of enhanced accuracy |
---|
[1691] | 442 | IF ( constant_flux_layer ) THEN |
---|
[1] | 443 | |
---|
| 444 | k = nzb+1 |
---|
[1353] | 445 | kmzm = 0.5_wp * ( km1d(k-1) + km1d(k) ) |
---|
| 446 | kmzp = 0.5_wp * ( km1d(k) + km1d(k+1) ) |
---|
[75] | 447 | IF ( .NOT. humidity ) THEN |
---|
[1] | 448 | pt_0 = pt_init(k) |
---|
| 449 | flux = ( pt_init(k+1)-pt_init(k-1) ) * dd2zu(k) |
---|
| 450 | ELSE |
---|
[1353] | 451 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
[4677] | 452 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) + & |
---|
| 453 | 0.61_wp * ( pt_init(k+1) * q_init(k+1) - & |
---|
| 454 | pt_init(k-1) * q_init(k-1) ) & |
---|
[1] | 455 | ) * dd2zu(k) |
---|
| 456 | ENDIF |
---|
| 457 | |
---|
[2696] | 458 | ! |
---|
[4677] | 459 | !-- Calculate dissipation rate if no prognostic equation is used for dissipation rate. |
---|
[1] | 460 | IF ( dissipation_1d == 'detering' ) THEN |
---|
[3083] | 461 | diss1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 462 | ELSEIF ( dissipation_1d == 'as_in_3d_model' ) THEN |
---|
[4677] | 463 | diss1d(k) = ( 0.19_wp + 0.74_wp * l1d_diss(k) / l1d_init(k) ) & |
---|
[2696] | 464 | * e1d(k) * SQRT( e1d(k) ) / l1d_diss(k) |
---|
[1] | 465 | ENDIF |
---|
| 466 | |
---|
| 467 | ! |
---|
| 468 | !-- u-component |
---|
[4677] | 469 | te_u(k) = f * ( v1d(k) - vg(k) ) + ( & |
---|
| 470 | kmzp * ( u1d(k+1) - u1d(k) ) * ddzu(k+1) + usws1d & |
---|
[1353] | 471 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 472 | ! |
---|
| 473 | !-- v-component |
---|
[4677] | 474 | te_v(k) = -f * ( u1d(k) - ug(k) ) + ( & |
---|
| 475 | kmzp * ( v1d(k+1) - v1d(k) ) * ddzu(k+1) + vsws1d & |
---|
[1353] | 476 | ) * 2.0_wp * ddzw(k) |
---|
[1] | 477 | ! |
---|
| 478 | !-- TKE |
---|
[2696] | 479 | IF ( .NOT. dissipation_1d == 'prognostic' ) THEN |
---|
[3083] | 480 | !> @query why integrate over 2dz |
---|
| 481 | !> Why is it allowed to integrate over two delta-z for e |
---|
| 482 | !> while for u and v it is not? |
---|
| 483 | !> 2018-04-23, gronemeier |
---|
[4677] | 484 | te_e(k) = km1d(k) * ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 485 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 486 | ) & |
---|
| 487 | - g / pt_0 * kh1d(k) * flux & |
---|
| 488 | + ( & |
---|
| 489 | kmzp * ( e1d(k+1) - e1d(k) ) * ddzu(k+1) & |
---|
| 490 | - kmzm * ( e1d(k) - e1d(k-1) ) * ddzu(k) & |
---|
| 491 | ) * ddzw(k) / sig_e & |
---|
[2696] | 492 | - diss1d(k) |
---|
| 493 | ENDIF |
---|
| 494 | |
---|
[1] | 495 | ENDIF |
---|
| 496 | |
---|
| 497 | ! |
---|
| 498 | !-- Prognostic equations for all 1D variables |
---|
| 499 | DO k = nzb+1, nzt |
---|
| 500 | |
---|
[4677] | 501 | u1d_p(k) = u1d(k) + dt_1d * ( tsc(2) * te_u(k) + tsc(3) * te_um(k) ) |
---|
| 502 | v1d_p(k) = v1d(k) + dt_1d * ( tsc(2) * te_v(k) + tsc(3) * te_vm(k) ) |
---|
[1] | 503 | |
---|
| 504 | ENDDO |
---|
| 505 | IF ( .NOT. constant_diffusion ) THEN |
---|
[2696] | 506 | |
---|
[1] | 507 | DO k = nzb+1, nzt |
---|
[4677] | 508 | e1d_p(k) = e1d(k) + dt_1d * ( tsc(2) * te_e(k) + tsc(3) * te_em(k) ) |
---|
[2696] | 509 | ENDDO |
---|
[1] | 510 | |
---|
| 511 | ! |
---|
[4677] | 512 | !-- Eliminate negative TKE values, which can result from the integration due to numerical |
