[1873] | 1 | !> @file advec_s_bc.f90 |
---|
[4488] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4488] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4488] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4488] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4828] | 16 | ! Copyright 1997-2021 Leibniz Universitaet Hannover |
---|
[4488] | 17 | ! -------------------------------------------------------------------------------------------------! |
---|
[1036] | 18 | ! |
---|
[247] | 19 | ! Current revisions: |
---|
[1] | 20 | ! ----------------- |
---|
[4742] | 21 | ! |
---|
| 22 | ! |
---|
[1321] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: advec_s_bc.f90 4828 2021-01-05 11:21:41Z moh.hefny $ |
---|
[4742] | 26 | ! Implement snow and graupel (bulk microphysics) |
---|
| 27 | ! |
---|
| 28 | ! 4502 2020-04-17 16:14:16Z schwenkel |
---|
[4502] | 29 | ! Implementation of ice microphysics |
---|
| 30 | ! |
---|
| 31 | ! 4488 2020-04-03 11:34:29Z raasch |
---|
[4488] | 32 | ! file re-formatted to follow the PALM coding standard |
---|
| 33 | ! |
---|
| 34 | ! 4429 2020-02-27 15:24:30Z raasch |
---|
[4429] | 35 | ! bugfix: cpp-directives added for serial mode |
---|
[4488] | 36 | ! |
---|
[4429] | 37 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4182] | 38 | ! Corrected "Former revisions" section |
---|
[4488] | 39 | ! |
---|
[4182] | 40 | ! 3761 2019-02-25 15:31:42Z raasch |
---|
[3761] | 41 | ! unused variables removed |
---|
[4488] | 42 | ! |
---|
[3761] | 43 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
[3636] | 44 | ! nopointer option removed |
---|
[4182] | 45 | ! |
---|
| 46 | ! Revision 1.1 1997/08/29 08:53:46 raasch |
---|
| 47 | ! Initial revision |
---|
| 48 | ! |
---|
| 49 | ! |
---|
[1] | 50 | ! Description: |
---|
| 51 | ! ------------ |
---|
[1682] | 52 | !> Advection term for scalar quantities using the Bott-Chlond scheme. |
---|
| 53 | !> Computation in individual steps for each of the three dimensions. |
---|
| 54 | !> Limiting assumptions: |
---|
[4488] | 55 | !> So far the scheme has been assuming equidistant grid spacing. As this is not the case in the |
---|
| 56 | !> stretched portion of the z-direction, there dzw(k) is used as a substitute for a constant grid |
---|
| 57 | !> length. This certainly causes incorrect results; however, it is hoped that they are not too |
---|
| 58 | !> apparent for weakly stretched grids. |
---|
[1682] | 59 | !> NOTE: This is a provisional, non-optimised version! |
---|
[4488] | 60 | !--------------------------------------------------------------------------------------------------! |
---|
| 61 | MODULE advec_s_bc_mod |
---|
[1] | 62 | |
---|
[4488] | 63 | |
---|
[1517] | 64 | PRIVATE |
---|
| 65 | PUBLIC advec_s_bc |
---|
[1320] | 66 | |
---|
[1517] | 67 | INTERFACE advec_s_bc |
---|
| 68 | MODULE PROCEDURE advec_s_bc |
---|
| 69 | END INTERFACE advec_s_bc |
---|
[1320] | 70 | |
---|
[1517] | 71 | CONTAINS |
---|
[1320] | 72 | |
---|
[4488] | 73 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 74 | ! Description: |
---|
| 75 | ! ------------ |
---|
| 76 | !> @todo Missing subroutine description. |
---|
[4488] | 77 | !--------------------------------------------------------------------------------------------------! |
---|
[1517] | 78 | SUBROUTINE advec_s_bc( sk, sk_char ) |
---|
[1320] | 79 | |
---|
[4488] | 80 | USE advection, & |
---|
[1517] | 81 | ONLY: aex, bex, dex, eex |
---|
[1320] | 82 | |
---|
[4488] | 83 | USE arrays_3d, & |
---|
[1517] | 84 | ONLY: d, ddzw, dzu, dzw, tend, u, v, w |
---|
[1320] | 85 | |
---|
[4488] | 86 | USE control_parameters, & |
---|
| 87 | ONLY: bc_pt_t_val, bc_q_t_val, bc_s_t_val, dt_3d, ibc_pt_b, ibc_pt_t, ibc_q_t, ibc_s_t,& |
---|
| 88 | message_string, pt_slope_offset, sloping_surface, u_gtrans, v_gtrans |
---|
[1320] | 89 | |
---|
[4488] | 90 | USE cpulog, & |
---|
[1517] | 91 | ONLY: cpu_log, log_point_s |
---|
[1] | 92 | |
---|
[4488] | 93 | USE grid_variables, & |
---|
[1517] | 94 | ONLY: ddx, ddy |
---|
[1320] | 95 | |
---|
[4488] | 96 | USE indices, & |
---|
[3761] | 97 | ONLY: nx, nxl, nxr, nyn, nys, nzb, nzt |
---|
[1320] | 98 | |
---|
[1517] | 99 | USE kinds |
---|
[1] | 100 | |
---|
[1517] | 101 | USE pegrid |
---|
[1] | 102 | |
---|
[4488] | 103 | USE statistics, & |
---|
[1517] | 104 | ONLY: rmask, statistic_regions, sums_wsts_bc_l |
---|
[1] | 105 | |
---|
[1320] | 106 | |
---|
[1517] | 107 | IMPLICIT NONE |
---|
| 108 | |
---|
[1682] | 109 | CHARACTER (LEN=*) :: sk_char !< |
---|
[1517] | 110 | |
---|
[1682] | 111 | INTEGER(iwp) :: i !< |
---|
| 112 | INTEGER(iwp) :: ix !< |
---|
| 113 | INTEGER(iwp) :: j !< |
---|
| 114 | INTEGER(iwp) :: k !< |
---|
[4429] | 115 | INTEGER(iwp) :: sr !< |
---|
| 116 | #if defined( __parallel ) |
---|
[1682] | 117 | INTEGER(iwp) :: ngp !< |
---|
| 118 | INTEGER(iwp) :: type_xz_2 !< |
---|
[4429] | 119 | #endif |
---|
[4488] | 120 | REAL(wp) :: cim !< |
---|
| 121 | REAL(wp) :: cimf !< |
---|
| 122 | REAL(wp) :: cip !< |
---|
| 123 | REAL(wp) :: cipf !< |
---|
| 124 | REAL(wp) :: d_new !< |
---|
| 125 | REAL(wp) :: denomi !< denominator |
---|
| 126 | REAL(wp) :: fminus !< |
---|
| 127 | REAL(wp) :: fplus !< |
---|
| 128 | REAL(wp) :: f2 !< |
---|
| 129 | REAL(wp) :: f4 !< |
---|
| 130 | REAL(wp) :: f8 !< |
---|
| 131 | REAL(wp) :: f12 !< |
---|
| 132 | REAL(wp) :: f24 !< |
---|
| 133 | REAL(wp) :: f48 !< |
---|
| 134 | REAL(wp) :: f1920 !< |
---|
| 135 | REAL(wp) :: im !< |
---|
| 136 | REAL(wp) :: ip !< |
---|
| 137 | REAL(wp) :: m1n !< |
---|
| 138 | REAL(wp) :: m1z !< |
---|
| 139 | REAL(wp) :: m2 !< |
---|
| 140 | REAL(wp) :: m3 !< |
---|
| 141 | REAL(wp) :: numera !< numerator |
---|
| 142 | REAL(wp) :: snenn !< |
---|
| 143 | REAL(wp) :: sterm !< |
---|
| 144 | REAL(wp) :: tendcy !< |
---|
| 145 | REAL(wp) :: t1 !< |
---|
| 146 | REAL(wp) :: t2 !< |
---|
[1517] | 147 | |
---|
[1682] | 148 | REAL(wp) :: fmax(2) !< |
---|
| 149 | REAL(wp) :: fmax_l(2) !< |
---|
[1] | 150 | |
---|
[1682] | 151 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a0 !< |
---|
| 152 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a1 !< |
---|
| 153 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a12 !< |
---|
| 154 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a2 !< |
---|
| 155 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: a22 !< |
---|
| 156 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: immb !< |
---|
| 157 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: imme !< |
---|
| 158 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impb !< |
---|
| 159 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: impe !< |
---|
| 160 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipmb !< |
---|
| 161 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ipme !< |
---|
| 162 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippb !< |
---|
| 163 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ippe !< |
---|
[2300] | 164 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: m1 !< |
---|
| 165 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sw !< |
---|
[4488] | 166 | |
---|
[1682] | 167 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: sk_p !< |
---|
[1] | 168 | |
---|
[4488] | 169 | REAL(wp), DIMENSION(:,:,:), POINTER :: sk !< |
