= Aerosol model SALSA = This page is under construction. For now, please have a look at the related [https://www.geosci-model-dev-discuss.net/gmd-2018-282/ article] (under revision).\\\\ The steering of this model is described [wiki:doc/app/salsa here]. DESCRIPTION\\\\ Click on any icon below to get to the respective part of the documentation.\\\\ [[Image(button_input.png,120px,link=wiki:doc/app/agtpar)]] [[Image(button_ex_setup.png,120px,link=browser:palm/trunk/EXAMPLES/agents/)]] [[Image(button_prepro.png,120px,link=wiki:doc/tec/mas/agent_preprocessing)]] [[Image(button_a_star.png,120px,link=wiki:doc/tec/mas/agent_pathfinding)]] [[Image(button_social_force.png,120px,link=wiki:doc/tec/mas/social_forces)]] [[Image(button_output.png,120px,link=wiki:doc/tec/mas/output)]] [[Image(button_code_structure.png,120px,link=wiki:doc/tec/mas/implementation)]] \\\\\\\\ = SALSA Parameters = [[TracNav(doc/app/partoc|nocollapse)]] == Overview == The aerosol module SALSA (Kokkola et al., 2008) embedded in PALM can be used to simulate the aerosol particle concentrations, size distributions and chemical compositions. In SALSA, the aerosol size distribution is represented as a discrete set of size bins (by default 10 bins). The number n,,i,, (m^-3^) and mass concentration m,,c,i,, (kg m^-3^) of each size bin i and chemical component c are the model prognostic variables. Currently, the following chemical components can be included: sulphuric acid (H2SO4), organic carbon (OC), black carbon (BC), nitric acid (HNO3), ammonium (NH3), sea salt, dust and water (H2O). Furthermore, the gaseous concentrations of H2SO4, HNO3, NH3 and semi- and non-volatile organics (OCNV and OCSV) are also default prognostic variables. The aerosol dynamic processes included are coagulation, condensation of H2SO4, organics and water vapour, dissolutional growth by HNO3 and NH3, nucleation and dry deposition on horizontal and vertical surfaces and resolved vegetation. SALSA can be coupled with the [/wiki/doc/app/chempar#chemistrymodule "chemistry module"]. In that case, the five gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) will be imported to SALSA from the chemistry module and should thus be included in the chemical mechanism applied. SALSA is enabled by adding the NAMELIST {{{salsa_parameters}}} with appropriate parameters to the INPUT parameter file ({{{_p3d}}}). Available parameters are listed below. SALSA runs with the default parameter values. By default, the aerosol particle and gaseous concentrations are initially constant everywhere ([#isdtyp isdtyp] = 0 and [#igctyp igctyp] = 0). A minimum set of input parameters to be applied when this initialisation type is used, is: * [#dpg dpg], [#n_lognorm n_lognorm] and [#sigmag sigmag] to describe the initial aerosol size distribution '''plus''' * [#listspec listspec], [#mass_fracs_a mass_fracs_a] to include chemical compounds '''plus''' * [#H2SO4_init H2SO4_init], [#HNO3_init HNO3_init], [#NH3_init NH3_init], [#OCNV_init OCNV_init], [#OCSV_init OCSV_init] to set the initial concentrations of gaseous compounds '''plus''' * [#nlcnd nlcnd], [#nlcndgas nlcndgas], [#nlcndgash2oae nlcndgash2oae], [#nlcoag nlcoag], [#nldepo nldepo], [#nldepo_topo nldepo_topo], [#nldepo_vege nldepo_vege], [#nsnucl nsnucl] to switch on aerosol dynamic processes. Alternatively, the initial aerosol particle concentrations, size distributions and chemical compositions and gaseous concentrations as well as emission/source information of aerosol particles and gases can be provided in NetCDF input files {{{_salsa}}} (for aerosol particles) and {{{_chemistry}}} (for gaseous compounds). Aerosol particle emissions can be provided applying three levels of detail (LOD): parametrised (LOD1, units kg m^-2^ s^-1^) or detailed (LOD2, units