

Radiative Transfer Model (RTM) in PALM-4U

Mohamed Salim, Sebastian Schubert Geographisches Institut, Humboldt-Universität zu Berlin

PALM-4U Crashkurs, March 1-2, 2018, Hannover

Contents

- Why RTM is required?
- RTM basics
- Implementation of RMT in PALM-4U
- How to use RTM with LSM/USM
- Example

Why RTM is required?

Simulating urban area

Input : Terrain data, Buildings, Vegetation, Meteorology, etc.

Output: Wind field (u,v,w), Momentum fluxes, etc.

Application: Dynamic effect of obstacles, Wind comfort, Pollutant dispersion, etc.

What is missing?

Air temperature Surface temperature

...

Solar radiation

PALM-4U Crashkurs, March 1-2, 2018, Hannover

Why RTM is required?

Radiation models

- Constant radiation
- Simple clear sky
- Rapid Radiation Transfer Model for Global Models (RRTMG)

Urban Surfaces

- Natural (lawns, trees, etc.)
- Manufactured (buildings, roads, etc.) fabric

Surface models in PALM-4U

PALM-4U Crashkurs, March 1-2, 2018, Hannover

RTM basics

Radiation fluxes: First pass

- Direct SW radiation
- Diffuse SW radiation
- Diffuse LW radiation

$$Q^* = K^* + L^* = K_{\downarrow} - K_{\uparrow} + L_{\downarrow} - L_{\uparrow}$$

 $K_{\uparrow} = \alpha K_{\downarrow}$
 $L_{\uparrow} = \varepsilon \sigma T_0^4 + (1 - \varepsilon) L_{\downarrow}$

Extra calculations

- Visibility (shadow)
- Sky View Factors SVF (K diffuse radiation + L)
- Transparency
- Plant canopy sink factors

HUMBOLDT-UNIVERSITÄT ZU BERLIN

RTM basics

Radiation fluxes: Second pass (reflections)

- Reflected SW radiation
- Reflected LW radiation
- Plant canopy absorption

Extra calculations

- Visibility (surface-surface)
- Shape View Factors *SVF*
- Transparency
- Plant canopy sink factors

Optimization

- Optimize raytracing: set maximum distance
- Optimize SVF values: neglect small values

RTM basics

Model limitations

- Absorption, emission, and scattering of radiation in the air within the urban canopy layer is NEGLECTED (fog, pollutants?)
- No treatment of reflective surfaces
- No plant-canopy evapotranspiration model surfaces are considered impervious to water
- The plant canopy is considered fully transparent longwave spectrum

DALE UN

Implementation of RMT in PALM-4U

Implementation of RMT in PALM-4U

Add-ons

- Radiation for atmospheric cells (Chemistry applications)
- Mean radiant temperature (MRT)
- Sky visibility (biometeorological studies)

HUMBOLDT-UNIVERSITÄT ZU BERLIN

How to use RTM with LSM/USM

NAMELIST: radiation_par

&radiation par radiation scheme = 'clear-sky', dt radiation = 60.0, albedo = 0.2, albedo type = 17, constant albedo = .F., nrefsteps = 9, surf reflections = .T., split diffusion radiation = .T., average radiation = .F., write svf on init = .T., read svf on init = .F., max raytracing dist = 200.0, min irrf value = 0.000001, dist max svf = 500.0, atm surfaces = .F., surf reflections = $.T_{.,}$

albedo, albedo_type, albedo_lw_dir, albedo_lw_dif, albedo_sw_dir, albedo_sw_dif, constant_albedo, dt_radiation, emissivity, lw_radiation, net_radiation, radiation_scheme, skip_time_do_radiation, sw_radiation, unscheduled_radiation_calls, split_diffusion_radiation, read_svf_on_init, write_svf_on_init, max_raytracing_dist, min_irrf_value, nrefsteps, mrt_factors, rma_lad_raytrace, dist_max_svf, average_radiation, atm_surfaces, surf_reflections, svfnorm_report_thresh

Domain	Ernst-Reuter-Platz, Berlin
Domain size	1000m x 1000m x 1000m
Resolution	4.0m x 4.0m x 2.0m
Buildings data*	Height, surface parameters, material parameters
Vegetation*	Street trees

Urban surface properties

albedo	emissivity
Land: 0.08	0.94
Walls: 0.20	0.90
Roof: 0.22	0.90

Vegetation (street trees)

LAD distribution: Lalic and Mihailovic, 2004

$$L(z) = L_m \left(\frac{h - z_m}{h - z}\right)^n \exp\left[n\left(1 - \frac{h - z_m}{h - z}\right)\right]$$
$$n = \begin{cases} 6 & 0 \le z < z_m \\ 0.5 & z_m \le z < h \end{cases}$$

MOSAIK 4th biannual meeting, February 13-14, 2018, Hannover

MOSAIK 4th biannual meeting, February 13-14, 2018, Hannover

MOSAIK 4th biannual meeting, February 13-14, 2018, Hannover

Whey there is a Sun?! Well, probably to grow vegetables and to complicate our modeling parametrization.. ©

Thanks!