---|
| 170 | |
---|
| 171 | |
---|
[1] | 172 | ! |
---|
[1517] | 173 | !-- Array sk_p requires 2 extra elements for each dimension |
---|
| 174 | ALLOCATE( sk_p(nzb-2:nzt+3,nys-3:nyn+3,nxl-3:nxr+3) ) |
---|
| 175 | sk_p = 0.0_wp |
---|
[1] | 176 | |
---|
| 177 | ! |
---|
[1517] | 178 | !-- Assign reciprocal values in order to avoid divisions later |
---|
| 179 | f2 = 0.5_wp |
---|
| 180 | f4 = 0.25_wp |
---|
| 181 | f8 = 0.125_wp |
---|
| 182 | f12 = 0.8333333333333333E-01_wp |
---|
| 183 | f24 = 0.4166666666666666E-01_wp |
---|
| 184 | f48 = 0.2083333333333333E-01_wp |
---|
| 185 | f1920 = 0.5208333333333333E-03_wp |
---|
[1] | 186 | |
---|
| 187 | ! |
---|
[1517] | 188 | !-- Advection in x-direction: |
---|
[1] | 189 | |
---|
| 190 | ! |
---|
[1517] | 191 | !-- Save the quantity to be advected in a local array |
---|
| 192 | !-- add an enlarged boundary in x-direction |
---|
| 193 | DO i = nxl-1, nxr+1 |
---|
| 194 | DO j = nys, nyn |
---|
| 195 | DO k = nzb, nzt+1 |
---|
| 196 | sk_p(k,j,i) = sk(k,j,i) |
---|
| 197 | ENDDO |
---|
[1] | 198 | ENDDO |
---|
| 199 | ENDDO |
---|
| 200 | #if defined( __parallel ) |
---|
[1517] | 201 | ngp = 2 * ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
| 202 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'start' ) |
---|
[1] | 203 | ! |
---|
[1517] | 204 | !-- Send left boundary, receive right boundary |
---|
[4488] | 205 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxl+1), ngp, MPI_REAL, pleft, 0, & |
---|
| 206 | sk_p(nzb-2,nys-3,nxr+2), ngp, MPI_REAL, pright, 0, & |
---|
[1517] | 207 | comm2d, status, ierr ) |
---|
[1] | 208 | ! |
---|
[1517] | 209 | !-- Send right boundary, receive left boundary |
---|
[4488] | 210 | CALL MPI_SENDRECV( sk_p(nzb-2,nys-3,nxr-2), ngp, MPI_REAL, pright, 1, & |
---|
| 211 | sk_p(nzb-2,nys-3,nxl-3), ngp, MPI_REAL, pleft, 1, & |
---|
[1517] | 212 | comm2d, status, ierr ) |
---|
| 213 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 214 | #else |
---|
| 215 | |
---|
| 216 | ! |
---|
[1517] | 217 | !-- Cyclic boundary conditions |
---|
| 218 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxr-2) |
---|
| 219 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxr-1) |
---|
| 220 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxl+1) |
---|
| 221 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxl+2) |
---|
[1] | 222 | #endif |
---|
| 223 | |
---|
| 224 | ! |
---|
[4488] | 225 | !-- In case of a sloping surface, the additional gridpoints in x-direction of the temperature |
---|
| 226 | !-- field at the left and right boundary of the total domain must be adjusted by the temperature |
---|
| 227 | !-- difference between this distance |
---|
[1517] | 228 | IF ( sloping_surface .AND. sk_char == 'pt' ) THEN |
---|
| 229 | IF ( nxl == 0 ) THEN |
---|
| 230 | sk_p(:,nys:nyn,nxl-3) = sk_p(:,nys:nyn,nxl-3) - pt_slope_offset |
---|
| 231 | sk_p(:,nys:nyn,nxl-2) = sk_p(:,nys:nyn,nxl-2) - pt_slope_offset |
---|
| 232 | ENDIF |
---|
| 233 | IF ( nxr == nx ) THEN |
---|
| 234 | sk_p(:,nys:nyn,nxr+2) = sk_p(:,nys:nyn,nxr+2) + pt_slope_offset |
---|
| 235 | sk_p(:,nys:nyn,nxr+3) = sk_p(:,nys:nyn,nxr+3) + pt_slope_offset |
---|
| 236 | ENDIF |
---|
[1] | 237 | ENDIF |
---|
| 238 | |
---|
| 239 | ! |
---|
[1517] | 240 | !-- Initialise control density |
---|
| 241 | d = 0.0_wp |
---|
[1] | 242 | |
---|
| 243 | ! |
---|
[1517] | 244 | !-- Determine maxima of the first and second derivative in x-direction |
---|
| 245 | fmax_l = 0.0_wp |
---|
| 246 | DO i = nxl, nxr |
---|
| 247 | DO j = nys, nyn |
---|
| 248 | DO k = nzb+1, nzt |
---|
[4488] | 249 | numera = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
[1517] | 250 | denomi = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 251 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 252 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 253 | ENDDO |
---|
[1] | 254 | ENDDO |
---|
| 255 | ENDDO |
---|
| 256 | #if defined( __parallel ) |
---|
[1517] | 257 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 258 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 259 | #else |
---|
[1517] | 260 | fmax = fmax_l |
---|
[1] | 261 | #endif |
---|
| 262 | |
---|
[1517] | 263 | fmax = 0.04_wp * fmax |
---|
[1] | 264 | |
---|
| 265 | ! |
---|
[1517] | 266 | !-- Allocate temporary arrays |
---|
[4488] | 267 | ALLOCATE( a0(nzb+1:nzt,nxl-1:nxr+1), a1(nzb+1:nzt,nxl-1:nxr+1), a2(nzb+1:nzt,nxl-1:nxr+1),& |
---|
| 268 | a12(nzb+1:nzt,nxl-1:nxr+1), a22(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 269 | immb(nzb+1:nzt,nxl-1:nxr+1), imme(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 270 | impb(nzb+1:nzt,nxl-1:nxr+1), impe(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 271 | ipmb(nzb+1:nzt,nxl-1:nxr+1), ipme(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 272 | ippb(nzb+1:nzt,nxl-1:nxr+1), ippe(nzb+1:nzt,nxl-1:nxr+1), & |
---|
| 273 | m1(nzb+1:nzt,nxl-2:nxr+2), sw(nzb+1:nzt,nxl-1:nxr+1) & |
---|
[1517] | 274 | ) |
---|
| 275 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 276 | |
---|
| 277 | ! |
---|
[4488] | 278 | !-- Initialise point of time measuring of the exponential portion (this would not work if done |
---|
| 279 | !-- locally within the loop) |
---|
[1517] | 280 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'start' ) |
---|
| 281 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 282 | |
---|
[1517] | 283 | DO j = nys, nyn |
---|
[1] | 284 | |
---|
| 285 | ! |
---|
[1517] | 286 | !-- Compute polynomial coefficients |
---|
| 287 | DO i = nxl-1, nxr+1 |
---|
| 288 | DO k = nzb+1, nzt |
---|
| 289 | a12(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
[4488] | 290 | a22(k,i) = 0.5_wp * ( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 291 | a0(k,i) = ( 9.0_wp * sk_p(k,j,i+2) - 116.0_wp * sk_p(k,j,i+1) & |
---|
| 292 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j,i-1) & |
---|
| 293 | + 9.0_wp * sk_p(k,j,i-2) & |
---|
| 294 | ) * f1920 |
---|
| 295 | a1(k,i) = ( -5.0_wp * sk_p(k,j,i+2) + 34.0_wp * sk_p(k,j,i+1) & |
---|
| 296 | - 34.0_wp * sk_p(k,j,i-1) + 5.0_wp * sk_p(k,j,i-2) & |
---|
[1517] | 297 | ) * f48 |
---|
[4488] | 298 | a2(k,i) = ( -3.0_wp * sk_p(k,j,i+2) + 36.0_wp * sk_p(k,j,i+1) & |
---|
| 299 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j,i-1) & |
---|
| 300 | - 3.0_wp * sk_p(k,j,i-2) & |
---|
| 301 | ) * f48 |
---|
[1517] | 302 | ENDDO |
---|
[1] | 303 | ENDDO |
---|
| 304 | |
---|
| 305 | ! |
---|
[1517] | 306 | !-- Fluxes using the Bott scheme |
---|
| 307 | DO i = nxl, nxr |
---|
| 308 | DO k = nzb+1, nzt |
---|
| 309 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 310 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
| 311 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 312 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 313 | ip = a0(k,i) * f2 * ( 1.0_wp - cipf ) & |
---|
| 314 | + a1(k,i) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 315 | + a2(k,i) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 316 | im = a0(k,i+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 317 | - a1(k,i+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 318 | + a2(k,i+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 319 | ip = MAX( ip, 0.0_wp ) |
---|
| 320 | im = MAX( im, 0.0_wp ) |
