= Urban surface model (USM) = [[TracNav(doc/app/partoc|nocollapse)]] Main page of the urban surface model under construction. Click [wiki:doc/app/urban_surface_parameters here] for first information about capabilities and model steering. Also available, the related article ''PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model'' (Resler et al., Geosci. Model Dev., 10, 3635–3659, [https://doi.org/10.5194/gmd-10-3635-2017 10.5194/gmd-10-3635-2017]) [[NoteBox(note,This page is part of the **Urban Surface Mod** (USM) documentation. \\ It describes the physical and numerical realization of the USM. \\ Please also see the **[wiki:doc/app/urban_surface_parameters namelist parameters]**., 450px)]] == Overview == Since r19xx an urban surface model (USM) is available in PALM (see [source:palm/trunk/SOURCE/urban_surface_mod.f90 urban_surface_mod.f90]). It consists of a multi layer wall and soil model, predicting wall and soil temperature and moisture content, and a solver for the energy balance, predicting the temperature of the surface or the skin layer. Urban surfaces (building surfaces) are simulated using a tile approach. Each surface element consists of a fraction of bare wall/ roof, window and green elements (green roofs/ facades) with underlying soil layers (green roofs only) and a bare wall/ roof structure. == Energy balance solver == The energy balance of the urban surfaces reads {{{ #!Latex \begin{equation*} C_0 \dfrac{dT_0}{dt} = R_\mathrm{n} - H - LE - G \end{equation*} }}} where ''C'',,0,, and ''T'',,0,, are the heat capacity and radiative temperature of the surface skin layer, respectively. Note that ''C'',,0,, is usually zero as it is assumed that the skin layer does not have a heat capacity (see also below). ''R'',,n,,, ''H'', ''LE'', and ''G'' are the net radiation, sensible heat flux, latent heat flux, and ground (soil) heat flux at the surface, respectively. The energy balance is calculated for each urban surface tile individually and the three radiation surface temperatures are combined together. The parametrisation of the sensible heat flux, latent heat flux and ground heat flux of the wall/ window/ soil is equivalent to the Land Surface Model (LSM). The wall heat and green heat model consist of prognostic equations for the bare, window and soil temperature and the volumetric soil moisture which are solved for multiple layers. The models only take transport into account that is orthogonal to the urban surface layer orientation and no ice phase is considered. By default, the wall heat model and the green heat soil model consists of four layers each (see Fig. 1 below), in which the orthogonal heat and water transport inside the soil is modelled. [[Image(urban_surfaces.png,600px, border=1)]] Figure 1: urban surfaces (bare, window, green - horizontal and vertical) in PALM-4U The physical properties of the urban surfaces and wall, window and green soil elements can be set using values from a building database where different types of buildings are defined. The insulation value of windows are there only characterized by the U-value and and the heat capacity and heat conductivity is evenly distributed (no real glas or gas layers are taken into account. The green heat model calculates the transport of soil moisture but neglects the extraction of water from the respective soil layers. === Window transmissivity: representation === The radiant flux received by the window (incident radiant flux, Φ,,I,,) is partially reflected