== Overview == [[TracNav(doc/app/partoc|nocollapse)]] [[TracNav(doc/tec/salsatoc|nocollapse)]] [[NoteBox(note,This page is part of the **Aerosol Model** (SALSA) documentation. \\ It contains a listing of all PALM input parameters used to steer the SALSA. \\ For an overview of all SALSA-related pages\, see the **[wiki:doc/tec/aerosol SALSA main page]**.)]] == Parameter list == '''NAMELIST group name: {{{salsa_parameters}}}''' \\ ||='''Parameter Name''' =||='''[../fortrantypes FORTRAN Type]''' =||='''Default Value''' =||='''Explanation''' =|| |---------------- {{{#!td style="vertical-align:top" [=#advect_particle_water '''advect_particle_water'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td Parameter to switch on the advection of condensed water in aerosol particles. If '''advect_particle_water''' = .F., the aerosol particle water content is calculated at each dt_salsa based on the equilibrium solution using the ZSR method ([wiki:doc/app/salsaref/ Stokes and Robinson, 1966]). }}} |---------------- {{{#!td style="vertical-align:top" [=#aerosol_flux_dpg '''aerosol_flux_dpg'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.3E-8, 5.4E-8, 8.6E-7, 2.0E-7, 2.0E-7, 2.0E-7, 2.0E-7 }}} {{{#!td The number geometric mean diameter per aerosol mode (in m) for the aerosol emission. A total of 7 different aerosol modes can be applied. Example aerosol modes: nucleation, Aitken, accumulation and coarse mode. Used to construct the aerosol emissions if horizontally uniform ([#salsa_emission_mode salsa_emission_mode] = '' 'uniform' '') or parameterized ([#salsa_emission_mode salsa_emission_mode] = '' 'parameterized' '') aerosol emissions are applied. Then the aerosol number emission is described by input parameters '''aerosol_flux_dpg''', [#aerosol_flux_sigmag aerosol_flux_sigmag], [#aerosol_flux_mass_fracs_a aerosol_flux_mass_fracs_a] and [#surface_aerosol_flux surface_aerosol_flux]. }}} |---------------- {{{#!td style="vertical-align:top" [=#aerosol_flux_mass_fracs_a '''aerosol_flux_mass_fracs_a'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }}} {{{#!td Mass fractions of soluble chemical components (subrange 2a) for the horizontally homogeneous aerosol emission ([#salsa_emission_mode salsa_emission_mode] = '' 'uniform' ''). Given in the same order as the list of activated aerosol chemical components [#listspec listspec]. E.g. ''listspec'' = 'OC','NH','BC',' ',' ',' ',' ', ''aerosol_flux_mass_fracs_a'' = 0.3, 0.1, 0.6, 0., 0., 0., 0., implies that the mass composition of the aerosol emission is 30% organic carbon, 10% ammonia and 60% black carbon. Used to construct the aerosol emissions if horizontally uniform ([#salsa_emission_mode salsa_emission_mode] = '' 'uniform' '') or parameterized ([#salsa_emission_mode salsa_emission_mode] = '' 'parameterized' '') aerosol emissions are applied. Then the aerosol number emission is described by input parameters [#aerosol_flux_dpg aerosol_flux_dpg], [#aerosol_flux_sigmag aerosol_flux_sigmag], '''aerosol_flux_mass_fracs_a''' and [#surface_aerosol_flux surface_aerosol_flux]. }}} |---------------- {{{#!td style="vertical-align:top" [=#aerosol_flux_sigmag '''aerosol_flux_sigmag'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.8, 2.16, 2.21, 2.0, 2.0, 2.0, 2.0 }}} {{{#!td The standard deviation of the log-normal aerosol number size distribution per aerosol mode for the aerosol emission. A total of 7 different aerosol modes can be applied. Example aerosol modes: nucleation, Aitken, accumulation and coarse mode. Used to construct the aerosol emissions if horizontally uniform ([#salsa_emission_mode salsa_emission_mode] = '' 'uniform' '') or parameterized ([#salsa_emission_mode salsa_emission_mode] = '' 'parameterized' '') aerosol emissions are applied. Then the aerosol number emission is described by input parameters [#aerosol_flux_dpg aerosol_flux_dpg], '''aerosol_flux_sigmag''', [#aerosol_flux_mass_fracs_a