---|
| 513 | !-- inaccuracies. In such cases the TKE value is reduced to 10 percent of its old value. |
---|
[1353] | 514 | WHERE ( e1d_p < 0.0_wp ) e1d_p = 0.1_wp * e1d |
---|
[3083] | 515 | |
---|
| 516 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 517 | DO k = nzb+1, nzt |
---|
[4677] | 518 | diss1d_p(k) = diss1d(k) + dt_1d * ( tsc(2) * te_diss(k) + tsc(3) * te_dissm(k) ) |
---|
[3083] | 519 | ENDDO |
---|
| 520 | WHERE ( diss1d_p < 0.0_wp ) diss1d_p = 0.1_wp * diss1d |
---|
| 521 | ENDIF |
---|
[1] | 522 | ENDIF |
---|
| 523 | |
---|
| 524 | ! |
---|
| 525 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
| 526 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 527 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 528 | |
---|
| 529 | DO k = nzb+1, nzt |
---|
| 530 | te_um(k) = te_u(k) |
---|
| 531 | te_vm(k) = te_v(k) |
---|
| 532 | ENDDO |
---|
| 533 | |
---|
| 534 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 535 | DO k = nzb+1, nzt |
---|
| 536 | te_em(k) = te_e(k) |
---|
| 537 | ENDDO |
---|
[2696] | 538 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 539 | DO k = nzb+1, nzt |
---|
| 540 | te_dissm(k) = te_diss(k) |
---|
| 541 | ENDDO |
---|
| 542 | ENDIF |
---|
[1] | 543 | ENDIF |
---|
| 544 | |
---|
[4677] | 545 | ELSEIF ( intermediate_timestep_count < intermediate_timestep_count_max ) THEN |
---|
[1] | 546 | |
---|
| 547 | DO k = nzb+1, nzt |
---|
[1353] | 548 | te_um(k) = -9.5625_wp * te_u(k) + 5.3125_wp * te_um(k) |
---|
| 549 | te_vm(k) = -9.5625_wp * te_v(k) + 5.3125_wp * te_vm(k) |
---|
[1] | 550 | ENDDO |
---|
| 551 | |
---|
| 552 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 553 | DO k = nzb+1, nzt |
---|
[1353] | 554 | te_em(k) = -9.5625_wp * te_e(k) + 5.3125_wp * te_em(k) |
---|
[1] | 555 | ENDDO |
---|
[2696] | 556 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 557 | DO k = nzb+1, nzt |
---|
[4677] | 558 | te_dissm(k) = -9.5625_wp * te_diss(k) + 5.3125_wp * te_dissm(k) |
---|
[2696] | 559 | ENDDO |
---|
| 560 | ENDIF |
---|
[1] | 561 | ENDIF |
---|
| 562 | |
---|
| 563 | ENDIF |
---|
| 564 | ENDIF |
---|
| 565 | |
---|
| 566 | ! |
---|
| 567 | !-- Boundary conditions for the prognostic variables. |
---|
[4677] | 568 | !-- At the top boundary (nzt+1) u, v, e, and diss keep their initial values (ug(nzt+1), |
---|
| 569 | !-- vg(nzt+1), 0, 0). |
---|
| 570 | !-- At the bottom boundary, Dirichlet condition is used for u and v (0) and Neumann condition |
---|
| 571 | !-- for e and diss (e(nzb)=e(nzb+1)). |
---|
[1353] | 572 | u1d_p(nzb) = 0.0_wp |
---|
| 573 | v1d_p(nzb) = 0.0_wp |
---|
[667] | 574 | |
---|
[1] | 575 | ! |
---|
| 576 | !-- Swap the time levels in preparation for the next time step. |
---|
| 577 | u1d = u1d_p |
---|
| 578 | v1d = v1d_p |
---|
| 579 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 580 | e1d = e1d_p |
---|
[2696] | 581 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 582 | diss1d = diss1d_p |
---|
| 583 | ENDIF |
---|
[1] | 584 | ENDIF |
---|
| 585 | |
---|
| 586 | ! |
---|
| 587 | !-- Compute diffusion quantities |
---|
| 588 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 589 | |
---|