---|
| 321 | ippb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 322 | impb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i+1) / (ip+im+1E-15_wp) ) |
---|
[1] | 323 | |
---|
[1517] | 324 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 325 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
| 326 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 327 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 328 | ip = a0(k,i-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 329 | + a1(k,i-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 330 | + a2(k,i-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 331 | im = a0(k,i) * f2 * ( 1.0_wp - cimf ) & |
---|
| 332 | - a1(k,i) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 333 | + a2(k,i) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 334 | ip = MAX( ip, 0.0_wp ) |
---|
| 335 | im = MAX( im, 0.0_wp ) |
---|
| 336 | ipmb(k,i) = ip * MIN( 1.0_wp, sk_p(k,j,i-1) / (ip+im+1E-15_wp) ) |
---|
| 337 | immb(k,i) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 338 | ENDDO |
---|
[1] | 339 | ENDDO |
---|
| 340 | |
---|
| 341 | ! |
---|
[1517] | 342 | !-- Compute monitor function m1 |
---|
| 343 | DO i = nxl-2, nxr+2 |
---|
| 344 | DO k = nzb+1, nzt |
---|
| 345 | m1z = ABS( sk_p(k,j,i+1) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j,i-1) ) |
---|
| 346 | m1n = ABS( sk_p(k,j,i+1) - sk_p(k,j,i-1) ) |
---|
| 347 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 348 | m1(k,i) = m1z / m1n |
---|
| 349 | IF ( m1(k,i) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,i) = 0.0_wp |
---|
| 350 | ELSEIF ( m1n < m1z ) THEN |
---|
| 351 | m1(k,i) = -1.0_wp |
---|
| 352 | ELSE |
---|
| 353 | m1(k,i) = 0.0_wp |
---|
| 354 | ENDIF |
---|
| 355 | ENDDO |
---|
[1] | 356 | ENDDO |
---|
| 357 | |
---|
| 358 | ! |
---|
[1517] | 359 | !-- Compute switch sw |
---|
| 360 | sw = 0.0_wp |
---|
| 361 | DO i = nxl-1, nxr+1 |
---|
| 362 | DO k = nzb+1, nzt |
---|
[4488] | 363 | m2 = 2.0_wp * ABS( a1(k,i) - a12(k,i) ) / MAX( ABS( a1(k,i) + a12(k,i) ), 1E-35_wp ) |
---|
[1517] | 364 | IF ( ABS( a1(k,i) + a12(k,i) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 365 | |
---|
[4488] | 366 | m3 = 2.0_wp * ABS( a2(k,i) - a22(k,i) ) / MAX( ABS( a2(k,i) + a22(k,i) ), 1E-35_wp ) |
---|
[1517] | 367 | IF ( ABS( a2(k,i) + a22(k,i) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 368 | |
---|
[1517] | 369 | t1 = 0.35_wp |
---|
| 370 | t2 = 0.35_wp |
---|
| 371 | IF ( m1(k,i) == -1.0_wp ) t2 = 0.12_wp |
---|
[4488] | 372 | IF ( m1(k,i-1) == 1.0_wp .OR. m1(k,i) == 1.0_wp .OR. m1(k,i+1) == 1.0_wp .OR. & |
---|
| 373 | m2 > t2 .OR. m3 > t2 .OR. ( m1(k,i) > t1 .AND. m1(k,i-1) /= -1.0_wp .AND. & |
---|
| 374 | m1(k,i) /= -1.0_wp .AND. m1(k,i+1) /= -1.0_wp ) & |
---|
[1517] | 375 | ) sw(k,i) = 1.0_wp |
---|
| 376 | ENDDO |
---|
[1] | 377 | ENDDO |
---|
| 378 | |
---|
| 379 | ! |
---|
[1517] | 380 | !-- Fluxes using the exponential scheme |
---|
| 381 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 382 | DO i = nxl, nxr |
---|
| 383 | DO k = nzb+1, nzt |
---|
[1] | 384 | |
---|
[1517] | 385 | IF ( sw(k,i) == 1.0_wp ) THEN |
---|
| 386 | snenn = sk_p(k,j,i+1) - sk_p(k,j,i-1) |
---|
| 387 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 388 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i-1) ) / snenn |
---|
| 389 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 390 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 391 | |
---|
[1517] | 392 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 393 | |
---|
[1517] | 394 | cip = MAX( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 395 | |
---|
[4488] | 396 | ippe(k,i) = sk_p(k,j,i-1) * cip + snenn * ( & |
---|
| 397 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 398 | eex(ix) - & |
---|
| 399 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 400 | ) & |
---|
[1517] | 401 | ) |
---|
| 402 | IF ( sterm == 0.0001_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
| 403 | IF ( sterm == 0.9999_wp ) ippe(k,i) = sk_p(k,j,i) * cip |
---|
[1] | 404 | |
---|
[1517] | 405 | snenn = sk_p(k,j,i-1) - sk_p(k,j,i+1) |
---|
| 406 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 407 | sterm = ( sk_p(k,j,i) - sk_p(k,j,i+1) ) / snenn |
---|
| 408 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 409 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 410 | |
---|
[1517] | 411 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 412 | |
---|
[1517] | 413 | cim = -MIN( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 414 | |
---|
[4488] | 415 | imme(k,i) = sk_p(k,j,i+1) * cim + snenn * ( & |
---|
| 416 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 417 | eex(ix) - & |
---|
| 418 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 419 | ) & |
---|
[1517] | 420 | ) |
---|
| 421 | IF ( sterm == 0.0001_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 422 | IF ( sterm == 0.9999_wp ) imme(k,i) = sk_p(k,j,i) * cim |
---|
| 423 | ENDIF |
---|
[1] | 424 | |
---|
[1517] | 425 | IF ( sw(k,i+1) == 1.0_wp ) THEN |
---|
| 426 | snenn = sk_p(k,j,i) - sk_p(k,j,i+2) |
---|
[1691] | 427 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 428 | sterm = ( sk_p(k,j,i+1) - sk_p(k,j,i+2) ) / snenn |
---|
| 429 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 430 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 431 | |
---|
[1517] | 432 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 433 | |
---|
[1517] | 434 | cim = -MIN( 0.0_wp, ( u(k,j,i+1) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 435 | |
---|
[4488] | 436 | impe(k,i) = sk_p(k,j,i+2) * cim + snenn * ( & |
---|
| 437 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 438 | eex(ix) - & |
---|
| 439 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 440 | ) & |
---|
[1517] | 441 | ) |
---|
| 442 | IF ( sterm == 0.0001_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 443 | IF ( sterm == 0.9999_wp ) impe(k,i) = sk_p(k,j,i+1) * cim |
---|
| 444 | ENDIF |
---|
[1] | 445 | |
---|
[1517] | 446 | IF ( sw(k,i-1) == 1.0_wp ) THEN |
---|
| 447 | snenn = sk_p(k,j,i) - sk_p(k,j,i-2) |
---|
| 448 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 449 | sterm = ( sk_p(k,j,i-1) - sk_p(k,j,i-2) ) / snenn |
---|
| 450 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 451 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 452 | |
---|
[1517] | 453 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 454 | |
---|
[1517] | 455 | cip = MAX( 0.0_wp, ( u(k,j,i) - u_gtrans ) * dt_3d * ddx ) |
---|
[1] | 456 | |
---|
[4488] | 457 | ipme(k,i) = sk_p(k,j,i-2) * cip + snenn * ( & |
---|
| 458 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 459 | eex(ix) - & |
---|
| 460 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 461 | ) & |
---|
[1517] | 462 | ) |
---|
| 463 | IF ( sterm == 0.0001_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 464 | IF ( sterm == 0.9999_wp ) ipme(k,i) = sk_p(k,j,i-1) * cip |
---|
| 465 | ENDIF |
---|
[1] | 466 | |
---|
[1517] | 467 | ENDDO |
---|
[1] | 468 | ENDDO |
---|
[1517] | 469 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 470 | |
---|
| 471 | ! |
---|
[1517] | 472 | !-- Prognostic equation |
---|
| 473 | DO i = nxl, nxr |
---|
| 474 | DO k = nzb+1, nzt |
---|