aerosol_flux_mass_fracs_a] and [#surface_aerosol_flux surface_aerosol_flux]. }}} |---------------- {{{#!td style="vertical-align:top" [=#bc_aer_b '''bc_aer_b'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'neumann' }}} {{{#!td The bottom boundary condition of the aerosol concentrations. The same condition applies also for gases if the [wiki:doc/tec/chem chemistry module] is not applied. Allowed are the values '' 'dirichlet' '' (constant surface concentration over the entire simulation) and 'neumann' (zero concentration gradient). If any surface emissions of aerosols and gases are applied (see [#salsa_emission_mode salsa_emission_mode]), '''bc_aer_b''' = '' 'neumann' '' is required. }}} |---------------- {{{#!td style="vertical-align:top" [=#bc_aer_t '''bc_aer_t'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'neumann' }}} {{{#!td The top boundary condition of the aerosol (and gas) concentrations. Allowed are the values '' 'dirichlet' '' (constant top boundary concentration over the entire simulation), '' 'neumann' '' (zero concentration gradient) and '' 'initial_gradient' '' (concentration gradient at the top is calculated from the initial concentration profile). }}} |---------------- {{{#!td style="vertical-align:top" [=#bc_aer_l '''bc_aer_l'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" see [wiki:doc/app/initialization_parameters#bc_lr bc_lr] }}} {{{#!td The left boundary condition of the aerosol concentrations. The same condition applies also for gases if the [wiki:doc/tec/chem chemistry module] is not applied. Allowed are the values '' 'dirichlet' '' (constant concentration over the entire simulation as given by the initial profiles), '' 'neumann' '' (zero concentration gradient), and '' 'cyclic' ''. If not set by the user, the default value is given by parameter [wiki:doc/app/initialization_parameters#bc_lr bc_lr]. If '' 'cyclic' '' has been chosen, parameter '''bc_aer_r''' must be set '' 'cyclic' '', too. Horizontal boundary conditions for aerosols can be set independently from horizontal boundary conditions that have been chosen for the remaining model quantities via parameters [wiki:doc/app/initialization_parameters#bc_lr bc_lr] and [wiki:doc/app/initialization_parameters#bc_ns bc_ns], e.g. you can choose cyclic boundary conditions for aerosols, while the flow field uses non-cyclic conditions, or vice versa. }}} |---------------- {{{#!td style="vertical-align:top" [=#bc_aer_r '''bc_aer_r'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" see [wiki:doc/app/initialization_parameters#bc_lr bc_lr] }}} {{{#!td The right boundary condition of the aerosol concentrations. The same condition applies also for gases if the [wiki:doc/tec/chem chemistry module] is not applied. Allowed are the values '' 'dirichlet' '' (constant concentration over the entire simulation as given by the initial profiles), '' 'neumann' '' (zero concentration gradient), and '' 'cyclic' ''. If not set by the user, the default value is given by parameter [wiki:doc/app/initialization_parameters#bc_lr bc_lr]. If '' 'cyclic' '' has been chosen, parameter '''bc_aer_l''' must be set '' 'cyclic' '', too. Horizontal boundary conditions for aerosols can be set independently from horizontal boundary conditions that have been chosen for the remaining model quantities via parameters [wiki:doc/app/initialization_parameters#bc_lr bc_lr] and [wiki:doc/app/initialization_parameters#bc_ns bc_ns], e.g. you can choose cyclic boundary conditions for aerosols, while the flow field uses non-cyclic conditions, or vice versa. }}} |---------------- {{{#!td style="vertical-align:top" [=#bc_aer_n '''bc_aer_n'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" see [wiki:doc/app/initialization_parameters#bc_ns bc_ns] }}} {{{#!td The north boundary condition of the aerosol concentrations. The same condition applies also for gases if the [wiki:doc/tec/chem chemistry module] is not applied. Allowed