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1 Introduction

The dry version of PALM does not contain any cloud physics. It has been extended to
account for a nearly complete water cycle and radiation processes:

Water cycle

• evaporation/condensation

• precipitation

• transport of humidity and liquid water

Radiation processes

• short-wave radiation

• long-wave radiation

The dynamical processes are covered by advection and diffusion and they are described
by the implemented methods. For the consideration of the thermodynamical processes
modifications are necessary in the thermodynamics of PALM. In doing so evaporation and
condensation are treated as adiabatic processes whereas precipitation and radiation are
treated as diabatic processes. In the dry version of PALM the thermodynamic variable
is the potential temperature θ. The first law of thermodynamics provides the prognostic
equation for θ. The system of thermodynamic variables has to be extended to deal with
phase transitions:

qv = specific humidity to deal with water vapour

ql = liquid water content to deal with the liquid phase

Additionally, dependencies between these variables have to be introduced to describe the
changes of state (condensation scheme).
In introducing the two variables liquid water potential temperature θl and total liquid water
content q the treatment of the thermodynamics is simplified. The liquid water potential
temperature θl is defined by Betts (1973) and represents the potential temperature attained
by evaporating all the liquid water in an air parcel through reversible wet adiabatic descent.
In a linearized version it is defined as

θl = θ − Lv

cp

(

θ

T

)

ql. (1)
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For the total water content it is valid:

q = qv + ql. (2)

The usage of θl and q as thermodynamic variables is based on the work of Ogura (1963)
and Orville (1965). The advantages of the θl-q system are discussed by Deardorff (1976):

• Without precipitation, radiation and freezing processes θl and q are conservative
quantities (for the whole system).

• Therewith, the treatment of grid volumes in which only a fraction is saturated is
simplified (sub-grid scale condensation scheme).

• Parameterizations of the sub-grid scale fluxes are retained.

• The liquid water content is not a separate variable (storage space is saved).

• For dry convection θl matches the potential temperature and q matches the specific
humidity when condensation is disabled.

• Phase transitions do not have to be described as additional terms in the prognostic
equations.

2 Model equations

In combining the prognostic equations for dry convection with the processes for cloud
physics the following set of prognostic and diagnostic model equations is gained:

Equation of continuity

∂uj
∂xj

= 0 (3)

Equations of motion

∂ui
∂t

= −∂ (ujui)
∂xj

− 1

ρ0

∂π∗

∂xi
− εijkfjuk − εi3kf3ugk + g

θv − 〈θv〉
θ0

δi3 −
∂ τij
∂xj

(4)

with

π∗ = p∗ +
2

3
ρ0 e (5)

τij = u
′

ju
′

i −
2

3
e δij (6)

First law of thermodynamics

∂θl
∂t

= −∂
(

ujθl
)

∂xj
−
∂ u

′

jθ
′

l

∂xj
+

(

∂θl
∂t

)

RAD

+

(

∂θl
∂t

)

PREC

(7)

Conservation equation for the total water content

∂q

∂t
= −∂ (ujq)

∂xj
−
∂ u

′

jq
′

∂xj
+

(

∂q

∂t

)

PREC

(8)
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Conservation equation for the sub-grid scale turbulent kinetic energy e = 1
2
u

′2
i

∂e

∂t
= −∂ (uje)

∂xj
− u

′

ju
′

i

∂ui
∂xj

+
g

θ0
u

′

3θ
′

v −
∂

∂xj

{

u
′

j

(

e′ +
p′

ρ0

)

}

− ǫ (9)

The virtual potential temperature is needed in equation (4) to calculate the buoyancy term.
It is defined by e.g. Sommeria and Deardorff (1977) as

θv =

(

θl +
Lv

cp

(

θ

T

)

ql

)

(1 + 0.61 q − 1.61 ql) . (10)

Therewith, the influence of changing in density due to condensation is considered in the
buoyancy term.
The closure of the model equations is based on the approaches of Deardorff (1980):

u
′

ju
′

i = −Km

(

∂ui
∂xj

+
∂uj
∂xi

)

