
Parallel IO on HLRN-IV systems

Klaus Ketelsen

13. April 2021

Inhaltsverzeichnis

 1 Introduction..2
 2 Compiler and environment...2
 3 Striping and stripe size...3
 4 Influence of data layout for MPi-IO..5
 5 Reduced number of IO nodes...6
 6 NetCDF...9
 6.1 Unlimited dimension...9
 6.2 Compile and link...10
 7 Conclusion..10

1

 1 Introduction
The following report describes the findings that were gained when implementing the
parallel IO in the PALM model (https://palm.muk.uni-hannover.de). PALM uses
NetCDF for model output and native MPI-IO for restart handling.

Parallel IO on Lustre file systems is a very complex topic and this report will not be
able to handle all aspects. But maybe the experiences can help to improve the IO
performance in other areas.

 2 Compiler and environment
Most of the time measurements below were done with the default Compiler and MPI
modules, which currently are

intel/19.0.5(default) (Berlin) or intel/18.0.5(default) (Göttingen)

impi/2018.5(default) (Berlin) or impi/2018.5(default) (Göttingen)

It should be noted that with impi/2018.5 the Lustre drivers are not loaded by default.
The following environment setup increases the IO performance:

export I_MPI_EXTRA_FILESYSTEM=on

export I_MPI_EXTRA_FILESYSTEM_LIST=lustre

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$I_MPI_ROOT/lib64

With impi/2019.x the following Environment should be set:

export I_MPI_EXTRA_FILESYSTEM=on

export I_MPI_EXTRA_FILESYSTEM_FORCE=lustre

Table 1 shows the transfer speed for writing a file with different setups. The job ran
on 16 nodes and the stripe-count was set to 16.

For unknown reason, the performance values in table 1 could only be reached, when
the compiler and impi modules are loaded in the compile script and not in .bashrc.

2

https://palm.muk.uni-hannover.de/

table 1: Io-Performance depending on compiler and runtime setup

Compiler MPI Environmet set Transfer speed
intel/18.0.6 impi/2018.5 no 6499 MB/s

intel/18.0.6 impi/2018.5 yes 9938 MB/s

intel/19.0.5 impi/2019.9 no 6323 MB/s

intel/19.0.5 impi/2019.9 yes 9756 MB/s

 3 Striping and stripe size
The following measurements were done with a standalone test program based on
PALM IO-routines. The parallel IO is done with native MPI-IO, no NetCDF or hdf5
has been used.

On Lustre file systems, striping of the parallel IO streams has significant influence of
the IO Performance.

The following variables change the setup of Lustre striping for single files or
directories with their containing files.

1. stripe-count

The stripe count indicates, how many streams are used in parallel for MPI-IO.

The stipe count can be set by:

lfs setstripe --stripe-count count-value file-name (or directory name)

2. stripe-size

The stripe size indicates the size of striped IO block.

The stipe size can be set by:

lfs setstripe --stripe-size size-value file-name (or directory name)

Table 2 and figure 1 show the influence of stripe count and strips size on the transfer
rate. Measurement were done with the test program described above.

transfer direction: write

global size of 3D array 1536*1536*512

The transfer rates in the following table are in MB/s

3

table 2: Influence of striping to IO-Performance

stripe count size 0.5 m size 1m size 2m size 4m size 8m
1 807 810 864 868 867

2 1590 1465 1524 1498 1592
4 2736 2809 2868 2864 2971
8 4732 5103 5322 5150 5523
16 8803 9262 9437 9860 10459
24 12053 12693 13233 13667 13970

The following graphic shows the transfer rate depending on the stripe-count for
stripe-size of 0.5 MB and 8 MB

Table and graphic show significant speedup increasing the stripe-count, whereas the
effect of changing the stripe-size is minor.

4

figure 1: IO Performace vs stripe-count

1 2 4 8 16 24
0

2000

4000

6000

8000

10000

12000

14000

16000

size 1m
size 8m

 4 Influence of data layout for MPi-IO
MPI-IO is very sensitive of the data layout during parallel read or write.

Performance hints

1. Write or read big chunks

2. Locally, try to get largest chunks in the first dimension of the output array.

3. If possible use MPI_File_write_all (collective IO) instead of MPI_File_write
(non collective IO)

4. No gaps and no overlay areas in the global IO array

5. Setup IO arrays with MPI_Type_create_subarray

Table 3 compares the IO performance of runs with collective and non collective IO
routines.

table 3: Collective or non-collective IO: Array Dimension (1536*1536*512)

nr. nodes Tasks/node Nr. procs

Direction Collective time
sec

IO-Rate
MB/sec

16 96 1536 write NO 98 2067
16 96 1536 write YES 44 4614
16 96 1536 read NO 110 1841
16 96 1536 read YES 54 3714

Besides 2-D and 3-D arrays, there is a special datatype surface data in PALM.
Surface elements are stored in 1-D indexed arrays, i.e. there is a grid-point based
index array, which points to the elements of the respective grid-point in that 1-D
element array. This compares with unstructured mesh in other models.

Surface data can have a very irregular structure, e.g. walls of buildings.

To handle surface data IO conform with the performance hints above, the following
procedure has been implemented.