back (Φ,,R,,), partially absorbed by the mass of the glass (Φ,,A,, which is simulated by four discretized layers of window depth) and partially transmitted through the window, where the transmitted flux Φ,,T,, may be processed by the indoor model (if enabled), therefore {{{ #!Latex \[ \Phi_{\mathrm{I}}=\Phi_{\mathrm{R}}+\Phi_{\mathrm{A}}+\Phi_{\mathrm{T}} \] }}} Most of the reflection happens as specular reflection on the frontal and rear boundary between the glass and air. The radiant flux reflected at the rear boundary is partially reflected again at the frontal boundary, then partially at the rear boundary again and so on, however, these fluxes are typically negligible, as are the non-specular reflections, the absorption of the reflected fluxes and the scattering inside the glass; a bias can be avoided by adjusting the parameters of the non-neglected processes. The reflected radiant flux can thus be simplified as Φ,,R,,=Φ,,RF,,+Φ,,RR,,, where Φ,,RF,, is the radiant flux reflected at the frontal boundary and Φ,,RR,, is the radiant flux reflected at the rear boundary. The ''total transmissivity'' ''T''=Φ,,T,,/Φ,,I,, is the fraction of transmitted and received radiant flux, i.e. it includes loss by reflection and absorption together. The ''internal transmissivity'' ''T'',,I,,=Φ,,TT,,/Φ,,TI,, describes the loss by absorption by a single pass of the light through the glass, where Φ,,TI,,=Φ,,I,,-Φ,,RF,, is the radiant flux entering the glass after frontal boundary reflection and Φ,,TT,,=Φ,,TI,,-Φ,,A,, is the radiant flux leaving the glass before rear boundary reflection. The ''frontal reflectivity'' ''R'',,F,,=Φ,,RF,,/Φ,,I,, and ''rear reflectivity'' ''R'',,R,,=Φ,,RR,,/Φ,,TT,, express the fraction of radiant flux reflected at each boundary. Together, the radiant flux passing through the glass can be described sequentially as it is diminished by frontal reflection, absorption and rear reflection. (2) describes this process additively while (1) describes the fractions multiplicatively: {{{ #!Latex \begin{align} T & =(1-R_{\mathrm{F}})T_{\mathrm{I}}(1-R_{\mathrm{R}})\\ \Phi_{\mathrm{T}} & =\Phi_{\mathrm{I}}-\Phi_{\mathrm{RF}}-\Phi_{\mathrm{A}}-\Phi_{\mathrm{RR}} \end{align} }}} The internal transmissivity is described by the Beer–Lambert law. For a homogeneous material with width ''z'', it is equal to {{{ #!Latex \[ T_{\mathrm{I}}=e^{-az} \] }}} where ''a'' is the absorption (attenuation) coefficient. === Window transmissivity: modelling === The window fraction of surfaces in PALM is described by two parameters: `albedo` (total reflectivity in the respective band, ''R''=Φ,,R,,/Φ,,I,,) and `transmissivity` (total, ''T''). The frontal and rear reflectivities of glass are similar. From simple Fresnel equations they are equal, in reality the frontal reflectivity is slightly stronger. In PALM they are modelled as equal and they are calculated from the total reflectivity. {{{ #!Latex \begin{align*} \Phi_{\mathrm{R}} & =\Phi_{\mathrm{RF}}+\Phi_{\mathrm{RR}}\\ \Phi_{\mathrm{R}} & =\Phi_{\mathrm{I}}R_{\mathrm{F}}+(\Phi_{\mathrm{T}}+\Phi_{\mathrm{R}}-\Phi_{\mathrm{RF}})R_{\mathrm{R}}\\ R & =R_{\mathrm{F}}+(T+R-R_{\mathrm{F}})R_{\mathrm{R}} \end{align*} }}} Using ''R'',,F,,=''R'',,R,, we get: {{{ #!Latex \[ R_{\mathrm{F}}=\frac{R+T+1-\sqrt{(R+T+1)^{2}-4R}}{2} \] }}} In order to simulate the absorption by the discretized window layers, the absorption coefficient has to be calculated from the parameters: {{{ #!Latex \begin{align*} T_{\mathrm{I}} & =\frac{\Phi_{\mathrm{TT}}}{\Phi_{\mathrm{TI}}}\\ T_{\mathrm{I}} & =\frac{\Phi_{\mathrm{T}}+\Phi_{\mathrm{R}}-\Phi_{\mathrm{RF}}}{\Phi_{\mathrm{I}}(1-R_{\mathrm{F}})}\\ e^{-az} & =\frac{T+R-R_{\mathrm{F}}}{1-R_{\mathrm{F}}}\\ a & =\frac{-\log\frac{T+R-R_{\mathrm{F}}}{1-R_{\mathrm{F}}}}{z} \end{align*} }}} In the prognostic equations, the absorbed flux is added to the temperature tendency in the Runge–Kutta method for each layer ''l'', depending on layer width and. The absorbed flux is equal to {{{ #!Latex \[ \Phi_{\mathrm{A},l}=\Phi_{\mathrm{I}}(1-R_{\mathrm{F}})(e^{-az_{l-1}}-e^{-az_{l}}) \] }}} where ''z'',,''l''-1,, is the depth of the previous layer (cumulative width of all previous layers) and ''z'',,''l'',, is the depth of layer ''l''. === Boundary conditions === Neumann boundary conditions are used for the transport of heat at the upper boundary (surface). The values are given by the energy balance. At the bottom boundary either a fixed temperature of the inner wall and window layers is set or the ground heat flux from the inner wall and window surface is used that is calculated by the indoor model (Dirichlet conditions). == Building database == A model database is used for the parametrization of the building indoor model and the urban surface model. The database provides building physical parameters of the building envelope, geometry data and operational data (incl. user behavior, control strategies and technical building services). The only available building information is often the age of the building, its construction material of façade and coating, the façade and window area, and the cubature. Hence, the model database defines all building physical parameters and operational data based on those basic parameters according to a building typology ([#IWU18 Helbig et. al., 2018]). The model database contains four areas: // - The building description is based on geometry, fabric, window fraction and ventilation models. // - The user description is based on (stochastic) user models regarding window opening and use of solar control, and user profiles regarding attendance and internal heat gains. // - The person description is based on the metabolic rate and the clothing value. // - The HVAC energy supply system is simulated with simplified models based on characteristic line models (considering the applicable standards) for different air-conditioning concepts. The model database contains also operation strategies for the energy supply system. // The parametrization of the façade is separated in four different parts: - **Roof** - **Above Ground floor level façade** second floor, where normally residential areas take place - **Ground floor level façade** the first floor, where nonresidential areas like shops with store windows in residential buildings could be. This could reason for example a higher window surface, than in residential buildings. - **Ground plate** parameters integrated, algorithm not integrated in source code yet All of these parts are separated in four layers of different material. For façades and roof it´s possible to add an optional surface layer for greening (see [#figure2 figure 2]). [=#figure2][[Image(Mosaik_building_database_fig2.png,400px, border=1)]] Figure 2: structure of the building construction for parametization in PALM-4U The standard database contains six building types according to the German building topology ([#IWU18 Helbig et. al., 2018]), i.e. building age from the 1920s, 1970s and the 1990s for