| 590 | ! |
---|
[2696] | 591 | !-- First compute the vertical fluxes in the constant-flux layer |
---|
[1691] | 592 | IF ( constant_flux_layer ) THEN |
---|
[1] | 593 | ! |
---|
[4586] | 594 | !-- Compute theta* using Ri numbers of the previous time step |
---|
| 595 | IF ( ri1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 596 | ! |
---|
| 597 | !-- Stable stratification |
---|
[4677] | 598 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 599 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * ri1d(nzb+1) * & |
---|
| 600 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
[1] | 601 | ) |
---|
| 602 | ELSE |
---|
| 603 | ! |
---|
| 604 | !-- Unstable stratification |
---|
[4586] | 605 | a = SQRT( 1.0_wp - 16.0_wp * ri1d(nzb+1) ) |
---|
[4677] | 606 | b = SQRT( 1.0_wp - 16.0_wp * ri1d(nzb+1) / zu(nzb+1) * z0h1d ) |
---|
[2337] | 607 | |
---|
[4677] | 608 | ts1d = kappa * ( pt_init(nzb+1) - pt_init(nzb) ) / & |
---|
| 609 | LOG( (a-1.0_wp) / (a+1.0_wp) * (b+1.0_wp) / (b-1.0_wp) ) |
---|
[1] | 610 | ENDIF |
---|
| 611 | |
---|
[1691] | 612 | ENDIF ! constant_flux_layer |
---|
[3083] | 613 | !> @todo combine if clauses |
---|
| 614 | !> The previous and following if clauses can be combined into a |
---|
| 615 | !> single clause |
---|
| 616 | !> 2018-04-23, gronemeier |
---|
[1] | 617 | ! |
---|
[4586] | 618 | !-- Compute the gradient Richardson numbers, |
---|
[4677] | 619 | !-- first at the top of the constant-flux layer using u* of the previous time step |
---|
| 620 | !-- (+1E-30, if u* = 0), then in the remaining area. |
---|
[4586] | 621 | !-- There, the Ri numbers of the previous time step are used. |
---|
[1] | 622 | |
---|
[1691] | 623 | IF ( constant_flux_layer ) THEN |
---|
[75] | 624 | IF ( .NOT. humidity ) THEN |
---|
[1] | 625 | pt_0 = pt_init(nzb+1) |
---|
| 626 | flux = ts1d |
---|
| 627 | ELSE |
---|
[1353] | 628 | pt_0 = pt_init(nzb+1) * ( 1.0_wp + 0.61_wp * q_init(nzb+1) ) |
---|
| 629 | flux = ts1d + 0.61_wp * pt_init(k) * qs1d |
---|
[1] | 630 | ENDIF |
---|
[4677] | 631 | ri1d(nzb+1) = zu(nzb+1) * kappa * g * flux / ( pt_0 * ( us1d**2 + 1E-30_wp ) ) |
---|
[1] | 632 | ENDIF |
---|
| 633 | |
---|
| 634 | DO k = nzb_diff, nzt |
---|
[75] | 635 | IF ( .NOT. humidity ) THEN |
---|
[1] | 636 | pt_0 = pt_init(k) |
---|
| 637 | flux = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 638 | ELSE |
---|
[1353] | 639 | pt_0 = pt_init(k) * ( 1.0_wp + 0.61_wp * q_init(k) ) |
---|
[4677] | 640 | flux = ( ( pt_init(k+1) - pt_init(k-1) ) & |
---|
| 641 | + 0.61_wp & |
---|
| 642 | * ( pt_init(k+1) * q_init(k+1) & |
---|
| 643 | - pt_init(k-1) * q_init(k-1) ) & |
---|
[1] | 644 | ) * dd2zu(k) |
---|
| 645 | ENDIF |
---|
[4586] | 646 | IF ( ri1d(k) >= 0.0_wp ) THEN |
---|
[4677] | 647 | ri1d(k) = g / pt_0 * flux / & |
---|
| 648 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 649 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 650 | + 1E-30_wp & |
---|
[1] | 651 | ) |
---|
| 652 | ELSE |
---|
[4677] | 653 | ri1d(k) = g / pt_0 * flux / & |
---|
| 654 | ( ( ( u1d(k+1) - u1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 655 | + ( ( v1d(k+1) - v1d(k-1) ) * dd2zu(k) )**2 & |
---|
| 656 | + 1E-30_wp & |
---|