1. Transform the local index space into global index space

2. Compute the total number of surface elements over all MPI processes.

3. Divide the global 1-d array of surface elements in equal size chunks.

4. Distribute these chunks across the MPI processes

5. Move the surface elements to their designed output processes using MPI RMA
communication

5

6. Write the elements to disk using MPI_File_write_all

Figure 2 shows how the surface elements are transferred from the PALM context to
the IO Context and vice versa. On the left side, surface elements are only located on
processes 2 and 3 (e.g.building walls). On the right side, the same surface elements
are equally distributed on all MPI processes.

Due to the irregular data structure, all attempts to write the data only to the local
processes had been unsuccessful. With the method above, good overall IO
performance was achieved. Another advantage of this IO scheme is that the restart
data does not depend on the processor grid, i.e. the restart file can be read in a
different processor layout than when writing.

 5 Reduced number of IO nodes
Timing measurements show, that especially on the HLRN-IV system in Berlin the IO-
rate decreases when all processes of a node are involved in IO. To speedup IO, a
procedure has been developed where IO is done only on reduced number of processes
on the nodes. The IO processes access the output data via MPI shared memory from
the other processes.

6

figure 2: reorder surface elemnts for IO

Basic Idea:

1. On a node, create one or more groups of MPI-processes

2. Process 0 of the respective group is designed as IO processes

3. Create a communicator for all IO processes (comm_io)

4. Only IO processes open file with MPI_File_open using the IO communicator.

5. All processes share the input/output buffer of their respective IO process.

6. actions while writing one record:

◦ all processes fill output buffer shared with their respective IO-process

◦ Synchronize IO group

◦ The IO processes write using MPI_File_write_all on the IO communicator

◦ Synchronize IO group

7. actions while reading:

◦ Synchronize IO group

◦ The IO processes read using MPI_File_read_all on the IO communicator

◦ Synchronize IO group

◦ all processes can access data from input buffer on their respective IO-
process

8. IO processes close file

Figure 3 shows the process layout at an example of 2 nodes. The data array is shown
as example on the first IO group on every node, it exists of course an all IO groups.

7

For more details of the implementation of IO on reduced number of processes please
contact the author.

klaus-ketelsen@t-online.de

Table 4 and 5 show the IO times for writing and reading restart file for a PALM
production run. Especially for reading there is significant speedup. In addition to
regular 3-D arrays, many indexed surface arrays are written in this actual PALM
setup.

writing

table 4: IO-rates: Array Dimension (2940x2940*232), File size ca. 390 GB

nr. nodes Tasks/node Nr. procs

striping_
factor

reduced IO
nodes

time
sec

IO-Rate
MB/sec

59 96 5612 8 NO 189 2014
59 96 5612 8 YES 71.2 5362

8

figure 3: process distibution for reduced IO processes

mailto:klaus-ketelsen@t-online.de

reading

table 5: IO-rates: Array Dimension (2940x2940*232), File size ca. 390 GB

nr. nodes Tasks/node Nr. procs

striping_
factor

reduced IO
nodes

time
sec

IO-Rate
MB/sec

59 96 5612 8 NO 562 670
59 96 5612 8 YES 60 6363

Two effects may influence the behavior of this method:

1. There are less MPI processes using the limited IO ports simultaneously.

2. Using fewer IO processes automatically increases the chuck size on the IO
processes.

At this point of time it is not clear, which of the two effects has larger influence of the
better performance using reduced IO processes.

 6 NetCDF
Many models, especially in environmental research use NetCDF for storing results.
The latest flavor NETCDF4 internally uses hdf5

The knowledge from the previous chapters can also be applied to NetCDF-IO.

 6.1 Unlimited dimension
Most models do the output of their results in NetCDF format. Typically, the output is
done within the simulation time loop and it is common and convenient to declare the
time dimension as UNLIMITED in NetCDF context.

Unfortunately, the performance drops significantly, using unlimited time dimension
compared with the equivalent IO with fixed dimension (see table 6).

table 6: Compare limited and unlimited time dimension: Array Dimension (1536*1536*512)

nr. nodes Tasks/node Nr. procs

striping_
factor

Unlimited
dimension

time
sec

IO-Rate
MB/sec

16 96 1536 8 YES 161 848
16 96 1536 8 NO 41 3332

In PALM, the following workaround is implemented. The number of output steps is

9

calculated in advance at the beginning of a model run. Knowing the number of output
step allows to declare fixed time dimension.

 6.2 Compile and link

It is strongly recommended to use the same modules (intel Compiler and impi) for
compiling the model and the hdf5/NetCDF libraries. Otherwise, the results may be
unpredictable. Even when compiling went OK, the program may abort at runtime.

For example, the PALM model aborts when loading modules intel/19.0.5 and
impi/2019.5 and using hdf5/NetCDF generated with impi/2018.

 7 Conclusion
This report shows that there are many methods that can affect the performance of the
Lustre filesystem. The findings are based on experiences with parallel IO of the
PALM model. Some can be used without changing the source code and it is
recommended to check to what extent they can be applied when using another model
on the HLRN-IV systems.

10

	1 Introduction
	2 Compiler and environment
	3 Striping and stripe size
	4 Influence of data layout for MPi-IO
	5 Reduced number of IO nodes
	6 NetCDF
	6.1 Unlimited dimension
	6.2 Compile and link

	7 Conclusion