residential and non-residential buildings. Furthermore, there is a non-building type for bridges or car parks. The summer heat protection corresponds to the minimum requirements with regard to [#DIN4108-2 DIN 4108-2 (2013)]. Typical attendance and internal heat gains are taken from [#DIN18599 DIN V 18599 (2011)] and empirical values ([#Voss Voss et al., 2006]). === Parameterlist === || '''Building year''' || || || || ||before 1950||1950-2000||after 2000|| || || || || || || || || || || || || || || || || ''ISE typology'' || 1920er || 1970er || passive house || || || || || || on the base of ([#IWU18 Helbig et. al., 2018]) || MFH_B || MFH_F || RH_J || || || || || '''arameter number [#sup1 (1)]''' || parameter name || symbol/unit || || || || description || || '''GEOMETRIE''' || || 132 || height_storey || h[''m''] || 2.90 || 2.50 || 2.70 || height of the storey || || || || 133 || heigth_cei_con || d[''m''] || 0.20 || 0.20 || 0.20 || clear space for ventilation || || || || 1 agfl, 22gfl, 102 r || AF/AW || [''m2/m2''] || 0.18 || 0.25 || 0.29 || window fraction || || || || 0 agfl, 21 gfl, 89 r, 51 gp || AF/AW || [''m2/m2''] || 0.82 || 0.75 || 0.71 || wall fraction || || || || 2 agfl, 3 agflr, 23 gfl, 24 gflr || AF/AW || [''m2/m2''] || 0.00 || 0.00 || 0.00 || green fraction || || || || 20 || gflh || [''m''] || 2.90 || 2.50 || 2.70 || ground floor level height || || || || || || || || || || || || '''GLOBAL PRARMAETERS''' || || 124 || eta_ve || WRG[-] || 0.00 || 0.00 || 0.80 || heat recovery || || || || 125 || factor_a || [''m2/m2''] || 3.00 || 3.50 || 2.50 || specific effective surface || || || || 126 || factor_c || [''J/m2/K''] || 260000.00 || 370000.00 || 165000.00 || inner heat storage capacity || || || || 127 || lambda_at || [''m2/m2''] || 4.50 || 4.50 || 4.50 || view factor || || || || 128 || phi_h_max || [''W/m2''] || 100.00 || 80.00 || 40.00 || max. spec. Heating capacity || || || || 129 || phi_c_max || [''W/m2''] || 0.00/-100.00 || 0.00/-120.00 || 0.00/-80.00 || max. spec. Cooling capacity (ZERO for residential buildings) || || || || || heating / cooling technology || || gas boiler / cooling unit || district heating / adsorption chiller || heatpump / thermal componing activation || || || || 134 || waste heat for heating || [''W,,wasteheat,,/W,,netto_energy,,''] || 0.10 || 0.00 || -2.00 || waste heat heating || || || || 135 || waste heat for cooling || [''W,,wasteheat,,/W,,netto_energy,,''] || 1.33 || 2.54 || 1.25 || waste heat cooling || || || || || || || || || || || || '''WINDOWS''' just glas without window frame || || || window type || || box type window || double-layer glazing || tripple-layer glazing || [#DIN4108-4 DIN 4108-4] || || || || 121 || U-value for indoor model || U[''W/m2/K''] || 2.90 || 1.70 || 0.80 || [#DIN4108-4 DIN 4108-4] || || || || 120 || g-value for indoor model || g[''-''] || 0.80 || 0.70 || 0.60 || || || || Layer 1-4 || 17 agfl, 35 gfl, 114 r || transmissivity || tau[''-''] || 0.70 || 0.65 || 0.57 || || || || || || albedo || [''-''] || 0.12 || 0.15 || 0.18 || || || || || 40 agfl, 77 gfl, 115 r || albedo_type || [''-''] || 37 || 37 || 38 || specified in [wiki:doc/app/radiation_parameters radiation model] || || || || 119 || indoor model || FC[''-''] || 0.75 || 0.75 || 0.15 || [#DIN4108-2DIN 4108-2], reduced || || || || 49 || tc[thermal capacity] of surface || lambdaS[''W/m2/K''] || 23.00 || 23.00 || 23.00 || 1 cm air || || || || 47 || hc [heat capacity] of surface || rho x cS[''J/m2/K''] || 20000.00 || 20000.00 || 