are the values '' 'dirichlet' '' (constant concentration over the entire simulation as given by the initial profiles), '' 'neumann' '' (zero concentration gradient), and '' 'cyclic' ''. If not set by the user, the default value is given by parameter [wiki:doc/app/initialization_parameters#bc_ns bc_ns]. If '' 'cyclic' '' has been chosen, parameter '''bc_aer_s''' must be set '' 'cyclic' '', too. Horizontal boundary conditions for aerosols can be set independently from horizontal boundary conditions that have been chosen for the remaining model quantities via parameters [wiki:doc/app/initialization_parameters#bc_lr bc_lr] and [wiki:doc/app/initialization_parameters#bc_ns bc_ns], e.g. you can choose cyclic boundary conditions for aerosols, while the flow field uses non-cyclic conditions, or vice versa. }}} |---------------- {{{#!td style="vertical-align:top" [=#bc_aer_s '''bc_aer_s'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" see [wiki:doc/app/initialization_parameters#bc_ns bc_ns] }}} {{{#!td The south boundary condition of the aerosol concentrations. The same condition applies also for gases if the [wiki:doc/tec/chem chemistry module] is not applied. Allowed are the values '' 'dirichlet' '' (constant concentration over the entire simulation as given by the initial profiles), '' 'neumann' '' (zero concentration gradient), and '' 'cyclic' ''. If not set by the user, the default value is given by parameter [wiki:doc/app/initialization_parameters#bc_ns bc_ns]. If '' 'cyclic' '' has been chosen, parameter '''bc_aer_n''' must be set '' 'cyclic' '', too. Horizontal boundary conditions for aerosols can be set independently from horizontal boundary conditions that have been chosen for the remaining model quantities via parameters [wiki:doc/app/initialization_parameters#bc_lr bc_lr] and [wiki:doc/app/initialization_parameters#bc_ns bc_ns], e.g. you can choose cyclic boundary conditions for aerosols, while the flow field uses non-cyclic conditions, or vice versa. }}} |---------------- {{{#!td style="vertical-align:top" [=#depo_pcm_par '''depo_pcm_par'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'zhang2001' }}} {{{#!td The method to solve the aerosol size specific dry deposition velocity (in m s-1). Available options: '' 'zhang2001' '' ([wiki:doc/app/salsaref/ Zhang et al. 2001]) '' 'petroff2010' '' ([wiki:doc/app/salsaref/ Petroff & Zhang, 2010]) The surface material is specified with [#depo_pcm_type depo_pcm_type]. }}} |---------------- {{{#!td style="vertical-align:top" [=#depo_pcm_type '''depo_pcm_type'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'deciduous_broadleaf' }}} {{{#!td Leaf type applied in the dry deposition model. Available options: '' 'evergreen_needleleaf' '', '' 'evergreen_broadleaf' '', '' 'deciduous_needleleaf' '' and '' 'deciduous_broadleaf' ''. }}} |---------------- {{{#!td style="vertical-align:top" [=#depo_surf_par '''depo_surf_par'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'zhang2001' }}} {{{#!td The method to solve the dry deposition velocity (in m s-1) for aerosols over both horizontal and vertical surfaces. Available options: '' 'zhang2001' '' ([wiki:doc/app/salsaref/ Zhang et al. 2001]) '' 'petroff2010' '' ([wiki:doc/app/salsaref/ Petroff & Zhang, 2010]). The land use type applied in the parametrisations are imported from the land and urban surface modules. If the surfaces are not specified using the urban surface or land surface module, the land use type '' urban '' is applied for all surfaces. }}} |---------------- {{{#!td style="vertical-align:top" [=#dpg '''dpg'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.3E-8, 5.4E-8, 8.6E-7, 2.0E-7, 2.0E-7, 2.0E-7, 2.0E-7 }}} {{{#!td The number geometric mean diameter per aerosol mode (in m). A total of 7 different aerosol modes can be applied. Example modes: nucleation, Aitken, accumulation and coarse mode. If [wiki:initialization_parameters#initializing_actions