[4586] | 657 | ) * ( 1.0_wp - 16.0_wp * ri1d(k) )**0.25_wp |
---|
[1] | 658 | ENDIF |
---|
| 659 | ENDDO |
---|
| 660 | ! |
---|
[4677] | 661 | !-- Richardson numbers must remain restricted to a realistic value range. It is exceeded |
---|
| 662 | !-- excessively for very small velocities (u,v --> 0). |
---|
[4586] | 663 | WHERE ( ri1d < -5.0_wp ) ri1d = -5.0_wp |
---|
| 664 | WHERE ( ri1d > 1.0_wp ) ri1d = 1.0_wp |
---|
[1] | 665 | |
---|
| 666 | ! |
---|
| 667 | !-- Compute u* from the absolute velocity value |
---|
[1691] | 668 | IF ( constant_flux_layer ) THEN |
---|
[1] | 669 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
| 670 | |
---|
[4586] | 671 | IF ( ri1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 672 | ! |
---|
| 673 | !-- Stable stratification |
---|
[4677] | 674 | us1d = kappa * uv_total / ( LOG( zu(nzb+1) / z01d ) & |
---|
| 675 | + 5.0_wp * ri1d(nzb+1) * ( zu(nzb+1) - z01d ) & |
---|
| 676 | / zu(nzb+1) & |
---|
[1] | 677 | ) |
---|
| 678 | ELSE |
---|
| 679 | ! |
---|
| 680 | !-- Unstable stratification |
---|
[4586] | 681 | a = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * ri1d(nzb+1) ) ) |
---|
[4677] | 682 | b = 1.0_wp / SQRT( SQRT( 1.0_wp - 16.0_wp * ri1d(nzb+1) / zu(nzb+1) * z01d ) ) |
---|
| 683 | us1d = kappa * uv_total / ( LOG( (1.0_wp+b) / (1.0_wp-b) * (1.0_wp-a) / & |
---|
| 684 | (1.0_wp+a) ) + & |
---|
| 685 | 2.0_wp * ( ATAN( b ) - ATAN( a ) ) & |
---|
[2337] | 686 | ) |
---|
[1] | 687 | ENDIF |
---|
| 688 | |
---|
| 689 | ! |
---|
| 690 | !-- Compute the momentum fluxes for the diffusion terms |
---|
| 691 | usws1d = - u1d(nzb+1) / uv_total * us1d**2 |
---|
| 692 | vsws1d = - v1d(nzb+1) / uv_total * us1d**2 |
---|
| 693 | |
---|
| 694 | ! |
---|
[4677] | 695 | !-- Boundary condition for the turbulent kinetic energy and dissipation rate at the top |
---|
| 696 | !-- of the constant-flux layer. |
---|
| 697 | !-- Additional Neumann condition de/dz = 0 at nzb is set to ensure compatibility with |
---|
| 698 | !-- the 3D model. |
---|
[1] | 699 | IF ( ibc_e_b == 2 ) THEN |
---|
[3083] | 700 | e1d(nzb+1) = ( us1d / c_0 )**2 |
---|
[1] | 701 | ENDIF |
---|
[2696] | 702 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
[3083] | 703 | e1d(nzb+1) = ( us1d / c_0 )**2 |
---|
[2696] | 704 | diss1d(nzb+1) = us1d**3 / ( kappa * zu(nzb+1) ) |
---|
| 705 | diss1d(nzb) = diss1d(nzb+1) |
---|
| 706 | ENDIF |
---|
[1] | 707 | e1d(nzb) = e1d(nzb+1) |
---|
| 708 | |
---|
[1960] | 709 | IF ( humidity ) THEN |
---|
[1] | 710 | ! |
---|
[4449] | 711 | !-- Compute q* |
---|
[4586] | 712 | IF ( ri1d(nzb+1) >= 0.0_wp ) THEN |
---|
[1] | 713 | ! |
---|
[1960] | 714 | !-- Stable stratification |
---|
[4677] | 715 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 716 | ( LOG( zu(nzb+1) / z0h1d ) + 5.0_wp * ri1d(nzb+1) * & |
---|
| 717 | ( zu(nzb+1) - z0h1d ) / zu(nzb+1) & |
---|
| 718 | ) |
---|
[1960] | 719 | ELSE |
---|
[1] | 720 | ! |
---|
[1960] | 721 | !-- Unstable stratification |
---|
[4586] | 722 | a = SQRT( 1.0_wp - 16.0_wp * ri1d(nzb+1) ) |
---|
[4677] | 723 | b = SQRT( 1.0_wp - 16.0_wp * ri1d(nzb+1) / zu(nzb+1) * z0h1d ) |
---|
| 724 | qs1d = kappa * ( q_init(nzb+1) - q_init(nzb) ) / & |
---|
