!> @file chemistry_model_mod.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 2017-2019 Leibniz Universitaet Hannover ! Copyright 2017-2019 Karlsruhe Institute of Technology ! Copyright 2017-2019 Freie Universitaet Berlin !------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: chemistry_model_mod.f90 4182 2019-08-22 15:20:23Z suehring $ ! Corrected "Former revisions" section ! ! 4167 2019-08-16 11:01:48Z suehring ! Changed behaviour of masked output over surface to follow terrain and ignore ! buildings (J.Resler, T.Gronemeier) ! ! ! 4166 2019-08-16 07:54:21Z resler ! Bugfix in decycling ! ! 4115 2019-07-24 12:50:49Z suehring ! Fix faulty IF statement in decycling initialization ! ! 4110 2019-07-22 17:05:21Z suehring ! - Decycling boundary conditions are only set at the ghost points not on the ! prognostic grid points ! - Allocation and initialization of special advection flags cs_advc_flags_s ! used for chemistry. These are exclusively used for chemical species in ! order to distinguish from the usually-used flags which might be different ! when decycling is applied in combination with cyclic boundary conditions. ! Moreover, cs_advc_flags_s considers extended zones around buildings where ! first-order upwind scheme is applied for the horizontal advection terms, ! in order to overcome high concentration peaks due to stationary numerical ! oscillations caused by horizontal advection discretization. ! ! 4109 2019-07-22 17:00:34Z suehring ! Slightly revise setting of boundary conditions at horizontal walls, use ! data-structure offset index instead of pre-calculate it for each facing ! ! 4080 2019-07-09 18:17:37Z suehring ! Restore accidantly removed limitation to positive values ! ! 4079 2019-07-09 18:04:41Z suehring ! Application of monotonic flux limiter for the vertical scalar advection ! up to the topography top (only for the cache-optimized version at the ! moment). ! ! 4069 2019-07-01 14:05:51Z Giersch ! Masked output running index mid has been introduced as a local variable to ! avoid runtime error (Loop variable has been modified) in time_integration ! ! 4029 2019-06-14 14:04:35Z raasch ! nest_chemistry option removed ! ! 4004 2019-05-24 11:32:38Z suehring ! in subroutine chem_parin check emiss_lod / mod_emis only ! when emissions_anthropogenic is activated in namelist (E.C. Chan) ! ! 3968 2019-05-13 11:04:01Z suehring ! - added "emiss_lod" which serves the same function as "mode_emis" ! both will be synchronized with emiss_lod having pirority over ! mode_emis (see informational messages) ! - modified existing error message and introduced new informational messages ! - CM0436 - now also applies to invalid LOD settings ! - CM0463 - emiss_lod take precedence in case of conflict with mod_emis ! - CM0464 - emiss_lod valued assigned based on mode_emis if undefined ! ! 3930 2019-04-24 14:57:18Z forkel ! Changed chem_non_transport_physics to chem_non_advective_processes ! ! ! 3929 2019-04-24 12:52:08Z banzhafs ! Correct/complete module_interface introduction for chemistry model ! Add subroutine chem_exchange_horiz_bounds ! Bug fix deposition ! ! 3784 2019-03-05 14:16:20Z banzhafs ! 2D output of emission fluxes ! ! 3784 2019-03-05 14:16:20Z banzhafs ! Bugfix, uncomment erroneous commented variable used for dry deposition. ! Bugfix in 3D emission output. ! ! 3784 2019-03-05 14:16:20Z banzhafs ! Changes related to global restructuring of location messages and introduction ! of additional debug messages ! ! 3784 2019-03-05 14:16:20Z banzhafs ! some formatting of the deposition code ! ! 3784 2019-03-05 14:16:20Z banzhafs ! some formatting ! ! 3784 2019-03-05 14:16:20Z banzhafs ! added cs_mech to USE chem_gasphase_mod ! ! 3784 2019-03-05 14:16:20Z banzhafs ! renamed get_mechanismname to get_mechanism_name ! renamed do_emiss to emissions_anthropogenic and do_depo to deposition_dry (ecc) ! ! 3784 2019-03-05 14:16:20Z banzhafs ! Unused variables removed/taken care of ! ! ! 3784 2019-03-05 14:16:20Z forkel ! Replaced READ from unit 10 by CALL get_mechanismname also in chem_header ! ! ! 3783 2019-03-05 13:23:50Z forkel ! Removed forgotte write statements an some unused variables (did not touch the ! parts related to deposition) ! ! ! 3780 2019-03-05 11:19:45Z forkel ! Removed READ from unit 10, added CALL get_mechanismname ! ! ! 3767 2019-02-27 08:18:02Z raasch ! unused variable for file index removed from rrd-subroutines parameter list ! ! 3738 2019-02-12 17:00:45Z suehring ! Clean-up debug prints ! ! 3737 2019-02-12 16:57:06Z suehring ! Enable mesoscale offline nesting for chemistry variables as well as ! initialization of chemistry via dynamic input file. ! ! 3719 2019-02-06 13:10:18Z kanani ! Resolved cpu logpoint overlap with all progn.equations, moved cpu_log call ! to prognostic_equations for better overview ! ! 3700 2019-01-26 17:03:42Z knoop ! Some interface calls moved to module_interface + cleanup ! ! 3664 2019-01-09 14:00:37Z forkel ! Replaced misplaced location message by @todo ! ! ! 3654 2019-01-07 16:31:57Z suehring ! Disable misplaced location message ! ! 3652 2019-01-07 15:29:59Z forkel ! Checks added for chemistry mechanism, parameter chem_mechanism added (basit) ! ! 2718 2018-01-02 08:49:38Z maronga ! Initial revision ! ! ! ! ! Authors: ! -------- ! @author Renate Forkel ! @author Farah Kanani-Suehring ! @author Klaus Ketelsen ! @author Basit Khan ! @author Sabine Banzhaf ! ! !------------------------------------------------------------------------------! ! Description: ! ------------ !> Chemistry model for PALM-4U !> @todo Extend chem_species type by nspec and nvar as addititional elements (RF) !> @todo Check possibility to reduce dimension of chem_species%conc from nspec to nvar (RF) !> @todo Adjust chem_rrd_local to CASE structure of others modules. It is not !> allowed to use the chemistry model in a precursor run and additionally !> not using it in a main run !> @todo Implement turbulent inflow of chem spcs in inflow_turbulence. !> @todo Separate boundary conditions for each chem spcs to be implemented !> @todo Currently only total concentration are calculated. Resolved, parameterized !> and chemistry fluxes although partially and some completely coded but !> are not operational/activated in this version. bK. !> @todo slight differences in passive scalar and chem spcs when chem reactions !> turned off. Need to be fixed. bK !> @todo test nesting for chem spcs, was implemented by suehring (kanani) !> @todo chemistry error messages ! !------------------------------------------------------------------------------! MODULE chemistry_model_mod USE advec_s_pw_mod, & ONLY: advec_s_pw USE advec_s_up_mod, & ONLY: advec_s_up USE advec_ws, & ONLY: advec_s_ws, ws_init_flags_scalar USE diffusion_s_mod, & ONLY: diffusion_s USE kinds, & ONLY: iwp, wp USE indices, & ONLY: advc_flags_s, & nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nz, nzb, nzt, wall_flags_0 USE pegrid, & ONLY: myid, threads_per_task USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model USE control_parameters, & ONLY: bc_lr_cyc, bc_ns_cyc, & bc_dirichlet_l, & bc_dirichlet_n, & bc_dirichlet_r, & bc_dirichlet_s, & bc_radiation_l, & bc_radiation_n, & bc_radiation_r, & bc_radiation_s, & debug_output, & dt_3d, humidity, initializing_actions, message_string, & omega, tsc, intermediate_timestep_count, intermediate_timestep_count_max, & max_pr_user, & monotonic_limiter_z, & scalar_advec, & timestep_scheme, use_prescribed_profile_data, ws_scheme_sca, air_chemistry USE arrays_3d, & ONLY: exner, hyp, pt, q, ql, rdf_sc, tend, zu USE chem_gasphase_mod, & ONLY: atol, chem_gasphase_integrate, cs_mech, get_mechanism_name, nkppctrl, & nmaxfixsteps, nphot, nreact, nspec, nvar, phot_names, rtol, spc_names, t_steps, vl_dim USE chem_modules USE chem_photolysis_mod, & ONLY: photolysis_control USE cpulog, & ONLY: cpu_log, log_point_s USE statistics USE surface_mod, & ONLY: surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, surf_usm_v IMPLICIT NONE PRIVATE SAVE REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_1 !< pointer for swapping of timelevels for conc REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_2 !< pointer for swapping of timelevels for conc REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_3 !< pointer for swapping of timelevels for conc REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: spec_conc_av !< averaged concentrations of chemical species REAL(kind=wp), ALLOCATABLE, DIMENSION(:,:,:,:), TARGET :: freq_1 !< pointer for phtolysis frequncies !< (only 1 timelevel required) INTEGER, DIMENSION(nkppctrl) :: icntrl !< 20 integer parameters for fine tuning KPP code !< (e.g. solver type) REAL(kind=wp), DIMENSION(nkppctrl) :: rcntrl !< 20 real parameters for fine tuning of KPP code !< (e.g starting internal timestep of solver) ! !-- Decycling of chemistry variables: Dirichlet BCs with cyclic is frequently not !-- approproate for chemicals compounds since they may accumulate too much. !-- If no proper boundary conditions from a DYNAMIC input file are available, !-- de-cycling applies the initial profiles at the inflow boundaries for !-- Dirichlet boundary conditions LOGICAL :: decycle_chem_lr = .FALSE. !< switch for setting decycling in left-right direction LOGICAL :: decycle_chem_ns = .FALSE. !< switch for setting decycling in south-norht direction CHARACTER (LEN=20), DIMENSION(4) :: decycle_method = & (/'dirichlet','dirichlet','dirichlet','dirichlet'/) !< Decycling method at horizontal boundaries, !< 1=left, 2=right, 3=south, 4=north !< dirichlet = initial size distribution and !< chemical composition set for the ghost and !< first three layers !< neumann = zero gradient REAL(kind=wp), PUBLIC :: cs_time_step = 0._wp ! !-- Parameter needed for Deposition calculation using DEPAC model (van Zanten et al., 2010) ! INTEGER(iwp), PARAMETER :: nlu_dep = 15 !< Number of DEPAC landuse classes (lu's) INTEGER(iwp), PARAMETER :: ncmp = 10 !< Number of DEPAC gas components INTEGER(iwp), PARAMETER :: nposp = 69 !< Number of possible species for deposition ! !-- DEPAC landuse classes as defined in LOTOS-EUROS model v2.1 INTEGER(iwp) :: ilu_grass = 1 INTEGER(iwp) :: ilu_arable = 2 INTEGER(iwp) :: ilu_permanent_crops = 3 INTEGER(iwp) :: ilu_coniferous_forest = 4 INTEGER(iwp) :: ilu_deciduous_forest = 5 INTEGER(iwp) :: ilu_water_sea = 6 INTEGER(iwp) :: ilu_urban = 7 INTEGER(iwp) :: ilu_other = 8 INTEGER(iwp) :: ilu_desert = 9 INTEGER(iwp) :: ilu_ice = 10 INTEGER(iwp) :: ilu_savanna = 11 INTEGER(iwp) :: ilu_tropical_forest = 12 INTEGER(iwp) :: ilu_water_inland = 13 INTEGER(iwp) :: ilu_mediterrean_scrub = 14 INTEGER(iwp) :: ilu_semi_natural_veg = 15 ! !-- NH3/SO2 ratio regimes: INTEGER(iwp), PARAMETER :: iratns_low = 1 !< low ratio NH3/SO2 INTEGER(iwp), PARAMETER :: iratns_high = 2 !< high ratio NH3/SO2 INTEGER(iwp), PARAMETER :: iratns_very_low = 3 !< very low ratio NH3/SO2 ! !-- Default: INTEGER, PARAMETER :: iratns_default = iratns_low ! !-- Set alpha for f_light (4.57 is conversion factor from 1./(mumol m-2 s-1) to W m-2 REAL(wp), DIMENSION(nlu_dep), PARAMETER :: alpha =(/ 0.009, 0.009, 0.009, 0.006, 0.006, -999., -999., 0.009, -999., & -999., 0.009, 0.006, -999., 0.009, 0.008/)*4.57 ! !-- Set temperatures per land use for f_temp REAL(wp), DIMENSION(nlu_dep), PARAMETER :: tmin = (/ 12.0, 12.0, 12.0, 0.0, 0.0, -999., -999., 12.0, -999., -999., & 12.0, 0.0, -999., 12.0, 8.0/) REAL(wp), DIMENSION(nlu_dep), PARAMETER :: topt = (/ 26.0, 26.0, 26.0, 18.0, 20.0, -999., -999., 26.0, -999., -999., & 26.0, 20.0, -999., 26.0, 24.0 /) REAL(wp), DIMENSION(nlu_dep), PARAMETER :: tmax = (/ 40.0, 40.0, 40.0, 36.0, 35.0, -999., -999., 40.0, -999., -999., & 40.0, 35.0, -999., 40.0, 39.0 /) ! !-- Set f_min: REAL(wp), DIMENSION(nlu_dep), PARAMETER :: f_min = (/ 0.01, 0.01, 0.01, 0.1, 0.1, -999., -999., 0.01, -999., -999., 0.01, & 0.1, -999., 0.01, 0.04/) ! !-- Set maximal conductance (m/s) !-- (R T/P) = 1/41000 mmol/m3 is given for 20 deg C to go from mmol O3/m2/s to m/s REAL(wp), DIMENSION(nlu_dep), PARAMETER :: g_max = (/ 270., 300., 300., 140., 150., -999., -999., 270., -999., -999., & 270., 150., -999., 300., 422./)/41000. ! !-- Set max, min for vapour pressure deficit vpd REAL(wp), DIMENSION(nlu_dep), PARAMETER :: vpd_max = (/1.3, 0.9, 0.9, 0.5, 1.0, -999., -999., 1.3, -999., -999., 1.3, & 1.0, -999., 0.9, 2.8/) REAL(wp), DIMENSION(nlu_dep), PARAMETER :: vpd_min = (/3.0, 2.8, 2.8, 3.0, 3.25, -999., -999., 3.0, -999., -999., 3.0, & 3.25, -999., 2.8, 4.5/) PUBLIC nreact PUBLIC nspec !< number of gas phase chemical species including constant compound (e.g. N2) PUBLIC nvar !< number of variable gas phase chemical species (nvar <= nspec) PUBLIC spc_names !< names of gas phase chemical species (come from KPP) (come from KPP) PUBLIC spec_conc_2 ! !-- Interface section INTERFACE chem_3d_data_averaging MODULE PROCEDURE chem_3d_data_averaging END INTERFACE chem_3d_data_averaging INTERFACE chem_boundary_conds MODULE PROCEDURE chem_boundary_conds MODULE PROCEDURE chem_boundary_conds_decycle END INTERFACE chem_boundary_conds INTERFACE chem_check_data_output MODULE PROCEDURE chem_check_data_output END INTERFACE chem_check_data_output INTERFACE chem_data_output_2d MODULE PROCEDURE chem_data_output_2d END INTERFACE chem_data_output_2d INTERFACE chem_data_output_3d MODULE PROCEDURE chem_data_output_3d END INTERFACE chem_data_output_3d INTERFACE chem_data_output_mask MODULE PROCEDURE chem_data_output_mask END INTERFACE chem_data_output_mask INTERFACE chem_check_data_output_pr MODULE PROCEDURE chem_check_data_output_pr END INTERFACE chem_check_data_output_pr INTERFACE chem_check_parameters MODULE PROCEDURE chem_check_parameters END INTERFACE chem_check_parameters INTERFACE chem_define_netcdf_grid MODULE PROCEDURE chem_define_netcdf_grid END INTERFACE chem_define_netcdf_grid INTERFACE chem_header MODULE PROCEDURE chem_header END INTERFACE chem_header INTERFACE chem_init_arrays MODULE PROCEDURE chem_init_arrays END INTERFACE chem_init_arrays INTERFACE chem_init MODULE PROCEDURE chem_init END INTERFACE chem_init INTERFACE chem_init_profiles MODULE PROCEDURE chem_init_profiles END INTERFACE chem_init_profiles INTERFACE chem_integrate MODULE PROCEDURE chem_integrate_ij END INTERFACE chem_integrate INTERFACE chem_parin MODULE PROCEDURE chem_parin END INTERFACE chem_parin INTERFACE chem_actions MODULE PROCEDURE chem_actions MODULE PROCEDURE chem_actions_ij END INTERFACE chem_actions INTERFACE chem_non_advective_processes MODULE PROCEDURE chem_non_advective_processes MODULE PROCEDURE chem_non_advective_processes_ij END INTERFACE chem_non_advective_processes INTERFACE chem_exchange_horiz_bounds MODULE PROCEDURE chem_exchange_horiz_bounds END INTERFACE chem_exchange_horiz_bounds INTERFACE chem_prognostic_equations MODULE PROCEDURE chem_prognostic_equations MODULE PROCEDURE chem_prognostic_equations_ij END INTERFACE chem_prognostic_equations INTERFACE chem_rrd_local MODULE PROCEDURE chem_rrd_local END INTERFACE chem_rrd_local INTERFACE chem_statistics MODULE PROCEDURE chem_statistics END INTERFACE chem_statistics INTERFACE chem_swap_timelevel MODULE PROCEDURE chem_swap_timelevel END INTERFACE chem_swap_timelevel INTERFACE chem_wrd_local MODULE PROCEDURE chem_wrd_local END INTERFACE chem_wrd_local INTERFACE chem_depo MODULE PROCEDURE chem_depo END INTERFACE chem_depo INTERFACE drydepos_gas_depac MODULE PROCEDURE drydepos_gas_depac END INTERFACE drydepos_gas_depac INTERFACE rc_special MODULE PROCEDURE rc_special END INTERFACE rc_special INTERFACE rc_gw MODULE PROCEDURE rc_gw END INTERFACE rc_gw INTERFACE rw_so2 MODULE PROCEDURE rw_so2 END INTERFACE rw_so2 INTERFACE rw_nh3_sutton MODULE PROCEDURE rw_nh3_sutton END INTERFACE rw_nh3_sutton INTERFACE rw_constant MODULE PROCEDURE rw_constant END INTERFACE rw_constant INTERFACE rc_gstom MODULE PROCEDURE rc_gstom END INTERFACE rc_gstom INTERFACE rc_gstom_emb MODULE PROCEDURE rc_gstom_emb END INTERFACE rc_gstom_emb INTERFACE par_dir_diff MODULE PROCEDURE par_dir_diff END INTERFACE par_dir_diff INTERFACE rc_get_vpd MODULE PROCEDURE rc_get_vpd END INTERFACE rc_get_vpd INTERFACE rc_gsoil_eff MODULE PROCEDURE rc_gsoil_eff END INTERFACE rc_gsoil_eff INTERFACE rc_rinc MODULE PROCEDURE rc_rinc END INTERFACE rc_rinc INTERFACE rc_rctot MODULE PROCEDURE rc_rctot END INTERFACE rc_rctot ! INTERFACE rc_comp_point_rc_eff ! MODULE PROCEDURE rc_comp_point_rc_eff ! END INTERFACE rc_comp_point_rc_eff INTERFACE drydepo_aero_zhang_vd MODULE PROCEDURE drydepo_aero_zhang_vd END INTERFACE drydepo_aero_zhang_vd INTERFACE get_rb_cell MODULE PROCEDURE get_rb_cell END INTERFACE get_rb_cell PUBLIC chem_3d_data_averaging, chem_boundary_conds, & chem_boundary_conds_decycle, chem_check_data_output, & chem_check_data_output_pr, chem_check_parameters, & chem_data_output_2d, chem_data_output_3d, chem_data_output_mask, & chem_define_netcdf_grid, chem_header, chem_init, chem_init_arrays, & chem_init_profiles, chem_integrate, chem_parin, & chem_actions, chem_prognostic_equations, chem_rrd_local, & chem_statistics, chem_swap_timelevel, chem_wrd_local, chem_depo, & chem_non_advective_processes, chem_exchange_horiz_bounds CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine for averaging 3D data of chemical species. Due to the fact that !> the averaged chem arrays are allocated in chem_init, no if-query concerning !> the allocation is required (in any mode). Attention: If you just specify an !> averaged output quantity in the _p3dr file during restarts the first output !> includes the time between the beginning of the restart run and the first !> output time (not necessarily the whole averaging_interval you have !> specified in your _p3d/_p3dr file ) !------------------------------------------------------------------------------! SUBROUTINE chem_3d_data_averaging( mode, variable ) USE control_parameters CHARACTER (LEN=*) :: mode !< CHARACTER (LEN=*) :: variable !< LOGICAL :: match_def !< flag indicating default-type surface LOGICAL :: match_lsm !< flag indicating natural-type surface LOGICAL :: match_usm !< flag indicating urban-type surface INTEGER(iwp) :: i !< grid index x direction INTEGER(iwp) :: j !< grid index y direction INTEGER(iwp) :: k !< grid index z direction INTEGER(iwp) :: m !< running index surface type INTEGER(iwp) :: lsp !< running index for chem spcs IF ( (variable(1:3) == 'kc_' .OR. variable(1:3) == 'em_') ) THEN IF ( mode == 'allocate' ) THEN DO lsp = 1, nspec IF ( TRIM( variable(1:3) ) == 'kc_' .AND. & TRIM( variable(4:) ) == TRIM( chem_species(lsp)%name ) ) THEN chem_species(lsp)%conc_av = 0.0_wp ENDIF ENDDO ELSEIF ( mode == 'sum' ) THEN DO lsp = 1, nspec IF ( TRIM( variable(1:3) ) == 'kc_' .AND. & TRIM( variable(4:) ) == TRIM( chem_species(lsp)%name ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 chem_species(lsp)%conc_av(k,j,i) = & chem_species(lsp)%conc_av(k,j,i) + & chem_species(lsp)%conc(k,j,i) ENDDO ENDDO ENDDO ELSEIF ( TRIM( variable(4:) ) == TRIM( 'cssws*' ) ) THEN DO i = nxl, nxr DO j = nys, nyn match_def = surf_def_h(0)%start_index(j,i) <= & surf_def_h(0)%end_index(j,i) match_lsm = surf_lsm_h%start_index(j,i) <= & surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= & surf_usm_h%end_index(j,i) IF ( match_def ) THEN m = surf_def_h(0)%end_index(j,i) chem_species(lsp)%cssws_av(j,i) = & chem_species(lsp)%cssws_av(j,i) + & surf_def_h(0)%cssws(lsp,m) ELSEIF ( match_lsm .AND. .NOT. match_usm ) THEN m = surf_lsm_h%end_index(j,i) chem_species(lsp)%cssws_av(j,i) = & chem_species(lsp)%cssws_av(j,i) + & surf_lsm_h%cssws(lsp,m) ELSEIF ( match_usm ) THEN m = surf_usm_h%end_index(j,i) chem_species(lsp)%cssws_av(j,i) = & chem_species(lsp)%cssws_av(j,i) + & surf_usm_h%cssws(lsp,m) ENDIF ENDDO ENDDO ENDIF ENDDO ELSEIF ( mode == 'average' ) THEN DO lsp = 1, nspec IF ( TRIM( variable(1:3) ) == 'kc_' .AND. & TRIM( variable(4:) ) == TRIM( chem_species(lsp)%name ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 chem_species(lsp)%conc_av(k,j,i) = & chem_species(lsp)%conc_av(k,j,i) / & REAL( average_count_3d, KIND=wp ) ENDDO ENDDO ENDDO ELSEIF ( TRIM( variable(4:) ) == TRIM( 'cssws*' ) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng chem_species(lsp)%cssws_av(j,i) = & chem_species(lsp)%cssws_av(j,i) / REAL( average_count_3d, KIND=wp ) ENDDO ENDDO CALL exchange_horiz_2d( chem_species(lsp)%cssws_av, nbgp ) ENDIF ENDDO ENDIF ENDIF END SUBROUTINE chem_3d_data_averaging !