20000.00 || 1 cm air || || || || || shading type || || curtain, inside || curtain, inside || blinds, outside || || || || || || || || || || || || || || || 16 agfl, 33 gfl, 113 r || emissivity || epsilon[''-''] || 0.91 || 0.87 || 0.80 || just longwave radiation || || || || 67-70 gfl, 79-82 agfl, 103-106 r || thick [thickness] [#sup2 (2)] || s[''m''] || 0.02 || 0.02 || 0.03 || approximatly || || || || 86-87, 145 agfl, 74-76, 143 gfl, 110-112, 149 r || tc [thermal capacity] || lambda[''W/m/K''] || 0.45 || 0.19 || 0.11 || || || || || || || rho[''kg/m3''] || 2480.00 || 2480.00 || 2480.00 || || || || || || || c[''J/kg/K''] || 700.00 || 700.00 || 700.00 || || || || || 71-73, 142 gfl, 83-85, 144 agfl, 107-109, 148 r || hc [heat capacity] || rho x c[''J/m3/K''] || 1736000.00 || 1736000.00 || 1736000.00 || || || || || || || T1[''s''] || 1531.00 || 3643.00 || 14081.00 || || || || || || || a[''mm2/s''] || 0.26 || 0.11 || 0.06 || || || || || || || || || || || || || || || resulting U value [#sup3 (3)] || U[''W/m2/K''] || 2.90 || 1.70 || 0.80 || || || || || || || || || || || || '''FACADE''' || layer 1 (outside) || || material || || mortar plaster || mortar plaster || mortar plaster || [#DIN4108-4 DIN 4108-4] || || || || 46 || tc[thermal capacity] of surface || lambdaS[''W/m2/K''] || 23.00 || 23.00 || 23.00 || 1 cm air || || || || 45 || hc [heat capacity] of surface || rho x cS[''J/m2/K''] || 20000.00 || 20000.00 || 20000.00 || 1 cm air || || || || 38 agfl, 66 gfl || albedo_type || [''-''] || 36 || 36 || 36 || specified in [wiki:doc/app/radiation_parameters radiation model] || || || || 14 agfl, 32 gfl || emissivity || epsilon[''-''] || 0.93 || 0.93 || 0.93 || emissivity only for facade in indoor model implemented as h_is || || || || || || || || || || || || || || 41 agfl, 62 gfl || thick [thickness] [#sup2 (2)] || s[''m''] || 0.02 || 0.02 || 0.02 || || || || || 9 agfl, 29 gfl || tc [thermal capacity] || lambda[''W/m/K''] || 0.93 || 0.93 || 0.93 || || || || || || || rho[''kg/m3''] || 1900.00 || 1900.00 || 1900.00 || || || || || || || c[''J/kg/K''] || 800.00 || 800.00 || 800.00 || || || || || 6 agfl, 26 gfl || hc [heat capacity] || rho x c[''J/m3/K''] || 1520000.00 || 1520000.00 || 1520000.00 || || || || || || || T1[''s''] || 654.00 || 654.00 || 654.00 || || || || || || || a[''mm2/s''] || 0.61 || 0.61 || 0.61 || || || layer 2 || || material || || solid brick || thermal insulation || thermal insulation || [#DIN4108-4 DIN 4108-4] || || || || 42 agfl, 63 gfl || thick [thickness] [#sup2 (2)] || s[''m''] || 0.18 || 0.06 || 0.20 || || || || || 10 agfl, 30 gfl || tc [thermal capacity] || lambda[''W/m/K''] || 0.81 || 0.046 || 0.035 || || || || || || || rho[''kg/m3''] || 1800.00 || 120.00 || 120.00 || || || || || || || c[''J/kg/K''] || 840.00 || 660.00 || 660.00 || || || || || 7 agfl, 27 gfl || hc [heat capacity] || rho x c[''J/m3/K''] || 1512000.00 || 79200.00 || 79200.00 || || || || || || || T1[s] || 60480.00 || 6198.00 || 90514.00 || || || || || || || a[''mm2/s''] || 0.54 || 0.58 || 0.44 || || || || || || material || || solid brick || concrete || brick || [#DIN4108-4 DIN 4108-4] || || || layer 3 || 43 agfl, 64 gfl || thick [thickness] || s[''m''] || 0.18 || 0.24 || 0.36 || || || || || 11 agfl, 31 gfl || tc [thermal capacity] || lambda[''W/m/K''] || 0.81 || 2.10 || 0.68 || || || || || || || rho[''kg/m3''] || 1800.00 || 2400.00 || 1600.00 || || || || || || || c[''J/kg/K''] || 840.00 || 880.00 || 840.00 || || || || || 8 agfl, 28 gfl || hc [heat capacity] || rho