| 725 | LOG( (a-1.0_wp) / (a+1.0_wp) * (b+1.0_wp) / (b-1.0_wp) ) |
---|
[2337] | 726 | ENDIF |
---|
[1] | 727 | ELSE |
---|
[1353] | 728 | qs1d = 0.0_wp |
---|
[2337] | 729 | ENDIF |
---|
[1] | 730 | |
---|
[1691] | 731 | ENDIF ! constant_flux_layer |
---|
[1] | 732 | |
---|
| 733 | ! |
---|
[4677] | 734 | !-- Compute the diabatic mixing length. The unstable stratification must not be considered |
---|
| 735 | !-- for l1d (km1d) as it is already considered in the dissipation of TKE via l1d_diss. |
---|
| 736 | !-- Otherwise, km1d would be too large. |
---|
[3083] | 737 | IF ( dissipation_1d /= 'prognostic' ) THEN |
---|
| 738 | IF ( mixing_length_1d == 'blackadar' ) THEN |
---|
| 739 | DO k = nzb+1, nzt |
---|
[4586] | 740 | IF ( ri1d(k) >= 0.0_wp ) THEN |
---|
| 741 | l1d(k) = l1d_init(k) / ( 1.0_wp + 5.0_wp * ri1d(k) ) |
---|
[3083] | 742 | l1d_diss(k) = l1d(k) |
---|
| 743 | ELSE |
---|
| 744 | l1d(k) = l1d_init(k) |
---|
[4677] | 745 | l1d_diss(k) = l1d_init(k) * SQRT( 1.0_wp - 16.0_wp * ri1d(k) ) |
---|
[3083] | 746 | ENDIF |
---|
| 747 | ENDDO |
---|
| 748 | ELSEIF ( mixing_length_1d == 'as_in_3d_model' ) THEN |
---|
| 749 | DO k = nzb+1, nzt |
---|
| 750 | dpt_dz = ( pt_init(k+1) - pt_init(k-1) ) * dd2zu(k) |
---|
| 751 | IF ( dpt_dz > 0.0_wp ) THEN |
---|
[4677] | 752 | l_stable = 0.76_wp * SQRT( e1d(k) ) & |
---|
| 753 | / SQRT( g / pt_init(k) * dpt_dz ) + 1E-5_wp |
---|
[3083] | 754 | ELSE |
---|
| 755 | l_stable = l1d_init(k) |
---|
| 756 | ENDIF |
---|
| 757 | l1d(k) = MIN( l1d_init(k), l_stable ) |
---|
[2337] | 758 | l1d_diss(k) = l1d(k) |
---|
[3083] | 759 | ENDDO |
---|
| 760 | ENDIF |
---|
| 761 | ELSE |
---|
[1] | 762 | DO k = nzb+1, nzt |
---|
[4677] | 763 | l1d(k) = c_0**3 * e1d(k) * SQRT( e1d(k) ) / ( diss1d(k) + 1.0E-30_wp ) |
---|
[1] | 764 | ENDDO |
---|
| 765 | ENDIF |
---|
| 766 | |
---|
| 767 | ! |
---|
[4677] | 768 | !-- Compute the diffusion coefficients for momentum via the corresponding Prandtl-layer |
---|
| 769 | !-- relationship and according to Prandtl-Kolmogorov, respectively |
---|
[1691] | 770 | IF ( constant_flux_layer ) THEN |
---|
[4586] | 771 | IF ( ri1d(nzb+1) >= 0.0_wp ) THEN |
---|
[4677] | 772 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) / & |
---|
[4586] | 773 | ( 1.0_wp + 5.0_wp * ri1d(nzb+1) ) |
---|
[1] | 774 | ELSE |
---|
[4677] | 775 | km1d(nzb+1) = us1d * kappa * zu(nzb+1) * & |
---|
[4586] | 776 | ( 1.0_wp - 16.0_wp * ri1d(nzb+1) )**0.25_wp |
---|
[1] | 777 | ENDIF |
---|
| 778 | ENDIF |
---|
[3083] | 779 | |
---|
[2696] | 780 | IF ( dissipation_1d == 'prognostic' ) THEN |
---|
| 781 | DO k = nzb_diff, nzt |
---|
| 782 | km1d(k) = c_mu * e1d(k)**2 / ( diss1d(k) + 1.0E-30_wp ) |
---|
| 783 | ENDDO |
---|
| 784 | ELSE |
---|
| 785 | DO k = nzb_diff, nzt |
---|
[3083] | 786 | km1d(k) = c_0 * SQRT( e1d(k) ) * l1d(k) |
---|
[2696] | 787 | ENDDO |
---|
| 788 | ENDIF |
---|
[1] | 789 | |
---|
| 790 | ! |
---|
| 791 | !-- Add damping layer |
---|
| 792 | DO k = damp_level_ind_1d+1, nzt+1 |
---|
[1353] | 793 | km1d(k) = 1.1_wp * km1d(k-1) |
---|
[1346] | 794 | km1d(k) = MIN( km1d(k), 10.0_wp ) |
---|
[1] | 795 | ENDDO |
---|
| 796 | |
---|
| 797 | ! |
---|