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to initialize and set all boundary conditions for chemical species !------------------------------------------------------------------------------! SUBROUTINE chem_boundary_conds( mode ) USE control_parameters, & ONLY: bc_radiation_l, bc_radiation_n, bc_radiation_r, bc_radiation_s USE arrays_3d, & ONLY: dzu USE surface_mod, & ONLY: bc_h CHARACTER (LEN=*), INTENT(IN) :: mode INTEGER(iwp) :: i !< grid index x direction. INTEGER(iwp) :: j !< grid index y direction. INTEGER(iwp) :: k !< grid index z direction. INTEGER(iwp) :: l !< running index boundary type, for up- and downward-facing walls. INTEGER(iwp) :: m !< running index surface elements. INTEGER(iwp) :: lsp !< running index for chem spcs. SELECT CASE ( TRIM( mode ) ) CASE ( 'init' ) IF ( bc_cs_b == 'dirichlet' ) THEN ibc_cs_b = 0 ELSEIF ( bc_cs_b == 'neumann' ) THEN ibc_cs_b = 1 ELSE message_string = 'unknown boundary condition: bc_cs_b ="' // TRIM( bc_cs_b ) // '"' CALL message( 'chem_boundary_conds', 'CM0429', 1, 2, 0, 6, 0 ) ENDIF ! !-- Set Integer flags and check for possible erroneous settings for top !-- boundary condition. IF ( bc_cs_t == 'dirichlet' ) THEN ibc_cs_t = 0 ELSEIF ( bc_cs_t == 'neumann' ) THEN ibc_cs_t = 1 ELSEIF ( bc_cs_t == 'initial_gradient' ) THEN ibc_cs_t = 2 ELSEIF ( bc_cs_t == 'nested' ) THEN ibc_cs_t = 3 ELSE message_string = 'unknown boundary condition: bc_c_t ="' // TRIM( bc_cs_t ) // '"' CALL message( 'check_parameters', 'CM0430', 1, 2, 0, 6, 0 ) ENDIF CASE ( 'set_bc_bottomtop' ) ! !-- Boundary condtions for chemical species at horizontal walls DO lsp = 1, nspec IF ( ibc_cs_b == 0 ) THEN DO l = 0, 1 !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, bc_h(l)%ns i = bc_h(l)%i(m) j = bc_h(l)%j(m) k = bc_h(l)%k(m) chem_species(lsp)%conc_p(k+bc_h(l)%koff,j,i) = & chem_species(lsp)%conc(k+bc_h(l)%koff,j,i) ENDDO ENDDO ELSEIF ( ibc_cs_b == 1 ) THEN ! !-- in boundary_conds there is som extra loop over m here for passive tracer DO l = 0, 1 !$OMP PARALLEL DO PRIVATE( i, j, k ) DO m = 1, bc_h(l)%ns i = bc_h(l)%i(m) j = bc_h(l)%j(m) k = bc_h(l)%k(m) chem_species(lsp)%conc_p(k+bc_h(l)%koff,j,i) = & chem_species(lsp)%conc_p(k,j,i) ENDDO ENDDO ENDIF ENDDO ! end lsp loop ! !-- Top boundary conditions for chemical species - Should this not be done for all species? IF ( ibc_cs_t == 0 ) THEN DO lsp = 1, nspec chem_species(lsp)%conc_p(nzt+1,:,:) = chem_species(lsp)%conc(nzt+1,:,:) ENDDO ELSEIF ( ibc_cs_t == 1 ) THEN DO lsp = 1, nspec chem_species(lsp)%conc_p(nzt+1,:,:) = chem_species(lsp)%conc_p(nzt,:,:) ENDDO ELSEIF ( ibc_cs_t == 2 ) THEN DO lsp = 1, nspec chem_species(lsp)%conc_p(nzt+1,:,:) = chem_species(lsp)%conc_p(nzt,:,:) + bc_cs_t_val(lsp) * dzu(nzt+1) ENDDO ENDIF CASE ( 'set_bc_lateral' ) ! !-- Lateral boundary conditions for chem species at inflow boundary !-- are automatically set when chem_species concentration is !-- initialized. The initially set value at the inflow boundary is not !-- touched during time integration, hence, this boundary value remains !-- at a constant value, which is the concentration that flows into the !-- domain. !-- Lateral boundary conditions for chem species at outflow boundary IF ( bc_radiation_s ) THEN DO lsp = 1, nspec chem_species(lsp)%conc_p(:,nys-1,:) = chem_species(lsp)%conc_p(:,nys,:) ENDDO ELSEIF ( bc_radiation_n ) THEN DO lsp = 1, nspec chem_species(lsp)%conc_p(:,nyn+1,:) = chem_species(lsp)%conc_p(:,nyn,:) ENDDO ELSEIF ( bc_radiation_l ) THEN DO lsp = 1, nspec chem_species(lsp)%conc_p(:,:,nxl-1) = chem_species(lsp)%conc_p(:,:,nxl) ENDDO ELSEIF ( bc_radiation_r ) THEN DO lsp = 1, nspec chem_species(lsp)%conc_p(:,:,nxr+1) = chem_species(lsp)%conc_p(:,:,nxr) ENDDO ENDIF END SELECT END SUBROUTINE chem_boundary_conds !------------------------------------------------------------------------------! ! Description: ! ------------ !> Boundary conditions for prognostic variables in chemistry: decycling in the !> x-direction- !> Decycling of chemistry variables: Dirichlet BCs with cyclic is frequently not !> approproate for chemicals compounds since they may accumulate too much. !> If no proper boundary conditions from a DYNAMIC input file are available, !> de-cycling applies the initial profiles at the inflow boundaries for !> Dirichlet boundary conditions !------------------------------------------------------------------------------! SUBROUTINE chem_boundary_conds_decycle( cs_3d, cs_pr_init ) INTEGER(iwp) :: boundary !< INTEGER(iwp) :: ee !< INTEGER(iwp) :: copied !< INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: ss !< REAL(wp), DIMENSION(nzb:nzt+1) :: cs_pr_init REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: cs_3d REAL(wp) :: flag !< flag to mask topography grid points flag = 0.0_wp ! !-- Left and right boundaries IF ( decycle_chem_lr .AND. bc_lr_cyc ) THEN DO boundary = 1, 2 IF ( decycle_method(boundary) == 'dirichlet' ) THEN ! !-- Initial profile is copied to ghost and first three layers ss = 1 ee = 0 IF ( boundary == 1 .AND. nxl == 0 ) THEN ss = nxlg ee = nxl-1 ELSEIF ( boundary == 2 .AND. nxr == nx ) THEN ss = nxr+1 ee = nxrg ENDIF DO i = ss, ee DO j = nysg, nyng DO k = nzb+1, nzt flag = MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) cs_3d(k,j,i) = cs_pr_init(k) * flag ENDDO ENDDO ENDDO ELSEIF ( decycle_method(boundary) == 'neumann' ) THEN ! !-- The value at the boundary is copied to the ghost layers to simulate !-- an outlet with zero gradient ss = 1 ee = 0 IF ( boundary == 1 .AND. nxl == 0 ) THEN ss = nxlg ee = nxl-1 copied = nxl ELSEIF ( boundary == 2 .AND. nxr == nx ) THEN ss = nxr+1 ee = nxrg copied = nxr ENDIF DO i = ss, ee DO j = nysg, nyng DO k = nzb+1, nzt flag = MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) cs_3d(k,j,i) = cs_3d(k,j,copied) * flag ENDDO ENDDO ENDDO ELSE WRITE(message_string,*) & 'unknown decycling method: decycle_method (', & boundary, ') ="' // TRIM( decycle_method(boundary) ) // '"' CALL message( 'chem_boundary_conds_decycle', 'CM0431', & 1, 2, 0, 6, 0 ) ENDIF ENDDO ENDIF ! !-- South and north boundaries IF ( decycle_chem_ns .AND. bc_ns_cyc ) THEN DO boundary = 3, 4 IF ( decycle_method(boundary) == 'dirichlet' ) THEN ! !-- Initial profile is copied to ghost and first three layers ss = 1 ee = 0 IF ( boundary == 3 .AND. nys == 0 ) THEN ss = nysg ee = nys-1 ELSEIF ( boundary == 4 .AND. nyn == ny ) THEN ss = nyn+1 ee = nyng ENDIF DO i = nxlg, nxrg DO j = ss, ee DO k = nzb+1, nzt flag = MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) cs_3d(k,j,i) = cs_pr_init(k) * flag ENDDO ENDDO ENDDO ELSEIF ( decycle_method(boundary) == 'neumann' ) THEN ! !-- The value at the boundary is copied to the ghost layers to simulate !-- an outlet with zero gradient ss = 1 ee = 0 IF ( boundary == 3 .AND. nys == 0 ) THEN ss = nysg ee = nys-1 copied = nys ELSEIF ( boundary == 4 .AND. nyn == ny ) THEN ss = nyn+1 ee = nyng copied = nyn ENDIF DO i = nxlg, nxrg DO j = ss, ee DO k = nzb+1, nzt flag = MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) ) cs_3d(k,j,i) = cs_3d(k,copied,i) * flag ENDDO ENDDO ENDDO ELSE WRITE(message_string,*) & 'unknown decycling method: decycle_method (', & boundary, ') ="' // TRIM( decycle_method(boundary) ) // '"' CALL message( 'chem_boundary_conds_decycle', 'CM0432', & 1, 2, 0, 6, 0 ) ENDIF ENDDO ENDIF END SUBROUTINE chem_boundary_conds_decycle !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine for checking data output for chemical species !------------------------------------------------------------------------------! SUBROUTINE chem_check_data_output( var, unit, i, ilen, k ) CHARACTER (LEN=*) :: unit !< CHARACTER (LEN=*) :: var !< INTEGER(iwp) :: i INTEGER(iwp) :: lsp INTEGER(iwp) :: ilen INTEGER(iwp) :: k CHARACTER(LEN=16) :: spec_name ! !-- Next statement is to avoid compiler warnings about unused variables IF ( ( i + ilen + k ) > 0 .OR. var(1:1) == ' ' ) CONTINUE unit = 'illegal' spec_name = TRIM( var(4:) ) !< var 1:3 is 'kc_' or 'em_'. IF ( TRIM( var(1:3) ) == 'em_' ) THEN DO lsp=1,nspec IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN unit = 'mol m-2 s-1' ENDIF ! !-- It is possible to plant PM10 and PM25 into the gasphase chemistry code !-- as passive species (e.g. 'passive' in GASPHASE_PREPROC/mechanisms): !-- set unit to micrograms per m**3 for PM10 and PM25 (PM2.5) IF (spec_name(1:2) == 'PM') THEN unit = 'kg m-2 s-1' ENDIF ENDDO ELSE DO lsp=1,nspec IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN unit = 'ppm' ENDIF ! !-- It is possible to plant PM10 and PM25 into the gasphase chemistry code !-- as passive species (e.g. 'passive' in GASPHASE_PREPROC/mechanisms): !-- set unit to kilograms per m**3 for PM10 and PM25 (PM2.5) IF (spec_name(1:2) == 'PM') THEN unit = 'kg m-3' ENDIF ENDDO DO lsp=1,nphot IF (TRIM( spec_name ) == TRIM( phot_frequen(lsp)%name ) ) THEN unit = 'sec-1' ENDIF ENDDO ENDIF RETURN END SUBROUTINE chem_check_data_output !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine for checking data output of profiles for chemistry model !------------------------------------------------------------------------------! SUBROUTINE chem_check_data_output_pr( variable, var_count, unit, dopr_unit ) USE arrays_3d USE control_parameters, & ONLY: data_output_pr, message_string USE profil_parameter USE statistics CHARACTER (LEN=*) :: unit !< CHARACTER (LEN=*) :: variable !< CHARACTER (LEN=*) :: dopr_unit CHARACTER (LEN=16) :: spec_name INTEGER(iwp) :: var_count, lsp !< spec_name = TRIM( variable(4:) ) IF ( .NOT. air_chemistry ) THEN message_string = 'data_output_pr = ' // & TRIM( data_output_pr(var_count) ) // ' is not imp' // & 'lemented for air_chemistry = .FALSE.' CALL message( 'chem_check_parameters', 'CM0433', 1, 2, 0, 6, 0 ) ELSE DO lsp = 1, nspec IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) ) THEN cs_pr_count = cs_pr_count+1 cs_pr_index(cs_pr_count) = lsp dopr_index(var_count) = pr_palm+cs_pr_count dopr_unit = 'ppm' IF (spec_name(1:2) == 'PM') THEN dopr_unit = 'kg m-3' ENDIF hom(:,2, dopr_index(var_count),:) = SPREAD( zu, 2, statistic_regions+1 ) unit = dopr_unit ENDIF ENDDO ENDIF END SUBROUTINE chem_check_data_output_pr !------------------------------------------------------------------------------! ! Description: ! ------------ !> Check parameters routine for chemistry_model_mod !------------------------------------------------------------------------------! SUBROUTINE chem_check_parameters LOGICAL :: found INTEGER (iwp) :: lsp_usr !< running index for user defined chem spcs INTEGER (iwp) :: lsp !< running index for chem spcs. ! !-- check for chemical reactions status IF ( chem_gasphase_on ) THEN message_string = 'Chemical reactions: ON' CALL message( 'chem_check_parameters', 'CM0421', 0, 0, 0, 6, 0 ) ELSEIF ( .NOT. (chem_gasphase_on) ) THEN message_string = 'Chemical reactions: OFF' CALL message( 'chem_check_parameters', 'CM0422', 0, 0, 0, 6, 0 ) ENDIF ! !-- check for chemistry time-step IF ( call_chem_at_all_substeps ) THEN message_string = 'Chemistry is calculated at all meteorology time-step' CALL message( 'chem_check_parameters', 'CM0423', 0, 0, 0, 6, 0 ) ELSEIF ( .not. (call_chem_at_all_substeps) ) THEN message_string = 'Sub-time-steps are skipped for chemistry time-steps' CALL message( 'chem_check_parameters', 'CM0424', 0, 0, 0, 6, 0 ) ENDIF ! !-- check for photolysis scheme IF ( (photolysis_scheme /= 'simple') .AND. (photolysis_scheme /= 'constant') ) THEN message_string = 'Incorrect photolysis scheme selected, please check spelling' CALL message( 'chem_check_parameters', 'CM0425', 1, 2, 0, 6, 0 ) ENDIF ! !-- check for decycling of chem species IF ( (.NOT. any(decycle_method == 'neumann') ) .AND. (.NOT. any(decycle_method == 'dirichlet') ) ) THEN message_string = 'Incorrect boundary conditions. Only neumann or ' & // 'dirichlet &available for decycling chemical species ' CALL message( 'chem_check_parameters', 'CM0426', 1, 2, 0, 6, 0 ) ENDIF ! !-- check for chemical mechanism used CALL get_mechanism_name IF ( chem_mechanism /= TRIM( cs_mech ) ) THEN message_string = 'Incorrect chemistry mechanism selected, check spelling in namelist and/or chem_gasphase_mod' CALL message( 'chem_check_parameters', 'CM0462', 1, 2, 0, 6, 0 ) ENDIF ! !-- chem_check_parameters is called before the array chem_species is allocated! !-- temporary switch of this part of the check ! RETURN !bK commented CALL chem_init_internal ! !-- check for initial chem species input lsp_usr = 1 lsp = 1 DO WHILE ( cs_name (lsp_usr) /= 'novalue') found = .FALSE. DO lsp = 1, nvar IF ( TRIM( cs_name (lsp_usr) ) == TRIM( chem_species(lsp)%name) ) THEN found = .TRUE. EXIT ENDIF ENDDO IF ( .NOT. found ) THEN message_string = 'Unused/incorrect input for initial surface value: ' // & TRIM( cs_name(lsp_usr) ) CALL message( 'chem_check_parameters', 'CM0427', 1, 2, 0, 6, 0 ) ENDIF lsp_usr = lsp_usr + 1 ENDDO ! !-- check for surface emission flux chem species lsp_usr = 1 lsp = 1 DO WHILE ( surface_csflux_name (lsp_usr) /= 'novalue') found = .FALSE. DO lsp = 1, nvar IF ( TRIM( surface_csflux_name (lsp_usr) ) == TRIM( chem_species(lsp)%name ) ) THEN found = .TRUE. EXIT ENDIF ENDDO IF ( .NOT. found ) THEN message_string = 'Unused/incorrect input of chemical species for surface emission fluxes: ' & // TRIM( surface_csflux_name(lsp_usr) ) CALL message( 'chem_check_parameters', 'CM0428', 1, 2, 0, 6, 0 ) ENDIF lsp_usr = lsp_usr + 1 ENDDO END SUBROUTINE chem_check_parameters !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine defining 2D output variables for chemical species !> @todo: Remove "mode" from argument list, not used. !------------------------------------------------------------------------------! SUBROUTINE chem_data_output_2d( av, variable, found, grid, mode, local_pf, & two_d, nzb_do, nzt_do, fill_value ) CHARACTER (LEN=*) :: grid !< CHARACTER (LEN=*) :: mode !< CHARACTER (LEN=*) :: variable !< INTEGER(iwp) :: av !< flag to control data output of instantaneous or time-averaged data INTEGER(iwp) :: nzb_do !< lower limit of the domain (usually nzb) INTEGER(iwp) :: nzt_do !< upper limit of the domain (usually nzt+1) LOGICAL :: found !< LOGICAL :: two_d !< flag parameter that indicates 2D variables (horizontal cross sections) REAL(wp) :: fill_value REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb:nzt+1) :: local_pf ! !-- local variables. CHARACTER(LEN=16) :: spec_name INTEGER(iwp) :: lsp INTEGER(iwp) :: i !< grid index along x-direction INTEGER(iwp) :: j !< grid index along y-direction INTEGER(iwp) :: k !< grid index along z-direction INTEGER(iwp) :: m !< running indices for surfaces INTEGER(iwp) :: char_len !< length of a character string ! !-- Next statement is to avoid compiler warnings about unused variables IF ( mode(1:1) == ' ' .OR. two_d ) CONTINUE found = .FALSE. char_len = LEN_TRIM( variable ) spec_name = TRIM( variable(4:char_len-3) ) ! !-- Output of emission values, i.e. surface fluxes cssws. IF ( variable(1:3) == 'em_' ) THEN local_pf = 0.0_wp DO lsp = 1, nvar IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN ! !-- No average output for now. DO m = 1, surf_lsm_h%ns local_pf(surf_lsm_h%i(m),surf_lsm_h%j(m),nzb+1) = & local_pf(surf_lsm_h%i(m),surf_lsm_h%j(m),nzb+1) & + surf_lsm_h%cssws(lsp,m) ENDDO DO m = 1, surf_usm_h%ns local_pf(surf_usm_h%i(m),surf_usm_h%j(m),nzb+1) = & local_pf(surf_usm_h%i(m),surf_usm_h%j(m),nzb+1) & + surf_usm_h%cssws(lsp,m) ENDDO grid = 'zu' found = .TRUE. ENDIF ENDDO ELSE DO lsp=1,nspec IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name ) .AND. & ( (variable(char_len-2:) == '_xy') .OR. & (variable(char_len-2:) == '_xz') .OR. & (variable(char_len-2:) == '_yz') ) ) THEN ! !-- todo: remove or replace by "CALL message" mechanism (kanani) ! IF(myid == 0) WRITE(6,*) 'Output of species ' // TRIM( variable ) // & ! TRIM( chem_species(lsp)%name ) IF (av == 0) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_do, nzt_do local_pf(i,j,k) = MERGE( & chem_species(lsp)%conc(k,j,i), & REAL( fill_value, KIND = wp ), & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO ENDDO ENDDO ELSE DO i = nxl, nxr DO j = nys, nyn DO k = nzb_do, nzt_do local_pf(i,j,k) = MERGE( & chem_species(lsp)%conc_av(k,j,i), & REAL( fill_value, KIND = wp ), & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO ENDDO ENDDO ENDIF grid = 'zu' found = .TRUE. ENDIF ENDDO ENDIF RETURN END SUBROUTINE chem_data_output_2d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine defining 3D output variables for chemical species !------------------------------------------------------------------------------! SUBROUTINE chem_data_output_3d( av, variable, found, local_pf, fill_value, nzb_do, nzt_do ) USE surface_mod CHARACTER (LEN=*) :: variable !< INTEGER(iwp) :: av !< INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) LOGICAL :: found !< REAL(wp) :: fill_value !< REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf ! !-- local variables CHARACTER(LEN=16) :: spec_name INTEGER(iwp) :: i INTEGER(iwp) :: j INTEGER(iwp) :: k INTEGER(iwp) :: m !< running indices for surfaces INTEGER(iwp) :: l INTEGER(iwp) :: lsp !< running index for chem spcs found = .FALSE. IF ( .NOT. (variable(1:3) == 'kc_' .OR. variable(1:3) == 'em_' ) ) THEN RETURN ENDIF spec_name = TRIM( variable(4:) ) IF ( variable(1:3) == 'em_' ) THEN DO lsp = 1, nvar !!! cssws - nvar species, chem_species - nspec species !!! IF ( TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN local_pf = 0.0_wp ! !-- no average for now DO m = 1, surf_usm_h%ns local_pf(surf_usm_h%i(m),surf_usm_h%j(m),surf_usm_h%k(m)) = & local_pf(surf_usm_h%i(m),surf_usm_h%j(m),surf_usm_h%k(m)) + surf_usm_h%cssws(lsp,m) ENDDO DO m = 1, surf_lsm_h%ns local_pf(surf_lsm_h%i(m),surf_lsm_h%j(m),surf_lsm_h%k(m)) = & local_pf(surf_lsm_h%i(m),surf_lsm_h%j(m),surf_lsm_h%k(m)) + surf_lsm_h%cssws(lsp,m) ENDDO DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns local_pf(surf_usm_v(l)%i(m),surf_usm_v(l)%j(m),surf_usm_v(l)%k(m)) = & local_pf(surf_usm_v(l)%i(m),surf_usm_v(l)%j(m),surf_usm_v(l)%k(m)) + surf_usm_v(l)%cssws(lsp,m) ENDDO DO m = 1, surf_lsm_v(l)%ns local_pf(surf_lsm_v(l)%i(m),surf_lsm_v(l)%j(m),surf_lsm_v(l)%k(m)) = & local_pf(surf_lsm_v(l)%i(m),surf_lsm_v(l)%j(m),surf_lsm_v(l)%k(m)) + surf_lsm_v(l)%cssws(lsp,m) ENDDO ENDDO found = .TRUE. ENDIF ENDDO ELSE DO lsp = 1, nspec IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN ! !-- todo: remove or replace by "CALL message" mechanism (kanani) ! IF(myid == 0 .AND. chem_debug0 ) WRITE(6,*) 'Output of species ' // TRIM( variable ) // & ! TRIM( chem_species(lsp)%name ) IF (av == 0) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_do, nzt_do local_pf(i,j,k) = MERGE( & chem_species(lsp)%conc(k,j,i), & REAL( fill_value, KIND = wp ), & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO ENDDO ENDDO ELSE DO i = nxl, nxr DO j = nys, nyn DO k = nzb_do, nzt_do local_pf(i,j,k) = MERGE( & chem_species(lsp)%conc_av(k,j,i),& REAL( fill_value, KIND = wp ), & BTEST( wall_flags_0(k,j,i), 0 ) ) ENDDO ENDDO ENDDO ENDIF found = .TRUE. ENDIF ENDDO ENDIF RETURN END SUBROUTINE chem_data_output_3d !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine defining mask output variables for chemical species !------------------------------------------------------------------------------! SUBROUTINE chem_data_output_mask( av, variable, found, local_pf, mid ) USE control_parameters CHARACTER(LEN=16) :: spec_name CHARACTER(LEN=*) :: variable !< INTEGER(iwp) :: av !< flag to control data output of instantaneous or time-averaged data INTEGER(iwp) :: lsp INTEGER(iwp) :: i !< grid index along x-direction INTEGER(iwp) :: j !< grid index along y-direction INTEGER(iwp) :: k !< grid index along z-direction INTEGER(iwp) :: im !< loop index for masked variables INTEGER(iwp) :: jm !< loop index for masked variables INTEGER(iwp) :: kk !< masked output index along z-direction INTEGER(iwp) :: mid !< masked output running index INTEGER(iwp) :: ktt !< k index of highest terrain surface LOGICAL :: found REAL(wp), DIMENSION(mask_size_l(mid,1),mask_size_l(mid,2),mask_size_l(mid,3)) :: & local_pf !< REAL(wp), PARAMETER :: fill_value = -9999.0_wp !< value for the _FillValue attribute ! !