x c[''J/m3/K''] || 1512000.00 || 2112000.00 || 1344000.00 || || || || || || || T1[''s''] || 60480.00 || 57929.00 || 256151.00 || || || || || || || a[''mm2/s''] || 0.54 || 0.99 || 0.51 || || || || layer 4 (inside) || || material || || gypsum plaster || gypsum plaster || gypsum plaster || [#DIN4108-4 DIN 4108-4] || || || || 44 agfl, 65 gfl || thick [thickness] [#sup2 (2)] || s[''m''] || 0.02 || 0.02 || 0.02 || || || || || 137 agfl, 138 gfl || tc [thermal capacity] || lambda[''W/m/K''] || 0.70 || 0.70 || 0.70 || || || || || || || rho[''kg/m3''] || 1400.00 || 1400.00 || 1400.00 || || || || || || || c[''J/kg/K''] || 1090.00 || 1090.00 || 1090.00 || || || || || 136 agfl, 139 gfl || hc [heat capacity] || rho x c[''J/m3/K''] || 1526000.00 || 1526000.00 || 1526000.00 || || || || || || || T1[''s''] || 872.00 || 872.00 || 872.00 || || || || || || || a[''mm2/s''] || 0.46 || 0.46 || 0.46 || || || || || || || || || || || || || || || || resulting U value [#sup3 (3)] || U[''W/m2/K''] || 1.57 || 0.62 || 0.16 || || || || || || || || || || || || || '''ROOF''' || layer 1 (outside) || || material || || roof tiles || bitumen || ground [#sup4 (4)] || [#DIN4108-4 DIN 4108-4] || || || || 101 || albedo_type || [''-''] || 42 || 42 || 42 || specified in [wiki:doc/app/radiation_parameters radiation model] || || || || 100 || emissivity || epsilon[''-''] || 0.90 || 0.93 || 0.93 || || || || || 90 || thick [thickness] [#sup2 (2)] || s[''m''] || 0.02 || 0.02 || 0.02 || || || || || 97 || tc [thermal capacity] || lambda[''W/m/K''] || 0.52 || 0.16 || 0.52 || || || || || || || rho[''kg/m3''] || 1800.00 || 1000.00 || 2040.00 || || || || || || || c[''J/kg/K''] || 840.00 || 1700.00 || 1840.00 || || || || || 94 || hc [heat capacity] || rho x c[''J/m3/K''] || 1512000.00 || 1700000.00 || 3753600.00 || || || || || || || T1[''s''] || 1163.00 || 4250.00 || 2887.00 || || || || || || || a[''mm2/s''] || 0.34 || 0.09 || 0.14 || || || || layer 2 || || material || || wooden formwork || thermal insulation || wooden formwork || [#DIN4108-4 DIN 4108-4] || || || || 91 || thick [thickness] [#sup2 (2)] || s[''m''] || 0.04 || 0.15 || 0.04 || || || || || 98 || tc [thermal capacity] || lambda[''W/m/K''] || 0.12 || 0.046 || 0.12 || || || || || || || rho[''kg/m3''] || 415.00 || 120.00 || 415.00 || || || || || || || c[''J/kg/K''] || 1710.00 || 660.00 || 1,710.00 || || || || || 95 || hc [heat capacity] || rho x c[''J/m3/K''] || 709650.00 || 79200.00 || 709650.00 || || || || || || || T1[''s''] || 9462 || 38739.00 || 9462.00 || || || || || || || a[''mm2/s''] || 0.17 || 0.58 || 0.17 || || || || layer 3 || || material || || planks || concrete || thermal insulation || [#DIN4108-4 DIN 4108-4] || || || || 92 || thick [thickness] [#sup2 (2)] || s[''m''] || 0.02 || 0.20 || 0.30 || || || || || 99 || tc [thermal capacity] || lambda[''W/m/K''] || 0.12 || 2.10 || 0.035 || || || || || || || rho[''kg/m3''] || 415.00 || 2400.00 || 120.00 || || || || || || || c[''J/kg/K''] || 1710.00 || 880.00 || 660.00 || || || || || 96 || hc [heat capacity] || rho x c[''J/m3/K''] || 709650.00 || 2112000.00 || 79200.00 || || || || || || || T1[''s''] || 2366.00 || 40229.00 || 203657.00 || || || || || || || a[''mm2/s''] || 0.17 || 0.99 || 0.44 || || || || layer 4 (inside) || || material || || gypsum plast || gypsum plast || gypsum plast || [#DIN4108-4 DIN 4108-4] || || || || 93 || thick [thickness] [#sup2 (2)] || s[''m''] || 0.02 || 0.02 || 0.02 || || || || || 147 || tc [thermal capacity] || lambda[''W/m/K''] || 0.70 || 0.70 || 