[4488] | 475 | fplus = ( 1.0_wp - sw(k,i) ) * ippb(k,i) + sw(k,i) * ippe(k,i) & |
---|
| 476 | - ( 1.0_wp - sw(k,i+1) ) * impb(k,i) - sw(k,i+1) * impe(k,i) |
---|
| 477 | fminus = ( 1.0_wp - sw(k,i-1) ) * ipmb(k,i) + sw(k,i-1) * ipme(k,i) & |
---|
| 478 | - ( 1.0_wp - sw(k,i) ) * immb(k,i) - sw(k,i) * imme(k,i) |
---|
[1517] | 479 | tendcy = fplus - fminus |
---|
[1] | 480 | ! |
---|
[1517] | 481 | !-- Removed in order to optimize speed |
---|
| 482 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 483 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 484 | ! |
---|
[1517] | 485 | !-- Density correction because of possible remaining divergences |
---|
| 486 | d_new = d(k,j,i) - ( u(k,j,i+1) - u(k,j,i) ) * dt_3d * ddx |
---|
[4488] | 487 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / ( 1.0_wp + d_new ) |
---|
[1517] | 488 | d(k,j,i) = d_new |
---|
| 489 | ENDDO |
---|
[1] | 490 | ENDDO |
---|
| 491 | |
---|
[1517] | 492 | ENDDO ! End of the advection in x-direction |
---|
[1] | 493 | |
---|
| 494 | ! |
---|
[1517] | 495 | !-- Deallocate temporary arrays |
---|
[4488] | 496 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, ippb, ippe, m1, sw ) |
---|
[1] | 497 | |
---|
| 498 | |
---|
| 499 | ! |
---|
[1517] | 500 | !-- Enlarge boundary of local array cyclically in y-direction |
---|
[1] | 501 | #if defined( __parallel ) |
---|
[1517] | 502 | ngp = ( nzt - nzb + 6 ) * ( nyn - nys + 7 ) |
---|
[4488] | 503 | CALL MPI_TYPE_VECTOR( nxr-nxl+7, 3*(nzt-nzb+6), ngp, MPI_REAL, & |
---|
[1517] | 504 | type_xz_2, ierr ) |
---|
| 505 | CALL MPI_TYPE_COMMIT( type_xz_2, ierr ) |
---|
[1] | 506 | ! |
---|
[1517] | 507 | !-- Send front boundary, receive rear boundary |
---|
| 508 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
[4488] | 509 | CALL MPI_SENDRECV( sk_p(nzb-2,nys,nxl-3), 1, type_xz_2, psouth, 0, & |
---|
| 510 | sk_p(nzb-2,nyn+1,nxl-3), 1, type_xz_2, pnorth, 0, & |
---|
[1517] | 511 | comm2d, status, ierr ) |
---|
[1] | 512 | ! |
---|
[1517] | 513 | !-- Send rear boundary, receive front boundary |
---|
[4488] | 514 | CALL MPI_SENDRECV( sk_p(nzb-2,nyn-2,nxl-3), 1, type_xz_2, pnorth, 1, & |
---|
| 515 | sk_p(nzb-2,nys-3,nxl-3), 1, type_xz_2, psouth, 1, & |
---|
[1517] | 516 | comm2d, status, ierr ) |
---|
| 517 | CALL MPI_TYPE_FREE( type_xz_2, ierr ) |
---|
| 518 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'pause' ) |
---|
[1] | 519 | #else |
---|
[1517] | 520 | DO i = nxl, nxr |
---|
| 521 | DO k = nzb+1, nzt |
---|
| 522 | sk_p(k,nys-1,i) = sk_p(k,nyn,i) |
---|
| 523 | sk_p(k,nys-2,i) = sk_p(k,nyn-1,i) |
---|
| 524 | sk_p(k,nys-3,i) = sk_p(k,nyn-2,i) |
---|
| 525 | sk_p(k,nyn+1,i) = sk_p(k,nys,i) |
---|
| 526 | sk_p(k,nyn+2,i) = sk_p(k,nys+1,i) |
---|
| 527 | sk_p(k,nyn+3,i) = sk_p(k,nys+2,i) |
---|
| 528 | ENDDO |
---|
[1] | 529 | ENDDO |
---|
| 530 | #endif |
---|
| 531 | |
---|
| 532 | ! |
---|
[1517] | 533 | !-- Determine the maxima of the first and second derivative in y-direction |
---|
| 534 | fmax_l = 0.0_wp |
---|
| 535 | DO i = nxl, nxr |
---|
| 536 | DO j = nys, nyn |
---|
| 537 | DO k = nzb+1, nzt |
---|
| 538 | numera = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 539 | denomi = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 540 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 541 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 542 | ENDDO |
---|
[1] | 543 | ENDDO |
---|
| 544 | ENDDO |
---|
| 545 | #if defined( __parallel ) |
---|
[1517] | 546 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 547 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 548 | #else |
---|
[1517] | 549 | fmax = fmax_l |
---|
[1] | 550 | #endif |
---|
| 551 | |
---|
[1517] | 552 | fmax = 0.04_wp * fmax |
---|
[1] | 553 | |
---|
| 554 | ! |
---|
[1517] | 555 | !-- Allocate temporary arrays |
---|
[4488] | 556 | ALLOCATE( a0(nzb+1:nzt,nys-1:nyn+1), a1(nzb+1:nzt,nys-1:nyn+1), a2(nzb+1:nzt,nys-1:nyn+1),& |
---|
| 557 | a12(nzb+1:nzt,nys-1:nyn+1), a22(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 558 | immb(nzb+1:nzt,nys-1:nyn+1), imme(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 559 | impb(nzb+1:nzt,nys-1:nyn+1), impe(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 560 | ipmb(nzb+1:nzt,nys-1:nyn+1), ipme(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 561 | ippb(nzb+1:nzt,nys-1:nyn+1), ippe(nzb+1:nzt,nys-1:nyn+1), & |
---|
| 562 | m1(nzb+1:nzt,nys-2:nyn+2), sw(nzb+1:nzt,nys-1:nyn+1) & |
---|
[1517] | 563 | ) |
---|
| 564 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 565 | |
---|
[1517] | 566 | DO i = nxl, nxr |
---|
[1] | 567 | |
---|
| 568 | ! |
---|
[1517] | 569 | !-- Compute polynomial coefficients |
---|
| 570 | DO j = nys-1, nyn+1 |
---|
| 571 | DO k = nzb+1, nzt |
---|
| 572 | a12(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
[4488] | 573 | a22(k,j) = 0.5_wp * ( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 574 | a0(k,j) = ( 9.0_wp * sk_p(k,j+2,i) - 116.0_wp * sk_p(k,j+1,i) & |
---|
| 575 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k,j-1,i) & |
---|
| 576 | + 9.0_wp * sk_p(k,j-2,i) & |
---|
| 577 | ) * f1920 |
---|
| 578 | a1(k,j) = ( -5.0_wp * sk_p(k,j+2,i) + 34.0_wp * sk_p(k,j+1,i) & |
---|
| 579 | - 34.0_wp * sk_p(k,j-1,i) + 5.0_wp * sk_p(k,j-2,i) & |
---|
[1517] | 580 | ) * f48 |
---|
[4488] | 581 | a2(k,j) = ( -3.0_wp * sk_p(k,j+2,i) + 36.0_wp * sk_p(k,j+1,i) & |
---|
| 582 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k,j-1,i) & |
---|
| 583 | - 3.0_wp * sk_p(k,j-2,i) & |
---|
| 584 | ) * f48 |
---|
[1517] | 585 | ENDDO |
---|
[1] | 586 | ENDDO |
---|
| 587 | |
---|
| 588 | ! |
---|
[1517] | 589 | !-- Fluxes using the Bott scheme |
---|
| 590 | DO j = nys, nyn |
---|
| 591 | DO k = nzb+1, nzt |
---|
| 592 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 593 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 594 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 595 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 596 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 597 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 598 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 599 | im = a0(k,j+1) * f2 * ( 1.0_wp - cimf ) & |
---|
| 600 | - a1(k,j+1) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 601 | + a2(k,j+1) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 602 | ip = MAX( ip, 0.0_wp ) |
---|
| 603 | im = MAX( im, 0.0_wp ) |
---|
| 604 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 605 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k,j+1,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 606 | |
---|
[1517] | 607 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 608 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
| 609 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 610 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 611 | ip = a0(k,j-1) * f2 * ( 1.0_wp - cipf ) & |
---|
| 612 | + a1(k,j-1) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 613 | + a2(k,j-1) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 614 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 615 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 616 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 617 | ip = MAX( ip, 0.0_wp ) |
---|
| 618 | im = MAX( im, 0.0_wp ) |
---|