m^-2^ s^-1^) 2-dimensional surface fluxes, or 3-dimensional sources (LOD3, units m^-3^ s^-1^). Gaseous emissions, instead, should currently be specified as gas-specific surface fluxes (LOD2) if the chemistry module is not applied. The time dependency of the aerosol emissions has not yet been implemented. Example files for each LOD is provided in the attached [#test_salsa test_salsa] example set-up. The attached test_salsa example includes: * {{{test_salsa_p3d}}}: ASCII parameter file * {{{test_salsa_static}}}: NetCDF static-information file with topography information (so-called static driver) * {{{test_salsa_chemistry}}}: a NetCDF information file including the initial vertical profiles and surface emissions of gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) * '''LODX_'''{{{test_salsa_salsa}}}: a NetCDF information including the initial vertical profiles and emissions of aerosol particles for each level of detail X = 1, 2, 3. NOTE! Copy the chosen file to {{{test_salsa_salsa}}} \\\\ == Parameter list == '''NAMELIST group name: {{{salsa_parameters}}}''' \\ ||='''Parameter Name''' =||='''[../fortrantypes FORTRAN Type]''' =||='''Default Value''' =||='''Explanation''' =|| |---------------- {{{#!td style="vertical-align:top" [=#advect_particle_water '''advect_particle_water'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td Parameter to switch on the advection of condensed water in aerosol particles. If '''advect_particle_water''' = .F., the aerosol particle water content is calculated at each dt_salsa based on the equilibrium solution using the ZSR method (Stokes and Robinson, 1966). }}} |---------------- {{{#!td style="vertical-align:top" [=#bc_salsa_b '''bc_salsa_b'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'neumann' }}} {{{#!td The bottom boundary condition of the aerosol (and gas) concentrations. Allowed are the values '' 'dirichlet' '' (constant surface concentration over the entire simulation) and 'neumann' (zero concentration gradient). If the aerosol (ans gaseous) emissions are defined as surface fluxes, '''bc_salsa_b''' = '' 'neumann' '' is required. }}} |---------------- {{{#!td style="vertical-align:top" [=#bc_salsa_t '''bc_salsa_t'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'neumann' }}} {{{#!td The top boundary condition of the aerosol (and gas) concentrations. Allowed are the values '' 'dirichlet' '' (constant top boundary concentration over the entire simulation) and '' 'neumann' '' (zero concentration gradient). }}} |---------------- {{{#!td style="vertical-align:top" [=#decycle_lr '''decycle_lr'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to the switch on the decycling of aerosol particles along x. The switch applies also for gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) if the chemistry model is not applied. The decycling method per each lateral boundary is set by [#decycle_method decycle_method]. }}} |---------------- {{{#!td style="vertical-align:top" [=#decycle_method '''decycle_method'''] }}} {{{#!td style="vertical-align:top" C(20) * 4 }}} {{{#!td style="vertical-align:top" 'dirichlet','dirichlet',\\'dirichlet','dirichlet' }}} {{{#!td The decycling method at lateral boundaries, in the following order: left, right, south, north. If '''decycle_method''' = 'dirichlet', the initial aerosol (and gas) concentrations are copied to the ghost layers and the first three grid points at the boundary. If '''decycle_method''' = 'neumann', a zero concentration gradient is set at the boundary. }}} |---------------- {{{#!td style="vertical-align:top" [=#decycle_ns '''decycle_ns'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to the switch on the decycling of aerosol particles along y. The switch applies also for gaseous compounds (H2SO4, HNO3, NH3, OCNV and