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1 Installation

This section can be skipped if KPP is already installed on
your system. If you work under Linux, you can probably
use the precompiled executable file that is in the bin di-
rectory of the distribution. Then you only have to define
the $KPP_HOME environment variable.

1. Define the $KPP_HOME environment variable to point
to the complete path where KPP is installed. Also,
add the path of the KPP executable to the $PATH
environment variable. If, for example, KPP is in-
stalled in $HOME/kpp, under the C shell you have to
edit the file $HOME/.cshrc and add:

setenv KPP_HOME $HOME/kpp
setenv PATH $PATH:$KPP_HOME/bin

If you use the bash shell, edit $HOME/.bashrc and
add:

export KPP_HOME=$HOME/kpp
export PATH=$PATH:$KPP_HOME/bin

After editing .cshrc or .bashrc, start a new shell to
make sure these changes are in effect.

2. Make sure that sed is installed on your machine.
Type “which sed” to test this.

3. Make sure that yacc is installed on your machine.
Type “which yacc” to test this.

4. Make sure that the lexical analizer flex is installed
on your machine. Type “flex --version” to test
this. Note down the exact path name where the flex
library is installed. The library is called: libfl.a or
libfl.sh.

5. Change to the KPP directory:

cd $KPP_HOME

6. To clean the KPP installation, delete the KPP ob-
ject files and all the examples with:

make clean

To delete the KPP executable as well, type:

make distclean

7. Edit Makefile.defs and follow the instructions in-
cluded to specify the compiler, the location of the
flex library, etc.

8. Create the kpp executable with:

make

2 Running KPP with an Example
Stratospheric Mechanism

Here we consider as an example a very simple Chapman-
like mechanism for stratospheric chemistry:

O2
hν→ 2O (1)

O + O2 → O3 (2)

O3
hν→ O + O2 (3)

O + O3 → 2O2 (4)

O3
hν→ O(1D) + O2 (5)

O(1D) + M → O + M (6)
O(1D) + O3 → 2O2 (7)

NO + O3 → NO2 + O2 (8)
NO2 + O → NO + O2 (9)

NO2
hν→ NO + O (10)

We use the mechanism with the purpose of illustrating the
KPP capabilities. However, the software tools are general
and can be applied to virtually any kinetic mechanism.

We focus on Fortran90. Particularities of the C, For-
tran77, and Matlab languages are discussed in Sec-
tions 4.2, 4.3, 4.4, respectively.

The KPP input files (with suffix .kpp) specify the model,
the target language, the precision, the integrator and the
driver, etc. The file name (without the suffix .kpp) serves
as the root name for the simulation. In this paper we will
refer to this name as root. Since the root name will be
incorporated into Fortran90 module names, it can only
contain valid Fortran90 characters, i.e. letters, numbers,
and the underscore. To specify a KPP model, write a
root.kpp file with the following lines:

#MODEL small_strato
#LANGUAGE Fortran90
#DOUBLE ON
#INTEGRATOR rosenbrock
#DRIVER general
#JACOBIAN SPARSE_LU_ROW
#HESSIAN ON
#STOICMAT ON

The target language Fortran90 (i.e. the language of the
code generated by KPP) is selected with the command:

#LANGUAGE Fortran90

Here, we have chosen Fortran90. See Sect. 3.2.10 for other
options.

The data type of the generated model can be switched be-
tween single/double precision with the command #DOUBLE.
The #INTEGRATOR command selects a specific numerical



Sandu & Sander: KPP User Manual 5

integration routine (from the templates provided by KPP
or implemented by the user) and the #DRIVER command
selects a specific main program. The #MODEL command
selects a specific kinetic mechanism. In our example
the model definition file small_strato.def includes the
species and the equation files,

#INCLUDE small_strato.spc
#INCLUDE small_strato.eqn

The species file lists all the species in the model. Some of
them are variable (defined with #DEFVAR), meaning that
their concentrations change according to the law of mass
action kinetics. Others are fixed (defined with #DEFFIX),
with the concentrations determined by physical and not
chemical factors. For each species its atomic composition
is given (unless the user chooses to ignore it). The atom
file lists the periodic table of elements in an #ATOM section.
The equation file contains the description of the equations
in an #EQUATIONS section.