| 619 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j-1,i) / (ip+im+1E-15_wp) ) |
---|
| 620 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 621 | ENDDO |
---|
[1] | 622 | ENDDO |
---|
| 623 | |
---|
| 624 | ! |
---|
[1517] | 625 | !-- Compute monitor function m1 |
---|
| 626 | DO j = nys-2, nyn+2 |
---|
| 627 | DO k = nzb+1, nzt |
---|
| 628 | m1z = ABS( sk_p(k,j+1,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k,j-1,i) ) |
---|
| 629 | m1n = ABS( sk_p(k,j+1,i) - sk_p(k,j-1,i) ) |
---|
| 630 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 631 | m1(k,j) = m1z / m1n |
---|
| 632 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 633 | ELSEIF ( m1n < m1z ) THEN |
---|
| 634 | m1(k,j) = -1.0_wp |
---|
| 635 | ELSE |
---|
| 636 | m1(k,j) = 0.0_wp |
---|
| 637 | ENDIF |
---|
| 638 | ENDDO |
---|
[1] | 639 | ENDDO |
---|
| 640 | |
---|
| 641 | ! |
---|
[1517] | 642 | !-- Compute switch sw |
---|
| 643 | sw = 0.0_wp |
---|
| 644 | DO j = nys-1, nyn+1 |
---|
| 645 | DO k = nzb+1, nzt |
---|
[4488] | 646 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
[1517] | 647 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 648 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 649 | |
---|
[4488] | 650 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
[1517] | 651 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 652 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 653 | |
---|
[1517] | 654 | t1 = 0.35_wp |
---|
| 655 | t2 = 0.35_wp |
---|
| 656 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 657 | |
---|
[4488] | 658 | IF ( m1(k,j-1) == 1.0_wp .OR. m1(k,j) == 1.0_wp .OR. m1(k,j+1) == 1.0_wp .OR. & |
---|
| 659 | m2 > t2 .OR. m3 > t2 .OR. ( m1(k,j) > t1 .AND. m1(k,j-1) /= -1.0_wp .AND. & |
---|
| 660 | m1(k,j) /= -1.0_wp .AND. m1(k,j+1) /= -1.0_wp ) & |
---|
[1517] | 661 | ) sw(k,j) = 1.0_wp |
---|
| 662 | ENDDO |
---|
[1] | 663 | ENDDO |
---|
| 664 | |
---|
| 665 | ! |
---|
[1517] | 666 | !-- Fluxes using exponential scheme |
---|
| 667 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 668 | DO j = nys, nyn |
---|
| 669 | DO k = nzb+1, nzt |
---|
[1] | 670 | |
---|
[1517] | 671 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 672 | snenn = sk_p(k,j+1,i) - sk_p(k,j-1,i) |
---|
| 673 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 674 | sterm = ( sk_p(k,j,i) - sk_p(k,j-1,i) ) / snenn |
---|
| 675 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 676 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 677 | |
---|
[1517] | 678 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 679 | |
---|
[1517] | 680 | cip = MAX( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 681 | |
---|
[4488] | 682 | ippe(k,j) = sk_p(k,j-1,i) * cip + snenn * ( & |
---|
| 683 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 684 | eex(ix) - & |
---|
| 685 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 686 | ) & |
---|
[1517] | 687 | ) |
---|
| 688 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 689 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 690 | |
---|
[1517] | 691 | snenn = sk_p(k,j-1,i) - sk_p(k,j+1,i) |
---|
| 692 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 693 | sterm = ( sk_p(k,j,i) - sk_p(k,j+1,i) ) / snenn |
---|
| 694 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 695 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 696 | |
---|
[1517] | 697 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 698 | |
---|
[1517] | 699 | cim = -MIN( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 700 | |
---|
[4488] | 701 | imme(k,j) = sk_p(k,j+1,i) * cim + snenn * ( & |
---|
| 702 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 703 | eex(ix) - & |
---|
| 704 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 705 | ) & |
---|
[1517] | 706 | ) |
---|
| 707 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 708 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 709 | ENDIF |
---|
[1] | 710 | |
---|
[1517] | 711 | IF ( sw(k,j+1) == 1.0_wp ) THEN |
---|
| 712 | snenn = sk_p(k,j,i) - sk_p(k,j+2,i) |
---|
[1691] | 713 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 714 | sterm = ( sk_p(k,j+1,i) - sk_p(k,j+2,i) ) / snenn |
---|
| 715 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 716 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 717 | |
---|
[1517] | 718 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 719 | |
---|
[1517] | 720 | cim = -MIN( 0.0_wp, ( v(k,j+1,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 721 | |
---|
[4488] | 722 | impe(k,j) = sk_p(k,j+2,i) * cim + snenn * ( & |
---|
| 723 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 724 | eex(ix) - & |
---|
| 725 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 726 | ) & |
---|
[1517] | 727 | ) |
---|
| 728 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 729 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k,j+1,i) * cim |
---|
| 730 | ENDIF |
---|
[1] | 731 | |
---|
[1517] | 732 | IF ( sw(k,j-1) == 1.0_wp ) THEN |
---|
| 733 | snenn = sk_p(k,j,i) - sk_p(k,j-2,i) |
---|
| 734 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 735 | sterm = ( sk_p(k,j-1,i) - sk_p(k,j-2,i) ) / snenn |
---|
| 736 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 737 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 738 | |
---|
[1517] | 739 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 740 | |
---|
[1517] | 741 | cip = MAX( 0.0_wp, ( v(k,j,i) - v_gtrans ) * dt_3d * ddy ) |
---|
[1] | 742 | |
---|
[4488] | 743 | ipme(k,j) = sk_p(k,j-2,i) * cip + snenn * ( & |
---|
| 744 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 745 | eex(ix) - & |
---|
| 746 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 747 | ) & |
---|
[1517] | 748 | ) |
---|
| 749 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 750 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k,j-1,i) * cip |
---|
| 751 | ENDIF |
---|
[1] | 752 | |
---|
[1517] | 753 | ENDDO |
---|
[1] | 754 | ENDDO |
---|
[1517] | 755 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 756 | |
---|
| 757 | ! |
---|
[1517] | 758 | !-- Prognostic equation |
---|
| 759 | DO j = nys, nyn |
---|
| 760 | DO k = nzb+1, nzt |
---|
[4488] | 761 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 762 | - ( 1.0_wp - sw(k,j+1) ) * impb(k,j) - sw(k,j+1) * impe(k,j) |
---|
| 763 | fminus = ( 1.0_wp - sw(k,j-1) ) * ipmb(k,j) + sw(k,j-1) * ipme(k,j) & |
---|
| 764 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
[1517] | 765 | tendcy = fplus - fminus |
---|
[1] | 766 | ! |
---|
[1517] | 767 | !-- Removed in order to optimise speed |
---|
| 768 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 769 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 770 | ! |
---|
[1517] | 771 | !-- Density correction because of possible remaining divergences |
---|
| 772 | d_new = d(k,j,i) - ( v(k,j+1,i) - v(k,j,i) ) * dt_3d * ddy |
---|
[4488] | 773 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / ( 1.0_wp + d_new ) |
---|
| 774 | d(k,j,i) = d_new |
---|
[1517] | 775 | ENDDO |
---|
[1] | 776 | ENDDO |
---|
| 777 | |
---|
[1517] | 778 | ENDDO ! End of the advection in y-direction |
---|
[4488] | 779 | |
---|
| 780 | |
---|
[1517] | 781 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'continue' ) |