initializing_actions] includes '' 'set_constant_profiles' '', the initial aerosol size distribution is described by input parameters '''dpg''', [#sigmag sigmag] and [#n_lognorm n_lognorm]. }}} |---------------- {{{#!td style="vertical-align:top" [=#dt_salsa '''dt_salsa'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 0.1 }}} {{{#!td The time step for calling aerosol dynamic processes of SALSA. For switching on individual processes, see [#nlcnd nlcnd], [#nlcndgas nlcndgas], [#nlcndh2oae nlcndh2oae], [#nlcoag nlcoag], [#nldepo nldepo], [#nldepo_pcm nldepo_pcm], [#nldepo_surf nldepo_surf], [#nldistupdate nldistupdate] and [#nsnucl nsnucl]. }}} |---------------- {{{#!td style="vertical-align:top; width: 150px" [=#emiss_factor_main '''emiss_factor_main'''] }}} {{{#!td style="vertical-align:top; width: 50px" R }}} {{{#!td style="vertical-align:top; width: 75px" 0.0 }}} {{{#!td Constant emission scaling factor for main street types, used if [#salsa_emission_mode salsa_emission_mode] = '' 'parameterized' ''. }}} |---------------- {{{#!td style="vertical-align:top; width: 150px" [=#emiss_factor_side '''emiss_factor_side'''] }}} {{{#!td style="vertical-align:top; width: 50px" R }}} {{{#!td style="vertical-align:top; width: 75px" 0.0 }}} {{{#!td Constant emission scaling factor for side street types, used if [#salsa_emission_mode salsa_emission_mode] = '' 'parameterized' ''. }}} |---------------- {{{#!td style="vertical-align:top" [=#feedback_to_palm '''feedback_to_palm'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the dynamic feedback to the flow due to condensation of water vapour on aerosol particles. If '''feedback_to_palm''' = .F., the salsa module does not interact with the flow. }}} |---------------- {{{#!td style="vertical-align:top" [=#H2SO4_init '''H2SO4_init'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td Initial number concentration (in m^-3^) of gaseous sulphuric acid H2SO4 (g). }}} |---------------- {{{#!td style="vertical-align:top" [=#HNO3_init '''HNO3_init'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td Initial number concentration (in m^-3^) of gaseous nitric acid HNO3 (g). }}} |---------------- {{{#!td style="vertical-align:top" [=#listspec '''listspec'''] }}} {{{#!td style="vertical-align:top" C*3(7) }}} {{{#!td style="vertical-align:top" 'SO4', 6 * ' ' }}} {{{#!td List of activated aerosol chemical components. Available options: \\ SO4 = Sulphates\\ OC = Organic carbon\\ BC = Black carbon\\ DU = Dust\\ SS = Sea salt\\ NH = Ammonia\\ NO = Nitrates\\ All chemical components included in the simulation must be activated here. }}} |---------------- {{{#!td style="vertical-align:top; width: 150px" [=#main_street_id '''main_street_id'''] }}} {{{#!td style="vertical-align:top; width: 50px" I(99) }}} {{{#!td style="vertical-align:top; width: 75px" 0 }}} {{{#!td Index for identifying main streets following street type classes from 'OpenStreetMap'. Used if [#salsa_emission_mode salsa_emission_mode] = '' 'parameterized' ''. }}} |---------------- {{{#!td style="vertical-align:top" [=#mass_fracs_a '''mass_fracs_a'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }}} {{{#!td Mass fractions of soluble chemical components (subrange 2a). Given in the same order as the list of activated aerosol chemical components [#listspec listspec]. }}} |---------------- {{{#!td style="vertical-align:top" [=#mass_fracs_b '''mass_fracs_b'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 }}} {{{#!td Mass fractions of insoluble chemical components (subrange 2b). Given in the same order as the list of activated aerosol chemical components [#listspec listspec]. Setting '''mass_fracs_b''' > 0.0 and [#nf2a nf2a] < 1.0 allows for the description of externally mixed aerosol particle populations in the subrange 2. However, this notably increases the computational demand. If the sum of SUM('''mass_fracs_b''') = 0.0, all aerosol particles are