[4677] | 798 | !-- Compute the diffusion coefficient for heat via the relationship kh = phim / phih * km |
---|
[1] | 799 | DO k = nzb+1, nzt |
---|
[4586] | 800 | IF ( ri1d(k) >= 0.0_wp ) THEN |
---|
[1] | 801 | kh1d(k) = km1d(k) |
---|
| 802 | ELSE |
---|
[4586] | 803 | kh1d(k) = km1d(k) * ( 1.0_wp - 16.0_wp * ri1d(k) )**0.25_wp |
---|
[1] | 804 | ENDIF |
---|
| 805 | ENDDO |
---|
| 806 | |
---|
| 807 | ENDIF ! .NOT. constant_diffusion |
---|
| 808 | |
---|
| 809 | ENDDO ! intermediate step loop |
---|
| 810 | |
---|
| 811 | ! |
---|
| 812 | !-- Increment simulated time and output times |
---|
| 813 | current_timestep_number_1d = current_timestep_number_1d + 1 |
---|
| 814 | simulated_time_1d = simulated_time_1d + dt_1d |
---|
| 815 | simulated_time_chr = time_to_string( simulated_time_1d ) |
---|
| 816 | time_pr_1d = time_pr_1d + dt_1d |
---|
| 817 | time_run_control_1d = time_run_control_1d + dt_1d |
---|
| 818 | |
---|
| 819 | ! |
---|
| 820 | !-- Determine and print out quantities for run control |
---|
| 821 | IF ( time_run_control_1d >= dt_run_control_1d ) THEN |
---|
| 822 | CALL run_control_1d |
---|
| 823 | time_run_control_1d = time_run_control_1d - dt_run_control_1d |
---|
| 824 | ENDIF |
---|
| 825 | |
---|
| 826 | ! |
---|
| 827 | !-- Profile output on file |
---|
| 828 | IF ( time_pr_1d >= dt_pr_1d ) THEN |
---|
| 829 | CALL print_1d_model |
---|
| 830 | time_pr_1d = time_pr_1d - dt_pr_1d |
---|
| 831 | ENDIF |
---|
| 832 | |
---|
| 833 | ! |
---|
| 834 | !-- Determine size of next time step |
---|
| 835 | CALL timestep_1d |
---|
| 836 | |
---|
| 837 | ENDDO ! time loop |
---|
[4449] | 838 | ! |
---|
[4677] | 839 | !-- Set intermediate_timestep_count back to zero. This is required e.g. for initial calls of |
---|
| 840 | !-- calc_mean_profile. |
---|
[4449] | 841 | intermediate_timestep_count = 0 |
---|
[1] | 842 | |
---|
| 843 | END SUBROUTINE time_integration_1d |
---|
| 844 | |
---|
| 845 | |
---|
[4677] | 846 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 847 | ! Description: |
---|
| 848 | ! ------------ |
---|
[1682] | 849 | !> Compute and print out quantities for run control of the 1D model. |
---|
[4677] | 850 | !--------------------------------------------------------------------------------------------------! |
---|
[4449] | 851 | |
---|
[1682] | 852 | SUBROUTINE run_control_1d |
---|
[1] | 853 | |
---|
[1682] | 854 | |
---|
[1] | 855 | IMPLICIT NONE |
---|
| 856 | |
---|
[2338] | 857 | INTEGER(iwp) :: k !< loop index |
---|
[4449] | 858 | |
---|
[2338] | 859 | REAL(wp) :: alpha !< angle of wind vector at top of constant-flux layer |
---|
| 860 | REAL(wp) :: energy !< kinetic energy |
---|
| 861 | REAL(wp) :: umax !< maximum of u |
---|
| 862 | REAL(wp) :: uv_total !< horizontal wind speed |
---|
| 863 | REAL(wp) :: vmax !< maximum of v |
---|
[1] | 864 | |
---|
| 865 | ! |
---|
| 866 | !-- Output |
---|
| 867 | IF ( myid == 0 ) THEN |
---|
| 868 | ! |
---|
| 869 | !-- If necessary, write header |
---|
| 870 | IF ( .NOT. run_control_header_1d ) THEN |
---|
[184] | 871 | CALL check_open( 15 ) |
---|
[1] | 872 | WRITE ( 15, 100 ) |
---|
| 873 | run_control_header_1d = .TRUE. |
---|
| 874 | ENDIF |
---|
| 875 | |
---|
| 876 | ! |
---|
| 877 | !-- Compute control quantities |