---|
| 782 | CALL cpu_log( log_point_s(11), 'advec_s_bc:sendrecv', 'stop' ) |
---|
[1] | 783 | |
---|
| 784 | ! |
---|
[1517] | 785 | !-- Deallocate temporary arrays |
---|
[4488] | 786 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, ippb, ippe, m1, sw ) |
---|
[1] | 787 | |
---|
| 788 | |
---|
| 789 | ! |
---|
[1517] | 790 | !-- Initialise for the computation of heat fluxes (see below; required in |
---|
| 791 | !-- UP flow_statistics) |
---|
| 792 | IF ( sk_char == 'pt' ) sums_wsts_bc_l = 0.0_wp |
---|
[1] | 793 | |
---|
| 794 | ! |
---|
[1517] | 795 | !-- Add top and bottom boundaries according to the relevant boundary conditions |
---|
| 796 | IF ( sk_char == 'pt' ) THEN |
---|
[1] | 797 | |
---|
| 798 | ! |
---|
[1517] | 799 | !-- Temperature boundary condition at the bottom boundary |
---|
| 800 | IF ( ibc_pt_b == 0 ) THEN |
---|
[1] | 801 | ! |
---|
| 802 | !-- Dirichlet (fixed surface temperature) |
---|
[1517] | 803 | DO i = nxl, nxr |
---|
| 804 | DO j = nys, nyn |
---|
| 805 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 806 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 807 | ENDDO |
---|
[1] | 808 | ENDDO |
---|
| 809 | |
---|
[1517] | 810 | ELSE |
---|
[1] | 811 | ! |
---|
[1517] | 812 | !-- Neumann (i.e. here zero gradient) |
---|
| 813 | DO i = nxl, nxr |
---|
| 814 | DO j = nys, nyn |
---|
| 815 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 816 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 817 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 818 | ENDDO |
---|
| 819 | ENDDO |
---|
| 820 | |
---|
| 821 | ENDIF |
---|
| 822 | |
---|
| 823 | ! |
---|
| 824 | !-- Temperature boundary condition at the top boundary |
---|
| 825 | IF ( ibc_pt_t == 0 .OR. ibc_pt_t == 1 ) THEN |
---|
| 826 | ! |
---|
| 827 | !-- Dirichlet or Neumann (zero gradient) |
---|
| 828 | DO i = nxl, nxr |
---|
| 829 | DO j = nys, nyn |
---|
| 830 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 831 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 832 | ENDDO |
---|
| 833 | ENDDO |
---|
| 834 | |
---|
| 835 | ELSEIF ( ibc_pt_t == 2 ) THEN |
---|
| 836 | ! |
---|
| 837 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 838 | DO i = nxl, nxr |
---|
| 839 | DO j = nys, nyn |
---|
| 840 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 841 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_pt_t_val * dzu(nzt+1) |
---|
| 842 | ENDDO |
---|
| 843 | ENDDO |
---|
| 844 | |
---|
| 845 | ENDIF |
---|
| 846 | |
---|
| 847 | ELSEIF ( sk_char == 'sa' ) THEN |
---|
| 848 | |
---|
| 849 | ! |
---|
| 850 | !-- Salinity boundary condition at the bottom boundary. |
---|
| 851 | !-- So far, always Neumann (i.e. here zero gradient) is used |
---|
[1] | 852 | DO i = nxl, nxr |
---|
| 853 | DO j = nys, nyn |
---|
[216] | 854 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
[63] | 855 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 856 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 857 | ENDDO |
---|
| 858 | ENDDO |
---|
| 859 | |
---|
| 860 | ! |
---|
[1517] | 861 | !-- Salinity boundary condition at the top boundary. |
---|
[63] | 862 | !-- Dirichlet or Neumann (zero gradient) |
---|
[1] | 863 | DO i = nxl, nxr |
---|
| 864 | DO j = nys, nyn |
---|
[63] | 865 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 866 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
[1] | 867 | ENDDO |
---|
| 868 | ENDDO |
---|
| 869 | |
---|
[1517] | 870 | ELSEIF ( sk_char == 'q' ) THEN |
---|
| 871 | |
---|
[1] | 872 | ! |
---|
[1517] | 873 | !-- Specific humidity boundary condition at the bottom boundary. |
---|
| 874 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
[1] | 875 | DO i = nxl, nxr |
---|
| 876 | DO j = nys, nyn |
---|
[1517] | 877 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 878 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 879 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
[1] | 880 | ENDDO |
---|
| 881 | ENDDO |
---|
| 882 | |
---|
| 883 | ! |
---|
[1517] | 884 | !-- Specific humidity boundary condition at the top boundary |
---|
| 885 | IF ( ibc_q_t == 0 ) THEN |
---|
| 886 | ! |
---|
| 887 | !-- Dirichlet |
---|
| 888 | DO i = nxl, nxr |
---|
| 889 | DO j = nys, nyn |
---|
| 890 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 891 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 892 | ENDDO |
---|
| 893 | ENDDO |
---|
[1] | 894 | |
---|
[1517] | 895 | ELSE |
---|
[1] | 896 | ! |
---|
[1517] | 897 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 898 | DO i = nxl, nxr |
---|
| 899 | DO j = nys, nyn |
---|
| 900 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 901 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_q_t_val * dzu(nzt+1) |
---|
| 902 | ENDDO |
---|
| 903 | ENDDO |
---|
[1] | 904 | |
---|
[1517] | 905 | ENDIF |
---|
[1] | 906 | |
---|
[1960] | 907 | ELSEIF ( sk_char == 's' ) THEN |
---|
| 908 | ! |
---|
| 909 | !-- Specific scalar boundary condition at the bottom boundary. |
---|
| 910 | !-- Dirichlet (fixed surface humidity) or Neumann (i.e. zero gradient) |
---|
| 911 | DO i = nxl, nxr |
---|
| 912 | DO j = nys, nyn |
---|
| 913 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 914 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 915 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 916 | ENDDO |
---|
| 917 | ENDDO |
---|
| 918 | |
---|
| 919 | ! |
---|
| 920 | !-- Specific scalar boundary condition at the top boundary |
---|
| 921 | IF ( ibc_s_t == 0 ) THEN |
---|
| 922 | ! |
---|
| 923 | !-- Dirichlet |
---|
| 924 | DO i = nxl, nxr |
---|
| 925 | DO j = nys, nyn |
---|
| 926 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 927 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 928 | ENDDO |
---|
| 929 | ENDDO |
---|
| 930 | |
---|
| 931 | ELSE |
---|
| 932 | ! |
---|
| 933 | !-- Neumann: dzu(nzt+2:3) are not defined, dzu(nzt+1) is used instead |
---|
| 934 | DO i = nxl, nxr |
---|
| 935 | DO j = nys, nyn |
---|
| 936 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 937 | sk_p(nzt+3,j,i) = sk_p(nzt+2,j,i) + bc_s_t_val * dzu(nzt+1) |
---|
| 938 | ENDDO |
---|
| 939 | ENDDO |
---|
| 940 | |
---|
| 941 | ENDIF |
---|
[2292] | 942 | ! |
---|
[4742] | 943 | !-- Specific boundary condition for bulk cloud species at the bottom boundary. |
---|
| 944 | ELSEIF ( sk_char == 'qc' .OR. sk_char == 'qg' .OR. sk_char == 'qi' .OR. & |
---|
| 945 | sk_char == 'qr' .OR. sk_char == 'qs' .OR. sk_char == 'nc' .OR. & |
---|
| 946 | sk_char == 'ng' .OR. sk_char == 'ni' .OR. sk_char == 'nr' .OR. & |
---|
| 947 | sk_char == 'ns') THEN |
---|
[2292] | 948 | ! |
---|
[4742] | 949 | !-- Bulk species boundary condition at the bottom boundary: |
---|
| 950 | !-- Dirichlet (fixed mixing ratio or number concenctration). |
---|
[2292] | 951 | DO i = nxl, nxr |
---|
| 952 | DO j = nys, nyn |
---|
[4502] | 953 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 954 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 955 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 956 | ENDDO |
---|
| 957 | ENDDO |
---|
| 958 | |
---|
| 959 | ! |
---|
[4742] | 960 | !-- Bulk species boundary condition at the top boundary: Dirichlet |
---|
[4502] | 961 | DO i = nxl, nxr |
---|
| 962 | DO j = nys, nyn |
---|