-- local variables. spec_name = TRIM( variable(4:) ) found = .FALSE. DO lsp=1,nspec IF (TRIM( spec_name ) == TRIM( chem_species(lsp)%name) ) THEN ! !-- todo: remove or replace by "CALL message" mechanism (kanani) ! IF(myid == 0 .AND. chem_debug0 ) WRITE(6,*) 'Output of species ' // TRIM( variable ) // & ! TRIM( chem_species(lsp)%name ) IF (av == 0) THEN IF ( .NOT. mask_surface(mid) ) THEN DO i = 1, mask_size_l(mid,1) DO j = 1, mask_size_l(mid,2) DO k = 1, mask_size(mid,3) local_pf(i,j,k) = chem_species(lsp)%conc( & mask_k(mid,k), & mask_j(mid,j), & mask_i(mid,i) ) ENDDO ENDDO ENDDO ELSE ! !-- Terrain-following masked output DO i = 1, mask_size_l(mid,1) DO j = 1, mask_size_l(mid,2) !-- Get k index of the highest terraing surface im = mask_i(mid,i) jm = mask_j(mid,j) ktt = MINLOC( MERGE( 1, 0, BTEST( wall_flags_0(:,jm,im), 5 )), DIM = 1 ) - 1 DO k = 1, mask_size_l(mid,3) kk = MIN( ktt+mask_k(mid,k), nzt+1 ) !-- Set value if not in building IF ( BTEST( wall_flags_0(kk,jm,im), 6 ) ) THEN local_pf(i,j,k) = fill_value ELSE local_pf(i,j,k) = chem_species(lsp)%conc(kk,jm,im) ENDIF ENDDO ENDDO ENDDO ENDIF ELSE IF ( .NOT. mask_surface(mid) ) THEN DO i = 1, mask_size_l(mid,1) DO j = 1, mask_size_l(mid,2) DO k = 1, mask_size_l(mid,3) local_pf(i,j,k) = chem_species(lsp)%conc_av( & mask_k(mid,k), & mask_j(mid,j), & mask_i(mid,i) ) ENDDO ENDDO ENDDO ELSE ! !-- Terrain-following masked output DO i = 1, mask_size_l(mid,1) DO j = 1, mask_size_l(mid,2) !-- Get k index of the highest terraing surface im = mask_i(mid,i) jm = mask_j(mid,j) ktt = MINLOC( MERGE( 1, 0, BTEST( wall_flags_0(:,jm,im), 5 )), DIM = 1 ) - 1 DO k = 1, mask_size_l(mid,3) kk = MIN( ktt+mask_k(mid,k), nzt+1 ) !-- Set value if not in building IF ( BTEST( wall_flags_0(kk,jm,im), 6 ) ) THEN local_pf(i,j,k) = fill_value ELSE local_pf(i,j,k) = chem_species(lsp)%conc_av(kk,jm,im) ENDIF ENDDO ENDDO ENDDO ENDIF ENDIF found = .TRUE. EXIT ENDIF ENDDO RETURN END SUBROUTINE chem_data_output_mask !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine defining appropriate grid for netcdf variables. !> It is called out from subroutine netcdf. !------------------------------------------------------------------------------! SUBROUTINE chem_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) CHARACTER (LEN=*), INTENT(IN) :: var !< LOGICAL, INTENT(OUT) :: found !< CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< found = .TRUE. IF ( var(1:3) == 'kc_' .OR. var(1:3) == 'em_' ) THEN !< always the same grid for chemistry variables grid_x = 'x' grid_y = 'y' grid_z = 'zu' ELSE found = .FALSE. grid_x = 'none' grid_y = 'none' grid_z = 'none' ENDIF END SUBROUTINE chem_define_netcdf_grid !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine defining header output for chemistry model !------------------------------------------------------------------------------! SUBROUTINE chem_header( io ) INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file INTEGER(iwp) :: lsp !< running index for chem spcs INTEGER(iwp) :: cs_fixed CHARACTER (LEN=80) :: docsflux_chr CHARACTER (LEN=80) :: docsinit_chr ! ! Get name of chemical mechanism from chem_gasphase_mod CALL get_mechanism_name ! !-- Write chemistry model header WRITE( io, 1 ) ! !-- Gasphase reaction status IF ( chem_gasphase_on ) THEN WRITE( io, 2 ) ELSE WRITE( io, 3 ) ENDIF ! !-- Chemistry time-step WRITE ( io, 4 ) cs_time_step ! !-- Emission mode info !-- At the moment the evaluation is done with both emiss_lod and mode_emis !-- but once salsa has been migrated to emiss_lod the .OR. mode_emis !-- conditions can be removed (ecc 20190513) IF ( (emiss_lod == 1) .OR. (mode_emis == 'DEFAULT') ) THEN WRITE ( io, 5 ) ELSEIF ( (emiss_lod == 0) .OR. (mode_emis == 'PARAMETERIZED') ) THEN WRITE ( io, 6 ) ELSEIF ( (emiss_lod == 2) .OR. (mode_emis == 'PRE-PROCESSED') ) THEN WRITE ( io, 7 ) ENDIF ! !-- Photolysis scheme info IF ( photolysis_scheme == "simple" ) THEN WRITE( io, 8 ) ELSEIF (photolysis_scheme == "constant" ) THEN WRITE( io, 9 ) ENDIF ! !-- Emission flux info lsp = 1 docsflux_chr ='Chemical species for surface emission flux: ' DO WHILE ( surface_csflux_name(lsp) /= 'novalue' ) docsflux_chr = TRIM( docsflux_chr ) // ' ' // TRIM( surface_csflux_name(lsp) ) // ',' IF ( LEN_TRIM( docsflux_chr ) >= 75 ) THEN WRITE ( io, 10 ) docsflux_chr docsflux_chr = ' ' ENDIF lsp = lsp + 1 ENDDO IF ( docsflux_chr /= '' ) THEN WRITE ( io, 10 ) docsflux_chr ENDIF ! !-- initializatoin of Surface and profile chemical species lsp = 1 docsinit_chr ='Chemical species for initial surface and profile emissions: ' DO WHILE ( cs_name(lsp) /= 'novalue' ) docsinit_chr = TRIM( docsinit_chr ) // ' ' // TRIM( cs_name(lsp) ) // ',' IF ( LEN_TRIM( docsinit_chr ) >= 75 ) THEN WRITE ( io, 11 ) docsinit_chr docsinit_chr = ' ' ENDIF lsp = lsp + 1 ENDDO IF ( docsinit_chr /= '' ) THEN WRITE ( io, 11 ) docsinit_chr ENDIF ! !-- number of variable and fix chemical species and number of reactions cs_fixed = nspec - nvar WRITE ( io, * ) ' --> Chemical Mechanism : ', cs_mech WRITE ( io, * ) ' --> Chemical species, variable: ', nvar WRITE ( io, * ) ' --> Chemical species, fixed : ', cs_fixed WRITE ( io, * ) ' --> Total number of reactions : ', nreact 1 FORMAT (//' Chemistry model information:'/ & ' ----------------------------'/) 2 FORMAT (' --> Chemical reactions are turned on') 3 FORMAT (' --> Chemical reactions are turned off') 4 FORMAT (' --> Time-step for chemical species: ',F6.2, ' s') 5 FORMAT (' --> Emission mode = DEFAULT ') 6 FORMAT (' --> Emission mode = PARAMETERIZED ') 7 FORMAT (' --> Emission mode = PRE-PROCESSED ') 8 FORMAT (' --> Photolysis scheme used = simple ') 9 FORMAT (' --> Photolysis scheme used = constant ') 10 FORMAT (/' ',A) 11 FORMAT (/' ',A) ! ! END SUBROUTINE chem_header !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine initializating chemistry_model_mod specific arrays !------------------------------------------------------------------------------! SUBROUTINE chem_init_arrays ! !-- Please use this place to allocate required arrays END SUBROUTINE chem_init_arrays !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine initializating chemistry_model_mod !------------------------------------------------------------------------------! SUBROUTINE chem_init USE chem_emissions_mod, & ONLY: chem_emissions_init USE netcdf_data_input_mod, & ONLY: init_3d INTEGER(iwp) :: i !< running index x dimension INTEGER(iwp) :: j !< running index y dimension INTEGER(iwp) :: n !< running index for chemical species IF ( debug_output ) CALL debug_message( 'chem_init', 'start' ) ! !-- Next statement is to avoid compiler warning about unused variables IF ( ( ilu_arable + ilu_coniferous_forest + ilu_deciduous_forest + ilu_mediterrean_scrub + & ilu_permanent_crops + ilu_savanna + ilu_semi_natural_veg + ilu_tropical_forest + & ilu_urban ) == 0 ) CONTINUE IF ( emissions_anthropogenic ) CALL chem_emissions_init ! !-- Chemistry variables will be initialized if availabe from dynamic !-- input file. Note, it is possible to initialize only part of the chemistry !-- variables from dynamic input. IF ( INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN DO n = 1, nspec IF ( init_3d%from_file_chem(n) ) THEN DO i = nxlg, nxrg DO j = nysg, nyng chem_species(n)%conc(:,j,i) = init_3d%chem_init(:,n) ENDDO ENDDO ENDIF ENDDO ENDIF IF ( debug_output ) CALL debug_message( 'chem_init', 'end' ) END SUBROUTINE chem_init !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine initializating chemistry_model_mod !> internal workaround for chem_species dependency in chem_check_parameters !------------------------------------------------------------------------------! SUBROUTINE chem_init_internal USE pegrid USE netcdf_data_input_mod, & ONLY: chem_emis, chem_emis_att, input_pids_dynamic, init_3d, & netcdf_data_input_chemistry_data ! !-- Local variables INTEGER(iwp) :: i !< running index for for horiz numerical grid points INTEGER(iwp) :: j !< running index for for horiz numerical grid points INTEGER(iwp) :: lsp !< running index for chem spcs INTEGER(iwp) :: lpr_lev !< running index for chem spcs profile level IF ( emissions_anthropogenic ) THEN CALL netcdf_data_input_chemistry_data( chem_emis_att, chem_emis ) ENDIF ! !-- Allocate memory for chemical species ALLOCATE( chem_species(nspec) ) ALLOCATE( spec_conc_1 (nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) ) ALLOCATE( spec_conc_2 (nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) ) ALLOCATE( spec_conc_3 (nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) ) ALLOCATE( spec_conc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nspec) ) ALLOCATE( phot_frequen(nphot) ) ALLOCATE( freq_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg,nphot) ) ALLOCATE( bc_cs_t_val(nspec) ) ! !-- Initialize arrays spec_conc_1 (:,:,:,:) = 0.0_wp spec_conc_2 (:,:,:,:) = 0.0_wp spec_conc_3 (:,:,:,:) = 0.0_wp spec_conc_av(:,:,:,:) = 0.0_wp DO lsp = 1, nspec chem_species(lsp)%name = spc_names(lsp) chem_species(lsp)%conc (nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_1 (:,:,:,lsp) chem_species(lsp)%conc_p (nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_2 (:,:,:,lsp) chem_species(lsp)%tconc_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_3 (:,:,:,lsp) chem_species(lsp)%conc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_av(:,:,:,lsp) ALLOCATE (chem_species(lsp)%cssws_av(nysg:nyng,nxlg:nxrg)) chem_species(lsp)%cssws_av = 0.0_wp ! !-- The following block can be useful when emission module is not applied. & !-- if emission module is applied the following block will be overwritten. ALLOCATE (chem_species(lsp)%flux_s_cs(nzb+1:nzt,0:threads_per_task-1)) ALLOCATE (chem_species(lsp)%diss_s_cs(nzb+1:nzt,0:threads_per_task-1)) ALLOCATE (chem_species(lsp)%flux_l_cs(nzb+1:nzt,nys:nyn,0:threads_per_task-1)) ALLOCATE (chem_species(lsp)%diss_l_cs(nzb+1:nzt,nys:nyn,0:threads_per_task-1)) chem_species(lsp)%flux_s_cs = 0.0_wp chem_species(lsp)%flux_l_cs = 0.0_wp chem_species(lsp)%diss_s_cs = 0.0_wp chem_species(lsp)%diss_l_cs = 0.0_wp ! !-- Allocate memory for initial concentration profiles !-- (concentration values come from namelist) !-- (@todo (FK): Because of this, chem_init is called in palm before !-- check_parameters, since conc_pr_init is used there. !-- We have to find another solution since chem_init should !-- eventually be called from init_3d_model!!) ALLOCATE ( chem_species(lsp)%conc_pr_init(0:nz+1) ) chem_species(lsp)%conc_pr_init(:) = 0.0_wp ENDDO ! !-- Set control flags for decycling only at lateral boundary cores, within the !-- inner cores the decycle flag is set to .False.. Even though it does not !-- affect the setting of chemistry boundary conditions, this flag is used to !-- set advection control flags appropriately. decycle_chem_lr = MERGE( decycle_chem_lr, .FALSE., & nxl == 0 .OR. nxr == nx ) decycle_chem_ns = MERGE( decycle_chem_ns, .FALSE., & nys == 0 .OR. nyn == ny ) ! !-- For some passive scalars decycling may be enabled. This case, the lateral !-- boundary conditions are non-cyclic for these scalars (chemical species !-- and aerosols), while the other scalars may have !-- cyclic boundary conditions. However, large gradients near the boundaries !-- may produce stationary numerical oscillations near the lateral boundaries !-- when a higher-order scheme is applied near these boundaries. !-- To get rid-off this, set-up additional flags that control the order of the !-- scalar advection scheme near the lateral boundaries for passive scalars !-- with decycling. IF ( scalar_advec == 'ws-scheme' ) THEN ALLOCATE( cs_advc_flags_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ! !-- In case of decyling, set Neumann boundary conditions for wall_flags_0 !-- bit 31 instead of cyclic boundary conditions. !-- Bit 31 is used to identify extended degradation zones (please see !-- following comment). !-- Note, since several also other modules like Salsa or other future !-- one may access this bit but may have other boundary conditions, the !-- original value of wall_flags_0 bit 31 must not be modified. Hence, !-- store the boundary conditions directly on cs_advc_flags_s. !-- cs_advc_flags_s will be later overwritten in ws_init_flags_scalar and !-- bit 31 won't be used to control the numerical order. !-- Initialize with flag 31 only. cs_advc_flags_s = 0 cs_advc_flags_s = MERGE( IBSET( cs_advc_flags_s, 31 ), 0, & BTEST( wall_flags_0, 31 ) ) IF ( decycle_chem_ns ) THEN IF ( nys == 0 ) THEN DO i = 1, nbgp cs_advc_flags_s(:,nys-i,:) = MERGE( & IBSET( cs_advc_flags_s(:,nys,:), 31 ), & IBCLR( cs_advc_flags_s(:,nys,:), 31 ), & BTEST( cs_advc_flags_s(:,nys,:), 31 ) & ) ENDDO ENDIF IF ( nyn == ny ) THEN DO i = 1, nbgp cs_advc_flags_s(:,nyn+i,:) = MERGE( & IBSET( cs_advc_flags_s(:,nyn,:), 31 ), & IBCLR( cs_advc_flags_s(:,nyn,:), 31 ), & BTEST( cs_advc_flags_s(:,nyn,:), 31 ) & ) ENDDO ENDIF ENDIF IF ( decycle_chem_lr ) THEN IF ( nxl == 0 ) THEN DO i = 1, nbgp cs_advc_flags_s(:,:,nxl-i) = MERGE( & IBSET( cs_advc_flags_s(:,:,nxl), 31 ), & IBCLR( cs_advc_flags_s(:,:,nxl), 31 ), & BTEST( cs_advc_flags_s(:,:,nxl), 31 ) & ) ENDDO ENDIF IF ( nxr == nx ) THEN DO i = 1, nbgp cs_advc_flags_s(:,:,nxr+i) = MERGE( & IBSET( cs_advc_flags_s(:,:,nxr), 31 ), & IBCLR( cs_advc_flags_s(:,:,nxr), 31 ), & BTEST( cs_advc_flags_s(:,:,nxr), 31 ) & ) ENDDO ENDIF ENDIF ! !-- To initialize advection flags appropriately, pass the boundary flags. !-- The last argument indicates that a passive scalar is treated, where !-- the horizontal advection terms are degraded already 2 grid points before !-- the lateral boundary to avoid stationary oscillations at large-gradients. !-- Also, extended degradation zones are applied, where horizontal advection of !-- passive scalars is discretized by first-order scheme at all grid points !-- that in the vicinity of buildings (<= 3 grid points). Even though no !-- building is within the numerical stencil, first-order scheme is used. !-- At fourth and fifth grid point the order of the horizontal advection scheme !-- is successively upgraded. !-- These extended degradation zones are used to avoid stationary numerical !-- oscillations, which are responsible for high concentration maxima that may !-- appear under shear-free stable conditions. CALL ws_init_flags_scalar( & bc_dirichlet_l .OR. bc_radiation_l .OR. decycle_chem_lr, & bc_dirichlet_n .OR. bc_radiation_n .OR. decycle_chem_ns, & bc_dirichlet_r .OR. bc_radiation_r .OR. decycle_chem_lr, & bc_dirichlet_s .OR. bc_radiation_s .OR. decycle_chem_ns, & cs_advc_flags_s, .TRUE. ) ENDIF ! !-- Initial concentration of profiles is prescribed by parameters cs_profile !-- and cs_heights in the namelist &chemistry_parameters CALL chem_init_profiles ! !-- In case there is dynamic input file, create a list of names for chemistry !-- initial input files. Also, initialize array that indicates whether the !-- respective variable is on file or not. IF ( input_pids_dynamic ) THEN ALLOCATE( init_3d%var_names_chem(1:nspec) ) ALLOCATE( init_3d%from_file_chem(1:nspec) ) init_3d%from_file_chem(:) = .FALSE. DO lsp = 1, nspec init_3d%var_names_chem(lsp) = init_3d%init_char // TRIM( chem_species(lsp)%name ) ENDDO ENDIF ! !-- Initialize model variables IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN ! !-- First model run of a possible job queue. !-- Initial profiles of the variables must be computed. IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN ! !-- Transfer initial profiles to the arrays of the 3D model DO lsp = 1, nspec DO i = nxlg, nxrg DO j = nysg, nyng DO lpr_lev = 1, nz + 1 chem_species(lsp)%conc(lpr_lev,j,i) = chem_species(lsp)%conc_pr_init(lpr_lev) ENDDO ENDDO ENDDO ENDDO ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & THEN DO lsp = 1, nspec DO i = nxlg, nxrg DO j = nysg, nyng chem_species(lsp)%conc(:,j,i) = chem_species(lsp)%conc_pr_init ENDDO ENDDO ENDDO ENDIF ! !-- If required, change the surface chem spcs at the start of the 3D run IF ( cs_surface_initial_change(1) /= 0.0_wp ) THEN DO lsp = 1, nspec chem_species(lsp)%conc(nzb,:,:) = chem_species(lsp)%conc(nzb,:,:) + & cs_surface_initial_change(lsp) ENDDO ENDIF ! !-- Initiale old and new time levels. DO lsp = 1, nvar chem_species(lsp)%tconc_m = 0.0_wp chem_species(lsp)%conc_p = chem_species(lsp)%conc ENDDO ENDIF DO lsp = 1, nphot phot_frequen(lsp)%name = phot_names(lsp) ! !-- todo: remove or replace by "CALL message" mechanism (kanani) !-- IF( myid == 0 ) THEN !-- WRITE(6,'(a,i4,3x,a)') 'Photolysis: ',lsp,TRIM( phot_names(lsp) ) !-- ENDIF phot_frequen(lsp)%freq(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => freq_1(:,:,:,lsp) ENDDO ! CALL photolysis_init ! probably also required for restart RETURN END SUBROUTINE chem_init_internal !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine defining initial vertical profiles of chemical species (given by !> namelist parameters chem_profiles and chem_heights) --> which should work !> analogue to parameters u_profile, v_profile and uv_heights) !------------------------------------------------------------------------------! SUBROUTINE chem_init_profiles ! !-- SUBROUTINE is called from chem_init in case of TRIM( initializing_actions ) /= 'read_restart_data' !< We still need to see what has to be done in case of restart run USE chem_modules ! !-- Local variables INTEGER :: lsp !< running index for number of species in derived data type species_def INTEGER :: lsp_usr !< running index for number of species (user defined) in cs_names, cs_profiles etc INTEGER :: lpr_lev !< running index for profile level for each chem spcs. INTEGER :: npr_lev !< the next available profile lev ! !-- Parameter "cs_profile" and "cs_heights" are used to prescribe user defined initial profiles !-- and heights. If parameter "cs_profile" is not prescribed then initial surface values !-- "cs_surface" are used as constant initial profiles for each species. If "cs_profile" and !-- "cs_heights" are prescribed, their values will!override the constant profile given by !-- "cs_surface". IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN lsp_usr = 1 DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' ) !'novalue' is the default DO lsp = 1, nspec ! ! !-- create initial profile (conc_pr_init) for each chemical species IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) ) THEN ! IF ( cs_profile(lsp_usr,1) == 9999999.9_wp ) THEN ! !-- set a vertically constant profile based on the surface conc (cs_surface(lsp_usr)) of each species DO lpr_lev = 0, nzt+1 chem_species(lsp)%conc_pr_init(lpr_lev) = cs_surface(lsp_usr) ENDDO ELSE IF ( cs_heights(1,1) /= 0.0_wp ) THEN message_string = 'The surface value of cs_heights must be 0.0' CALL message( 'chem_check_parameters', 'CM0434', 1, 2, 0, 6, 0 ) ENDIF use_prescribed_profile_data = .TRUE. npr_lev = 1 ! chem_species(lsp)%conc_pr_init(0) = 0.0_wp DO lpr_lev = 1, nz+1 IF ( npr_lev < 100 ) THEN DO WHILE ( cs_heights(lsp_usr, npr_lev+1) <= zu(lpr_lev) ) npr_lev = npr_lev + 1 IF ( npr_lev == 100 ) THEN message_string = 'number of chem spcs exceeding the limit' CALL message( 'chem_check_parameters', 'CM0435', 1, 2, 0, 6, 0 ) EXIT ENDIF ENDDO ENDIF IF ( npr_lev < 100 .AND. cs_heights(lsp_usr,npr_lev+1) /= 9999999.9_wp ) THEN chem_species(lsp)%conc_pr_init(lpr_lev) = cs_profile(lsp_usr, npr_lev) + & ( zu(lpr_lev) - cs_heights(lsp_usr, npr_lev) ) / & ( cs_heights(lsp_usr, (npr_lev + 1)) - cs_heights(lsp_usr, npr_lev ) ) * & ( cs_profile(lsp_usr, (npr_lev + 1)) - cs_profile(lsp_usr, npr_lev ) ) ELSE chem_species(lsp)%conc_pr_init(lpr_lev) = cs_profile(lsp_usr, npr_lev) ENDIF ENDDO ENDIF ! !-- If a profile is prescribed explicity using cs_profiles and cs_heights, then !-- chem_species(lsp)%conc_pr_init is populated with the specific "lsp" based !-- on the cs_profiles(lsp_usr,:) and cs_heights(lsp_usr,:). ENDIF ENDDO lsp_usr = lsp_usr + 1 ENDDO ENDIF END SUBROUTINE chem_init_profiles !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to integrate chemical species in the given chemical mechanism !------------------------------------------------------------------------------! SUBROUTINE chem_integrate_ij( i, j ) USE statistics, & ONLY: weight_pres USE control_parameters, & ONLY: dt_3d, intermediate_timestep_count, time_since_reference_point INTEGER,INTENT(IN) :: i INTEGER,INTENT(IN) :: j ! !