assumed to be soluble and the subrange 2b is not initialised. }}} |---------------- {{{#!td style="vertical-align:top; width: 150px" [=#max_street_id '''max_street_id'''] }}} {{{#!td style="vertical-align:top; width: 50px" I(99) }}} {{{#!td style="vertical-align:top; width: 75px" 0 }}} {{{#!td Maximum index value for identifying all (main and side) streets following street type classes from `OpenStreetMap`. Used if [#salsa_emission_mode salsa_emission_mode] = '' 'parameterized' ''. }}} |---------------- {{{#!td style="vertical-align:top" [=#n_lognorm '''n_lognorm'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.04E11, 3.23E10, 5.4E6, 0.0, 0.0, 0.0, 0.0 }}} {{{#!td The total aerosol number concentration per aerosol mode (in m^-3^). A total of 7 different aerosol modes can be applied. Example modes: nucleation, Aitken, accumulation and coarse mode. If [wiki:initialization_parameters#initializing_actions initializing_actions] includes '' 'set_constant_profiles' '', the initial aerosol size distribution is described by input parameters [#dpg dpg], [#sigmag sigmag] and '''n_lognorm'''. }}} |---------------- {{{#!td style="vertical-align:top" [=#nbin '''nbin'''] }}} {{{#!td style="vertical-align:top" I(2) }}} {{{#!td style="vertical-align:top" 3, 7 }}} {{{#!td Number of aerosol size bins per subrange. }}} |---------------- {{{#!td style="vertical-align:top" [=#nesting_offline_salsa '''nesting_offline_salsa'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td Parameter to switch off offline nesting for salsa variables. If '''nesting_offline_salsa''' = '' .F. '', the boundary conditions for salsa variables are defined via parameters [#bc_aer_b bc_aer_b], [#bc_aer_t bc_aer_t], [#bc_aer_l bc_aer_l], [#bc_aer_r bc_aer_r], [#bc_aer_n bc_aer_n], and [#bc_aer_s bc_aer_s]. }}} |---------------- {{{#!td style="vertical-align:top" [=#nesting_salsa '''nesting_salsa'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td Parameter to switch off self-nesting for salsa variables. If '''nesting_salsa''' = '' .F. '', the boundary conditions for salsa variables are defined via parameters [#bc_aer_b bc_aer_b], [#bc_aer_t bc_aer_t], [#bc_aer_l bc_aer_l], [#bc_aer_r bc_aer_r], [#bc_aer_n bc_aer_n], and [#bc_aer_s bc_aer_s]. }}} |---------------- {{{#!td style="vertical-align:top" [=#nf2a '''nf2a'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td The number fraction allocated to subrange 2a. The number fraction allocated to the subrange 2b will be then 1.0-nf2a. }}} |---------------- {{{#!td style="vertical-align:top" [=#NH3_init '''NH3_init'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td Initial number concentration (in m^-3^) of gaseous ammonia NH3 (g). }}} |---------------- {{{#!td style="vertical-align:top" [=#nj3 '''nj3'''] }}} {{{#!td style="vertical-align:top" I }}} {{{#!td style="vertical-align:top" 1 }}} {{{#!td Parametrisation for calculating the apparent formation rate of 3 nm sized aerosol particles (J,,3,,, in # s^-1^). \\ Available options:\\ 1 = condensational sink ([wiki:doc/app/salsaref/ Kerminen and Kulmala, 2002])\\ 2 = coagulational sink ([wiki:doc/app/salsaref/ Lehtinen et al. 2007])\\ 3 = coagS+self-coagulation ([wiki:doc/app/salsaref/ Anttila et al. 2010]) }}} |---------------- {{{#!td style="vertical-align:top" [=#nlcnd '''nlcnd'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the condensation of gaseous compounds on aerosol particles. }}} |---------------- {{{#!td style="vertical-align:top" [=#nlcndgas '''nlcndgas'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the condensation of gaseous compounds, excluding water vapour, on aerosol particles. Requires [#nlcnd nlcnd] = .T.. }}} |---------------- {{{#!td style="vertical-align:top" [=#nlcndgash2oae '''nlcndgash2oae'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the condensation of water vapour on aerosol particles. Requires [#nlcnd nlcnd] = .T.. }}} |---------------- {{{#!td