| 963 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 964 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 965 | ENDDO |
---|
| 966 | ENDDO |
---|
| 967 | |
---|
[1517] | 968 | ELSEIF ( sk_char == 'e' ) THEN |
---|
[1361] | 969 | |
---|
| 970 | ! |
---|
[1517] | 971 | !-- TKE boundary condition at bottom and top boundary (generally Neumann) |
---|
| 972 | DO i = nxl, nxr |
---|
| 973 | DO j = nys, nyn |
---|
| 974 | sk_p(nzb,j,i) = sk_p(nzb+1,j,i) |
---|
| 975 | sk_p(nzb-1,j,i) = sk_p(nzb,j,i) |
---|
| 976 | sk_p(nzb-2,j,i) = sk_p(nzb,j,i) |
---|
| 977 | sk_p(nzt+2,j,i) = sk_p(nzt+1,j,i) |
---|
| 978 | sk_p(nzt+3,j,i) = sk_p(nzt+1,j,i) |
---|
| 979 | ENDDO |
---|
[1361] | 980 | ENDDO |
---|
| 981 | |
---|
[1517] | 982 | ELSE |
---|
[1361] | 983 | |
---|
[4488] | 984 | WRITE( message_string, * ) 'no vertical boundary condition for variable "', sk_char, '"' |
---|
[1517] | 985 | CALL message( 'advec_s_bc', 'PA0158', 1, 2, 0, 6, 0 ) |
---|
[4488] | 986 | |
---|
[1517] | 987 | ENDIF |
---|
[1] | 988 | |
---|
| 989 | ! |
---|
[1517] | 990 | !-- Determine the maxima of the first and second derivative in z-direction |
---|
| 991 | fmax_l = 0.0_wp |
---|
[97] | 992 | DO i = nxl, nxr |
---|
| 993 | DO j = nys, nyn |
---|
[1517] | 994 | DO k = nzb, nzt+1 |
---|
| 995 | numera = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 996 | denomi = ABS( sk_p(k+1,j,i+1) - sk_p(k-1,j,i) ) |
---|
| 997 | fmax_l(1) = MAX( fmax_l(1) , numera ) |
---|
| 998 | fmax_l(2) = MAX( fmax_l(2) , denomi ) |
---|
| 999 | ENDDO |
---|
[97] | 1000 | ENDDO |
---|
| 1001 | ENDDO |
---|
[1] | 1002 | #if defined( __parallel ) |
---|
[1517] | 1003 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1004 | CALL MPI_ALLREDUCE( fmax_l, fmax, 2, MPI_REAL, MPI_MAX, comm2d, ierr ) |
---|
[1] | 1005 | #else |
---|
[1517] | 1006 | fmax = fmax_l |
---|
[1] | 1007 | #endif |
---|
| 1008 | |
---|
[1517] | 1009 | fmax = 0.04_wp * fmax |
---|
[1] | 1010 | |
---|
| 1011 | ! |
---|
[1517] | 1012 | !-- Allocate temporary arrays |
---|
[4488] | 1013 | ALLOCATE( a0(nzb:nzt+1,nys:nyn), a1(nzb:nzt+1,nys:nyn), a2(nzb:nzt+1,nys:nyn), & |
---|
| 1014 | a12(nzb:nzt+1,nys:nyn), a22(nzb:nzt+1,nys:nyn), immb(nzb+1:nzt,nys:nyn), & |
---|
| 1015 | imme(nzb+1:nzt,nys:nyn), impb(nzb+1:nzt,nys:nyn), impe(nzb+1:nzt,nys:nyn), & |
---|
| 1016 | ipmb(nzb+1:nzt,nys:nyn), ipme(nzb+1:nzt,nys:nyn), ippb(nzb+1:nzt,nys:nyn), & |
---|
| 1017 | ippe(nzb+1:nzt,nys:nyn), m1(nzb-1:nzt+2,nys:nyn), sw(nzb:nzt+1,nys:nyn) & |
---|
[1517] | 1018 | ) |
---|
| 1019 | imme = 0.0_wp; impe = 0.0_wp; ipme = 0.0_wp; ippe = 0.0_wp |
---|
[1] | 1020 | |
---|
[1517] | 1021 | DO i = nxl, nxr |
---|
[1] | 1022 | |
---|
| 1023 | ! |
---|
[1517] | 1024 | !-- Compute polynomial coefficients |
---|
| 1025 | DO j = nys, nyn |
---|
| 1026 | DO k = nzb, nzt+1 |
---|
| 1027 | a12(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
[4488] | 1028 | a22(k,j) = 0.5_wp * ( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1029 | a0(k,j) = ( 9.0_wp * sk_p(k+2,j,i) - 116.0_wp * sk_p(k+1,j,i) & |
---|
| 1030 | + 2134.0_wp * sk_p(k,j,i) - 116.0_wp * sk_p(k-1,j,i) & |
---|
| 1031 | + 9.0_wp * sk_p(k-2,j,i) & |
---|
| 1032 | ) * f1920 |
---|
| 1033 | a1(k,j) = ( -5.0_wp * sk_p(k+2,j,i) + 34.0_wp * sk_p(k+1,j,i) & |
---|
| 1034 | - 34.0_wp * sk_p(k-1,j,i) + 5.0_wp * sk_p(k-2,j,i) & |
---|
[1517] | 1035 | ) * f48 |
---|
[4488] | 1036 | a2(k,j) = ( -3.0_wp * sk_p(k+2,j,i) + 36.0_wp * sk_p(k+1,j,i) & |
---|
| 1037 | - 66.0_wp * sk_p(k,j,i) + 36.0_wp * sk_p(k-1,j,i) & |
---|
| 1038 | - 3.0_wp * sk_p(k-2,j,i) & |
---|
| 1039 | ) * f48 |
---|
[1517] | 1040 | ENDDO |
---|
[1] | 1041 | ENDDO |
---|
| 1042 | |
---|
| 1043 | ! |
---|
[1517] | 1044 | !-- Fluxes using the Bott scheme |
---|
| 1045 | DO j = nys, nyn |
---|
| 1046 | DO k = nzb+1, nzt |
---|
| 1047 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1048 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
| 1049 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1050 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 1051 | ip = a0(k,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1052 | + a1(k,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 1053 | + a2(k,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 1054 | im = a0(k+1,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1055 | - a1(k+1,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 1056 | + a2(k+1,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1057 | ip = MAX( ip, 0.0_wp ) |
---|
| 1058 | im = MAX( im, 0.0_wp ) |
---|
| 1059 | ippb(k,j) = ip * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1060 | impb(k,j) = im * MIN( 1.0_wp, sk_p(k+1,j,i) / (ip+im+1E-15_wp) ) |
---|
[1] | 1061 | |
---|
[1517] | 1062 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1063 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
| 1064 | cipf = 1.0_wp - 2.0_wp * cip |
---|
| 1065 | cimf = 1.0_wp - 2.0_wp * cim |
---|
[4488] | 1066 | ip = a0(k-1,j) * f2 * ( 1.0_wp - cipf ) & |
---|
| 1067 | + a1(k-1,j) * f8 * ( 1.0_wp - cipf*cipf ) & |
---|
[1517] | 1068 | + a2(k-1,j) * f24 * ( 1.0_wp - cipf*cipf*cipf ) |
---|
[4488] | 1069 | im = a0(k,j) * f2 * ( 1.0_wp - cimf ) & |
---|
| 1070 | - a1(k,j) * f8 * ( 1.0_wp - cimf*cimf ) & |
---|
[1517] | 1071 | + a2(k,j) * f24 * ( 1.0_wp - cimf*cimf*cimf ) |
---|
| 1072 | ip = MAX( ip, 0.0_wp ) |
---|
| 1073 | im = MAX( im, 0.0_wp ) |
---|
| 1074 | ipmb(k,j) = ip * MIN( 1.0_wp, sk_p(k-1,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1075 | immb(k,j) = im * MIN( 1.0_wp, sk_p(k,j,i) / (ip+im+1E-15_wp) ) |
---|
| 1076 | ENDDO |
---|
[1] | 1077 | ENDDO |
---|
| 1078 | |
---|
| 1079 | ! |
---|
[1517] | 1080 | !-- Compute monitor function m1 |
---|
| 1081 | DO j = nys, nyn |
---|
| 1082 | DO k = nzb-1, nzt+2 |
---|
| 1083 | m1z = ABS( sk_p(k+1,j,i) - 2.0_wp * sk_p(k,j,i) + sk_p(k-1,j,i) ) |
---|
| 1084 | m1n = ABS( sk_p(k+1,j,i) - sk_p(k-1,j,i) ) |
---|
| 1085 | IF ( m1n /= 0.0_wp .AND. m1n >= m1z ) THEN |
---|
| 1086 | m1(k,j) = m1z / m1n |
---|
| 1087 | IF ( m1(k,j) /= 2.0_wp .AND. m1n < fmax(2) ) m1(k,j) = 0.0_wp |
---|
| 1088 | ELSEIF ( m1n < m1z ) THEN |
---|
| 1089 | m1(k,j) = -1.0_wp |
---|
| 1090 | ELSE |
---|
| 1091 | m1(k,j) = 0.0_wp |
---|
| 1092 | ENDIF |
---|
| 1093 | ENDDO |
---|
[1] | 1094 | ENDDO |
---|
| 1095 | |
---|
| 1096 | ! |
---|
[1517] | 1097 | !-- Compute switch sw |
---|
| 1098 | sw = 0.0_wp |
---|
| 1099 | DO j = nys, nyn |
---|
| 1100 | DO k = nzb, nzt+1 |
---|
[4488] | 1101 | m2 = 2.0_wp * ABS( a1(k,j) - a12(k,j) ) / & |
---|
[1517] | 1102 | MAX( ABS( a1(k,j) + a12(k,j) ), 1E-35_wp ) |
---|
| 1103 | IF ( ABS( a1(k,j) + a12(k,j) ) < fmax(2) ) m2 = 0.0_wp |
---|
[1] | 1104 | |
---|
[4488] | 1105 | m3 = 2.0_wp * ABS( a2(k,j) - a22(k,j) ) / & |
---|
[1517] | 1106 | MAX( ABS( a2(k,j) + a22(k,j) ), 1E-35_wp ) |
---|
| 1107 | IF ( ABS( a2(k,j) + a22(k,j) ) < fmax(1) ) m3 = 0.0_wp |
---|
[1] | 1108 | |
---|
[1517] | 1109 | t1 = 0.35_wp |
---|
| 1110 | t2 = 0.35_wp |
---|
| 1111 | IF ( m1(k,j) == -1.0_wp ) t2 = 0.12_wp |
---|
[1] | 1112 | |
---|
[4488] | 1113 | IF ( m1(k-1,j) == 1.0_wp .OR. m1(k,j) == 1.0_wp .OR. m1(k+1,j) == 1.0_wp .OR. & |
---|
| 1114 | m2 > t2 .OR. m3 > t2 .OR. ( m1(k,j) > t1 .AND. m1(k-1,j) /= -1.0_wp .AND.& |
---|
| 1115 | m1(k,j) /= -1.0_wp .AND. m1(k+1,j) /= -1.0_wp ) & |