-- local variables INTEGER(iwp) :: lsp !< running index for chem spcs. INTEGER(iwp) :: lph !< running index for photolysis frequencies INTEGER, DIMENSION(20) :: istatus REAL(kind=wp), DIMENSION(nzb+1:nzt,nspec) :: tmp_conc REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_temp REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_qvap REAL(kind=wp), DIMENSION(nzb+1:nzt,nphot) :: tmp_phot REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_fact REAL(kind=wp), DIMENSION(nzb+1:nzt) :: tmp_fact_i !< conversion factor between !< molecules cm^{-3} and ppm INTEGER,DIMENSION(nzb+1:nzt) :: nacc !< Number of accepted steps INTEGER,DIMENSION(nzb+1:nzt) :: nrej !< Number of rejected steps REAL(wp) :: conv !< conversion factor REAL(wp), PARAMETER :: ppm2fr = 1.0e-6_wp !< Conversion factor ppm to fraction REAL(wp), PARAMETER :: fr2ppm = 1.0e6_wp !< Conversion factor fraction to ppm ! REAL(wp), PARAMETER :: xm_air = 28.96_wp !< Mole mass of dry air ! REAL(wp), PARAMETER :: xm_h2o = 18.01528_wp !< Mole mass of water vapor REAL(wp), PARAMETER :: t_std = 273.15_wp !< standard pressure (Pa) REAL(wp), PARAMETER :: p_std = 101325.0_wp !< standard pressure (Pa) REAL(wp), PARAMETER :: vmolcm = 22.414e3_wp !< Mole volume (22.414 l) in cm^3 REAL(wp), PARAMETER :: xna = 6.022e23_wp !< Avogadro number (molecules/mol) REAL(wp),DIMENSION(size(rcntrl)) :: rcntrl_local REAL(kind=wp) :: dt_chem ! !-- Set chem_gasphase_on to .FALSE. if you want to skip computation of gas phase chemistry IF (chem_gasphase_on) THEN nacc = 0 nrej = 0 tmp_temp(:) = pt(nzb+1:nzt,j,i) * exner(nzb+1:nzt) ! !-- convert ppm to molecules/cm**3 !-- tmp_fact = 1.e-6_wp*6.022e23_wp/(22.414_wp*1000._wp) * 273.15_wp * !-- hyp(nzb+1:nzt)/( 101300.0_wp * tmp_temp ) conv = ppm2fr * xna / vmolcm tmp_fact(:) = conv * t_std * hyp(nzb+1:nzt) / (tmp_temp(:) * p_std) tmp_fact_i = 1.0_wp/tmp_fact IF ( humidity ) THEN IF ( bulk_cloud_model ) THEN tmp_qvap(:) = ( q(nzb+1:nzt,j,i) - ql(nzb+1:nzt,j,i) ) * & xm_air/xm_h2o * fr2ppm * tmp_fact(:) ELSE tmp_qvap(:) = q(nzb+1:nzt,j,i) * xm_air/xm_h2o * fr2ppm * tmp_fact(:) ENDIF ELSE tmp_qvap(:) = 0.01 * xm_air/xm_h2o * fr2ppm * tmp_fact(:) !< Constant value for q if water vapor is not computed ENDIF DO lsp = 1,nspec tmp_conc(:,lsp) = chem_species(lsp)%conc(nzb+1:nzt,j,i) * tmp_fact(:) ENDDO DO lph = 1,nphot tmp_phot(:,lph) = phot_frequen(lph)%freq(nzb+1:nzt,j,i) ENDDO ! !-- Compute length of time step IF ( call_chem_at_all_substeps ) THEN dt_chem = dt_3d * weight_pres(intermediate_timestep_count) ELSE dt_chem = dt_3d ENDIF cs_time_step = dt_chem IF(maxval(rcntrl) > 0.0) THEN ! Only if rcntrl is set IF( time_since_reference_point <= 2*dt_3d) THEN rcntrl_local = 0 ELSE rcntrl_local = rcntrl ENDIF ELSE rcntrl_local = 0 END IF CALL chem_gasphase_integrate ( dt_chem, tmp_conc, tmp_temp, tmp_qvap, tmp_fact, tmp_phot, & icntrl_i = icntrl, rcntrl_i = rcntrl_local, xnacc = nacc, xnrej = nrej, istatus=istatus ) DO lsp = 1,nspec chem_species(lsp)%conc (nzb+1:nzt,j,i) = tmp_conc(:,lsp) * tmp_fact_i(:) ENDDO ENDIF RETURN END SUBROUTINE chem_integrate_ij !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine defining parin for &chemistry_parameters for chemistry model !------------------------------------------------------------------------------! SUBROUTINE chem_parin USE chem_modules USE control_parameters USE pegrid USE statistics CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file REAL(wp), DIMENSION(nmaxfixsteps) :: my_steps !< List of fixed timesteps my_step(1) = 0.0 automatic stepping INTEGER(iwp) :: i !< INTEGER(iwp) :: max_pr_cs_tmp !< NAMELIST /chemistry_parameters/ bc_cs_b, & bc_cs_t, & call_chem_at_all_substeps, & chem_debug0, & chem_debug1, & chem_debug2, & chem_gasphase_on, & chem_mechanism, & cs_heights, & cs_name, & cs_profile, & cs_surface, & cs_surface_initial_change, & cs_vertical_gradient_level, & daytype_mdh, & decycle_chem_lr, & decycle_chem_ns, & decycle_method, & deposition_dry, & emissions_anthropogenic, & emiss_lod, & emiss_factor_main, & emiss_factor_side, & icntrl, & main_street_id, & max_street_id, & mode_emis, & my_steps, & rcntrl, & side_street_id, & photolysis_scheme, & wall_csflux, & cs_vertical_gradient, & top_csflux, & surface_csflux, & surface_csflux_name, & time_fac_type ! !-- analogue to chem_names(nspj) we could invent chem_surfaceflux(nspj) and chem_topflux(nspj) !-- so this way we could prescribe a specific flux value for each species !> chemistry_parameters for initial profiles !> cs_names = 'O3', 'NO2', 'NO', ... to set initial profiles) !> cs_heights(1,:) = 0.0, 100.0, 500.0, 2000.0, .... (height levels where concs will be prescribed for O3) !> cs_heights(2,:) = 0.0, 200.0, 400.0, 1000.0, .... (same for NO2 etc.) !> cs_profiles(1,:) = 10.0, 20.0, 20.0, 30.0, ..... (chem spcs conc at height lvls chem_heights(1,:)) etc. !> If the respective concentration profile should be constant with height, then use "cs_surface( number of spcs)" !> then write these cs_surface values to chem_species(lsp)%conc_pr_init(:) ! !-- Read chem namelist CHARACTER(LEN=8) :: solver_type icntrl = 0 rcntrl = 0.0_wp my_steps = 0.0_wp photolysis_scheme = 'simple' atol = 1.0_wp rtol = 0.01_wp ! !-- Try to find chemistry package REWIND ( 11 ) line = ' ' DO WHILE ( INDEX( line, '&chemistry_parameters' ) == 0 ) READ ( 11, '(A)', END=20 ) line ENDDO BACKSPACE ( 11 ) ! !-- Read chemistry namelist READ ( 11, chemistry_parameters, ERR = 10, END = 20 ) ! !-- Enable chemistry model air_chemistry = .TRUE. GOTO 20 10 BACKSPACE( 11 ) READ( 11 , '(A)') line CALL parin_fail_message( 'chemistry_parameters', line ) 20 CONTINUE ! !-- synchronize emiss_lod and mod_emis only if emissions_anthropogenic !-- is activated in the namelist. Otherwise their values are "don't care" IF ( emissions_anthropogenic ) THEN ! !-- check for emission mode for chem species IF ( emiss_lod < 0 ) THEN !- if LOD not defined in namelist IF ( ( mode_emis /= 'PARAMETERIZED' ) .AND. & ( mode_emis /= 'DEFAULT' ) .AND. & ( mode_emis /= 'PRE-PROCESSED' ) ) THEN message_string = 'Incorrect mode_emiss option select. Please check spelling' CALL message( 'chem_check_parameters', 'CM0436', 1, 2, 0, 6, 0 ) ENDIF ELSE IF ( ( emiss_lod /= 0 ) .AND. & ( emiss_lod /= 1 ) .AND. & ( emiss_lod /= 2 ) ) THEN message_string = 'Invalid value for emiss_lod (0, 1, or 2)' CALL message( 'chem_check_parameters', 'CM0436', 1, 2, 0, 6, 0 ) ENDIF ENDIF ! ! for reference (ecc) ! IF ( (mode_emis /= 'PARAMETERIZED') .AND. ( mode_emis /= 'DEFAULT' ) .AND. ( mode_emis /= 'PRE-PROCESSED' ) ) THEN ! message_string = 'Incorrect mode_emiss option select. Please check spelling' ! CALL message( 'chem_check_parameters', 'CM0436', 1, 2, 0, 6, 0 ) ! ENDIF ! !-- conflict resolution for emiss_lod and mode_emis !-- 1) if emiss_lod is defined, have mode_emis assume same setting as emiss_lod !-- 2) if emiss_lod it not defined, have emiss_lod assuem same setting as mode_emis !-- this check is in place to retain backward compatibility with salsa until the !-- code is migrated completed to emiss_lod !-- note that IF ( emiss_lod >= 0 ) THEN SELECT CASE ( emiss_lod ) CASE (0) !- parameterized mode mode_emis = 'PARAMETERIZED' CASE (1) !- default mode mode_emis = 'DEFAULT' CASE (2) !- preprocessed mode mode_emis = 'PRE-PROCESSED' END SELECT message_string = 'Synchronizing mode_emis to defined emiss_lod' // & CHAR(10) // ' ' // & 'NOTE - mode_emis will be depreciated in future releases' // & CHAR(10) // ' ' // & 'please use emiss_lod to define emission mode' CALL message ( 'parin_chem', 'CM0463', 0, 0, 0, 6, 0 ) ELSE ! if emiss_lod is not set SELECT CASE ( mode_emis ) CASE ('PARAMETERIZED') emiss_lod = 0 CASE ('DEFAULT') emiss_lod = 1 CASE ('PRE-PROCESSED') emiss_lod = 2 END SELECT message_string = 'emiss_lod undefined. Using existing mod_emiss setting' // & CHAR(10) // ' ' // & 'NOTE - mode_emis will be depreciated in future releases' // & CHAR(10) // ' ' // & ' please use emiss_lod to define emission mode' CALL message ( 'parin_chem', 'CM0464', 0, 0, 0, 6, 0 ) ENDIF ENDIF ! if emissions_anthropengic t_steps = my_steps ! !-- Determine the number of user-defined profiles and append them to the !-- standard data output (data_output_pr) max_pr_cs_tmp = 0 i = 1 DO WHILE ( data_output_pr(i) /= ' ' .AND. i <= 100 ) IF ( TRIM( data_output_pr(i)(1:3) ) == 'kc_' ) THEN max_pr_cs_tmp = max_pr_cs_tmp+1 ENDIF i = i +1 ENDDO IF ( max_pr_cs_tmp > 0 ) THEN cs_pr_namelist_found = .TRUE. max_pr_cs = max_pr_cs_tmp ENDIF ! Set Solver Type IF(icntrl(3) == 0) THEN solver_type = 'rodas3' !Default ELSE IF(icntrl(3) == 1) THEN solver_type = 'ros2' ELSE IF(icntrl(3) == 2) THEN solver_type = 'ros3' ELSE IF(icntrl(3) == 3) THEN solver_type = 'ro4' ELSE IF(icntrl(3) == 4) THEN solver_type = 'rodas3' ELSE IF(icntrl(3) == 5) THEN solver_type = 'rodas4' ELSE IF(icntrl(3) == 6) THEN solver_type = 'Rang3' ELSE message_string = 'illegal solver type' CALL message( 'chem_parin', 'PA0506', 1, 2, 0, 6, 0 ) END IF ! !-- todo: remove or replace by "CALL message" mechanism (kanani) ! write(text,*) 'gas_phase chemistry: solver_type = ',TRIM( solver_type ) !kk Has to be changed to right calling sequence ! IF(myid == 0) THEN ! write(9,*) ' ' ! write(9,*) 'kpp setup ' ! write(9,*) ' ' ! write(9,*) ' gas_phase chemistry: solver_type = ',TRIM( solver_type ) ! write(9,*) ' ' ! write(9,*) ' Hstart = ',rcntrl(3) ! write(9,*) ' FacMin = ',rcntrl(4) ! write(9,*) ' FacMax = ',rcntrl(5) ! write(9,*) ' ' ! IF(vl_dim > 1) THEN ! write(9,*) ' Vector mode vektor length = ',vl_dim ! ELSE ! write(9,*) ' Scalar mode' ! ENDIF ! write(9,*) ' ' ! END IF RETURN END SUBROUTINE chem_parin !------------------------------------------------------------------------------! ! Description: ! ------------ !> Call for all grid points !------------------------------------------------------------------------------! SUBROUTINE chem_actions( location ) CHARACTER (LEN=*), INTENT(IN) :: location !< call location string SELECT CASE ( location ) CASE ( 'before_prognostic_equations' ) ! !-- Chemical reactions and deposition IF ( chem_gasphase_on ) THEN ! !-- If required, calculate photolysis frequencies - !-- UNFINISHED: Why not before the intermediate timestep loop? IF ( intermediate_timestep_count == 1 ) THEN CALL photolysis_control ENDIF ENDIF CASE DEFAULT CONTINUE END SELECT END SUBROUTINE chem_actions !------------------------------------------------------------------------------! ! Description: ! ------------ !> Call for grid points i,j !------------------------------------------------------------------------------! SUBROUTINE chem_actions_ij( i, j, location ) INTEGER(iwp), INTENT(IN) :: i !< grid index in x-direction INTEGER(iwp), INTENT(IN) :: j !< grid index in y-direction CHARACTER (LEN=*), INTENT(IN) :: location !< call location string INTEGER(iwp) :: dummy !< call location string IF ( air_chemistry ) dummy = i + j SELECT CASE ( location ) CASE DEFAULT CONTINUE END SELECT END SUBROUTINE chem_actions_ij !------------------------------------------------------------------------------! ! Description: ! ------------ !> Call for all grid points !------------------------------------------------------------------------------! SUBROUTINE chem_non_advective_processes() INTEGER(iwp) :: i !< INTEGER(iwp) :: j !< ! !-- Calculation of chemical reactions and deposition. IF ( intermediate_timestep_count == 1 .OR. call_chem_at_all_substeps ) THEN IF ( chem_gasphase_on ) THEN CALL cpu_log( log_point_s(19), 'chem.reactions', 'start' ) !$OMP PARALLEL PRIVATE (i,j) !$OMP DO schedule(static,1) DO i = nxl, nxr DO j = nys, nyn CALL chem_integrate( i, j ) ENDDO ENDDO !$OMP END PARALLEL CALL cpu_log( log_point_s(19), 'chem.reactions', 'stop' ) ENDIF IF ( deposition_dry ) THEN CALL cpu_log( log_point_s(24), 'chem.deposition', 'start' ) DO i = nxl, nxr DO j = nys, nyn CALL chem_depo( i, j ) ENDDO ENDDO CALL cpu_log( log_point_s(24), 'chem.deposition', 'stop' ) ENDIF ENDIF END SUBROUTINE chem_non_advective_processes !------------------------------------------------------------------------------! ! Description: ! ------------ !> Call for grid points i,j !------------------------------------------------------------------------------! SUBROUTINE chem_non_advective_processes_ij( i, j ) INTEGER(iwp), INTENT(IN) :: i !< grid index in x-direction INTEGER(iwp), INTENT(IN) :: j !< grid index in y-direction ! !-- Calculation of chemical reactions and deposition. IF ( intermediate_timestep_count == 1 .OR. call_chem_at_all_substeps ) THEN IF ( chem_gasphase_on ) THEN CALL cpu_log( log_point_s(19), 'chem.reactions', 'start' ) CALL chem_integrate( i, j ) CALL cpu_log( log_point_s(19), 'chem.reactions', 'stop' ) ENDIF IF ( deposition_dry ) THEN CALL cpu_log( log_point_s(24), 'chem.deposition', 'start' ) CALL chem_depo( i, j ) CALL cpu_log( log_point_s(24), 'chem.deposition', 'stop' ) ENDIF ENDIF END SUBROUTINE chem_non_advective_processes_ij !------------------------------------------------------------------------------! ! Description: ! ------------ !> routine for exchange horiz of chemical quantities !------------------------------------------------------------------------------! SUBROUTINE chem_exchange_horiz_bounds INTEGER(iwp) :: lsp !< INTEGER(iwp) :: lsp_usr !< ! !-- Loop over chemical species CALL cpu_log( log_point_s(84), 'chem.exch-horiz', 'start' ) DO lsp = 1, nvar CALL exchange_horiz( chem_species(lsp)%conc, nbgp ) lsp_usr = 1 DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' ) IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) ) THEN ! !-- As chem_exchange_horiz_bounds is called at the beginning !-- of prognostic_equations, boundary conditions are set on !-- %conc. CALL chem_boundary_conds( chem_species(lsp)%conc, & chem_species(lsp)%conc_pr_init ) ENDIF lsp_usr = lsp_usr + 1 ENDDO ENDDO CALL cpu_log( log_point_s(84), 'chem.exch-horiz', 'stop' ) END SUBROUTINE chem_exchange_horiz_bounds !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine calculating prognostic equations for chemical species !> (vector-optimized). !> Routine is called separately for each chemical species over a loop from !> prognostic_equations. !------------------------------------------------------------------------------! SUBROUTINE chem_prognostic_equations() INTEGER :: i !< running index INTEGER :: j !< running index INTEGER :: k !< running index INTEGER(iwp) :: ilsp !< CALL cpu_log( log_point_s(25), 'chem.advec+diff+prog', 'start' ) DO ilsp = 1, nvar ! !-- Tendency terms for chemical species tend = 0.0_wp ! !-- Advection terms IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( ws_scheme_sca ) THEN CALL advec_s_ws( cs_advc_flags_s, chem_species(ilsp)%conc, 'kc', & bc_dirichlet_l .OR. bc_radiation_l .OR. decycle_chem_lr, & bc_dirichlet_n .OR. bc_radiation_n .OR. decycle_chem_ns, & bc_dirichlet_r .OR. bc_radiation_r .OR. decycle_chem_lr, & bc_dirichlet_s .OR. bc_radiation_s .OR. decycle_chem_ns ) ELSE CALL advec_s_pw( chem_species(ilsp)%conc ) ENDIF ELSE CALL advec_s_up( chem_species(ilsp)%conc ) ENDIF ! !-- Diffusion terms (the last three arguments are zero) CALL diffusion_s( chem_species(ilsp)%conc, & surf_def_h(0)%cssws(ilsp,:), & surf_def_h(1)%cssws(ilsp,:), & surf_def_h(2)%cssws(ilsp,:), & surf_lsm_h%cssws(ilsp,:), & surf_usm_h%cssws(ilsp,:), & surf_def_v(0)%cssws(ilsp,:), & surf_def_v(1)%cssws(ilsp,:), & surf_def_v(2)%cssws(ilsp,:), & surf_def_v(3)%cssws(ilsp,:), & surf_lsm_v(0)%cssws(ilsp,:), & surf_lsm_v(1)%cssws(ilsp,:), & surf_lsm_v(2)%cssws(ilsp,:), & surf_lsm_v(3)%cssws(ilsp,:), & surf_usm_v(0)%cssws(ilsp,:), & surf_usm_v(1)%cssws(ilsp,:), & surf_usm_v(2)%cssws(ilsp,:), & surf_usm_v(3)%cssws(ilsp,:) ) ! !-- Prognostic equation for chemical species DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt chem_species(ilsp)%conc_p(k,j,i) = chem_species(ilsp)%conc(k,j,i) & + ( dt_3d * & ( tsc(2) * tend(k,j,i) & + tsc(3) * chem_species(ilsp)%tconc_m(k,j,i) & ) & - tsc(5) * rdf_sc(k) & * ( chem_species(ilsp)%conc(k,j,i) - chem_species(ilsp)%conc_pr_init(k) ) & ) & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) IF ( chem_species(ilsp)%conc_p(k,j,i) < 0.0_wp ) THEN chem_species(ilsp)%conc_p(k,j,i) = 0.1_wp * chem_species(ilsp)%conc(k,j,i) ENDIF ENDDO ENDDO ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt chem_species(ilsp)%tconc_m(k,j,i) = tend(k,j,i) ENDDO ENDDO ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt chem_species(ilsp)%tconc_m(k,j,i) = - 9.5625_wp * tend(k,j,i) & + 5.3125_wp * chem_species(ilsp)%tconc_m(k,j,i) ENDDO ENDDO ENDDO ENDIF ENDIF ENDDO CALL cpu_log( log_point_s(25), 'chem.advec+diff+prog', 'stop' ) END SUBROUTINE chem_prognostic_equations !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine calculating prognostic equations for chemical species !> (cache-optimized). !> Routine is called separately for each chemical species over a loop from !> prognostic_equations. !------------------------------------------------------------------------------! SUBROUTINE chem_prognostic_equations_ij( i, j, i_omp_start, tn ) INTEGER(iwp),INTENT(IN) :: i, j, i_omp_start, tn INTEGER(iwp) :: ilsp ! !-- local variables INTEGER :: k DO ilsp = 1, nvar ! !-- Tendency-terms for chem spcs. tend(:,j,i) = 0.0_wp ! !-- Advection terms IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( ws_scheme_sca ) THEN CALL advec_s_ws( cs_advc_flags_s, & i, & j, & chem_species(ilsp)%conc, & 'kc', & chem_species(ilsp)%flux_s_cs, & chem_species(ilsp)%diss_s_cs, & chem_species(ilsp)%flux_l_cs, & chem_species(ilsp)%diss_l_cs, & i_omp_start, & tn, & bc_dirichlet_l .OR. bc_radiation_l .OR. decycle_chem_lr, & bc_dirichlet_n .OR. bc_radiation_n .OR. decycle_chem_ns, & bc_dirichlet_r .OR. bc_radiation_r .OR. decycle_chem_lr, & bc_dirichlet_s .OR. bc_radiation_s .OR. decycle_chem_ns, & monotonic_limiter_z ) ELSE CALL advec_s_pw( i, j, chem_species(ilsp)%conc ) ENDIF ELSE CALL advec_s_up( i, j, chem_species(ilsp)%conc ) ENDIF ! !-- Diffusion terms (the last three arguments are zero) CALL diffusion_s( i, j, chem_species(ilsp)%conc, & surf_def_h(0)%cssws(ilsp,:), surf_def_h(1)%cssws(ilsp,:), & surf_def_h(2)%cssws(ilsp,:), & surf_lsm_h%cssws(ilsp,:), surf_usm_h%cssws(ilsp,:), & surf_def_v(0)%cssws(ilsp,:), surf_def_v(1)%cssws(ilsp,:), & surf_def_v(2)%cssws(ilsp,:), surf_def_v(3)%cssws(ilsp,:), & surf_lsm_v(0)%cssws(ilsp,:), surf_lsm_v(1)%cssws(ilsp,:), & surf_lsm_v(2)%cssws(ilsp,:), surf_lsm_v(3)%cssws(ilsp,:), & surf_usm_v(0)%cssws(ilsp,:), surf_usm_v(1)%cssws(ilsp,:), & surf_usm_v(2)%cssws(ilsp,:), surf_usm_v(3)%cssws(ilsp,:) ) ! !-- Prognostic equation for chem spcs DO k = nzb+1, nzt chem_species(ilsp)%conc_p(k,j,i) = chem_species(ilsp)%conc(k,j,i) + ( dt_3d * & ( tsc(2) * tend(k,j,i) + & tsc(3) * chem_species(ilsp)%tconc_m(k,j,i) ) & - tsc(5) * rdf_sc(k) & * ( chem_species(ilsp)%conc(k,j,i) - chem_species(ilsp)%conc_pr_init(k) ) & ) & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 0 ) & ) IF ( chem_species(ilsp)%conc_p(k,j,i) < 0.0_wp ) THEN chem_species(ilsp)%conc_p(k,j,i) = 0.1_wp * chem_species(ilsp)%conc(k,j,i) !FKS6 ENDIF ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb+1, nzt chem_species(ilsp)%tconc_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb+1, nzt chem_species(ilsp)%tconc_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & 5.3125_wp * chem_species(ilsp)%tconc_m(k,j,i) ENDDO ENDIF ENDIF ENDDO END SUBROUTINE chem_prognostic_equations_ij !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to read restart data of chemical species !------------------------------------------------------------------------------! SUBROUTINE chem_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, & nxr_on_file, nynf, nync, nyn_on_file, nysf, nysc, & nys_on_file, tmp_3d, found ) USE control_parameters CHARACTER (LEN=20) :: spc_name_av !< INTEGER(iwp) :: lsp !< INTEGER(iwp) :: k !< INTEGER(iwp) :: nxlc !< INTEGER(iwp) :: nxlf !< INTEGER(iwp) :: nxl_on_file !< INTEGER(iwp) :: nxrc !< INTEGER(iwp) :: nxrf !< INTEGER(iwp) :: nxr_on_file !< INTEGER(iwp) :: nync !< INTEGER(iwp) :: nynf !< INTEGER(iwp) :: nyn_on_file !< INTEGER(iwp) :: nysc !< INTEGER(iwp) :: nysf !< INTEGER(iwp) :: nys_on_file !< LOGICAL, INTENT(OUT) :: found REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !< 3D array to temp store data found = .FALSE. IF ( ALLOCATED(chem_species) ) THEN DO lsp = 1, nspec !< for time-averaged chemical conc. spc_name_av = TRIM( chem_species(lsp)%name )//'_av' IF ( restart_string(1:length) == TRIM( chem_species(lsp)%name) ) & THEN !< read data into tmp_3d IF ( k == 1 ) READ ( 13 ) tmp_3d !< fill ..%conc in the restart run chem_species(lsp)%conc(:,nysc-nbgp:nync+nbgp, & nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) found = .TRUE. ELSEIF (restart_string(1:length) == spc_name_av ) THEN IF ( k == 1 ) READ ( 13 ) tmp_3d chem_species(lsp)%conc_av(:,nysc-nbgp:nync+nbgp, & nxlc-nbgp:nxrc+nbgp) = & tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) found = .TRUE. ENDIF ENDDO ENDIF END SUBROUTINE chem_rrd_local !-------------------------------------------------------------------------------! !> Description: !> Calculation of horizontally averaged profiles !> This routine is called for every statistic region (sr) defined by the user, !> but at least for the region "total domain" (sr=0). !> quantities. !-------------------------------------------------------------------------------! SUBROUTINE chem_statistics( mode, sr, tn ) USE arrays_3d USE statistics CHARACTER (LEN=*) :: mode !< INTEGER(iwp) :: i !< running index on x-axis INTEGER(iwp) :: j !< running index on y-axis INTEGER(iwp) :: k !< vertical index counter INTEGER(iwp) :: sr !< statistical region INTEGER(iwp) :: tn !< thread number INTEGER(iwp) :: lpr !< running index chem spcs IF ( mode == 'profiles' ) THEN ! ! !-- Sample on how to calculate horizontally averaged profiles of user- !-- defined quantities. Each quantity is identified by the index !-- "pr_palm+#" where "#" is an integer starting from 1. These !-- user-profile-numbers must also be assigned to the respective strings !-- given by data_output_pr_cs in routine user_check_data_output_pr. !-- hom(:,:,:,:) = dim-1 = vertical level, dim-2= 1: met-species,2:zu/zw, dim-3 = quantity( e.g. !-- w*pt*), dim-4 = statistical region. !$OMP DO DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 DO lpr = 1, cs_pr_count sums_l(k,pr_palm+max_pr_user+lpr,tn) = sums_l(k,pr_palm+max_pr_user+lpr,tn) + & chem_species(cs_pr_index(lpr))%conc(k,j,i) * & rmask(j,i,sr) * & MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_0(k,j,i), 22 ) ) ENDDO ENDDO ENDDO ENDDO ELSEIF ( mode == 'time_series' ) THEN ! @todo ENDIF END SUBROUTINE chem_statistics !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine for swapping of timelevels for chemical species !> called out from subroutine swap_timelevel !------------------------------------------------------------------------------! SUBROUTINE chem_swap_timelevel( level ) INTEGER(iwp), INTENT(IN) :: level ! !-- local variables INTEGER(iwp) :: lsp IF ( level == 0 ) THEN DO lsp=1, nvar chem_species(lsp)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_1(:,:,:,lsp) chem_species(lsp)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_2(:,:,:,lsp) ENDDO ELSE DO lsp=1, nvar chem_species(lsp)%conc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_2(:,:,:,lsp) chem_species(lsp)%conc_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) => spec_conc_1(:,:,:,lsp) ENDDO ENDIF RETURN END SUBROUTINE chem_swap_timelevel !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to write restart data for chemistry model !------------------------------------------------------------------------------! SUBROUTINE chem_wrd_local INTEGER(iwp) :: lsp !< running index for chem spcs. DO lsp = 1, nspec CALL wrd_write_string( TRIM( chem_species(lsp)%name ) ) WRITE ( 14 ) chem_species(lsp)%conc CALL wrd_write_string( TRIM( chem_species(lsp)%name )//'_av' ) WRITE ( 14 ) chem_species(lsp)%conc_av ENDDO END SUBROUTINE chem_wrd_local !-------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to calculate the deposition of gases and PMs. For now deposition !> only takes place on lsm and usm horizontal surfaces. Default surfaces are NOT !> considered. The deposition of particles is derived following Zhang et al., !> 2001, gases are deposited using the DEPAC module (van Zanten et al., 2010). !> !> @TODO: Consider deposition on vertical surfaces !> @TODO: Consider overlaying horizontal surfaces !> @TODO: Consider resolved vegetation !> @TODO: Check error messages !-------------------------------------------------------------------------------! SUBROUTINE chem_depo( i, j ) USE control_parameters, & ONLY: dt_3d, intermediate_timestep_count, latitude USE arrays_3d, & ONLY: dzw, rho_air_zw USE date_and_time_mod, & ONLY: day_of_year USE surface_mod, & ONLY: ind_pav_green, ind_veg_wall, ind_wat_win, surf_lsm_h, & surf_type, surf_usm_h USE radiation_model_mod, & ONLY: cos_zenith INTEGER(iwp), INTENT(IN) :: i INTEGER(iwp), INTENT(IN) :: j INTEGER(iwp) :: k !< matching k to surface m at i,j INTEGER(iwp) :: lsp !< running index for chem spcs. INTEGER(iwp) :: luv_palm !< index of PALM LSM vegetation_type at current surface element INTEGER(iwp) :: lup_palm !< index of PALM LSM pavement_type at current surface element INTEGER(iwp) :: luw_palm !< index of PALM LSM water_type at current surface element INTEGER(iwp) :: luu_palm !< index of PALM USM walls/roofs at current surface element INTEGER(iwp) :: lug_palm !< index of PALM USM green walls/roofs at current surface element INTEGER(iwp) :: lud_palm !< index of PALM USM windows at current surface element INTEGER(iwp) :: luv_dep !< matching DEPAC LU to luv_palm INTEGER(iwp) :: lup_dep !< matching DEPAC LU to lup_palm INTEGER(iwp) :: luw_dep !< matching DEPAC LU to luw_palm INTEGER(iwp) :: luu_dep !< matching DEPAC LU to luu_palm INTEGER(iwp) :: lug_dep !< matching DEPAC LU to lug_palm INTEGER(iwp) :: lud_dep !< matching DEPAC LU to lud_palm INTEGER(iwp) :: m !< index for horizontal surfaces INTEGER(iwp) :: pspec !< running index INTEGER(iwp) :: i_pspec !< index for matching depac gas component ! !-- Vegetation !< Assign PALM classes to DEPAC land use classes INTEGER(iwp) :: ind_luv_user = 0 !< ERROR as no class given in PALM INTEGER(iwp) :: ind_luv_b_soil = 1 !< assigned to ilu_desert INTEGER(iwp) :: ind_luv_mixed_crops = 2 !< assigned to ilu_arable INTEGER(iwp) :: ind_luv_s_grass = 3 !< assigned to ilu_grass INTEGER(iwp) :: ind_luv_ev_needle_trees = 4 !< assigned to ilu_coniferous_forest INTEGER(iwp) :: ind_luv_de_needle_trees = 5 !< assigned to ilu_coniferous_forest INTEGER(iwp) :: ind_luv_ev_broad_trees = 6 !< assigned to ilu_tropical_forest INTEGER(iwp) :: ind_luv_de_broad_trees = 7 !< assigned to ilu_deciduous_forest INTEGER(iwp) :: ind_luv_t_grass = 8 !< assigned to ilu_grass INTEGER(iwp) :: ind_luv_desert = 9 !< assigned to ilu_desert INTEGER(iwp) :: ind_luv_tundra = 10 !< assigned to ilu_other INTEGER(iwp) :: ind_luv_irr_crops = 11 !< assigned to ilu_arable INTEGER(iwp) :: ind_luv_semidesert = 12 !< assigned to ilu_other INTEGER(iwp) :: ind_luv_ice = 13 !< assigned to ilu_ice INTEGER(iwp) :: ind_luv_marsh = 14 !< assigned to ilu_other INTEGER(iwp) :: ind_luv_ev_shrubs = 15 !< assigned to ilu_mediterrean_scrub INTEGER(iwp) :: ind_luv_de_shrubs = 16 !< assigned to ilu_mediterrean_scrub INTEGER(iwp) :: ind_luv_mixed_forest = 17 !< assigned to ilu_coniferous_forest (ave(decid+conif)) INTEGER(iwp) :: ind_luv_intrup_forest = 18 !< assigned to ilu_other (ave(other+decid)) ! !-- Water INTEGER(iwp) :: ind_luw_user = 0 !< ERROR as no class given in PALM INTEGER(iwp) :: ind_luw_lake = 1 !< assigned to ilu_water_inland INTEGER(iwp) :: ind_luw_river = 2 !< assigned to ilu_water_inland INTEGER(iwp) :: ind_luw_ocean = 3 !< assigned to ilu_water_sea INTEGER(iwp) :: ind_luw_pond = 4 !< assigned to ilu_water_inland INTEGER(iwp) :: ind_luw_fountain = 5 !< assigned to ilu_water_inland ! !-- Pavement INTEGER(iwp) :: ind_lup_user = 0 !< ERROR as no class given in PALM INTEGER(iwp) :: ind_lup_asph_conc = 1 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_asph = 2 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_conc = 3 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_sett = 4 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_pav_stones = 5 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_cobblest = 6 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_metal = 7 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_wood = 8 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_gravel = 9 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_f_gravel = 10 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_pebblest = 11 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_woodchips = 12 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_tartan = 13 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_art_turf = 14 !< assigned to ilu_desert INTEGER(iwp) :: ind_lup_clay = 15 !< assigned to ilu_desert ! !-- Particle parameters according to the respective aerosol classes (PM25, PM10) INTEGER(iwp) :: ind_p_size = 1 !< index for partsize in particle_pars INTEGER(iwp) :: ind_p_dens = 2 !< index for rhopart in particle_pars INTEGER(iwp) :: ind_p_slip = 3 !< index for slipcor in particle_pars INTEGER(iwp) :: part_type !< index for particle type (PM10 or PM25) in particle_pars INTEGER(iwp) :: nwet !< wetness indicator dor DEPAC; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow REAL(wp) :: dt_chem !< length of chem time step REAL(wp) :: dh !< vertical grid size REAL(wp) :: inv_dh !< inverse of vertical grid size REAL(wp) :: dt_dh !< dt_chem/dh REAL(wp) :: dens !< density at layer k at i,j REAL(wp) :: r_aero_surf !< aerodynamic resistance (s/m) at current surface element REAL(wp) :: ustar_surf !< ustar at current surface element REAL(wp) :: z0h_surf !< roughness length for heat at current surface element REAL(wp) :: solar_rad !< solar radiation, direct and diffuse, at current surface element REAL(wp) :: ppm2ugm3 !< conversion factor from ppm to ug/m3 REAL(wp) :: rh_surf !< relative humidity at current surface element REAL(wp) :: lai !< leaf area index at current surface element REAL(wp) :: sai !< surface area index at current surface element assumed to be lai + 1 REAL(wp) :: slinnfac REAL(wp) :: visc !< Viscosity REAL(wp) :: vs !< Sedimentation velocity REAL(wp) :: vd_lu !< deposition velocity (m/s) REAL(wp) :: rs !< Sedimentaion resistance (s/m) REAL(wp) :: rb !< quasi-laminar boundary layer resistance (s/m) REAL(wp) :: rc_tot !< total canopy resistance (s/m) REAL(wp) :: conc_ijk_ugm3 !< concentration at i, j, k in ug/m3 REAL(wp) :: diffusivity !< diffusivity REAL(wp), DIMENSION(nspec) :: bud_luv !< budget for LSM vegetation type at current surface element REAL(wp), DIMENSION(nspec) :: bud_lup !< budget for LSM pavement type at current surface element REAL(wp), DIMENSION(nspec) :: bud_luw !< budget for LSM water type at current surface element REAL(wp), DIMENSION(nspec) :: bud_luu !< budget for USM walls/roofs at current surface element REAL(wp), DIMENSION(nspec) :: bud_lug !< budget for USM green surfaces at current surface element REAL(wp), DIMENSION(nspec) :: bud_lud !< budget for USM windows at current surface element REAL(wp), DIMENSION(nspec) :: bud !< overall budget at current surface element REAL(wp), DIMENSION(nspec) :: conc_ijk !< concentration at i,j,k REAL(wp), DIMENSION(nspec) :: ccomp_tot !< total compensation point (ug/m3), for now kept to zero for all species! REAL(wp) :: temp_tmp !< temperatur at i,j,k REAL(wp) :: ts !< surface temperatur in degrees celsius REAL(wp) :: qv_tmp !< surface mixing ratio at current surface element ! !-- Particle parameters (PM10 (1), PM25 (2)) !-- partsize (diameter in m), rhopart (density in kg/m3), slipcor !-- (slip correction factor dimensionless, Seinfeld and Pandis 2006, Table 9.3) REAL(wp), DIMENSION(1:3,1:2), PARAMETER :: particle_pars = RESHAPE( (/ & 8.0e-6_wp, 1.14e3_wp, 1.016_wp, & !< 1 0.7e-6_wp, 1.14e3_wp, 1.082_wp & !< 2 /), (/ 3, 2 /) ) LOGICAL :: match_lsm !< flag indicating natural-type surface LOGICAL :: match_usm !< flag indicating urban-type surface ! !-- List of names of possible tracers CHARACTER(LEN=*), PARAMETER :: pspecnames(nposp) = (/ & 'NO2 ', & !< NO2 'NO ', & !< NO 'O3 ', & !< O3 'CO ', & !< CO 'form ', & !< FORM 'ald ', & !< ALD 'pan ', & !< PAN 'mgly ', & !< MGLY 'par ', & !< PAR 'ole ', & !< OLE 'eth ', & !< ETH 'tol ', & !< TOL 'cres ', & !< CRES 'xyl ', & !< XYL 'SO4a_f ', & !< SO4a_f 'SO2 ', & !< SO2 'HNO2 ', & !< HNO2 'CH4 ', & !< CH4 'NH3 ', & !< NH3 'NO3 ', & !< NO3 'OH ', & !< OH 'HO2 ', & !< HO2 'N2O5 ', & !< N2O5 'SO4a_c ', & !< SO4a_c 'NH4a_f ', & !< NH4a_f 'NO3a_f ', & !< NO3a_f 'NO3a_c ', & !< NO3a_c 'C2O3 ', & !< C2O3 'XO2 ', & !< XO2 'XO2N ', & !< XO2N 'cro ', & !< CRO 'HNO3 ', & !< HNO3 'H2O2 ', & !< H2O2 'iso ', & !< ISO 'ispd ', & !< ISPD 'to2 ', & !< TO2 'open ', & !< OPEN 'terp ', & !< TERP 'ec_f ', & !< EC_f 'ec_c ', & !< EC_c 'pom_f ', & !< POM_f 'pom_c ', & !< POM_c 'ppm_f ', & !< PPM_f 'ppm_c ', & !< PPM_c 'na_ff ', & !< Na_ff 'na_f ', & !< Na_f 'na_c ', & !< Na_c 'na_cc ', & !< Na_cc 'na_ccc ', & !< Na_ccc 'dust_ff ', & !< dust_ff 'dust_f ', & !< dust_f 'dust_c ', & !< dust_c 'dust_cc ', & !< dust_cc 'dust_ccc ', & !< dust_ccc 'tpm10 ', & !< tpm10 'tpm25 ', & !< tpm25 'tss ', & !< tss 'tdust ', & !< tdust 'tc ', & !< tc 'tcg ', & !< tcg 'tsoa ', & !< tsoa 'tnmvoc ', & !< tnmvoc 'SOxa ', & !< SOxa 'NOya ', & !< NOya 'NHxa ', & !< NHxa 'NO2_obs ', & !< NO2_obs 'tpm10_biascorr', & !< tpm10_biascorr 'tpm25_biascorr', & !< tpm25_biascorr 'O3_biascorr ' /) !< o3_biascorr ! !-- tracer mole mass: REAL(wp), PARAMETER :: specmolm(nposp) = (/ & xm_O * 2 + xm_N, & !< NO2 xm_O + xm_N, & !< NO xm_O * 3, & !< O3 xm_C + xm_O, & !< CO xm_H * 2 + xm_C + xm_O, & !< FORM xm_H * 3 + xm_C * 2 + xm_O, & !< ALD xm_H * 3 + xm_C * 2 + xm_O * 5 + xm_N, & !< PAN xm_H * 4 + xm_C * 3 + xm_O * 2, & !< MGLY xm_H * 3 + xm_C, & !< PAR xm_H * 3 + xm_C * 2, & !< OLE xm_H * 4 + xm_C * 2, & !< ETH xm_H * 8 + xm_C * 7, & !< TOL xm_H * 8 + xm_C * 7 + xm_O, & !< CRES xm_H * 10 + xm_C * 8, & !< XYL xm_S + xm_O * 4, & !< SO4a_f xm_S + xm_O * 2, & !< SO2 xm_H + xm_O * 2 + xm_N, & !< HNO2 xm_H * 4 + xm_C, & !< CH4 xm_H * 3 + xm_N, & !< NH3 xm_O * 3 + xm_N, & !< NO3 xm_H + xm_O, & !< OH xm_H + xm_O * 2, & !< HO2 xm_O * 5 + xm_N * 2, & !< N2O5 xm_S + xm_O * 4, & !< SO4a_c xm_H * 4 + xm_N, & !< NH4a_f xm_O * 3 + xm_N, & !< NO3a_f xm_O * 3 + xm_N, & !< NO3a_c xm_C * 2 + xm_O * 3, & !< C2O3 xm_dummy, & !< XO2 xm_dummy, & !< XO2N xm_dummy, & !< CRO xm_H + xm_O * 3 + xm_N, & !< HNO3 xm_H * 2 + xm_O * 2, & !< H2O2 xm_H * 8 + xm_C * 5, & !< ISO xm_dummy, & !< ISPD xm_dummy, & !< TO2 xm_dummy, & !< OPEN xm_H * 16 + xm_C * 10, & !< TERP xm_dummy, & !< EC_f xm_dummy, & !< EC_c xm_dummy, & !< POM_f xm_dummy, & !< POM_c xm_dummy, & !< PPM_f xm_dummy, & !< PPM_c xm_Na, & !< Na_ff xm_Na, & !< Na_f xm_Na, & !< Na_c xm_Na, & !< Na_cc xm_Na, & !< Na_ccc xm_dummy, & !< dust_ff xm_dummy, & !< dust_f xm_dummy, & !< dust_c xm_dummy, & !< dust_cc xm_dummy, & !< dust_ccc xm_dummy, & !< tpm10 xm_dummy, & !< tpm25 xm_dummy, & !< tss xm_dummy, & !< tdust xm_dummy, & !< tc xm_dummy, & !< tcg xm_dummy, & !< tsoa xm_dummy, & !< tnmvoc xm_dummy, & !< SOxa xm_dummy, & !< NOya xm_dummy, & !< NHxa xm_O * 2 + xm_N, & !< NO2_obs xm_dummy, & !< tpm10_biascorr xm_dummy, & !< tpm25_biascorr xm_O * 3 /) !< o3_biascorr ! !-- Initialize surface element m m = 0 k = 0 ! !-- LSM or USM surface present at i,j: !-- Default surfaces are NOT considered for deposition match_lsm = surf_lsm_h%start_index(j,i) <= surf_lsm_h%end_index(j,i) match_usm = surf_usm_h%start_index(j,i) <= surf_usm_h%end_index(j,i) ! !--For LSM surfaces IF ( match_lsm ) THEN ! !-- Get surface element information at i,j: m = surf_lsm_h%start_index(j,i) k = surf_lsm_h%k(m) ! !-- Get needed variables for surface element m ustar_surf = surf_lsm_h%us(m) z0h_surf = surf_lsm_h%z0h(m) r_aero_surf = surf_lsm_h%r_a(m) solar_rad = surf_lsm_h%rad_sw_dir(m) + surf_lsm_h%rad_sw_dif(m) lai = surf_lsm_h%lai(m) sai = lai + 1 ! !-- For small grid spacing neglect R_a IF ( dzw(k) <= 1.0 ) THEN r_aero_surf = 0.0_wp ENDIF ! !-- Initialize lu's luv_palm = 0 luv_dep = 0 lup_palm = 0 lup_dep = 0 luw_palm = 0 luw_dep = 0 ! !-- Initialize budgets bud_luv = 0.0_wp bud_lup = 0.0_wp bud_luw = 0.0_wp ! !-- Get land use for i,j and assign to DEPAC lu IF ( surf_lsm_h%frac(ind_veg_wall,m) > 0 ) THEN luv_palm = surf_lsm_h%vegetation_type(m) IF ( luv_palm == ind_luv_user ) THEN message_string = 'No vegetation type defined. Please define vegetation type to enable deposition calculation' CALL message( 'chem_depo', 'CM0451', 1, 2, 0, 6, 0 ) ELSEIF ( luv_palm == ind_luv_b_soil ) THEN luv_dep = 9 ELSEIF ( luv_palm == ind_luv_mixed_crops ) THEN luv_dep = 2 ELSEIF ( luv_palm == ind_luv_s_grass ) THEN luv_dep = 1 ELSEIF ( luv_palm == ind_luv_ev_needle_trees ) THEN luv_dep = 4 ELSEIF ( luv_palm == ind_luv_de_needle_trees ) THEN luv_dep = 4 ELSEIF ( luv_palm == ind_luv_ev_broad_trees ) THEN luv_dep = 12 ELSEIF ( luv_palm == ind_luv_de_broad_trees ) THEN luv_dep = 5 ELSEIF ( luv_palm == ind_luv_t_grass ) THEN luv_dep = 1 ELSEIF ( luv_palm == ind_luv_desert ) THEN luv_dep = 9 ELSEIF ( luv_palm == ind_luv_tundra ) THEN luv_dep = 8 ELSEIF ( luv_palm == ind_luv_irr_crops ) THEN luv_dep = 2 ELSEIF ( luv_palm == ind_luv_semidesert ) THEN luv_dep = 8 ELSEIF ( luv_palm == ind_luv_ice ) THEN luv_dep = 10 ELSEIF ( luv_palm == ind_luv_marsh ) THEN luv_dep = 8 ELSEIF ( luv_palm == ind_luv_ev_shrubs ) THEN luv_dep = 14 ELSEIF ( luv_palm == ind_luv_de_shrubs ) THEN luv_dep = 14 ELSEIF ( luv_palm == ind_luv_mixed_forest ) THEN luv_dep = 4 ELSEIF ( luv_palm == ind_luv_intrup_forest ) THEN luv_dep = 8 ENDIF ENDIF IF ( surf_lsm_h%frac(ind_pav_green,m) > 0 ) THEN lup_palm = surf_lsm_h%pavement_type(m) IF ( lup_palm == ind_lup_user ) THEN message_string = 'No pavement type defined. Please define pavement type to enable deposition calculation' CALL message( 'chem_depo', 'CM0452', 1, 2, 0, 6, 0 ) ELSEIF ( lup_palm == ind_lup_asph_conc ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_asph ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_conc ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_sett ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_pav_stones ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_cobblest ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_metal ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_wood ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_gravel ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_f_gravel ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_pebblest ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_woodchips ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_tartan ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_art_turf ) THEN lup_dep = 9 ELSEIF ( lup_palm == ind_lup_clay ) THEN lup_dep = 9 ENDIF ENDIF IF ( surf_lsm_h%frac(ind_wat_win,m) > 0 ) THEN luw_palm = surf_lsm_h%water_type(m) IF ( luw_palm == ind_luw_user ) THEN message_string = 'No water type defined. Please define water type to enable deposition calculation' CALL message( 'chem_depo', 'CM0453', 1, 2, 0, 6, 0 ) ELSEIF ( luw_palm == ind_luw_lake ) THEN luw_dep = 13 ELSEIF ( luw_palm == ind_luw_river ) THEN luw_dep = 13 ELSEIF ( luw_palm == ind_luw_ocean ) THEN luw_dep = 6 ELSEIF ( luw_palm == ind_luw_pond ) THEN luw_dep = 13 ELSEIF ( luw_palm == ind_luw_fountain ) THEN luw_dep = 13 ENDIF ENDIF ! !-- Set wetness indicator to dry or wet for lsm vegetation or pavement IF ( surf_lsm_h%c_liq(m) > 0 ) THEN nwet = 1 ELSE nwet = 0 ENDIF ! !-- Compute length of time step IF ( call_chem_at_all_substeps ) THEN dt_chem = dt_3d * weight_pres(intermediate_timestep_count) ELSE dt_chem = dt_3d ENDIF dh = dzw(k) inv_dh = 1.0_wp / dh dt_dh = dt_chem/dh ! !-- Concentration at i,j,k DO lsp = 1, nspec conc_ijk(lsp) = chem_species(lsp)%conc(k,j,i) ENDDO !-- Temperature at i,j,k temp_tmp = pt(k,j,i) * ( hyp(k) / 100000.0_wp )**0.286_wp ts = temp_tmp - 273.15 !< in degrees celcius ! !-- Viscosity of air visc = 1.496e-6 * temp_tmp**1.5 / (temp_tmp + 120.0) ! !-- Air density at k dens = rho_air_zw(k) ! !-- Calculate relative humidity from specific humidity for DEPAC qv_tmp = MAX(q(k,j,i),0.0_wp) rh_surf = relativehumidity_from_specifichumidity(qv_tmp, temp_tmp, hyp(k) ) ! !