OCSV) if the chemistry model is not applied. The decycling method per each lateral boundary is set by [#decycle_method decycle_method]. }}} |---------------- {{{#!td style="vertical-align:top" [=#depo_topo_type '''depo_topo_type'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'zhang2001' }}} {{{#!td The method to solve the aerosol size specific dry deposition velocity (in m s-1) over an urban surface. Available options: 'zhang2001' (Zhang et al. 2001) 'petroff2010' (Petroff & Zhang, 2010). Note that the surface material is not specified in the included parametrisations. }}} |---------------- {{{#!td style="vertical-align:top" [=#depo_vege_type '''depo_vege_type'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'zhang2001' }}} {{{#!td The method to solve the aerosol size specific dry deposition velocity (in m s-1). Available options: 'zhang2001' (Zhang et al. 2001) 'petroff2010' (Petroff & Zhang, 2010) Note that currently the deposition velocity is calculated by default for deciduous broadleaf trees. }}} |---------------- {{{#!td style="vertical-align:top" [=#dpg '''dpg'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 0.013, 0.054, 0.86, 0.2, 0.2, 0.2, 0.2 }}} {{{#!td The number geometric mean diameter per aerosol mode (in µm). A total of 7 different aerosol modes can be applied. Example modes: nucleation, Aitken, accumulation and coarse mode. If [#isdtyp isdtyp]= 1, the initial aerosol size distribution is described by input parameters '''dpg''', [#sigmag sigmag] and [#n_lognorm n_lognorm]. }}} |---------------- {{{#!td style="vertical-align:top" [=#dt_salsa '''dt_salsa'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 0.1 }}} {{{#!td Time step for calling aerosol dynamic processes of SALSA. For switching on individual processes, see [#nlcnd nlcnd], [#nlcndgas nlcndgas], [#nlcndh2oae nlcndh2oae], [#nlcoag nlcoag], [#nldepo nldepo], [#nldepo_vege nldepo_vege], [#nldepo_topo nldepo_topo], [#nldistupdate nldistupdate] and [#nsnucl nsnucl]. }}} |---------------- {{{#!td style="vertical-align:top" [=#feedback_to_palm '''feedback_to_palm'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the dynamic feedback to the flow due to condensation of water vapour on aerosol particles. If '''feedback_to_palm''' = .F., the salsa module does not interact with the flow. }}} |---------------- {{{#!td style="vertical-align:top" [=#H2SO4_init '''H2SO4_init'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td Initial number concentration (in m^-3^) of gaseous sulphuric acid H2SO4 (g). }}} |---------------- {{{#!td style="vertical-align:top" [=#HNO3_init '''HNO3_init'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td Initial number concentration (in m^-3^) of gaseous nitric acid HNO3 (g). }}} |---------------- {{{#!td style="vertical-align:top" [=#igctyp '''igctyp'''] }}} {{{#!td style="vertical-align:top" I }}} {{{#!td style="vertical-align:top" 1 }}} {{{#!td Gas concentration initialisation type. If '''igctyp''' = 1, the whole modelling domain is initialised with values given in [#H2SO4_init H2SO4_init], [#HNO3_init HNO3_init], [#NH3_init NH3_init], [#OCNV_init OCNV_init] and [#OCSV_init OCSV_init]. If '''igctyp''' = 2, the initial gas concentrations are read from the input file PIDS_CHEM. In this case, also vertical profiles can be provided. }}} |---------------- {{{#!td style="vertical-align:top" [=#isdtyp '''isdtyp'''] }}} {{{#!td style="vertical-align:top" I }}} {{{#!td style="vertical-align:top" 1 }}} {{{#!td Aerosol size distribution initialisation type. If '''isdtyp''' = 1, the whole modelling domain is initialised with a constant log-normal aerosol size distribution described by input parameters [#dpg dpg], [#sigmag sigmag] and [#n_lognorm n_lognorm]. If '''isdtyp''' = 2, the initial aerosol size distribution