---|
[1517] | 1116 | ) sw(k,j) = 1.0_wp |
---|
| 1117 | ENDDO |
---|
[1] | 1118 | ENDDO |
---|
| 1119 | |
---|
| 1120 | ! |
---|
[1517] | 1121 | !-- Fluxes using exponential scheme |
---|
| 1122 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1123 | DO j = nys, nyn |
---|
| 1124 | DO k = nzb+1, nzt |
---|
[1] | 1125 | |
---|
[1517] | 1126 | IF ( sw(k,j) == 1.0_wp ) THEN |
---|
| 1127 | snenn = sk_p(k+1,j,i) - sk_p(k-1,j,i) |
---|
| 1128 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1129 | sterm = ( sk_p(k,j,i) - sk_p(k-1,j,i) ) / snenn |
---|
| 1130 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1131 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1132 | |
---|
[1517] | 1133 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1134 | |
---|
[1517] | 1135 | cip = MAX( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1136 | |
---|
[4488] | 1137 | ippe(k,j) = sk_p(k-1,j,i) * cip + snenn * ( & |
---|
| 1138 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1139 | eex(ix) - & |
---|
| 1140 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1141 | ) & |
---|
[1517] | 1142 | ) |
---|
| 1143 | IF ( sterm == 0.0001_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
| 1144 | IF ( sterm == 0.9999_wp ) ippe(k,j) = sk_p(k,j,i) * cip |
---|
[1] | 1145 | |
---|
[1517] | 1146 | snenn = sk_p(k-1,j,i) - sk_p(k+1,j,i) |
---|
| 1147 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1148 | sterm = ( sk_p(k,j,i) - sk_p(k+1,j,i) ) / snenn |
---|
| 1149 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1150 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1151 | |
---|
[1517] | 1152 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1153 | |
---|
[1517] | 1154 | cim = -MIN( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1155 | |
---|
[4488] | 1156 | imme(k,j) = sk_p(k+1,j,i) * cim + snenn * ( & |
---|
| 1157 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1158 | eex(ix) - & |
---|
| 1159 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1160 | ) & |
---|
[1517] | 1161 | ) |
---|
| 1162 | IF ( sterm == 0.0001_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1163 | IF ( sterm == 0.9999_wp ) imme(k,j) = sk_p(k,j,i) * cim |
---|
| 1164 | ENDIF |
---|
[1] | 1165 | |
---|
[1517] | 1166 | IF ( sw(k+1,j) == 1.0_wp ) THEN |
---|
| 1167 | snenn = sk_p(k,j,i) - sk_p(k+2,j,i) |
---|
[1691] | 1168 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
[1517] | 1169 | sterm = ( sk_p(k+1,j,i) - sk_p(k+2,j,i) ) / snenn |
---|
| 1170 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1171 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1172 | |
---|
[1517] | 1173 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1174 | |
---|
[1517] | 1175 | cim = -MIN( 0.0_wp, w(k,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1176 | |
---|
[4488] | 1177 | impe(k,j) = sk_p(k+2,j,i) * cim + snenn * ( & |
---|
| 1178 | aex(ix) * cim + bex(ix) / dex(ix) * ( & |
---|
| 1179 | eex(ix) - & |
---|
| 1180 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cim ) ) & |
---|
| 1181 | ) & |
---|
[1517] | 1182 | ) |
---|
| 1183 | IF ( sterm == 0.0001_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1184 | IF ( sterm == 0.9999_wp ) impe(k,j) = sk_p(k+1,j,i) * cim |
---|
| 1185 | ENDIF |
---|
[1] | 1186 | |
---|
[1517] | 1187 | IF ( sw(k-1,j) == 1.0_wp ) THEN |
---|
| 1188 | snenn = sk_p(k,j,i) - sk_p(k-2,j,i) |
---|
| 1189 | IF ( ABS( snenn ) < 1E-9_wp ) snenn = 1E-9_wp |
---|
| 1190 | sterm = ( sk_p(k-1,j,i) - sk_p(k-2,j,i) ) / snenn |
---|
| 1191 | sterm = MIN( sterm, 0.9999_wp ) |
---|
| 1192 | sterm = MAX( sterm, 0.0001_wp ) |
---|
[1] | 1193 | |
---|
[1517] | 1194 | ix = INT( sterm * 1000 ) + 1 |
---|
[1] | 1195 | |
---|
[1517] | 1196 | cip = MAX( 0.0_wp, w(k-1,j,i) * dt_3d * ddzw(k) ) |
---|
[1] | 1197 | |
---|
[4488] | 1198 | ipme(k,j) = sk_p(k-2,j,i) * cip + snenn * ( & |
---|
| 1199 | aex(ix) * cip + bex(ix) / dex(ix) * ( & |
---|
| 1200 | eex(ix) - & |
---|
| 1201 | EXP( dex(ix)*0.5_wp * ( 1.0_wp - 2.0_wp * cip ) ) & |
---|
| 1202 | ) & |
---|
[1517] | 1203 | ) |
---|
| 1204 | IF ( sterm == 0.0001_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1205 | IF ( sterm == 0.9999_wp ) ipme(k,j) = sk_p(k-1,j,i) * cip |
---|
| 1206 | ENDIF |
---|
[1] | 1207 | |
---|
[1517] | 1208 | ENDDO |
---|
[1] | 1209 | ENDDO |
---|
[1517] | 1210 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'pause' ) |
---|
[1] | 1211 | |
---|
| 1212 | ! |
---|
[1517] | 1213 | !-- Prognostic equation |
---|
| 1214 | DO j = nys, nyn |
---|
| 1215 | DO k = nzb+1, nzt |
---|
[4488] | 1216 | fplus = ( 1.0_wp - sw(k,j) ) * ippb(k,j) + sw(k,j) * ippe(k,j) & |
---|
| 1217 | - ( 1.0_wp - sw(k+1,j) ) * impb(k,j) - sw(k+1,j) * impe(k,j) |
---|
| 1218 | fminus = ( 1.0_wp - sw(k-1,j) ) * ipmb(k,j) + sw(k-1,j) * ipme(k,j) & |
---|
| 1219 | - ( 1.0_wp - sw(k,j) ) * immb(k,j) - sw(k,j) * imme(k,j) |
---|
[1517] | 1220 | tendcy = fplus - fminus |
---|
[1] | 1221 | ! |
---|
[1517] | 1222 | !-- Removed in order to optimise speed |
---|
| 1223 | ! ffmax = MAX( ABS( fplus ), ABS( fminus ), 1E-35_wp ) |
---|
| 1224 | ! IF ( ( ABS( tendcy ) / ffmax ) < 1E-7_wp ) tendcy = 0.0 |
---|
[1] | 1225 | ! |
---|
[1517] | 1226 | !-- Density correction because of possible remaining divergences |
---|
| 1227 | d_new = d(k,j,i) - ( w(k,j,i) - w(k-1,j,i) ) * dt_3d * ddzw(k) |
---|
[4488] | 1228 | sk_p(k,j,i) = ( ( 1.0_wp + d(k,j,i) ) * sk_p(k,j,i) - tendcy ) / ( 1.0_wp + d_new ) |
---|
[1] | 1229 | ! |
---|
[1517] | 1230 | !-- Store heat flux for subsequent statistics output. |
---|
[4488] | 1231 | !-- Array m1 is here used as temporary storage |
---|
[1517] | 1232 | m1(k,j) = fplus / dt_3d * dzw(k) |
---|
| 1233 | ENDDO |
---|
[1] | 1234 | ENDDO |
---|
| 1235 | |
---|
| 1236 | ! |
---|
[4488] | 1237 | !-- Sum up heat flux in order to obtain horizontal averages |
---|
[1517] | 1238 | IF ( sk_char == 'pt' ) THEN |
---|
| 1239 | DO sr = 0, statistic_regions |
---|
| 1240 | DO j = nys, nyn |
---|
| 1241 | DO k = nzb+1, nzt |
---|
[4488] | 1242 | sums_wsts_bc_l(k,sr) = sums_wsts_bc_l(k,sr) + m1(k,j) * rmask(j,i,sr) |
---|
[1517] | 1243 | ENDDO |
---|
[1] | 1244 | ENDDO |
---|
| 1245 | ENDDO |
---|
[1517] | 1246 | ENDIF |
---|
[1] | 1247 | |
---|
[4488] | 1248 | ENDDO |
---|
| 1249 | ! |
---|
| 1250 | !-- End of the advection in z-direction |
---|
| 1251 | |
---|
[1517] | 1252 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'continue' ) |
---|
| 1253 | CALL cpu_log( log_point_s(12), 'advec_s_bc:exp', 'stop' ) |
---|
[1] | 1254 | |
---|
| 1255 | ! |
---|
[1517] | 1256 | !-- Deallocate temporary arrays |
---|
[4488] | 1257 | DEALLOCATE( a0, a1, a2, a12, a22, immb, imme, impb, impe, ipmb, ipme, ippb, ippe, m1, sw ) |
---|
[1] | 1258 | |
---|
| 1259 | ! |
---|
[1517] | 1260 | !-- Store results as tendency and deallocate local array |
---|
| 1261 | DO i = nxl, nxr |
---|
| 1262 | DO j = nys, nyn |
---|
| 1263 | DO k = nzb+1, nzt |
---|
| 1264 | tend(k,j,i) = tend(k,j,i) + ( sk_p(k,j,i) - sk(k,j,i) ) / dt_3d |
---|
| 1265 | ENDDO |
---|
[1] | 1266 | ENDDO |
---|
| 1267 | ENDDO |
---|
| 1268 | |
---|
[1517] | 1269 | DEALLOCATE( sk_p ) |
---|
[1] | 1270 | |
---|
[1517] | 1271 | END SUBROUTINE advec_s_bc |
---|
| 1272 | |
---|
| 1273 | END MODULE advec_s_bc_mod |
---|