---|
| 878 | !-- grid level nzp is excluded due to mirror boundary condition |
---|
[1353] | 879 | umax = 0.0_wp; vmax = 0.0_wp; energy = 0.0_wp |
---|
[1] | 880 | DO k = nzb+1, nzt+1 |
---|
| 881 | umax = MAX( ABS( umax ), ABS( u1d(k) ) ) |
---|
| 882 | vmax = MAX( ABS( vmax ), ABS( v1d(k) ) ) |
---|
[1353] | 883 | energy = energy + 0.5_wp * ( u1d(k)**2 + v1d(k)**2 ) |
---|
[1] | 884 | ENDDO |
---|
[1322] | 885 | energy = energy / REAL( nzt - nzb + 1, KIND=wp ) |
---|
[1] | 886 | |
---|
| 887 | uv_total = SQRT( u1d(nzb+1)**2 + v1d(nzb+1)**2 ) |
---|
[1691] | 888 | IF ( ABS( v1d(nzb+1) ) < 1.0E-5_wp ) THEN |
---|
[1346] | 889 | alpha = ACOS( SIGN( 1.0_wp , u1d(nzb+1) ) ) |
---|
[1] | 890 | ELSE |
---|
| 891 | alpha = ACOS( u1d(nzb+1) / uv_total ) |
---|
[1353] | 892 | IF ( v1d(nzb+1) <= 0.0_wp ) alpha = 2.0_wp * pi - alpha |
---|
[1] | 893 | ENDIF |
---|
[1353] | 894 | alpha = alpha / ( 2.0_wp * pi ) * 360.0_wp |
---|
[1] | 895 | |
---|
[4677] | 896 | WRITE ( 15, 101 ) current_timestep_number_1d, simulated_time_chr, dt_1d, umax, vmax, us1d, & |
---|
| 897 | alpha, energy |
---|
[1] | 898 | ! |
---|
| 899 | !-- Write buffer contents to disc immediately |
---|
[1808] | 900 | FLUSH( 15 ) |
---|
[1] | 901 | |
---|
| 902 | ENDIF |
---|
| 903 | |
---|
| 904 | ! |
---|
| 905 | !-- formats |
---|
[4677] | 906 | 100 FORMAT (///'1D run control output:'/ & |
---|
| 907 | '------------------------------'// & |
---|
| 908 | 'ITER. HH:MM:SS DT UMAX VMAX U* ALPHA ENERG.'/ & |
---|
| 909 | '-------------------------------------------------------------') |
---|
[2965] | 910 | 101 FORMAT (I7,1X,A9,1X,F6.2,2X,F6.2,1X,F6.2,1X,F6.3,2X,F5.1,2X,F7.2) |
---|
[1] | 911 | |
---|
| 912 | |
---|
| 913 | END SUBROUTINE run_control_1d |
---|
| 914 | |
---|
| 915 | |
---|
| 916 | |
---|
[4677] | 917 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 918 | ! Description: |
---|
| 919 | ! ------------ |
---|
[1682] | 920 | !> Compute the time step w.r.t. the diffusion criterion |
---|
[4677] | 921 | !--------------------------------------------------------------------------------------------------! |
---|
[4449] | 922 | |
---|
[1682] | 923 | SUBROUTINE timestep_1d |
---|
[1] | 924 | |
---|
| 925 | IMPLICIT NONE |
---|
| 926 | |
---|
[2338] | 927 | INTEGER(iwp) :: k !< loop index |
---|
[1] | 928 | |
---|
[2338] | 929 | REAL(wp) :: dt_diff !< time step accorind to diffusion criterion |
---|
[3083] | 930 | REAL(wp) :: dt_old !< previous time step |
---|
[2338] | 931 | REAL(wp) :: fac !< factor of criterion |
---|
| 932 | REAL(wp) :: value !< auxiliary variable |
---|
[1] | 933 | |
---|
| 934 | ! |
---|
[3083] | 935 | !-- Save previous time step |
---|
| 936 | dt_old = dt_1d |
---|
| 937 | |
---|
| 938 | ! |
---|
[4677] | 939 | !-- Compute the currently feasible time step according to the diffusion criterion. At nzb+1 the half |
---|
| 940 | !-- grid length is used. |
---|
[3083] | 941 | fac = 0.125 |
---|
[1] | 942 | dt_diff = dt_max_1d |
---|
| 943 | DO k = nzb+2, nzt |
---|
[1353] | 944 | value = fac * dzu(k) * dzu(k) / ( km1d(k) + 1E-20_wp ) |
---|
[1] | 945 | dt_diff = MIN( value, dt_diff ) |
---|
| 946 | ENDDO |
---|