is read from the input file PIDS_AERO. In this case, also a vertical profile of the aerosol size distribution can be provided. }}} |---------------- {{{#!td style="vertical-align:top" [=#listspec '''listspec'''] }}} {{{#!td style="vertical-align:top" C*3(7) }}} {{{#!td style="vertical-align:top" 'SO4', 6 * ' ' }}} {{{#!td List of activated aerosol chemical components. Available options: \\ SO4 = Sulphates\\ OC = Organic carbon\\ BC = Black carbon\\ DU = Dust\\ SS = Sea salt\\ NH = Ammonia\\ NO = Nitrates\\ All chemical components included in the simulation must be activated here. }}} |---------------- {{{#!td style="vertical-align:top" [=#mass_fracs_a '''mass_fracs_a'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }}} {{{#!td Mass fractions of soluble chemical components (subrange 2a). Given in the same order as the list of activated aerosol chemical components [#listspec listspec]. }}} |---------------- {{{#!td style="vertical-align:top" [=#mass_fracs_b '''mass_fracs_b'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }}} {{{#!td Mass fractions of insoluble chemical components (subrange 2b). Given in the same order as the list of activated aerosol chemical components [#listspec listspec]. Setting '''mass_fracs_b''' > 0.0 and [#nf2a nf2a] < 1.0 allows for the description of externally mixed aerosol particle populations in the subrange 2. However, this notably increases the computational demand. If the sum of SUM('''mass_fracs_b''') = 0.0, all aerosol particles are assumed to be soluble and the subrange 2b is not initialised. }}} |---------------- {{{#!td style="vertical-align:top" [=#n_lognorm '''n_lognorm'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.04E5, 3.23E4, 5.4, 0.0, 0.0, 0.0, 0.0 }}} {{{#!td The total aerosol number concentration per aerosol mode (in cm^-3^). A total of 7 different aerosol modes can be applied. Example modes: nucleation, Aitken, accumulation and coarse mode. If [#isdtyp isdtyp] = 1, the initial aerosol size distribution is described by input parameters [#dpg dpg], [#sigmag sigmag] and '''n_lognorm'''. }}} |---------------- {{{#!td style="vertical-align:top" [=#nbin '''nbin'''] }}} {{{#!td style="vertical-align:top" I(2) }}} {{{#!td style="vertical-align:top" 3, 7 }}} {{{#!td Number of aerosol size bins per subrange. }}} |---------------- {{{#!td style="vertical-align:top" [=#nf2a '''nf2a'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td The number fraction allocated to subrange 2a. The number fraction allocated to the subrange 2b will be then 1.0-nf2a. }}} |---------------- {{{#!td style="vertical-align:top" [=#NH3_init '''NH3_init'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td Initial number concentration (in m^-3^) of gaseous ammonia NH3 (g). }}} |---------------- {{{#!td style="vertical-align:top" [=#nj3 '''nj3'''] }}} {{{#!td style="vertical-align:top" I }}} {{{#!td style="vertical-align:top" 1 }}} {{{#!td Parametrisation for calculating the apparent formation rate of 3 nm sized aerosol particles (J,,3,,, in # s^-1^). \\ Available options:\\ 1 = condensational sink (Kerminen and Kulmala, 2002)\\ 2 = coagulational sink (Lehtinen et al. 2007)\\ 3 = coagS+self-coagulation (Anttila et al. 2010) }}} |---------------- {{{#!td style="vertical-align:top" [=#nlcnd '''nlcnd'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the condensation of gaseous compounds on aerosol particles. }}} |---------------- {{{#!td style="vertical-align:top" [=#nlcndgas '''nlcndgas'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the condensation of gaseous compounds, excluding water vapour, on aerosol particles. Requires [#nlcnd nlcnd] = .T.. }}} |---------------- {{{#!td style="vertical-align:top" [=#nlcndgash2oae '''nlcndgash2oae'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the