-- Check if surface fraction (vegetation, pavement or water) > 0 and calculate vd and budget !-- for each surface fraction. Then derive overall budget taking into account the surface fractions. ! !-- Vegetation IF ( surf_lsm_h%frac(ind_veg_wall,m) > 0 ) THEN ! !-- No vegetation on bare soil, desert or ice: IF ( ( luv_palm == ind_luv_b_soil ) .OR. & ( luv_palm == ind_luv_desert ) .OR. & ( luv_palm == ind_luv_ice ) ) THEN lai = 0.0_wp sai = 0.0_wp ENDIF slinnfac = 1.0_wp ! !-- Get deposition velocity vd DO lsp = 1, nvar ! !-- Initialize vs = 0.0_wp vd_lu = 0.0_wp rs = 0.0_wp rb = 0.0_wp rc_tot = 0.0_wp IF ( spc_names(lsp) == 'PM10' ) THEN part_type = 1 ! !-- Sedimentation velocity vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, & vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & luv_dep, & r_aero_surf, ustar_surf ) bud_luv(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSEIF ( spc_names(lsp) == 'PM25' ) THEN part_type = 2 ! !-- Sedimentation velocity vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, & vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & luv_dep , & r_aero_surf, ustar_surf ) bud_luv(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSE !< GASES ! !-- Read spc_name of current species for gas parameter IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN i_pspec = 0 DO pspec = 1, nposp IF ( pspecnames(pspec) == spc_names(lsp) ) THEN i_pspec = pspec END IF ENDDO ELSE ! !-- For now species not deposited CYCLE ENDIF ! !-- Factor used for conversion from ppb to ug/m3 : !-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) & !-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole) !-- c 1e-9 xm_tracer 1e9 / xm_air dens !-- thus: !-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3 !-- Use density at k: ppm2ugm3 = (dens/xm_air) * 0.001_wp !< (mole air)/m3 ! !-- Atmospheric concentration in DEPAC is requested in ug/m3: ! ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3 ! !-- Diffusivity for DEPAC relevant gases !-- Use default value diffusivity = 0.11e-4 ! !-- overwrite with known coefficients of diffusivity from Massman (1998) IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4 IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4 IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4 IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4 IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4 IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4 IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4 ! !-- Get quasi-laminar boundary layer resistance rb: CALL get_rb_cell( (luv_dep == ilu_water_sea) .OR. (luv_dep == ilu_water_inland), & z0h_surf, ustar_surf, diffusivity, & rb ) ! !-- Get rc_tot CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, solar_rad, cos_zenith, & rh_surf, lai, sai, nwet, luv_dep, 2, rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, diffusivity, & r_aero_surf , rb ) ! !-- Calculate budget IF ( rc_tot <= 0.0 ) THEN bud_luv(lsp) = 0.0_wp ELSE vd_lu = 1.0_wp / (r_aero_surf + rb + rc_tot ) bud_luv(lsp) = - (conc_ijk(lsp) - ccomp_tot(lsp)) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ENDIF ENDIF ENDDO ENDIF ! !-- Pavement IF ( surf_lsm_h%frac(ind_pav_green,m) > 0 ) THEN ! !-- No vegetation on pavements: lai = 0.0_wp sai = 0.0_wp slinnfac = 1.0_wp ! !-- Get vd DO lsp = 1, nvar ! !-- Initialize vs = 0.0_wp vd_lu = 0.0_wp rs = 0.0_wp rb = 0.0_wp rc_tot = 0.0_wp IF ( spc_names(lsp) == 'PM10' ) THEN part_type = 1 ! !-- Sedimentation velocity: vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, & vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & lup_dep, & r_aero_surf, ustar_surf ) bud_lup(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSEIF ( spc_names(lsp) == 'PM25' ) THEN part_type = 2 ! !-- Sedimentation velocity: vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, & vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & lup_dep, & r_aero_surf, ustar_surf ) bud_lup(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSE ! 0 ) THEN ! !-- No vegetation on water: lai = 0.0_wp sai = 0.0_wp slinnfac = 1.0_wp ! !-- Get vd DO lsp = 1, nvar ! !-- Initialize vs = 0.0_wp vd_lu = 0.0_wp rs = 0.0_wp rb = 0.0_wp rc_tot = 0.0_wp IF ( spc_names(lsp) == 'PM10' ) THEN part_type = 1 ! !-- Sedimentation velocity: vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, & vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & luw_dep, & r_aero_surf, ustar_surf ) bud_luw(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSEIF ( spc_names(lsp) == 'PM25' ) THEN part_type = 2 ! !-- Sedimentation velocity: vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, & vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & luw_dep, & r_aero_surf, ustar_surf ) bud_luw(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSE ! 0 ) THEN ! !-- For green urban surfaces (e.g. green roofs !-- assume LU short grass lug_palm = ind_luv_s_grass IF ( lug_palm == ind_luv_user ) THEN message_string = 'No vegetation type defined. Please define vegetation type to enable deposition calculation' CALL message( 'chem_depo', 'CM0454', 1, 2, 0, 6, 0 ) ELSEIF ( lug_palm == ind_luv_b_soil ) THEN lug_dep = 9 ELSEIF ( lug_palm == ind_luv_mixed_crops ) THEN lug_dep = 2 ELSEIF ( lug_palm == ind_luv_s_grass ) THEN lug_dep = 1 ELSEIF ( lug_palm == ind_luv_ev_needle_trees ) THEN lug_dep = 4 ELSEIF ( lug_palm == ind_luv_de_needle_trees ) THEN lug_dep = 4 ELSEIF ( lug_palm == ind_luv_ev_broad_trees ) THEN lug_dep = 12 ELSEIF ( lug_palm == ind_luv_de_broad_trees ) THEN lug_dep = 5 ELSEIF ( lug_palm == ind_luv_t_grass ) THEN lug_dep = 1 ELSEIF ( lug_palm == ind_luv_desert ) THEN lug_dep = 9 ELSEIF ( lug_palm == ind_luv_tundra ) THEN lug_dep = 8 ELSEIF ( lug_palm == ind_luv_irr_crops ) THEN lug_dep = 2 ELSEIF ( lug_palm == ind_luv_semidesert ) THEN lug_dep = 8 ELSEIF ( lug_palm == ind_luv_ice ) THEN lug_dep = 10 ELSEIF ( lug_palm == ind_luv_marsh ) THEN lug_dep = 8 ELSEIF ( lug_palm == ind_luv_ev_shrubs ) THEN lug_dep = 14 ELSEIF ( lug_palm == ind_luv_de_shrubs ) THEN lug_dep = 14 ELSEIF ( lug_palm == ind_luv_mixed_forest ) THEN lug_dep = 4 ELSEIF ( lug_palm == ind_luv_intrup_forest ) THEN lug_dep = 8 ENDIF ENDIF IF ( surf_usm_h%frac(ind_veg_wall,m) > 0 ) THEN ! !-- For walls in USM assume concrete walls/roofs, !-- assumed LU class desert as also assumed for !-- pavements in LSM luu_palm = ind_lup_conc IF ( luu_palm == ind_lup_user ) THEN message_string = 'No pavement type defined. Please define pavement type to enable deposition calculation' CALL message( 'chem_depo', 'CM0455', 1, 2, 0, 6, 0 ) ELSEIF ( luu_palm == ind_lup_asph_conc ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_asph ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_conc ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_sett ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_pav_stones ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_cobblest ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_metal ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_wood ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_gravel ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_f_gravel ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_pebblest ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_woodchips ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_tartan ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_art_turf ) THEN luu_dep = 9 ELSEIF ( luu_palm == ind_lup_clay ) THEN luu_dep = 9 ENDIF ENDIF IF ( surf_usm_h%frac(ind_wat_win,m) > 0 ) THEN ! !-- For windows in USM assume metal as this is !-- as close as we get, assumed LU class desert !-- as also assumed for pavements in LSM lud_palm = ind_lup_metal IF ( lud_palm == ind_lup_user ) THEN message_string = 'No pavement type defined. Please define pavement type to enable deposition calculation' CALL message( 'chem_depo', 'CM0456', 1, 2, 0, 6, 0 ) ELSEIF ( lud_palm == ind_lup_asph_conc ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_asph ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_conc ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_sett ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_pav_stones ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_cobblest ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_metal ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_wood ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_gravel ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_f_gravel ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_pebblest ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_woodchips ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_tartan ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_art_turf ) THEN lud_dep = 9 ELSEIF ( lud_palm == ind_lup_clay ) THEN lud_dep = 9 ENDIF ENDIF ! !-- @TODO: Activate these lines as soon as new ebsolver branch is merged: !-- Set wetness indicator to dry or wet for usm vegetation or pavement !IF ( surf_usm_h%c_liq(m) > 0 ) THEN ! nwet = 1 !ELSE nwet = 0 !ENDIF ! !-- Compute length of time step IF ( call_chem_at_all_substeps ) THEN dt_chem = dt_3d * weight_pres(intermediate_timestep_count) ELSE dt_chem = dt_3d ENDIF dh = dzw(k) inv_dh = 1.0_wp / dh dt_dh = dt_chem/dh ! !-- Concentration at i,j,k DO lsp = 1, nspec conc_ijk(lsp) = chem_species(lsp)%conc(k,j,i) ENDDO ! !-- Temperature at i,j,k temp_tmp = pt(k,j,i) * ( hyp(k) / 100000.0_wp )**0.286_wp ts = temp_tmp - 273.15 !< in degrees celcius ! !-- Viscosity of air visc = 1.496e-6 * temp_tmp**1.5 / (temp_tmp + 120.0) ! !-- Air density at k dens = rho_air_zw(k) ! !-- Calculate relative humidity from specific humidity for DEPAC qv_tmp = MAX(q(k,j,i),0.0_wp) rh_surf = relativehumidity_from_specifichumidity(qv_tmp, temp_tmp, hyp(k) ) ! !-- Check if surface fraction (vegetation, pavement or water) > 0 and calculate vd and budget !-- for each surface fraction. Then derive overall budget taking into account the surface fractions. ! !-- Walls/roofs IF ( surf_usm_h%frac(ind_veg_wall,m) > 0 ) THEN ! !-- No vegetation on non-green walls: lai = 0.0_wp sai = 0.0_wp slinnfac = 1.0_wp ! !-- Get vd DO lsp = 1, nvar ! !-- Initialize vs = 0.0_wp vd_lu = 0.0_wp rs = 0.0_wp rb = 0.0_wp rc_tot = 0.0_wp IF (spc_names(lsp) == 'PM10' ) THEN part_type = 1 ! !-- Sedimentation velocity vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, & vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & luu_dep, & r_aero_surf, ustar_surf ) bud_luu(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSEIF ( spc_names(lsp) == 'PM25' ) THEN part_type = 2 ! !-- Sedimentation velocity vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, & vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & luu_dep , & r_aero_surf, ustar_surf ) bud_luu(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSE !< GASES ! !-- Read spc_name of current species for gas parameter IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN i_pspec = 0 DO pspec = 1, nposp IF ( pspecnames(pspec) == spc_names(lsp) ) THEN i_pspec = pspec END IF ENDDO ELSE ! !-- For now species not deposited CYCLE ENDIF ! !-- Factor used for conversion from ppb to ug/m3 : !-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) & !-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole) !-- c 1e-9 xm_tracer 1e9 / xm_air dens !-- thus: !-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3 !-- Use density at k: ppm2ugm3 = (dens/xm_air) * 0.001_wp !< (mole air)/m3 ! !-- Atmospheric concentration in DEPAC is requested in ug/m3: !-- ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3 ! !-- Diffusivity for DEPAC relevant gases !-- Use default value diffusivity = 0.11e-4 ! !-- overwrite with known coefficients of diffusivity from Massman (1998) IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4 IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4 IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4 IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4 IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4 IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4 IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4 ! !-- Get quasi-laminar boundary layer resistance rb: CALL get_rb_cell( (luu_dep == ilu_water_sea) .OR. (luu_dep == ilu_water_inland), & z0h_surf, ustar_surf, diffusivity, & rb ) ! !-- Get rc_tot CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, & solar_rad, cos_zenith, rh_surf, lai, sai, nwet, luu_dep, 2, & rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, diffusivity, & r_aero_surf, rb ) ! !-- Calculate budget IF ( rc_tot <= 0.0 ) THEN bud_luu(lsp) = 0.0_wp ELSE vd_lu = 1.0_wp / (r_aero_surf + rb + rc_tot ) bud_luu(lsp) = - (conc_ijk(lsp) - ccomp_tot(lsp)) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ENDIF ENDIF ENDDO ENDIF ! !-- Green usm surfaces IF ( surf_usm_h%frac(ind_pav_green,m) > 0 ) THEN ! !-- No vegetation on bare soil, desert or ice: IF ( ( lug_palm == ind_luv_b_soil ) .OR. & ( lug_palm == ind_luv_desert ) .OR. & ( lug_palm == ind_luv_ice ) ) THEN lai = 0.0_wp sai = 0.0_wp ENDIF slinnfac = 1.0_wp ! !-- Get vd DO lsp = 1, nvar ! !-- Initialize vs = 0.0_wp vd_lu = 0.0_wp rs = 0.0_wp rb = 0.0_wp rc_tot = 0.0_wp IF ( spc_names(lsp) == 'PM10' ) THEN part_type = 1 ! !-- Sedimentation velocity vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, & vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & lug_dep, & r_aero_surf, ustar_surf ) bud_lug(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSEIF ( spc_names(lsp) == 'PM25' ) THEN part_type = 2 ! !-- Sedimentation velocity vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, & vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & lug_dep, & r_aero_surf, ustar_surf ) bud_lug(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSE !< GASES ! !-- Read spc_name of current species for gas parameter IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN i_pspec = 0 DO pspec = 1, nposp IF ( pspecnames(pspec) == spc_names(lsp) ) THEN i_pspec = pspec END IF ENDDO ELSE ! !-- For now species not deposited CYCLE ENDIF ! !-- Factor used for conversion from ppb to ug/m3 : !-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) & !-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole) !-- c 1e-9 xm_tracer 1e9 / xm_air dens !-- thus: !-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3 !-- Use density at k: ppm2ugm3 = (dens/xm_air) * 0.001_wp ! (mole air)/m3 ! !-- Atmospheric concentration in DEPAC is requested in ug/m3: ! ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3 ! !-- Diffusivity for DEPAC relevant gases !-- Use default value diffusivity = 0.11e-4 ! !-- overwrite with known coefficients of diffusivity from Massman (1998) IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4 IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4 IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4 IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4 IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4 IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4 IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4 ! !-- Get quasi-laminar boundary layer resistance rb: CALL get_rb_cell( (lug_dep == ilu_water_sea) .OR. (lug_dep == ilu_water_inland), & z0h_surf, ustar_surf, diffusivity, & rb ) ! !-- Get rc_tot CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, & solar_rad, cos_zenith, rh_surf, lai, sai, nwet, lug_dep, 2, & rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, diffusivity, & r_aero_surf , rb ) ! !-- Calculate budget IF ( rc_tot <= 0.0 ) THEN bud_lug(lsp) = 0.0_wp ELSE vd_lu = 1.0_wp / (r_aero_surf + rb + rc_tot ) bud_lug(lsp) = - (conc_ijk(lsp) - ccomp_tot(lsp)) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ENDIF ENDIF ENDDO ENDIF ! !-- Windows IF ( surf_usm_h%frac(ind_wat_win,m) > 0 ) THEN ! !-- No vegetation on windows: lai = 0.0_wp sai = 0.0_wp slinnfac = 1.0_wp ! !-- Get vd DO lsp = 1, nvar ! !-- Initialize vs = 0.0_wp vd_lu = 0.0_wp rs = 0.0_wp rb = 0.0_wp rc_tot = 0.0_wp IF ( spc_names(lsp) == 'PM10' ) THEN part_type = 1 ! !-- Sedimentation velocity vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & lud_dep, r_aero_surf, ustar_surf ) bud_lud(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSEIF ( spc_names(lsp) == 'PM25' ) THEN part_type = 2 ! !-- Sedimentation velocity vs = slinnfac * sedimentation_velocity( particle_pars(ind_p_dens, part_type), & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & visc) CALL drydepo_aero_zhang_vd( vd_lu, rs, vs, & particle_pars(ind_p_size, part_type), & particle_pars(ind_p_slip, part_type), & nwet, temp_tmp, dens, visc, & lud_dep, & r_aero_surf, ustar_surf ) bud_lud(lsp) = - conc_ijk(lsp) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ELSE !< GASES ! !-- Read spc_name of current species for gas PARAMETER IF ( ANY( pspecnames(:) == spc_names(lsp) ) ) THEN i_pspec = 0 DO pspec = 1, nposp IF ( pspecnames(pspec) == spc_names(lsp) ) THEN i_pspec = pspec END IF ENDDO ELSE ! !-- For now species not deposited CYCLE ENDIF ! !-- Factor used for conversion from ppb to ug/m3 : !-- ppb (mole tr)/(mole air)/ppb (kg tr)/(mole tr) (ug tr)/(kg tr) & !-- (mole air)/(kg air) (kg air)/(m3 air) (kg air(ug/m3)/ppb/(kg/mole) = / (kg/mole) !-- c 1e-9 xm_tracer 1e9 / xm_air dens !-- thus: !-- c_in_ppb * xm_tracer * [ dens / xm_air ] = c_in_ugm3 !-- Use density at k: ppm2ugm3 = (dens/xm_air) * 0.001_wp ! (mole air)/m3 ! !-- Atmospheric concentration in DEPAC is requested in ug/m3: !-- ug/m3 ppm (ug/m3)/ppm/(kg/mole) kg/mole conc_ijk_ugm3 = conc_ijk(lsp) * ppm2ugm3 * specmolm(i_pspec) ! in ug/m3 ! !-- Diffusivity for DEPAC relevant gases !-- Use default value diffusivity = 0.11e-4 ! !-- overwrite with known coefficients of diffusivity from Massman (1998) IF ( spc_names(lsp) == 'NO2' ) diffusivity = 0.136e-4 IF ( spc_names(lsp) == 'NO' ) diffusivity = 0.199e-4 IF ( spc_names(lsp) == 'O3' ) diffusivity = 0.144e-4 IF ( spc_names(lsp) == 'CO' ) diffusivity = 0.176e-4 IF ( spc_names(lsp) == 'SO2' ) diffusivity = 0.112e-4 IF ( spc_names(lsp) == 'CH4' ) diffusivity = 0.191e-4 IF ( spc_names(lsp) == 'NH3' ) diffusivity = 0.191e-4 ! !-- Get quasi-laminar boundary layer resistance rb: CALL get_rb_cell( (lud_dep == ilu_water_sea) .OR. (lud_dep == ilu_water_inland), & z0h_surf, ustar_surf, diffusivity, rb ) ! !-- Get rc_tot CALL drydepos_gas_depac( spc_names(lsp), day_of_year, latitude, ts, ustar_surf, & solar_rad, cos_zenith, rh_surf, lai, sai, nwet, lud_dep, 2, & rc_tot, ccomp_tot(lsp), hyp(nzb), conc_ijk_ugm3, diffusivity, & r_aero_surf , rb ) ! !-- Calculate budget IF ( rc_tot <= 0.0 ) THEN bud_lud(lsp) = 0.0_wp ELSE vd_lu = 1.0_wp / (r_aero_surf + rb + rc_tot ) bud_lud(lsp) = - (conc_ijk(lsp) - ccomp_tot(lsp)) * & (1.0_wp - exp(-vd_lu * dt_dh )) * dh ENDIF ENDIF ENDDO ENDIF bud = 0.0_wp ! !-- Calculate overall budget for surface m and adapt concentration DO lsp = 1, nspec bud(lsp) = surf_usm_h%frac(ind_veg_wall,m) * bud_luu(lsp) + & surf_usm_h%frac(ind_pav_green,m) * bud_lug(lsp) + & surf_usm_h%frac(ind_wat_win,m) * bud_lud(lsp) ! !-- Compute new concentration conc_ijk(lsp) = conc_ijk(lsp) + bud(lsp) * inv_dh chem_species(lsp)%conc(k,j,i) = MAX( 0.0_wp, conc_ijk(lsp) ) ENDDO ENDIF END SUBROUTINE chem_depo !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to compute total canopy (or surface) resistance Rc for gases !> !> DEPAC: !> Code of the DEPAC routine and corresponding subroutines below from the DEPAC !> module of the LOTOS-EUROS model (Manders et al., 2017) !> !> Original DEPAC routines by RIVM and TNO (2015), for Documentation see !> van Zanten et al., 2010. !------------------------------------------------------------------------------! SUBROUTINE drydepos_gas_depac( compnam, day_of_year, lat, t, ust, solar_rad, sinphi, & rh, lai, sai, nwet, lu, iratns, rc_tot, ccomp_tot, p, conc_ijk_ugm3, diffusivity, & ra, rb ) ! !-- Some of depac arguments are OPTIONAL: !-- A. compute Rc_tot without compensation points (ccomp_tot will be zero): !-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot, ccomp_tot, [smi]) !-- B. compute Rc_tot with compensation points (used for LOTOS-EUROS): !-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot, ccomp_tot, [smi], & !