0.70 || || || || || || || rho[''kg/m3''] || 1400.00 || 1400.00 || 1400.00 || || || || || || || c[''J/kg/K''] || 1090.00 || 1090.00 || 1090.00 || || || || || 146 || hc [heat capacity] || rho x c[''J/m3/K''] || 1526000.00 || 1526000.00 || 1526000.00 || || || || || || || T1[''s''] || 872.00 || 872.00 || 872.00 || || || || || || || a[''mm2/s''] || 0.46 || 0.46 || 0.46 || || || || || || || || || || || || || || || || resulting U value [#sup3 (3)] || U[''W/m2/K''] || 1.41 || 0.27 || 0.11 || || || || || || || || || || || || || '''GROUNDPLATE''' || layer 1 (outside) || || material || || solid brick || concrete || concrete || [#DIN4108-4 DIN 4108-4] || || || || 52 || thick [thickness] [#sup2 (2)] || s[''m''] || 0.18 || 0.20 || 0.20 || || || || || 59 || tc [thermal capacity] || lambda[''W/m/K''] || 0.52 || 2.10 || 2.10 || || || || || || || rho[''kg/m3''] || 1800.00 || 2400.00 || 2400.00 || || || || || || || c[''J/kg/K''] || 840.00 || 880.00 || 880.00 || || || || || 56 || hc [heat capacity] || rho x c[''J/m3/K''] || 1512000.00 || 2112000.00 || 2112000.00 || || || || || || || T1[''s''] || 94209.00 || 40229.00 || 40229.00 || || || || || || || a[''mm2/s''] || 0.34 || 0.99 || 0.99 || || || || layer 2 || || material || || solid brick || thermal insulation || thermal insulation || [#DIN4108-4 DIN 4108-4] || || || || 53 || thick [thickness] [#sup2 (2)] || s[''m''] || 0.18 || 0.06 || 0.12 || || || || || 60 || tc [thermal capacity] || lambda[''W/m/K''] || 0.52 || 0.05 || 0.05 || || || || || || || rho[''kg/m3''] || 1800.00 || 120.00 || 120.00 || || || || || || || c[''J/kg/K''] || 840.00 || 660.00 || 660.00 || || || || || 57 || hc [heat capacity] || rho x c[''J/m3/K''] || 1512000.00 || 79200.00 || 79200.00 || || || || || || || T1[''s''] || 94209.00 || 5702.00 || 22810.00 || || || || || || || a[''mm2/s''] || 0.34 || 0.63 || 0.63 || || || || layer 3 || || material || || screed || screed || screed || [#DIN4108-4 DIN 4108-4] || || || || 54 || thick [thickness] [#sup2 (2)] || s[''m''] || 0.06 || 0.06 || 0.06 || || || || || 61 || tc [thermal capacity] || lambda[''W/m/K''] || 2.10 || 2.10 || 2.10 || || || || || || || rho[''kg/m3''] || 2400.00 || 2400.00 || 2400.00 || || || || || || || c[''J/kg/K''] || 880.00 || 880.00 || 880.00 || || || || || 58 || hc [heat capacity] || rho x c[''J/m3/K''] || 2112000.00 || 2112000.00 || 2112000.00 || || || || || || || T1[''s''] || 3621.00 || 3621.00 || 3621.00 || || || || || || || a[''mm2/s''] || 0.99 || 0.99 || 0.99 || || || || layer 4 (inside) || || material || || floor board || carpet || floor board || [#DIN4108-4 DIN 4108-4] || || || || 55 || thick [thickness] [#sup2 (2)] || s[''m''] || 0.03 || 0.02 || 0.03 || || || || || 141 || tc [thermal capacity] || lambda[''W/m/K''] || 0.12 || 0.04 || 0.12 || || || || || || || rho[''kg/m3''] || 415.00 || 190.00 || 415.00 || || || || || || || c[''J/kg/K''] || 1710.00 || 1880.00 || 1710.00 || || || || || 140 || hc [heat capacity] || rho x c[''J/m3/K''] || 709650.00 || 357200.00 || 709650.00 || || || || || || || T1[''s''] || 5322.00.00 || 3572.00 || 5322.00 || || || || || || || a[''mm2/s''] || 0.17 || 0.11 || 0.17 || || || || || || || || || || || || || || || || resulting U value [#sup3 (3)] || U[''W/m2/K''] || 1.12 || 0.67 || 0.37 || || || || '''GREEN''' || Surface || 4 r, 5 agfl, 25 gfl || LAI [Leaf area index] || LAI[''m2/m2''] || 1.50 || 1.50 || 1.50 || || || || || 39 agfl, 78 gfl, 117 r || albedo_type || [''-''] || 5 || 5 || 5 || specified in [wiki:doc/app/radiation_parameters radiation