style="vertical-align:top" [=#nlcoag '''nlcoag'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the coagulation of aerosol particles. }}} |---------------- {{{#!td style="vertical-align:top" [=#nldepo '''nldepo'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch of the dry deposition and sedimentation of aerosol particles. }}} |---------------- {{{#!td style="vertical-align:top" [=#nldepo_surf '''nldepo_surf'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch aerosol dry deposition on topography elements (ground, wall, roofs). The parametrisation to calculate the size-dependent deposition velocity is set by parameter [#depo_surf_type depo_surf_type]. Requires [#nldepo nldepo] = .T.. }}} |---------------- {{{#!td style="vertical-align:top" [=#nldepo_pcm '''nldepo_pcm'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on aerosol dry deposition on resolved scale vegetation. The parametrisation to calculate the size-dependent deposition velocity is set by parameter [#depo_pcm_par depo_pcm_par]. Note that currently the deposition velocity is calculated by default for deciduous broadleaf trees. Requires [#nldepo nldepo] = .T.. }}} |---------------- {{{#!td style="vertical-align:top" [=#nldistupdate '''nldistupdate'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .T. }}} {{{#!td Parameter to switch on the aerosol number size distribution update switch. If '''nldistupdate''' = .F., aerosol particles that become too small or large in their size bin are not allowed to move to another size bin. }}} |---------------- {{{#!td style="vertical-align:top" [=#nsnucl '''nsnucl'''] }}} {{{#!td style="vertical-align:top" I }}} {{{#!td style="vertical-align:top" 0 }}} {{{#!td The nucleation scheme applied. If '''nsnucl''' = 0, nucleation is switched off.\\ Available options:\\ 1 = binary nucleation ([wiki:doc/app/salsaref/ Vehkamäki et al., 2002])\\ 2 = activation type nucleation ([wiki:doc/app/salsaref/ Riipinen et al., 2007])\\ 3 = kinetic nucleation ([wiki:doc/app/salsaref/ Sihto et al., 2006])\\ 4 = ternary nucleation ([wiki:doc/app/salsaref/ Napari et al., 2002a,b])\\ 5 = organic nucleation ([wiki:doc/app/salsaref/ Paasonen et al., 2010])\\ 6 = sum of binary and organic nucleation ([wiki:doc/app/salsaref/ Paasonen et al., 2010])\\ 7 = heteromolecular nucleation ([wiki:doc/app/salsaref/ Paasonen et al., 2010])\\ 8 = homomolecular nucleation of H2SO4 and heteromolecular nucleation of H2SO4 and organics ([wiki:doc/app/salsaref/ Paasonen et al., 2010])\\ 9 = homomolecular nucleation of H2SO4 and organics, and heteromolecular nucleation of H2SO4 and organics ([wiki:doc/app/salsaref/ Paasonen et al., 2010]). Requires [#nlcnd nlcnd] = .T.. Note that the nucleation schemes were not evaluated in [wiki:doc/app/salsaref/ Kurppa et al. (2019)]. }}} |---------------- {{{#!td style="vertical-align:top" [=#OCNV_init '''OCNV_init'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td Initial number concentration (in m^-3^) of gaseous non-volatile organic compounds. }}} |---------------- {{{#!td style="vertical-align:top" [=#OCSV_init '''OCSV_init'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 1.0 }}} {{{#!td Initial number concentration (in m^-3^) of gaseous semi-volatile organic compounds. }}} |---------------- {{{#!td style="vertical-align:top" [=#read_restart_data_salsa '''read_restart_data_salsa'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Read the restart data of the salsa module from the previous run. }}} |---------------- {{{#!td style="vertical-align:top" [=#reglim '''reglim'''] }}} {{{#!td style="vertical-align:top" R(3) }}} {{{#!td style="vertical-align:top" 3.0E-9, 5.0E-8, 1.0E-5 }}} {{{#!td Aerosol diameter limits for the subranges (in m) in the following order: lower limit of 1, upper limit of 1 and lower limit of 2, upper limit of 2. }}} |---------------- {{{#!td style="vertical-align:top" [=#salsa_emission_mode '''salsa_emission_mode'''] }}} {{{#!td style="vertical-align:top" C(20) }}} {{{#!td style="vertical-align:top" 'no_emission' }}} {{{#!td Emission mode for aerosol and gaseous emissions. '''salsa_emission_mode''' = '' 'uniform' '' sets a horizontally homogeneous surface flux of aerosols based on [#surface_aerosol_flux surface_aerosol_flux], [#aerosol_flux_dpg aerosol_flux_dpg], [#aerosol_flux_sigmag aerosol_flux_sigmag] and [#aerosol_flux_mass_fracs_a aerosol_mass_fracs_a]. '''salsa_emission_mode''' = '' 'parameterized' '' sets surface fluxes based on the street type. The aerosol size distribution and mass composition of the emission is given similar to '''salsa_emission_mode''' = '' 'uniform' ''. The flux is then normalised based on the street type in the static input file (see [wiki:doc/app/iofiles/pids/static static input file]) and using [#emission_factor_main emission_factor_main], [#emission_factor_side emission_factor_side] [#main_street_id main_street_id], [#side_street_id side_street_id], [#max_street_id max_street_id]. '''salsa_emission_mode''' = '' 'read_from_file' '' reads the emission information from the NetCDF aero -information file (see [wiki:doc/app/iofiles/pids/aerosol aerosol input file]). Note that all chemical components included in the simulation must be activated in [#listspec listspec]. Also '''bc_aer_b''' = '' 'neumann' '' is required. }}} |---------------- {{{#!td style="vertical-align:top; width: 150px" [=#season_z01 '''season_z01'''] }}} {{{#!td style="vertical-align:top; width: 50px" I }}} {{{#!td style="vertical-align:top; width: 75px" 1 }}} {{{#!td Modelling season if the dry deposition parametrisation by [wiki:doc/app/salsaref/ Zhang et al. 2001] is applied ([#depo_pcm_par depo_pcm_par] = '' 'zhang2001' '' and/or [#depo_pcm_par depo_surf_par] = '' 'zhang2001' ''). Available options: 1 = summer, 2 = autumn (no harvest yet), 3 = late autumn (already frost), 4 = winter and 5 = transitional spring. }}} |---------------- {{{#!td style="vertical-align:top; width: 150px" [=#side_street_id '''side_street_id'''] }}} {{{#!td style="vertical-align:top; width: 50px" I(99) }}} {{{#!td style="vertical-align:top; width: 75px" 0 }}} {{{#!td Index for identifying side streets following street type classes from 'OpenStreetMap'. Used if [#salsa_emission_mode salsa_emission_mode] = '' 'parameterized' ''. }}} |---------------- {{{#!td style="vertical-align:top" [=#sigmag '''sigmag'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.8, 2.16, 2.21, 2.0, 2.0, 2.0, 2.0 }}} {{{#!td The standard deviation of the log-normal aerosol number size distribution per aerosol mode. A total of 7 different aerosol modes can be applied. Example modes: nucleation, Aitken, accumulation and coarse mode. If [wiki:initialization_parameters#initializing_actions initializing_actions] includes '' 'set_constant_profiles' '', the initial aerosol size distribution is described by input parameters [#dpg dpg], '''sigmag''' and [#n_lognorm n_lognorm]. }}} |---------------- {{{#!td style="vertical-align:top" [=#skip_time_do_salsa '''skip_time_do_salsa'''] }}} {{{#!td style="vertical-align:top" R }}} {{{#!td style="vertical-align:top" 0.0 }}} {{{#!td Time after which SALSA is switched on. This parameter can be used to allow the LES model to develop turbulence before aerosol particles and their processes are switched on. }}} |---------------- {{{#!td style="vertical-align:top" [=#surface_aerosol_flux '''surface_aerosol_flux'''] }}} {{{#!td style="vertical-align:top" R(7) }}} {{{#!td style="vertical-align:top" 1.04e+11, 3.23E+10, 5.4E+6, 0.0, 0.0, 0.0, 0.0 }}} {{{#!td The total surface aerosol number flux per aerosol mode (in m^-2^s^-1^). A total of 7 different aerosol modes can be applied. Example modes: nucleation, Aitken, accumulation and coarse mode. If [#salsa_emission_mode salsa_emission_mode]= 'uniform', the aerosol number emission is described by input parameters '''aerosol_flux_dpg''', [#aerosol_flux_sigmag