-- c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water) !-- !-- C. compute effective Rc based on compensation points (used for OPS): !-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot, ccomp_tot, [smi], & !-- c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water, & !-- ra, rb, rc_eff) !-- X1. Extra (OPTIONAL) output variables: !-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot, ccomp_tot, [smi], & !-- c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water, & !-- ra, rb, rc_eff, & !-- gw_out, gstom_out, gsoil_eff_out, cw_out, cstom_out, csoil_out, lai_out, sai_out) !-- X2. Extra (OPTIONAL) needed for stomatal ozone flux calculation (only sunlit leaves): !-- CALL depac (compnam, day_of_year, lat, t, ust, glrad, sinphi, rh, nwet, lu, iratns, rc_tot, ccomp_tot, [smi], & !-- c_ave_prev_nh3, c_ave_prev_so2, catm, gamma_soil_water, & !-- ra, rb, rc_eff, & !-- gw_out, gstom_out, gsoil_eff_out, cw_out, cstom_out, csoil_out, lai_out, sai_out, & !-- calc_stom_o3flux, frac_sto_o3_lu, fac_surface_area_2_PLA) CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name !< 'HNO3','NO','NO2','O3','SO2','NH3' INTEGER(iwp), INTENT(IN) :: day_of_year !< day of year, 1 ... 365 (366) INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,...,nlu INTEGER(iwp), INTENT(IN) :: iratns !< index for NH3/SO2 ratio used for SO2: !< iratns = 1: low NH3/SO2 !< iratns = 2: high NH3/SO2 !< iratns = 3: very low NH3/SO2 REAL(wp), INTENT(IN) :: lat !< latitude Northern hemisphere (degrees) (S. hemisphere not possible) REAL(wp), INTENT(IN) :: t !< temperature (C) REAL(wp), INTENT(IN) :: ust !< friction velocity (m/s) REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W/m2) REAL(wp), INTENT(IN) :: sinphi !< sin of solar elevation angle REAL(wp), INTENT(IN) :: rh !< relative humidity (%) REAL(wp), INTENT(IN) :: lai !< one-sidedleaf area index (-) REAL(wp), INTENT(IN) :: sai !< surface area index (-) (lai + branches and stems) REAL(wp), INTENT(IN) :: diffusivity !< diffusivity REAL(wp), INTENT(IN) :: p !< pressure (Pa) REAL(wp), INTENT(IN) :: conc_ijk_ugm3 !< actual atmospheric concentration (ug/m3), in DEPAC=Catm REAL(wp), INTENT(IN) :: ra !< aerodynamic resistance (s/m) REAL(wp), INTENT(IN) :: rb !< boundary layer resistance (s/m) REAL(wp), INTENT(OUT) :: rc_tot !< total canopy resistance Rc (s/m) REAL(wp), INTENT(OUT) :: ccomp_tot !< total compensation point (ug/m3) ! !< [= 0 for species that don't have a compensation !-- Local variables: ! !-- Component number taken from component name, paramteres matched with include files INTEGER(iwp) :: icmp ! !-- Component numbers: INTEGER(iwp), PARAMETER :: icmp_o3 = 1 INTEGER(iwp), PARAMETER :: icmp_so2 = 2 INTEGER(iwp), PARAMETER :: icmp_no2 = 3 INTEGER(iwp), PARAMETER :: icmp_no = 4 INTEGER(iwp), PARAMETER :: icmp_nh3 = 5 INTEGER(iwp), PARAMETER :: icmp_co = 6 INTEGER(iwp), PARAMETER :: icmp_no3 = 7 INTEGER(iwp), PARAMETER :: icmp_hno3 = 8 INTEGER(iwp), PARAMETER :: icmp_n2o5 = 9 INTEGER(iwp), PARAMETER :: icmp_h2o2 = 10 LOGICAL :: ready !< Rc has been set: !< = 1 -> constant Rc !< = 2 -> temperature dependent Rc ! !-- Vegetation indicators: LOGICAL :: lai_present !< leaves are present for current land use type LOGICAL :: sai_present !< vegetation is present for current land use type ! REAL(wp) :: laimax !< maximum leaf area index (-) REAL(wp) :: gw !< external leaf conductance (m/s) REAL(wp) :: gstom !< stomatal conductance (m/s) REAL(wp) :: gsoil_eff !< effective soil conductance (m/s) REAL(wp) :: gc_tot !< total canopy conductance (m/s) REAL(wp) :: cw !< external leaf surface compensation point (ug/m3) REAL(wp) :: cstom !< stomatal compensation point (ug/m3) REAL(wp) :: csoil !< soil compensation point (ug/m3) ! !-- Next statement is just to avoid compiler warning about unused variable IF ( day_of_year == 0 .OR. ( conc_ijk_ugm3 + lat + ra + rb ) > 0.0_wp ) CONTINUE ! !-- Define component number SELECT CASE ( TRIM( compnam ) ) CASE ( 'O3', 'o3' ) icmp = icmp_o3 CASE ( 'SO2', 'so2' ) icmp = icmp_so2 CASE ( 'NO2', 'no2' ) icmp = icmp_no2 CASE ( 'NO', 'no' ) icmp = icmp_no CASE ( 'NH3', 'nh3' ) icmp = icmp_nh3 CASE ( 'CO', 'co' ) icmp = icmp_co CASE ( 'NO3', 'no3' ) icmp = icmp_no3 CASE ( 'HNO3', 'hno3' ) icmp = icmp_hno3 CASE ( 'N2O5', 'n2o5' ) icmp = icmp_n2o5 CASE ( 'H2O2', 'h2o2' ) icmp = icmp_h2o2 CASE default ! !-- Component not part of DEPAC --> not deposited RETURN END SELECT ! !-- Inititalize gw = 0.0_wp gstom = 0.0_wp gsoil_eff = 0.0_wp gc_tot = 0.0_wp cw = 0.0_wp cstom = 0.0_wp csoil = 0.0_wp ! !-- Check whether vegetation is present: lai_present = ( lai > 0.0 ) sai_present = ( sai > 0.0 ) ! !-- Set Rc (i.e. rc_tot) in special cases: CALL rc_special( icmp, compnam, lu, t, nwet, rc_tot, ready, ccomp_tot ) ! !-- If Rc is not set: IF ( .NOT. ready ) then ! !-- External conductance: CALL rc_gw( compnam, iratns, t, rh, nwet, sai_present, sai,gw ) ! !-- Stomatal conductance: CALL rc_gstom( icmp, compnam, lu, lai_present, lai, solar_rad, sinphi, t, rh, diffusivity, gstom, p ) ! !-- Effective soil conductance: CALL rc_gsoil_eff( icmp, lu, sai, ust, nwet, t, gsoil_eff ) ! !-- Total canopy conductance (gc_tot) and resistance Rc (rc_tot): CALL rc_rctot( gstom, gsoil_eff, gw, gc_tot, rc_tot ) ! !-- Needed to include compensation point for NH3 !-- Compensation points (always returns ccomp_tot; currently ccomp_tot != 0 only for NH3): !-- CALL rc_comp_point( compnam,lu,day_of_year,t,gw,gstom,gsoil_eff,gc_tot,& !-- lai_present, sai_present, & !-- ccomp_tot, & !-- conc_ijk_ugm3=conc_ijk_ugm3,c_ave_prev_nh3=c_ave_prev_nh3, & !-- c_ave_prev_so2=c_ave_prev_so2,gamma_soil_water=gamma_soil_water, & !-- tsea=tsea,cw=cw,cstom=cstom,csoil=csoil ) ! !-- Effective Rc based on compensation points: !-- IF ( present(rc_eff) ) then !-- check on required arguments: !-- IF ( (.not. present(conc_ijk_ugm3)) .OR. (.not. present(ra)) .OR. (.not. present(rb)) ) then !-- stop 'output argument rc_eff requires input arguments conc_ijk_ugm3, ra and rb' !-- END IF ! !-- Compute rc_eff : ! CALL rc_comp_point_rc_eff(ccomp_tot,conc_ijk_ugm3,ra,rb,rc_tot,rc_eff) ! ENDIF ENDIF END SUBROUTINE drydepos_gas_depac !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to compute total canopy resistance in special cases !------------------------------------------------------------------------------! SUBROUTINE rc_special( icmp, compnam, lu, t, nwet, rc_tot, ready, ccomp_tot ) CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name INTEGER(iwp), INTENT(IN) :: icmp !< component index INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,...,nlu INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow REAL(wp), INTENT(IN) :: t !< temperature (C) REAL(wp), INTENT(OUT) :: rc_tot !< total canopy resistance Rc (s/m) REAL(wp), INTENT(OUT) :: ccomp_tot !< total compensation point (ug/m3) LOGICAL, INTENT(OUT) :: ready !< Rc has been set !< = 1 -> constant Rc ! !-- Next line is to avoid compiler warning about unused variable IF ( icmp == 0 ) CONTINUE ! !-- rc_tot is not yet set: ready = .FALSE. ! !-- Default compensation point in special CASEs = 0: ccomp_tot = 0.0_wp SELECT CASE( TRIM( compnam ) ) CASE( 'HNO3', 'N2O5', 'NO3', 'H2O2' ) ! !-- No separate resistances for HNO3; just one total canopy resistance: IF ( t < -5.0_wp .AND. nwet == 9 ) THEN ! !-- T < 5 C and snow: rc_tot = 50.0_wp ELSE ! !-- all other circumstances: rc_tot = 10.0_wp ENDIF ready = .TRUE. CASE( 'NO', 'CO' ) IF ( lu == ilu_water_sea .OR. lu == ilu_water_inland ) THEN ! water rc_tot = 2000.0_wp ready = .TRUE. ELSEIF ( nwet == 1 ) THEN !< wet rc_tot = 2000.0_wp ready = .TRUE. ENDIF CASE( 'NO2', 'O3', 'SO2', 'NH3' ) ! !-- snow surface: IF ( nwet == 9 ) THEN ! !-- To be activated when snow is implemented !CALL rc_snow(ipar_snow(icmp),t,rc_tot) ready = .TRUE. ENDIF CASE default message_string = 'Component '// TRIM( compnam ) // ' not supported' CALL message( 'rc_special', 'CM0457', 1, 2, 0, 6, 0 ) END SELECT END SUBROUTINE rc_special !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to compute external conductance !------------------------------------------------------------------------------! SUBROUTINE rc_gw( compnam, iratns, t, rh, nwet, sai_present, sai, gw ) ! !-- Input/output variables: CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow INTEGER(iwp), INTENT(IN) :: iratns !< index for NH3/SO2 ratio; !< iratns = 1: low NH3/SO2 !< iratns = 2: high NH3/SO2 !< iratns = 3: very low NH3/SO2 LOGICAL, INTENT(IN) :: sai_present REAL(wp), INTENT(IN) :: t !< temperature (C) REAL(wp), INTENT(IN) :: rh !< relative humidity (%) REAL(wp), INTENT(IN) :: sai !< one-sided leaf area index (-) REAL(wp), INTENT(OUT) :: gw !< external leaf conductance (m/s) SELECT CASE( TRIM( compnam ) ) CASE( 'NO2' ) CALL rw_constant( 2000.0_wp, sai_present, gw ) CASE( 'NO', 'CO' ) CALL rw_constant( -9999.0_wp, sai_present, gw ) !< see Erisman et al, 1994 section 3.2.3 CASE( 'O3' ) CALL rw_constant( 2500.0_wp, sai_present, gw ) CASE( 'SO2' ) CALL rw_so2( t, nwet, rh, iratns, sai_present, gw ) CASE( 'NH3' ) CALL rw_nh3_sutton( t, rh, sai_present, gw ) ! !-- conversion from leaf resistance to canopy resistance by multiplying with sai: gw = sai * gw CASE default message_string = 'Component '// TRIM( compnam ) // ' not supported' CALL message( 'rc_gw', 'CM0458', 1, 2, 0, 6, 0 ) END SELECT END SUBROUTINE rc_gw !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to compute external leaf conductance for SO2 !------------------------------------------------------------------------------! SUBROUTINE rw_so2( t, nwet, rh, iratns, sai_present, gw ) ! !-- Input/output variables: INTEGER(iwp), INTENT(IN) :: nwet !< wetness indicator; nwet=0 -> dry; nwet=1 -> wet; nwet=9 -> snow INTEGER(iwp), INTENT(IN) :: iratns !< index for NH3/SO2 ratio: !< iratns = 1: low NH3/SO2 !< iratns = 2: high NH3/SO2 !< iratns = 3: very low NH3/SO2 LOGICAL, INTENT(IN) :: sai_present REAL(wp), INTENT(IN) :: t !< temperature (C) REAL(wp), INTENT(IN) :: rh !< relative humidity (%) REAL(wp), INTENT(OUT) :: gw !< external leaf conductance (m/s) ! !-- Local variables: REAL(wp) :: rw !< external leaf resistance (s/m) ! !-- Check if vegetation present: IF ( sai_present ) THEN IF ( nwet == 0 ) THEN ! !-- ------------------------ !-- dry surface !-- ------------------------ !-- T > -1 C IF ( t > -1.0_wp ) THEN IF ( rh < 81.3_wp ) THEN rw = 25000.0_wp * exp( -0.0693_wp * rh ) ELSE rw = 0.58e12 * exp( -0.278_wp * rh ) + 10.0_wp ENDIF ELSE ! -5 C < T <= -1 C IF ( t > -5.0_wp ) THEN rw = 200.0_wp ELSE ! T <= -5 C rw = 500.0_wp ENDIF ENDIF ELSE ! !-- ------------------------ !-- wet surface !-- ------------------------ rw = 10.0_wp !see Table 5, Erisman et al, 1994 Atm. Environment, 0 is impl. as 10 ENDIF ! !-- very low NH3/SO2 ratio: IF ( iratns == iratns_very_low ) rw = rw + 50.0_wp ! !-- Conductance: gw = 1.0_wp / rw ELSE ! !-- no vegetation: gw = 0.0_wp ENDIF END SUBROUTINE rw_so2 !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to compute external leaf conductance for NH3, !> following Sutton & Fowler, 1993 !------------------------------------------------------------------------------! SUBROUTINE rw_nh3_sutton( tsurf, rh,sai_present, gw ) ! !-- Input/output variables: LOGICAL, INTENT(IN) :: sai_present REAL(wp), INTENT(IN) :: tsurf !< surface temperature (C) REAL(wp), INTENT(IN) :: rh !< relative humidity (%) REAL(wp), INTENT(OUT) :: gw !< external leaf conductance (m/s) ! !-- Local variables: REAL(wp) :: rw !< external leaf resistance (s/m) REAL(wp) :: sai_grass_haarweg !< surface area index at experimental site Haarweg ! !-- Fix sai_grass at value valid for Haarweg data for which gamma_w parametrization is derived sai_grass_haarweg = 3.5_wp ! !-- Calculation rw: !-- 100 - rh !-- rw = 2.0 * exp(----------) !-- 12 IF ( sai_present ) THEN ! !-- External resistance according to Sutton & Fowler, 1993 rw = 2.0_wp * exp( ( 100.0_wp - rh ) / 12.0_wp ) rw = sai_grass_haarweg * rw ! !-- Frozen soil (from Depac v1): IF ( tsurf < 0.0_wp ) rw = 200.0_wp ! !-- Conductance: gw = 1.0_wp / rw ELSE ! no vegetation: gw = 0.0_wp ENDIF END SUBROUTINE rw_nh3_sutton !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to compute external leaf conductance !------------------------------------------------------------------------------! SUBROUTINE rw_constant( rw_val, sai_present, gw ) ! !-- Input/output variables: LOGICAL, INTENT(IN) :: sai_present REAL(wp), INTENT(IN) :: rw_val !< constant value of Rw REAL(wp), INTENT(OUT) :: gw !< wernal leaf conductance (m/s) ! !-- Compute conductance: IF ( sai_present .AND. .NOT.missing(rw_val) ) THEN gw = 1.0_wp / rw_val ELSE gw = 0.0_wp ENDIF END SUBROUTINE rw_constant !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to compute stomatal conductance !------------------------------------------------------------------------------! SUBROUTINE rc_gstom( icmp, compnam, lu, lai_present, lai, solar_rad, sinphi, t, rh, diffusivity, gstom, p ) ! !-- input/output variables: CHARACTER(LEN=*), INTENT(IN) :: compnam !< component name INTEGER(iwp), INTENT(IN) :: icmp !< component index INTEGER(iwp), INTENT(IN) :: lu !< land use type , lu = 1,...,nlu LOGICAL, INTENT(IN) :: lai_present REAL(wp), INTENT(IN) :: lai !< one-sided leaf area index REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W/m2) REAL(wp), INTENT(IN) :: sinphi !< sin of solar elevation angle REAL(wp), INTENT(IN) :: t !< temperature (C) REAL(wp), INTENT(IN) :: rh !< relative humidity (%) REAL(wp), INTENT(IN) :: diffusivity !< diffusion coefficient of the gas involved REAL(wp), OPTIONAL,INTENT(IN) :: p !< pressure (Pa) REAL(wp), INTENT(OUT) :: gstom !< stomatal conductance (m/s) ! !-- Local variables REAL(wp) :: vpd !< vapour pressure deficit (kPa) REAL(wp), PARAMETER :: dO3 = 0.13e-4 !< diffusion coefficient of ozon (m2/s) ! !-- Next line is to avoid compiler warning about unused variables IF ( icmp == 0 ) CONTINUE SELECT CASE( TRIM( compnam ) ) CASE( 'NO', 'CO' ) ! !-- For no stomatal uptake is neglected: gstom = 0.0_wp CASE( 'NO2', 'O3', 'SO2', 'NH3' ) ! !-- if vegetation present: IF ( lai_present ) THEN IF ( solar_rad > 0.0_wp ) THEN CALL rc_get_vpd( t, rh, vpd ) CALL rc_gstom_emb( lu, solar_rad, t, vpd, lai_present, lai, sinphi, gstom, p ) gstom = gstom * diffusivity / dO3 !< Gstom of Emberson is derived for ozone ELSE gstom = 0.0_wp ENDIF ELSE ! !-- no vegetation; zero conductance (infinite resistance): gstom = 0.0_wp ENDIF CASE default message_string = 'Component '// TRIM( compnam ) // ' not supported' CALL message( 'rc_gstom', 'CM0459', 1, 2, 0, 6, 0 ) END SELECT END SUBROUTINE rc_gstom !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine to compute stomatal conductance according to Emberson !------------------------------------------------------------------------------! SUBROUTINE rc_gstom_emb( lu, solar_rad, T, vpd, lai_present, lai, sinp, Gsto, p ) ! !> History !> Original code from Lotos-Euros, TNO, M. Schaap !> 2009-08, M.C. van Zanten, Rivm !> Updated and extended. !> 2009-09, Arjo Segers, TNO !> Limitted temperature influence to range to avoid !> floating point exceptions. !> Method !> Code based on Emberson et al, 2000, Env. Poll., 403-413 !> Notation conform Unified EMEP Model Description Part 1, ch 8 ! !> In the calculation of f_light the modification of L. Zhang 2001, AE to the PARshade and PARsun !> parametrizations of Norman 1982 are applied !> f_phen and f_SWP are set to 1 ! !> Land use types DEPAC versus Emberson (Table 5.1, EMEP model description) !> DEPAC Emberson !> 1 = grass GR = grassland !> 2 = arable land TC = temperate crops ( lai according to RC = rootcrops) !> 3 = permanent crops TC = temperate crops ( lai according to RC = rootcrops) !> 4 = coniferous forest CF = tempareate/boREAL(wp) coniferous forest !> 5 = deciduous forest DF = temperate/boREAL(wp) deciduous forest !> 6 = water W = water !> 7 = urban U = urban !> 8 = other GR = grassland !> 9 = desert DE = desert ! !-- Emberson specific declarations ! !-- Input/output variables: INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,...,nlu LOGICAL, INTENT(IN) :: lai_present REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W/m2) REAL(wp), INTENT(IN) :: t !< temperature (C) REAL(wp), INTENT(IN) :: vpd !< vapour pressure deficit (kPa) REAL(wp), INTENT(IN) :: lai !< one-sided leaf area index REAL(wp), INTENT(IN) :: sinp !< sin of solar elevation angle REAL(wp), OPTIONAL, INTENT(IN) :: p !< pressure (Pa) REAL(wp), INTENT(OUT) :: gsto !< stomatal conductance (m/s) ! !-- Local variables: REAL(wp) :: f_light REAL(wp) :: f_phen REAL(wp) :: f_temp REAL(wp) :: f_vpd REAL(wp) :: f_swp REAL(wp) :: bt REAL(wp) :: f_env REAL(wp) :: pardir REAL(wp) :: pardiff REAL(wp) :: parshade REAL(wp) :: parsun REAL(wp) :: laisun REAL(wp) :: laishade REAL(wp) :: sinphi REAL(wp) :: pres REAL(wp), PARAMETER :: p_sealevel = 1.01325e05 !< Pa ! !-- Check whether vegetation is present: IF ( lai_present ) THEN ! calculation of correction factors for stomatal conductance IF ( sinp <= 0.0_wp ) THEN sinphi = 0.0001_wp ELSE sinphi = sinp END IF ! !-- ratio between actual and sea-level pressure is used !-- to correct for height in the computation of par; !-- should not exceed sea-level pressure therefore ... IF ( present(p) ) THEN pres = min( p, p_sealevel ) ELSE pres = p_sealevel ENDIF ! !-- direct and diffuse par, Photoactive (=visible) radiation: CALL par_dir_diff( solar_rad, sinphi, pres, p_sealevel, pardir, pardiff ) ! !-- par for shaded leaves (canopy averaged): parshade = pardiff * exp( -0.5 * lai**0.7 ) + 0.07 * pardir * ( 1.1 - 0.1 * lai ) * exp( -sinphi ) !< Norman,1982 IF ( solar_rad > 200.0_wp .AND. lai > 2.5_wp ) THEN parshade = pardiff * exp( -0.5 * lai**0.8 ) + 0.07 * pardir * ( 1.1 - 0.1 * lai ) * exp( -sinphi ) !< Zhang et al., 2001 END IF ! !-- par for sunlit leaves (canopy averaged): !-- alpha -> mean angle between leaves and the sun is fixed at 60 deg -> i.e. cos alpha = 0.5 parsun = pardir * 0.5/sinphi + parshade !< Norman, 1982 IF ( solar_rad > 200.0_wp .AND. lai > 2.5_wp ) THEN parsun = pardir**0.8 * 0.5 / sinphi + parshade !< Zhang et al., 2001 END IF ! !-- leaf area index for sunlit and shaded leaves: IF ( sinphi > 0 ) THEN laisun = 2 * sinphi * ( 1 - exp( -0.5 * lai / sinphi ) ) laishade = lai - laisun ELSE laisun = 0 laishade = lai END IF f_light = ( laisun * ( 1 - exp( -1.0_wp * alpha(lu) * parsun ) ) + & laishade * ( 1 - exp( -1.0_wp * alpha(lu) * parshade ) ) ) / lai f_light = MAX(f_light,f_min(lu)) ! !-- temperature influence; only non-zero within range [tmin,tmax]: IF ( ( tmin(lu) < t ) .AND. ( t < tmax(lu) ) ) THEN bt = ( tmax(lu) - topt(lu) ) / ( topt(lu) - tmin(lu) ) f_temp = ( ( t - tmin(lu) ) / ( topt(lu) - tmin(lu) ) ) * ( ( tmax(lu) - t ) / ( tmax(lu) - topt(lu) ) )**bt ELSE f_temp = 0.0_wp END IF f_temp = MAX( f_temp, f_min(lu) ) ! !-- vapour pressure deficit influence f_vpd = MIN( 1.0_wp, ( ( 1.0_wp - f_min(lu) ) * ( vpd_min(lu) - vpd ) / ( vpd_min(lu) - vpd_max(lu) ) + f_min(lu) ) ) f_vpd = MAX( f_vpd, f_min(lu) ) f_swp = 1.0_wp ! !-- influence of phenology on stom. conductance !-- ignored for now in DEPAC since influence of f_phen on lu classes in use is negligible. !-- When other EMEP classes (e.g. med. broadleaf) are used f_phen might be too important to ignore f_phen = 1.0_wp ! !-- evaluate total stomatal conductance f_env = f_temp * f_vpd * f_swp f_env = MAX( f_env,f_min(lu) ) gsto = g_max(lu) * f_light * f_phen * f_env ! !-- gstom expressed per m2 leafarea; !-- this is converted with lai to m2 surface. gsto = lai * gsto ! in m/s ELSE gsto = 0.0_wp ENDIF END SUBROUTINE rc_gstom_emb !------------------------------------------------------------------- !> par_dir_diff !> Weiss, A., Norman, J.M. (1985) Partitioning solar radiation into direct and !> diffuse, visible and near-infrared components. Agric. Forest Meteorol. !> 34, 205-213. !> From a SUBROUTINE obtained from Leiming Zhang, !> Meteorological Service of Canada !> Leiming uses solar irradiance. This should be equal to global radiation and !> Willem Asman set it to global radiation (here defined as solar radiation, dirict+diffuse) !> !> @todo Check/connect/replace with radiation_model_mod variables !------------------------------------------------------------------- SUBROUTINE par_dir_diff( solar_rad, sinphi, pres, pres_0, par_dir, par_diff ) REAL(wp), INTENT(IN) :: solar_rad !