+
2

3
e δij (11)

u
′

jθ
′

l = −Kh

(

∂θl
∂xj

)

(12)

u
′

jq
′ = −Kh

(

∂q

∂xj

)

(13)

u
′

j

(

e′ +
p′

ρ0

)

= −2Km
∂e

∂xj
(14)

u
′

3θ
′

v = K1 u
′

3θ
′

l +K2 u
′

3q
′ (15)

Km = 0.1 l
√
e (16)

Kh =

(

1 + 2
l

∆

)

Km (17)

ǫ =

(

0.19 + 0.74
l

∆

)

e
3

2

l
(18)

with

l =







min

(

∆, 0.7 d, 0.76
√
e
(

g
θ0

∂θv
∂z

)

−
1

2

)

, ∂θv
∂z > 0

min (∆, 0.7 d) , ∂θv
∂z ≤ 0

(19)

and

∆ = (∆x∆y∆z)1/3 (20)

At the lower boundary Monin-Obukhov similarity theory is valid ( w′q′ = u∗q∗).
Cuijpers and Duynkerke (1993) for example define the coefficients K1 and K2 as follows:
in unsaturated air:

K1 = 1.0 + 0.61 q (21)

K2 = 0.61 θ (22)
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in saturated air:

K1 =
1.0− q + 1.61 qs

(

1.0 + 0.622 Lv

RT

)

1.0 + 0.622 Lv

RT
Lv

cpT
qs

(23)

K2 = θ

((

Lv

cpT

)

K1 − 1.0

)

(24)

The saturation value of the specific humidity comes from the truncated Taylor expansion
of qs(T ):

qs(T ) = qs = qs (Tl) +

(

∂qs
∂T

)

T=Tl

(T − Tl). (25)

Using the Clausius-Clapeyron equation

(

∂qs
∂T

)

T=Tl

= 0.622
Lvqs(Tl)

RT 2
l

(26)

with

T = Tl +
Lv

cp
ql respectively ql = q − qs (27)

gives

qs(T ) = qs(T l)
(1.0 + β q)

1.0 + β qs(Tl)
. (28)

Whereas

qs(T l) = 0.622
es(T l)

p0(z)− 0.378 es(T l)
(29)

and

β = 0.622

(

Lv

RT l

)(

Lv

cp T l

)

. (30)

The actual liquid water temperature is defined as

T l =

(

p0(z)

p0(z = 0)

)κ

θl (31)

with p0(z = 0) = 1000hPa. The value of the saturation vapour pressure at the temperature
T l is calculated in the same way as in Bougeault (1982):

es(T l) = 610.78 exp

(

17.269
T l − 273.16

T l − 35.86

)

. (32)

The hydrostatic pressure p0(z) is given by Cuijpers and Duynkerke (1993):

p0(z) = p0(z = 0)

(

Tref(z)

T0

)cp/R

(33)
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with

Tref(z) = T0 −
g

cp
z. (34)

The pressure is calculated once at the beginning of a simulation and remains unchanged.
For the reference temperature at the earth surface T0 the initial surface temperature is
applied. The ratio of the potential and the actual temperature is given by:

θ

T
=

(

p0(z = 0)

p0(z)

)κ

. (35)

The liquid water content ql is needed for the calculation of the virtual potential temperature
(eq. (10)). It is calculated from the difference of the total water content at a single grid
point and the saturation value at this grid point:

ql =

{

q − qs(T ) if q > qs(T )

0 else
(36)

With this approach a grid volume is either completely saturated or completely unsaturated.
The values of the cloud cover of a grid volume can only become 0 or 1 (0%-or100% scheme).