condensation of water vapour on aerosol particles. Requires [#nlcnd nlcnd] = .T.. }}} |---------------- {{{#!td style="vertical-align:top" [=#nlcoag '''nlcoag'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the coagulation of aerosol particles. }}} |---------------- {{{#!td style="vertical-align:top" [=#nldepo '''nldepo'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch of the dry deposition and sedimentation of aerosol particles. }}} |---------------- {{{#!td style="vertical-align:top" [=#nldepo_topo '''nldepo_topo'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch aerosol dry deposition on topography elements (ground, wall, roofs). The parametrisation to calculate the size-dependent deposition velocity is set by parameter [#depo_topo_type depo_topo_type]. Requires [#nldepo nldepo] = .T.. }}} |---------------- {{{#!td style="vertical-align:top" [=#nldepo_vege '''nldepo_vege'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on aerosol dry deposition on resolved scale vegetation. The parametrisation to calculate the size-dependent deposition velocity is set by parameter [#depo_vege_type depo_vege_type]. Note that currently the deposition velocity is calculated by default for deciduous broadleaf trees. Requires [#nldepo nldepo] = .T.. }}} |---------------- {{{#!td style="vertical-align:top" [=#nldistupdate '''nldistupdate'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td Parameter to switch on the aerosol number size distribution update switch. If '''nldistupdate''' = .F., aerosol particles that become too small or large in their size bin are not allowed to move to another size bin. }}} |---------------- {{{#!td style="vertical-align:top" [=#nsnucl '''nsnucl'''] }}} {{{#!td style="vertical-align:top" I }}} {{{#!td style="vertical-align:top" 0 }}} {{{#!td The nucleation scheme applied. If '''nsnucl''' = 0, nucleation is switched off.\\ Available options:\\ 1 = binary nucleation (Vehkamäki et al., 2002)\\ 2 = activation type nucleation (Riipinen et al., 2007)\\ 3 = kinetic nucleation (Sihto et al., 2006)\\ 4 = ternary nucleation (Napari et al., 2002a,b)\\ 5 = organic nucleation (Paasonen et al., 2010)\\ 6 = sum of binary and organic nucleation (Paasonen et al., 2010)\\ 7 = heteromolecular nucleation (Paasonen et al., 2010)\\ 8 = homomolecular nucleation of H2SO4 and heteromolecular nucleation of H2SO4 and organics (Paasonen et al., 2010)\\ 9 = homomolecular nucleation of H2SO4 and organics, and heteromolecular nucleation of H2SO4 and organics (Paasonen et al., 2010). Requires [#nlcnd nlcnd] = .T.. Note that the nucleation schemes were not evaluated in Kurppa et al. (2018). }}} |---------------- {{{#!td style="vertical-align:top" [=#OCNV_init '''OCNV_init'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td Initial number concentration (in m^-3^) of gaseous non-volatile organic compounds. }}} |---------------- {{{#!td style="vertical-align:top" [=#OCSV_init '''OCSV_init'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td Initial number concentration (in m^-3^) of gaseous semi-volatile organic compounds. }}} |---------------- {{{#!td style="vertical-align:top" [=#read_restart_data_salsa '''read_restart_data_salsa'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Read the restart data of the salsa module from the previous run. }}} |---------------- {{{#!td style="vertical-align:top" [=#reglim '''reglim'''] }}} {{{#!td style="vertical-align:top" R(3) }}} {{{#!td style="vertical-align:top" 3.0E-9, 5.0E-8, 1.0E-5 }}} {{{#!td Aerosol diameter limits for the subranges (in m) in the following order: lower limit of 1, upper limit of 1 and lower limit of 2, upper limit of 2. }}} |---------------- {{{#!td style="vertical-align:top" [=#salsa_source_mode '''salsa_source_mode'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'no_source' }}} {{{#!td Source mode for aerosol and gaseous emissions. Setting '''salsa_source_mode''' = 'read_from_file' reads the source information from the NetCDF aero -information file. Note that all chemical components included in the simulation must be activated in [#listspec listspec]. }}} |---------------- {{{#!td style="vertical-align:top" [=#sigmag '''sigmag'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.8, 2.16, 2.21, 2.0, 2.0, 2.0, 2.0 }}} {{{#!td The standard deviation of the log-normal aerosol number size distribution per aerosol mode. A total of 7 different aerosol modes can be applied. Example modes: nucleation, Aitken, accumulation and coarse mode. If [#isdtyp isdtyp] = 1, the initial aerosol size distribution is described by input parameters [#dpg dpg], '''sigmag''' and [#n_lognorm n_lognorm]. }}} |---------------- {{{#!td style="vertical-align:top" [=#skip_time_do_salsa '''skip_time_do_salsa'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 0.0 }}} {{{#!td Time after which SALSA is switched on. This parameter can be used to allow the LES model to develop turbulence before aerosol particles and their processes are switched on. }}} |---------------- {{{#!td style="vertical-align:top" [=#van_der_waals_coagc '''van_der_waals_coagc'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the van der Waals forces when calculating the collision kernel in the coagulation subroutine. Parametrisation follows Karl et al. (2016). }}} |---------------- {{{#!td style="vertical-align:top" [=#write_binary_salsa '''write_binary_salsa'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Write the binary restart data for the salsa module. }}} \\\\ The following quantities can be additionally output when the aerosol module SALSA is used: \\\\ ||='''Quantity name''' =||='''Meaning''' =||='''Unit''' =||='''Remarks''' =|| |---------------- {{{#!td style="vertical-align:top" ['''g_'''] }}} {{{#!td style="vertical-align:top" Concentration of }}} {{{#!td style="vertical-align:top" # m^-3^ }}} {{{#!td Options: 'g_H2SO4', 'g_HNO3', 'g_NH3', 'g_OCNV','g_OCSV'. Time-averaged output not available. }}} |---------------- {{{#!td style="vertical-align:top" [=#LDSA '''LDSA'''] }}} {{{#!td style="vertical-align:top" Total lung-deposited surface area }}} {{{#!td style="vertical-align:top" µm^2^ cm^-3^ }}} {{{#!td }}} |---------------- {{{#!td style="vertical-align:top" ['''N_bin'''] }}} {{{#!td style="vertical-align:top" Aerosol number concentration in the aerosol size bin }}} {{{#!td style="vertical-align:top" # m^-3^ }}} {{{#!td Time-averaged output not available. }}} |---------------- {{{#!td style="vertical-align:top" [=#Ntot '''Ntot'''] }}} {{{#!td style="vertical-align:top" Total aerosol number concentration }}} {{{#!td style="vertical-align:top" # m^-3^ }}} {{{#!td }}} |---------------- {{{#!td style="vertical-align:top" [=#PM2.5 '''PM2.5'''] }}} {{{#!td style="vertical-align:top" Total mass concentration of particulate matter smaller than 2.5 µm in diameter }}} {{{#!td style="vertical-align:top" kg m^-3^ }}} {{{#!td }}} |---------------- {{{#!td style="vertical-align:top" [=#PM10 '''PM10'''] }}} {{{#!td style="vertical-align:top" Total mass concentration of particulate matter smaller than 10 µm in diameter }}} {{{#!td style="vertical-align:top" kg m^-3^ }}} {{{#!td }}} |---------------- {{{#!td style="vertical-align:top" ['''s_'''] }}} {{{#!td style="vertical-align:top" Mass concentration of in the aerosol phase }}} {{{#!td style="vertical-align:top" kg m^-3^ }}} {{{#!td Options: 's_BC', 's_DU', 's_NH', 's_NO', 's_OC', 's_SO4', 's_SS'. Time-averaged output available only for black carbon (BC). }}} \\\\ == References == Anttila, T., Kerminen, V.