< solar radiation, dirict+diffuse (W m-2) REAL(wp), INTENT(IN) :: sinphi !< sine of the solar elevation REAL(wp), INTENT(IN) :: pres !< actual pressure (to correct for height) (Pa) REAL(wp), INTENT(IN) :: pres_0 !< pressure at sea level (Pa) REAL(wp), INTENT(OUT) :: par_dir !< par direct : visible (photoactive) direct beam radiation (W m-2) REAL(wp), INTENT(OUT) :: par_diff !< par diffuse: visible (photoactive) diffuse radiation (W m-2) REAL(wp) :: sv !< total visible radiation REAL(wp) :: fv !< par direct beam fraction (dimensionless) REAL(wp) :: ratio !< ratio measured to potential solar radiation (dimensionless) REAL(wp) :: rdm !< potential direct beam near-infrared radiation (W m-2); "potential" means clear-sky REAL(wp) :: rdn !< potential diffuse near-infrared radiation (W m-2) REAL(wp) :: rdu !< visible (par) direct beam radiation (W m-2) REAL(wp) :: rdv !< potential visible (par) diffuse radiation (W m-2) REAL(wp) :: rn !< near-infrared radiation (W m-2) REAL(wp) :: rv !< visible radiation (W m-2) REAL(wp) :: ww !< water absorption in the near infrared for 10 mm of precipitable water ! !-- Calculate visible (PAR) direct beam radiation !-- 600 W m-2 represents average amount of par (400-700 nm wavelength) !-- at the top of the atmosphere; this is roughly 0.45*solar constant (solar constant=1320 Wm-2) rdu = 600.0_wp* exp( -0.185_wp * ( pres / pres_0 ) / sinphi ) * sinphi ! !-- Calculate potential visible diffuse radiation rdv = 0.4_wp * ( 600.0_wp - rdu ) * sinphi ! !-- Calculate the water absorption in the-near infrared ww = 1320 * 10**( -1.195_wp + 0.4459_wp * log10( 1.0_wp / sinphi ) - 0.0345_wp * ( log10( 1.0_wp / sinphi ) )**2 ) ! !-- Calculate potential direct beam near-infrared radiation rdm = (720.0_wp * exp(-0.06_wp * (pres / pres_0) / sinphi ) - ww ) * sinphi !< 720 = solar constant - 600 ! !-- Calculate potential diffuse near-infrared radiation rdn = 0.6_wp * ( 720 - rdm - ww ) * sinphi ! !-- Compute visible and near-infrared radiation rv = MAX( 0.1_wp, rdu + rdv ) rn = MAX( 0.01_wp, rdm + rdn ) ! !-- Compute ratio between input global radiation (here defined as solar radiation, dirict+diffuse) !-- and total radiation computed here ratio = MIN( 0.89_wp, solar_rad / ( rv + rn ) ) ! !-- Calculate total visible radiation sv = ratio * rv ! !-- Calculate fraction of par in the direct beam fv = MIN( 0.99_wp, ( 0.9_wp - ratio ) / 0.7_wp ) !< help variable fv = MAX( 0.01_wp, rdu / rv * ( 1.0_wp - fv**0.6667_wp ) ) !< fraction of par in the direct beam ! !-- Compute direct and diffuse parts of par par_dir = fv * sv par_diff = sv - par_dir END SUBROUTINE par_dir_diff !------------------------------------------------------------------- !> rc_get_vpd: get vapour pressure deficit (kPa) !------------------------------------------------------------------- SUBROUTINE rc_get_vpd( temp, rh, vpd ) ! !-- Input/output variables: REAL(wp), INTENT(IN) :: temp !< temperature (C) REAL(wp), INTENT(IN) :: rh !< relative humidity (%) REAL(wp), INTENT(OUT) :: vpd !< vapour pressure deficit (kPa) ! !-- Local variables: REAL(wp) :: esat ! !-- fit parameters: REAL(wp), PARAMETER :: a1 = 6.113718e-01 REAL(wp), PARAMETER :: a2 = 4.43839e-02 REAL(wp), PARAMETER :: a3 = 1.39817e-03 REAL(wp), PARAMETER :: a4 = 2.9295e-05 REAL(wp), PARAMETER :: a5 = 2.16e-07 REAL(wp), PARAMETER :: a6 = 3.0e-09 ! !-- esat is saturation vapour pressure (kPa) at temp(C) following Monteith(1973) esat = a1 + a2 * temp + a3 * temp**2 + a4 * temp**3 + a5 * temp**4 + a6 * temp**5 vpd = esat * ( 1 - rh / 100 ) END SUBROUTINE rc_get_vpd !------------------------------------------------------------------- !> rc_gsoil_eff: compute effective soil conductance !------------------------------------------------------------------- SUBROUTINE rc_gsoil_eff( icmp, lu, sai, ust, nwet, t, gsoil_eff ) ! !-- Input/output variables: INTEGER(iwp), INTENT(IN) :: icmp !< component index INTEGER(iwp), INTENT(IN) :: lu !< land use type, lu = 1,..., nlu INTEGER(iwp), INTENT(IN) :: nwet !< index for wetness !< nwet = 0 -> dry; nwet = 1 -> wet; nwet = 9 -> snow !< N.B. this routine cannot be called with nwet = 9, !< nwet = 9 should be handled outside this routine. REAL(wp), INTENT(IN) :: sai !< surface area index REAL(wp), INTENT(IN) :: ust !< friction velocity (m/s) REAL(wp), INTENT(IN) :: t !< temperature (C) REAL(wp), INTENT(OUT) :: gsoil_eff !< effective soil conductance (m/s) ! !-- local variables: REAL(wp) :: rinc !< in canopy resistance (s/m) REAL(wp) :: rsoil_eff !< effective soil resistance (s/m) ! !-- Soil resistance (numbers matched with lu_classes and component numbers) ! grs ara crp cnf dec wat urb oth des ice sav trf wai med sem REAL(wp), PARAMETER :: rsoil(nlu_dep,ncmp) = reshape( (/ & 1000., 200., 200., 200., 200., 2000., 400., 1000., 2000., 2000., 1000., 200., 2000., 200., 400., & !< O3 1000., 1000., 1000., 1000., 1000., 10., 1000., 1000., 1000., 500., 1000., 1000., 10., 1000., 1000., & !< SO2 1000., 1000., 1000., 1000., 1000., 2000., 1000., 1000., 1000., 2000., 1000., 1000., 2000., 1000., 1000., & !< NO2 -999., -999., -999., -999., -999., 2000., 1000., -999., 2000., 2000., -999., -999., 2000., -999., -999., & !< NO 100., 100., 100., 100., 100., 10., 100., 100., 100., 1000., 100., 100., 10., 100., 100., & !< NH3 -999., -999., -999., -999., -999., 2000., 1000., -999., 2000., 2000., -999., -999., 2000., -999., -999., & !< CO -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., & !< NO3 -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., & !< HNO3 -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., & !< N2O5 -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999., -999. /),& !< H2O2 (/nlu_dep,ncmp/) ) ! !-- For o3 so2 no2 no nh3 co no3 hno3 n2o5 h2o2 REAL(wp), PARAMETER :: rsoil_wet(ncmp) = (/2000., 10. , 2000., -999., 10. , -999., -999., -999., -999., -999./) REAL(wp), PARAMETER :: rsoil_frozen(ncmp) = (/2000., 500., 2000., -999., 1000., -999., -999., -999., -999., -999./) ! !-- Compute in canopy (in crop) resistance: CALL rc_rinc( lu, sai, ust, rinc ) ! !-- Check for missing deposition path: IF ( missing(rinc) ) THEN rsoil_eff = -9999.0_wp ELSE ! !-- Frozen soil (temperature below 0): IF ( t < 0.0_wp ) THEN IF ( missing( rsoil_frozen( icmp ) ) ) THEN rsoil_eff = -9999.0_wp ELSE rsoil_eff = rsoil_frozen( icmp ) + rinc ENDIF ELSE ! !-- Non-frozen soil; dry: IF ( nwet == 0 ) THEN IF ( missing( rsoil( lu, icmp ) ) ) THEN rsoil_eff = -9999.0_wp ELSE rsoil_eff = rsoil( lu, icmp ) + rinc ENDIF ! !-- Non-frozen soil; wet: ELSEIF ( nwet == 1 ) THEN IF ( missing( rsoil_wet( icmp ) ) ) THEN rsoil_eff = -9999.0_wp ELSE rsoil_eff = rsoil_wet( icmp ) + rinc ENDIF ELSE message_string = 'nwet can only be 0 or 1' CALL message( 'rc_gsoil_eff', 'CM0460', 1, 2, 0, 6, 0 ) ENDIF ENDIF ENDIF ! !-- Compute conductance: IF ( rsoil_eff > 0.0_wp ) THEN gsoil_eff = 1.0_wp / rsoil_eff ELSE gsoil_eff = 0.0_wp ENDIF END SUBROUTINE rc_gsoil_eff !------------------------------------------------------------------- !> rc_rinc: compute in canopy (or in crop) resistance !> van Pul and Jacobs, 1993, BLM !------------------------------------------------------------------- SUBROUTINE rc_rinc( lu, sai, ust, rinc ) ! !-- Input/output variables: INTEGER(iwp), INTENT(IN) :: lu !< land use class, lu = 1, ..., nlu REAL(wp), INTENT(IN) :: sai !< surface area index REAL(wp), INTENT(IN) :: ust !< friction velocity (m/s) REAL(wp), INTENT(OUT) :: rinc !< in canopy resistance (s/m) ! !-- b = empirical constant for computation of rinc (in canopy resistance) (= 14 m-1 or -999 if not applicable) !-- h = vegetation height (m) gra ara crop con dec wat urb oth des ice sav trf wai med semi REAL(wp), DIMENSION(nlu_dep), PARAMETER :: b = (/ -999, 14, 14, 14, 14, -999, -999, -999, -999, -999, -999, 14, -999, & 14, 14 /) REAL(wp), DIMENSION(nlu_dep), PARAMETER :: h = (/ -999, 1, 1, 20, 20, -999, -999, -999, -999, -999, -999, 20, -999, & 1 , 1 /) ! !-- Compute Rinc only for arable land, perm. crops, forest; otherwise Rinc = 0: IF ( b(lu) > 0.0_wp ) THEN ! ! !-- Check for u* > 0 (otherwise denominator = 0): IF ( ust > 0.0_wp ) THEN rinc = b(lu) * h(lu) * sai/ust ELSE rinc = 1000.0_wp ENDIF ELSE IF ( lu == ilu_grass .OR. lu == ilu_other ) THEN rinc = -999.0_wp !< no deposition path for grass, other, and semi-natural ELSE rinc = 0.0_wp !< no in-canopy resistance ENDIF ENDIF END SUBROUTINE rc_rinc !------------------------------------------------------------------- !> rc_rctot: compute total canopy (or surface) resistance Rc !------------------------------------------------------------------- SUBROUTINE rc_rctot( gstom, gsoil_eff, gw, gc_tot, rc_tot ) ! !-- Input/output variables: REAL(wp), INTENT(IN) :: gstom !< stomatal conductance (s/m) REAL(wp), INTENT(IN) :: gsoil_eff !< effective soil conductance (s/m) REAL(wp), INTENT(IN) :: gw !< external leaf conductance (s/m) REAL(wp), INTENT(OUT) :: gc_tot !< total canopy conductance (m/s) REAL(wp), INTENT(OUT) :: rc_tot !< total canopy resistance Rc (s/m) ! !-- Total conductance: gc_tot = gstom + gsoil_eff + gw ! !-- Total resistance (note: gw can be negative, but no total emission allowed here): IF ( gc_tot <= 0.0_wp .OR. gw < 0.0_wp ) THEN rc_tot = -9999.0_wp ELSE rc_tot = 1.0_wp / gc_tot ENDIF END SUBROUTINE rc_rctot !------------------------------------------------------------------- !> rc_comp_point_rc_eff: calculate the effective resistance Rc !> based on one or more compensation points !------------------------------------------------------------------- !> NH3rc (see depac v3.6 is based on Avero workshop Marc Sutton. p. 173. !> Sutton 1998 AE 473-480) !> !> Documentation by Ferd Sauter, 2008; see also documentation block in header of depac subroutine. !> FS 2009-01-29: variable names made consistent with DEPAC !> FS 2009-03-04: use total compensation point !> !> C: with total compensation point ! D: approximation of C !> ! with classical approach !> zr --------- Catm ! zr --------- Catm !> | ! | !> Ra ! Ra !> | ! | !> Rb ! Rb !> | ! | !> z0 --------- Cc ! z0 --------- Cc !> | ! | !> Rc ! Rc_eff !> | ! | !> --------- Ccomp_tot ! --------- C=0 !> !> !> The effective Rc is defined such that instead of using !> !> F = -vd*[Catm - Ccomp_tot] (1) !> !> we can use the 'normal' flux formula !> !> F = -vd'*Catm, (2) !> !> with vd' = 1/(Ra + Rb + Rc') (3) !> !> and Rc' the effective Rc (rc_eff). !> (Catm - Ccomp_tot) !> vd'*Catm = vd*(Catm - Ccomp_tot) <=> vd' = vd* ------------------ !> Catm !> !> (Catm - Ccomp_tot) !> 1/(Ra + Rb + Rc') = (1/Ra + Rb + Rc) * ------------------ !> Catm !> !> Catm !> (Ra + Rb + Rc') = (Ra + Rb + Rc) * ------------------ !> (Catm - Ccomp_tot) !> !> Catm !> Rc' = (Ra + Rb + Rc) * ------------------ - Ra - Rb !> (Catm - Ccomp_tot) !> !> Catm Catm !> Rc' = (Ra + Rb) [------------------ - 1 ] + Rc * ------------------ !> (Catm - Ccomp_tot) (Catm - Ccomp_tot) !> !> Rc' = [(Ra + Rb)*Ccomp_tot + Rc*Catm ] / (Catm - Ccomp_tot) !> ! ------------------------------------------------------------------------------------------- ! SUBROUTINE rc_comp_point_rc_eff( ccomp_tot, conc_ijk_ugm3, ra, rb, rc_tot, rc_eff ) ! ! !!-- Input/output variables: ! REAL(wp), INTENT(IN) :: ccomp_tot !< total compensation point (weighed average of separate compensation points) (ug/m3) ! REAL(wp), INTENT(IN) :: conc_ijk_ugm3 !< atmospheric concentration (ug/m3) above Catm ! REAL(wp), INTENT(IN) :: ra !< aerodynamic resistance (s/m) ! REAL(wp), INTENT(IN) :: rb !< boundary layer resistance (s/m) ! REAL(wp), INTENT(IN) :: rc_tot !< total canopy resistance (s/m) ! ! REAL(wp), INTENT(OUT) :: rc_eff !< effective total canopy resistance (s/m) ! ! ! !!-- Compute effective resistance: ! IF ( ccomp_tot == 0.0_wp ) THEN ! ! !!-- trace with no compensiation point ( or compensation point equal to zero) ! rc_eff = rc_tot ! ! ELSE IF ( ccomp_tot > 0.0_wp .AND. ( abs( conc_ijk_ugm3 - ccomp_tot ) < 1.e-8 ) ) THEN ! ! !!-- surface concentration (almost) equal to atmospheric concentration !!-- no exchange between surface and atmosphere, infinite RC --> vd=0 ! rc_eff = 9999999999.0_wp ! ! ELSE IF ( ccomp_tot > 0.0_wp ) THEN ! ! !!-- compensation point available, calculate effective resistance ! rc_eff = ( ( ra + rb ) * ccomp_tot + rc_tot * conc_ijk_ugm3 ) / ( conc_ijk_ugm3 - ccomp_tot ) ! ! ELSE ! rc_eff = -999.0_wp ! message_string = 'This should not be possible, check ccomp_tot' ! CALL message( 'rc_comp_point_rc_eff', 'CM0461', 1, 2, 0, 6, 0 ) ! ENDIF ! ! RETURN ! ! END SUBROUTINE rc_comp_point_rc_eff !------------------------------------------------------------------- !> missing: check for data that correspond with a missing deposition path !> this data is represented by -999 !------------------------------------------------------------------- LOGICAL function missing( x ) REAL(wp), INTENT(IN) :: x ! !-- bandwidth for checking (in)equalities of floats REAL(wp), PARAMETER :: eps = 1.0e-5 missing = (abs(x + 999.0_wp) <= eps) END function missing ELEMENTAL FUNCTION sedimentation_velocity( rhopart, partsize, slipcor, visc ) RESULT( vs ) ! !-- in/out REAL(wp), INTENT(IN) :: rhopart !< particle density (kg/m3) REAL(wp), INTENT(IN) :: partsize !< particle size (m) REAL(wp), INTENT(IN) :: slipcor !< slip correction factor (m) REAL(wp), INTENT(IN) :: visc !< viscosity REAL(wp) :: vs ! !-- acceleration of gravity: REAL(wp), PARAMETER :: grav = 9.80665 !< m/s2 !-- sedimentation velocity vs = rhopart * ( partsize**2.0_wp ) * grav * slipcor / ( 18.0_wp * visc ) END FUNCTION sedimentation_velocity !------------------------------------------------------------------------ !> Boundary-layer deposition resistance following Zhang (2001) !------------------------------------------------------------------------ SUBROUTINE drydepo_aero_zhang_vd( vd, rs, vs1, partsize, slipcor, nwet, tsurf, dens1, viscos1, & luc, ftop_lu, ustar ) ! !-- in/out INTEGER(iwp), INTENT(IN) :: nwet !< 1=rain, 9=snowcover INTEGER(iwp), INTENT(IN) :: luc !< DEPAC LU REAL(wp), INTENT(IN) :: vs1 !< sedimentation velocity in lowest layer REAL(wp), INTENT(IN) :: partsize !< particle diameter (m) REAL(wp), INTENT(IN) :: slipcor !< slip correction factor REAL(wp), INTENT(IN) :: tsurf !< surface temperature (K) REAL(wp), INTENT(IN) :: dens1 !< air density (kg/m3) in lowest layer REAL(wp), INTENT(IN) :: viscos1 !< air viscosity in lowest layer REAL(wp), INTENT(IN) :: ftop_lu !< atmospheric resistnace Ra REAL(wp), INTENT(IN) :: ustar !< friction velocity u* REAL(wp), INTENT(OUT) :: vd !< deposition velocity (m/s) REAL(wp), INTENT(OUT) :: rs !< sedimentaion resistance (s/m) ! !-- constants REAL(wp), PARAMETER :: grav = 9.80665 !< acceleration of gravity (m/s2) REAL(wp), PARAMETER :: beta = 2.0 REAL(wp), PARAMETER :: epsilon0 = 3.0 REAL(wp), PARAMETER :: kb = 1.38066e-23 REAL(wp), PARAMETER :: pi = 3.141592654_wp !< pi REAL(wp), PARAMETER :: alfa_lu(nlu_dep) = & (/1.2, 1.2, 1.2, 1.0, 1.0, 100.0, 1.5, 1.2, 50.0, 100.0, 1.2, 1.0, 100.0, 1.2, 50.0/) REAL(wp), PARAMETER :: gamma_lu(nlu_dep) = & (/0.54, 0.54, 0.54, 0.56, 0.56, 0.50, 0.56, 0.54, 0.58, 0.50, 0.54, 0.56, 0.50, 0.54, 0.54/) REAL(wp), PARAMETER ::A_lu(nlu_dep) = & (/3.0, 3.0, 2.0, 2.0, 7.0, -99., 10.0, 3.0, -99., -99., 3.0, 7.0, -99., 2.0, -99./) ! !-- grass arabl crops conif decid water urba othr desr ice sav trf wai med sem ! !-- local REAL(wp) :: kinvisc REAL(wp) :: diff_part REAL(wp) :: schmidt REAL(wp) :: stokes REAL(wp) :: Ebrown REAL(wp) :: Eimpac REAL(wp) :: Einterc REAL(wp) :: Reffic ! !-- kinetic viscosity & diffusivity kinvisc = viscos1 / dens1 !< only needed at surface diff_part = kb * tsurf * slipcor / ( 3 * pi * viscos1 * partsize ) ! !-- Schmidt number schmidt = kinvisc / diff_part ! !-- calculate collection efficiencie E Ebrown = Schmidt**( -gamma_lu(luc) ) !< Brownian diffusion ! !-- determine Stokes number, interception efficiency !-- and sticking efficiency R (1 = no rebound) IF ( luc == ilu_ice .OR. nwet==9 .OR. luc == ilu_water_sea .OR. luc == ilu_water_inland ) THEN stokes = vs1 * ustar**2 / ( grav * kinvisc ) Einterc = 0.0_wp Reffic = 1.0_wp ELSE IF ( luc == ilu_other .OR. luc == ilu_desert ) THEN ! Compute quasi-laminar boundary layer resistance as a function of landuse and tracer !> Original EMEP formulation by (Simpson et al, 2003) is used !------------------------------------------------------------------------------------- SUBROUTINE get_rb_cell( is_water, z0h, ustar, diffusivity, rb ) ! !-- in/out LOGICAL , INTENT(IN) :: is_water REAL(wp), INTENT(IN) :: z0h !< roughness length for heat REAL(wp), INTENT(IN) :: ustar !< friction velocity REAL(wp), INTENT(IN) :: diffusivity !< coefficient of diffusivity REAL(wp), INTENT(OUT) :: rb !< boundary layer resistance ! !-- const REAL(wp), PARAMETER :: thk = 0.19e-4 !< thermal diffusivity of dry air 20 C REAL(wp), PARAMETER :: kappa_stab = 0.35 !< von Karman constant ! !-- Next line is to avoid compiler warning about unused variable IF ( is_water .OR. ( z0h + kappa_stab ) > 0.0_wp ) CONTINUE ! !-- Use Simpson et al. (2003) !-- @TODO: Check rb over water calculation, until then leave commented lines !-- IF ( is_water ) THEN !-- org: rb = 1.0_wp / (kappa_stab*MAX(0.01_wp,ustar)) * log(z0h/diffusivity*kappa_stab*MAX(0.01_wp,ustar)) !-- rb = 1.0_wp / (kappa_stab*MAX(0.1_wp,ustar)) * log(z0h/diffusivity*kappa_stab*MAX(0.1_wp,ustar)) !-- ELSE rb = 5.0_wp / MAX( 0.01_wp, ustar ) * ( thk / diffusivity )**0.67_wp !-- END IF END SUBROUTINE get_rb_cell !----------------------------------------------------------------- !> Compute water vapor partial pressure (e_w) !> given specific humidity Q [(kg water)/(kg air)]. !> !> Use that gas law for volume V with temperature T !> holds for the total mixture as well as the water part: !> !> R T / V = p_air / n_air = p_water / n_water !> !> thus: !> !> p_water = p_air n_water / n_air !> !> Use: !> n_air = m_air / xm_air !> [kg air] / [(kg air)/(mole air)] !> and: !> n_water = m_air * Q / xm_water !> [kg water] / [(kg water)/(mole water)] !> thus: !> p_water = p_air Q / (xm_water/xm_air) !------------------------------------------------------------------ ELEMENTAL FUNCTION watervaporpartialpressure( q, p ) RESULT( p_w ) ! !-- in/out REAL(wp), INTENT(IN) :: q !< specific humidity [(kg water)/(kg air)] REAL(wp), INTENT(IN) :: p !< air pressure [Pa] REAL(wp) :: p_w !< water vapor partial pressure [Pa] ! !-- const REAL(wp), PARAMETER :: eps = xm_h2o / xm_air !< mole mass ratio ~ 0.622 ! !-- partial pressure of water vapor: p_w = p * q / eps END function watervaporpartialpressure !------------------------------------------------------------------ !> Saturation vapor pressure. !> From (Stull 1988, eq. 7.5.2d): !> !> e_sat = p0 exp( 17.67 * (T-273.16) / (T-29.66) ) [Pa] !> !> where: !> p0 = 611.2 [Pa] : reference pressure !> !> Arguments: !> T [K] : air temperature !> Result: !> e_sat_w [Pa] : saturation vapor pressure !> !> References: !> Roland B. Stull, 1988 !> An introduction to boundary layer meteorology. !----------------------------------------------------------------- ELEMENTAL FUNCTION saturationvaporpressure( t ) RESULT( e_sat_w ) ! !-- in/out REAL(wp), INTENT(IN) :: t !< temperature [K] REAL(wp) :: e_sat_w !< saturation vapor pressure [Pa] ! !-- const REAL(wp), PARAMETER :: p0 = 611.2 !< base pressure [Pa] ! !-- saturation vapor pressure: e_sat_w = p0 * exp( 17.67_wp * ( t - 273.16_wp ) / ( t - 29.66_wp ) ) !< [Pa] END FUNCTION saturationvaporpressure !------------------------------------------------------------------------ !> Relative humidity RH [%] is by definition: !> !> e_w water vapor partial pressure !> Rh = -------- * 100 !> e_sat_w saturation vapor pressure !------------------------------------------------------------------------ ELEMENTAL FUNCTION relativehumidity_from_specifichumidity( q, t, p ) RESULT( rh ) ! !-- in/out REAL(wp), INTENT(IN) :: q !< specific humidity [(kg water)/(kg air)] REAL(wp), INTENT(IN) :: t !< temperature [K] REAL(wp), INTENT(IN) :: p !< air pressure [Pa] REAL(wp) :: rh !< relative humidity [%] ! !-- relative humidity: rh = watervaporpartialpressure( q, p ) / saturationvaporpressure( t ) * 100.0_wp END FUNCTION relativehumidity_from_specifichumidity END MODULE chemistry_model_mod