aerosol_flux_sigmag], [#aerosol_flux_mass_fracs_a aerosol_flux_mass_fracs_a] and [#surface_aerosol_flux surface_aerosol_flux]. }}} |---------------- {{{#!td style="vertical-align:top" [=#van_der_waals_coagc '''van_der_waals_coagc'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Parameter to switch on the van der Waals forces when calculating the collision kernel in the coagulation subroutine. Parametrisation follows [wiki:doc/app/salsaref/ Karl et al. (2016)]. }}} |---------------- {{{#!td style="vertical-align:top" [=#write_binary_salsa '''write_binary_salsa'''] }}} {{{#!td style="vertical-align:top" L }}} {{{#!td style="vertical-align:top" .F. }}} {{{#!td Write the binary restart data for the salsa module. }}} \\\\ The following quantities can be additionally output when the aerosol module SALSA is used: \\\\ ||='''Quantity name''' =||='''Meaning''' =||='''Unit''' =||='''Remarks''' =|| |---------------- {{{#!td style="vertical-align:top" ['''salsa_g_'''] }}} {{{#!td style="vertical-align:top" Concentration of }}} {{{#!td style="vertical-align:top" # m^-3^ }}} {{{#!td Options: 'salsa_g_H2SO4', 'salsa_g_HNO3', 'salsa_g_NH3', 'salsa_g_OCNV','salsa_g_OCSV'. Profile output not available. }}} |---------------- {{{#!td style="vertical-align:top" [=#salsa_LDSA '''salsa_LDSA'''] }}} {{{#!td style="vertical-align:top" Total lung-deposited surface area }}} {{{#!td style="vertical-align:top" µm^2^ cm^-3^ }}} {{{#!td }}} |---------------- {{{#!td style="vertical-align:top" ['''salsa_N_bin'''] }}} {{{#!td style="vertical-align:top" Aerosol number concentration in the aerosol size bin }}} {{{#!td style="vertical-align:top" # m^-3^ }}} {{{#!td Profile output not available. }}} |---------------- {{{#!td style="vertical-align:top" [=#salsa_N_UFP '''salsa_N_UFP'''] }}} {{{#!td style="vertical-align:top" Total aerosol number concentration of particles smaller than 0.1 µm in diameter, i.e. ultrafine particles }}} {{{#!td style="vertical-align:top" # m^-3^ }}} {{{#!td }}} |---------------- {{{#!td style="vertical-align:top" [=#salsa_Ntot '''salsa_Ntot'''] }}} {{{#!td style="vertical-align:top" Total aerosol number concentration }}} {{{#!td style="vertical-align:top" # m^-3^ }}} {{{#!td }}} |---------------- {{{#!td style="vertical-align:top" [=#salsa_PM0.1 '''salsa_PM0.1'''] }}} {{{#!td style="vertical-align:top" Total mass concentration of particulate matter smaller than 0.1 µm in diameter, i.e. ultrafine particles }}} {{{#!td style="vertical-align:top" kg m^-3^ }}} {{{#!td }}} |---------------- {{{#!td style="vertical-align:top" [=#salsa_PM2.5 '''salsa_PM2.5'''] }}} {{{#!td style="vertical-align:top" Total mass concentration of particulate matter smaller than 2.5 µm in diameter }}} {{{#!td style="vertical-align:top" kg m^-3^ }}} {{{#!td }}} |---------------- {{{#!td style="vertical-align:top" [=#salsa_PM10 '''salsa_PM10'''] }}} {{{#!td style="vertical-align:top" Total mass concentration of particulate matter smaller than 10 µm in diameter }}} {{{#!td style="vertical-align:top" kg m^-3^ }}} {{{#!td }}} |---------------- {{{#!td style="vertical-align:top" ['''salsa_s_'''] }}} {{{#!td style="vertical-align:top" Mass concentration of in the aerosol phase }}} {{{#!td style="vertical-align:top" kg m^-3^ }}} {{{#!td Options: 's_BC', 's_DU', 's_NH', 's_NO', 's_OC', 's_SO4', 's_SS'. }}} === Initial & lateral boundary conditions === ||='''Parameter Name''' =||='''Values & Explanation''' =|| |---------------- {{{#!td style="vertical-align:top; width: 200px" '''initializing_actions''' }}} {{{#!td style="vertical-align:top; width: 1000px" {{{ 'inifor set_constant_profiles', }}} If large-scale forcings are used only for meteorology, then user defined initial concentrations can be activated by combining '' 'set_constant_profiles' '' with '' 'inifor' '' separated by a space only in [wiki:initialization_parameters#initializing_actions initializing_actions]. }}}