3 Parameterization of the source terms in the conservation

equations

3.1 Radiation model

The source term for radiation processes is parameterized via the scheme of effective emis-
sivity which is based on Cox (1976):

(

∂θl
∂t

)

RAD

= − θ

T

1

ρ cp ∆z

[

∆F (z+)−∆F (z−)
]

(37)

∆F describes the difference between upward and downward irradiance at the grid point
above (z+) and below (z−) the level in which θl is defined.
The upward and downward irradiance F↑ and F↓ are defined as follows:

F↑(z) = B(0) + ε↑(z, 0) (B(z)−B(0)) (38)

F↓(z) = F↓(ztop) + ε↓(z, ztop) (B(z)− F↓(ztop)) (39)

F↓(ztop) describes the impinging irradiance at the upper boundary of the model domain
which has to be prescribed. B(0) and B(z) represent the black body emission at the
ground and the height z respectively. ε↑(z, 0) and ε↓(z, ztop) stand for the effective cloud
emissivity of the liquid water between the ground and the level z and between z and the
upper boundary of the model domain ztop respectively. They are defined as

ε↑(z, 0) = 1− exp (−a · LWP (0, z)) (40)

ε↓(z, ztop) = 1− exp (−b · LWP (z, ztop)) (41)

LWP (z1, z2) describes the liquid water path which is the vertically added content of liquid
water above each grid column:

LWP (z1, z2) =

∫ z2

z1

dz ρ · ql. (42)
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a and b are called mass absorption coefficients. Their empirical values are based on
Stephans (1978) with a = 130m2kg−1 and b = 158m2kg−1.
The assumptions for the validity of this parameterization are:

• Horizontal divergences in radiation are neglected.

• Only absorption and emission of long-wave radiation due to water vapour and cloud
droplets is considered.

• The atmosphere is assumed to have constant in-situ temperature above and below
the regarded level except for the earth surface.

3.2 Precipitation model

The source term for precipitation processes is parameterized via a simplified scheme of
Kessler (1969):

(

∂q

∂t

)

PREC

=

{

(

ql − qlcrit
)

/τ ql > qlcrit
0 ql ≤ qlcrit

(43)

The precipitation leaves the grid volume immediately if the threshold of the liquid water
content qlcrit = 0.5 g/kg is exceeded. Hence, evaporation of the rain drops does not occur.
τ is a time scale with a value of 1000 s.
The influence of the precipitation on the temperature is as follows:

(

∂θl
∂t

)

PREC

= −Lv

cp

(

θ

T

)(

∂q

∂t

)

PREC

(44)

List of symbols

Variable Description Value

B black body radiation

cp heat capacity for dry air with p=const 1005 JK−1kg−1

d normal distance to the nearest solid surface

e sub-grid scale turbulent kinetic energy

es saturation vapour pressure

fi Coriolis parameter i ∈ {1, 2, 3}
F↑ upward irradiance

F↓ downward irradiance

i, j, k integer indices

Kh turbulent diffusion coefficient for momentum

Km turbulent diffusion coefficient for heat

K1 coefficient

K2 coefficient

l mixing length

Lv heat of evaporation 2.5 · 106 J kg−1
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LWP liquid water path

R gas constant for dry air 287 JK−1kg−1

T actual temperature

Tl actual liquid water temperature

u, v, w, ui velocity components, i ∈ {1, 2, 3}
p0 hydrostatic pressure

q total water content

ql liquid water content

qlcrit threshold for the formation of precipitation

qs specific humidity in case of saturation

qv specific humidity

x, y, z, xi Cartesian coordinates, i ∈ {1, 2, 3}
∆ characteristic grid length

ǫ dissipation of sub-grid scale turbulent kinetic energy

ε↑ upward effective cloud emissivity

ε↓ downward effective cloud emissivity

κ R/cp 0.286

ρ air density

τ time scale for the Kessler scheme

θ potential temperature

θl liquid water potential temperature

θv virtual potential temperature

θ0 reference value for the potential temperature

ψ resolved scale variable

ψ
′

sub-grid scale variable

ψ∗ departure from the basic state (Boussinesq approxima-
tion)

〈ψ〉 horizontal mean
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