-M., and Lehtinen, K. E. J. (2010): Parameterizing the formation rate of new particles: The effect of nuclei self-coagulation. Journal of Aerosol Science, 41(7), 621–636, https://doi.org/10.1016/j.jaerosci.2010.04.008.\\ Karl, M., Kukkonen, J., Keuken, M. P., Lützenkirchen, S., Pirjola, L. and Hussein, T. (2016): Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki, Atmospheric Chemistry and Physics, 16, 4817-4835, https://doi.org/10.5194/acp-16-4817-2016.\\ Kerminen, V.-M. and Kulmala, M. (2002): Analytical formulae connecting the “real” and the “apparent” nucleation rate and the nuclei number concentration for atmospheric nucleation events. Journal of Aerosol Science, 33(4), 609–622, doi: https://doi.org/10.1016/S0021-8502(01)00194-X.\\ Kokkola, H., Korhonen, H., Lehtinen, K. E. J., Makkonen, R., Asmi, A., Järvenoja, S., Anttila, T., Partanen, A.-I., Kulmala, M., Järvinen, H., Laaksonen, A., and Kerminen, V.-M. (2008): SALSA - a Sectional Aerosol module for Large Scale Applications, Atmospheric Chemistry and Physics, 8, 2469–2483, https://doi.org/10.5194/acp-8-2469-2008.\\ Lehtinen, K. E., Maso, M. D., Kulmala, M., and Kerminen, V.-M. (2007): Estimating nucleation rates from apparent particle formation rates and vice versa: Revised formulation of the Kerminen–Kulmala equation, Journal of Aerosol Science, 38, 988–994, https://doi.org/10.1016/j.jaerosci.2007.06.009.\\ Napari, I., Noppel, M., Vehkamäki, H., and Kulmala, M. (2002a): An improved model for ternary nucleation of sulfuric acid–ammonia–water, The Journal of Chemical Physics, 116, 4221–4227, https://doi.org/10.1063/1.1450557.\\ Napari, I., Noppel, M., Vehkamäki, H., and Kulmala, M. (2002b): Parametrization of ternary nucleation rates for H2SO4-NH3-H2O vapors, Journal of Geophysical Research: Atmospheres, 107, AAC 6–1–AAC 6–6, https://doi.org/10.1029/2002JD002132, 4381.\\ Paasonen, P., Nieminen, T., Asmi, E., Manninen, H. E., Petäjä, T., Plass-Dülmer, C., Flentje, H., Birmili, W., Wiedensohler, A., Hõrrak, U., Metzger, A., Hamed, A., Laaksonen, A., Facchini, M. C., Kerminen, V.-M. (2010): On the roles of sulphuric acid and low-volatility organic vapours in the initial steps of atmospheric new particle formation, Atmospheric Chemistry and Physics, 10, 11223-11242.\\ Petroff, A. and Zhang, L. (2010): Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models, Geoscientific Model Development, 3, 753–769, https://doi.org/10.5194/gmd-3-753-2010.\\ Riipinen, I., Sihto, S.-L., Kulmala, M., Arnold, F., Dal Maso, M., Birmili, W., Saarnio, K., Teinilä, K., Kerminen, V.-M., Laaksonen, A., and Lehtinen, K. E. J. (2007): Connections between atmospheric sulphuric acid and new particle formation during QUEST III-IV campaigns in Heidelberg and Hyytiälä, Atmospheric Chemistry and Physics, 7, 1899–1914, https://doi.org/10.5194/acp-7-1899-2007.\\ Sihto, S.-L., Kulmala, M., Kerminen, V.-M., Dal Maso, M., Petäjä, T., Riipinen, I., Korhonen, H., Arnold, F., Janson, R., Boy, M., Laaksonen, A., and Lehtinen, K. E. J. (2006): Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms, Atmospheric Chemistry and Physics, 6, 4079–4091, https://doi.org/10.5194/acp-6-4079-2006.\\ Stokes, R. H. and Robinson, R. A. (1966): Interactions in Aqueous Nonelectrolyte Solutions. I. Solute-Solvent Equilibria, The Journal of Physical Chemistry, 70, 2126–2131, https://doi.org/10.1021/j100879a010.\\ Vehkamäki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C., Noppel, M., and Laaksonen, A. (2002): An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions, Journal of Geophysical Research, 107, 4622, https://doi.org/10.1029/2002JD002184.\\ Zhang, L., Gong, S., Padro, J., and Barrie, L. (2001): A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmospheric Environment, 35, 549–560, https://doi.org/10.1016/S1352-2310(00)00326-5.