model]|| || || || 15 agfl, 34 gfl, 116 r || emissivity || epsilon[''-''] || 0.86 || 0.86 || 0.86 || || || || || 118 r || green type roof || [''-''] || 0 || 0 || 0 || || || || || 18 agfl, 36 gfl || z0 roughness || z0[''m''] || 0.001 || 0.001 || 0.001 || || || || || 19 agfl, 37 gfl || roughness heat/humidity || z0h/z0q[''m''] || 0.0001 || 0.0001 || 0.0001 || || || || || 50 || tc[thermal capacity] of green surface || lambdaS[''W/m2/K''] || 10.00 || 10.00 || 10.00 || || || || || 48 || hc [heat capacity] of green surface || rho x cS[''J/m2/K''] || 20000.00 || 20000.00 || 20000.00 || || [=#sup1] (1) r=roof, agfl=about groundfloor level, gfl=groundfloor level, gp=groundplate [=#sup2] (2) thickness for layers are implemented kommulative (e.g. thickness_layer_2 = thickness_layer_1 + thickness_layer_2) [=#sup3] (3) against outside air calculated, dependend of modeling the earth temperature not to compare wih U-value after DIN 12831 [=#sup4] (4) same values like dry gravel === User behaviour === All parameters for user behavior is taken from [#DIN4108-2 DIN 4108-2]. ||= '''Parameter name''' =||= '''Parameter_number''' =||= '''residential''' =||= '''office''' =||= '''unit''' =||=''' description'''=|| || T,set (heating) || 13 || 20.00 || 20.00 || ''°C'' || setpoint temperature for room in winter || || T,set (cooling) || 12 || 26.00 || 26.00 || ''°C'' || setpoint temperature for room in summer || || || || || || || || qint_low [#sup5 (5)] || 131 || 4.20 || 3.00 || ''W/m2'' || internal heat without presence after [#sup6 schedule] || || qint_high [#sup5 (5)] || 130 || 0.00 || 7.00 || ''W/m2'' || additional internal heat with presence after [#sup6 schedule] || || || || 100.00 || 142.00 || Wh/(m2 d) || || || air_change_low_summer [#sup5 (5)] || summer_pars in indoor model || 0.50 || 1.00 || ''l/h'' ||air change without presence after [#sup6 schedule] in summer || || air_change_high_summer [#sup5 (5)] || summer_pars in indoor model || 1.50 || 1.00 || ''l/h'' ||air change without presence after [#sup6 schedule] in summer || || || || || || || || air_change_low_winter [#sup5 (5)] || winter_pars in indoor model || 0.50 || 0.20 || ''l/h'' || air change without presence after [#sup6 schedule] in winter || || air_change_high_winter [#sup5 (5)] || winter_pars in indoor model || 0.00 || 0.80 || ''l/h'' || air change without presence after [#sup6 schedule] in winter || || || || || || || [=#sup5] (5) for total internal heat and total air change always = LOW + [#sup6 Schedule(0/1)]* HIGH [=#sup6] (6) presence in office buildings from 8:00 - 18:00 else no presence. presence in residental buildings 18:00 - 8:00 else no presence. == References == * [=#IWU18]'''A. Helbig, J. Baumüller, and M.J. Kerschgens'''. Stadtklima und Luftreinhaltung, Springer-Verlag 2013. Institut für Wohnen und Umwelt IWU: Deutsche Gebäudetypologie, 2018 * [=#DIN4108-2]''' DIN 4108-2:2013-02 (2013)'''. Thermal protection and energy economy in buildings - Part 2: Minimum requirements to thermal insulation, Beuth-Verlag, Berlin, 2013 * [=#DIN18599]''' DIN V 18599:2011-12 (2011)'''. Energy efficiency of buildings - Calculation of the net, final and primary energy demand for heating, cooling, ventilation, domestic hot water and lighting, Beuth-Verlag, Berlin, 2011 * [=#Voss]'''Voss et al.'''. Bürogebäude mit Zukunft, Solarpraxis, 2006. * [=#DIN4108-4]''' DIN 4108-4:2017-02 (2017)'''. Thermal insulation and energy economy in buildings - Part 4: Hygrothermal design values, Beuth-Verlag, Berlin, 2017