[1353] | 947 | value = fac * zu(nzb+1) * zu(nzb+1) / ( km1d(nzb+1) + 1E-20_wp ) |
---|
[1] | 948 | dt_1d = MIN( value, dt_diff ) |
---|
| 949 | |
---|
| 950 | ! |
---|
[3083] | 951 | !-- Limit the new time step to a maximum of 10 times the previous time step |
---|
| 952 | dt_1d = MIN( dt_old * 10.0_wp, dt_1d ) |
---|
| 953 | |
---|
| 954 | ! |
---|
[1] | 955 | !-- Set flag when the time step becomes too small |
---|
[3083] | 956 | IF ( dt_1d < ( 1.0E-15_wp * dt_max_1d ) ) THEN |
---|
[1] | 957 | stop_dt_1d = .TRUE. |
---|
[254] | 958 | |
---|
[4677] | 959 | WRITE( message_string, * ) 'timestep has exceeded the lower limit&', 'dt_1d = ',dt_1d, & |
---|
| 960 | ' s simulation stopped!' |
---|
[254] | 961 | CALL message( 'timestep_1d', 'PA0192', 1, 2, 0, 6, 0 ) |
---|
[4449] | 962 | |
---|
[1] | 963 | ENDIF |
---|
| 964 | |
---|
| 965 | END SUBROUTINE timestep_1d |
---|
| 966 | |
---|
| 967 | |
---|
| 968 | |
---|
[4677] | 969 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 970 | ! Description: |
---|
| 971 | ! ------------ |
---|
[1682] | 972 | !> List output of profiles from the 1D-model |
---|
[4677] | 973 | !--------------------------------------------------------------------------------------------------! |
---|
[4449] | 974 | |
---|
[1682] | 975 | SUBROUTINE print_1d_model |
---|
[1] | 976 | |
---|
| 977 | IMPLICIT NONE |
---|
| 978 | |
---|
[2338] | 979 | INTEGER(iwp) :: k !< loop parameter |
---|
[1] | 980 | |
---|
[2338] | 981 | LOGICAL, SAVE :: write_first = .TRUE. !< flag for writing header |
---|
[1] | 982 | |
---|
| 983 | |
---|
| 984 | IF ( myid == 0 ) THEN |
---|
| 985 | ! |
---|
| 986 | !-- Open list output file for profiles from the 1D-model |
---|
| 987 | CALL check_open( 17 ) |
---|
| 988 | |
---|
| 989 | ! |
---|
| 990 | !-- Write Header |
---|
[2338] | 991 | IF ( write_first ) THEN |
---|
| 992 | WRITE ( 17, 100 ) TRIM( run_description_header ) |
---|
| 993 | write_first = .FALSE. |
---|
| 994 | ENDIF |
---|
[1] | 995 | |
---|
| 996 | ! |
---|
| 997 | !-- Write the values |
---|
[2338] | 998 | WRITE ( 17, 104 ) TRIM( simulated_time_chr ) |
---|
| 999 | WRITE ( 17, 101 ) |
---|
[1] | 1000 | WRITE ( 17, 102 ) |
---|
| 1001 | WRITE ( 17, 101 ) |
---|
| 1002 | DO k = nzt+1, nzb, -1 |
---|
[4677] | 1003 | WRITE ( 17, 103) k, zu(k), u1d(k), v1d(k), pt_init(k), e1d(k), ri1d(k), km1d(k), & |
---|
| 1004 | kh1d(k), l1d(k), diss1d(k) |
---|
[1] | 1005 | ENDDO |
---|
| 1006 | WRITE ( 17, 101 ) |
---|
| 1007 | WRITE ( 17, 102 ) |
---|
| 1008 | WRITE ( 17, 101 ) |
---|
| 1009 | |
---|
| 1010 | ! |
---|
| 1011 | !-- Write buffer contents to disc immediately |
---|
[1808] | 1012 | FLUSH( 17 ) |
---|
[1] | 1013 | |
---|
| 1014 | ENDIF |
---|
| 1015 | |
---|
| 1016 | ! |
---|
| 1017 | !-- Formats |
---|
[2338] | 1018 | 100 FORMAT ('# ',A/'#',10('-')/'# 1d-model profiles') |
---|
| 1019 | 104 FORMAT (//'# Time: ',A) |
---|
[2696] | 1020 | 101 FORMAT ('#',111('-')) |
---|
| 1021 | 102 FORMAT ('# k zu u v pt e ', & |
---|
[4586] | 1022 | 'Ri Km Kh l diss ') |
---|
[2696] | 1023 | 103 FORMAT (1X,I4,1X,F7.1,9(1X,E10.3)) |
---|
[1] | 1024 | |
---|
| 1025 | |
---|
| 1026 | END SUBROUTINE print_1d_model |
---|
[2338] | 1027 | |
---|
| 1028 | |
---|
[3045] | 1029 | END MODULE |
---|