#INCLUDE atoms
#DEFVAR
O = O;
O1D = O;
O3 = O + O + O;
NO = N + O;
NO2 = N + O + O;

#DEFFIX
M = IGNORE;
O2 = O + O;

The chemical kinetic mechanism is specified in the KPP
language in the file small_strato.eqn. Each reaction is
described as “the sum of reactants equals the sum of prod-
ucts” and is followed by its rate coefficient. SUN is the nor-
malized sunlight intensity, equal to one at noon and zero
at night.

#EQUATIONS { Stratospheric Mechanism }
<R1> O2 + hv = 2O : 2.643E-10*SUN;
<R2> O + O2 = O3 : 8.018E-17;
<R3> O3 + hv = O + O2 : 6.120E-04*SUN;
<R4> O + O3 = 2O2 : 1.576E-15;
<R5> O3 + hv = O1D + O2 : 1.070E-03*SUN;
<R6> O1D + M = O + M : 7.110E-11;
<R7> O1D + O3 = 2O2 : 1.200E-10;
<R8> NO + O3 = NO2 + O2 : 6.062E-15;
<R9> NO2 + O = NO + O2 : 1.069E-11;
<R10> NO2 + hv = NO + O : 1.289E-02*SUN;

To run the model, type:

kpp small_strato.kpp

Next, compile and run the Fortran90 code:

make -fMakefile_small_strato
./small_strato.exe

3 Input for KPP

KPP basically handles two types of files: Kinetic descrip-
tion files and auxiliary files. Kinetic description files are
in KPP syntax and described in the following sections.
Auxiliary files are described in Sect. 3.4. KPP kinetic de-
scription files specify the chemical equations, the initial
values of each of the species involved, the integration pa-
rameters, and many other options. The KPP preprocessor
parses the kinetic description files and generates several
output files. Files that are written in KPP syntax have
one of the suffixes .kpp, .spc, .eqn, or .def. An exception
is the file atoms, which has no suffix.

The following general rules define the structure of a kinetic
description file:

� A KPP program is composed of KPP sections, KPP
commands and inlined code. Their syntax is pre-
sented in the appendix.

� Comments are either enclosed between the curly
braces “{” and “}”, or written in a line starting with
two slashes “//”.

� Any name given by the user to denote an atom or a
species is restricted to be less than 32 character in
length and can only contain letters, numbers, or the
underscore character. The first character cannot be
a number. All names are case insensitive.

The kinetic description files contain a detailed specifica-
tion of the chemical model, information about the integra-
tion method and the desired type of results. KPP accepts
only one of these files as input, but using the #INCLUDE
command, code from separate files cn be combined. The
include files can be nested up to 10 levels. KPP will parse
these files as if they were a single big file. By carefully
splitting the chemical description, KPP can be configured
for a broad range of users. In this way the users can have
direct access to that part of the model that they are in-
terested in, and all the other details can be hidden inside
several include files. Often, a file with atom definitions
is included first, then species definitions, and finally the
equations of the chemical mechanism.

3.1 KPP sections

A # sign at the beginning of a line followed by a section
name starts a new KPP section. Then a list of items sepa-
rated by semicolons follows. A section ends when another
KPP section or command occurs, i.e. when another # sign
occurs at the beginning of a line. The syntax of an item
definition is different for each particular section. Table 1
shows all the sections defined in the KPP language. Each
of them will be described separately in the following sub-
sections.
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Table 1: KPP sections

name see Sect.

#ATOMS 3.1.1
#CHECK 3.1.2
#DEFFIX 3.1.3
#DEFVAR 3.1.3
#EQUATIONS 3.1.4
#INITVALUES 3.1.5
#LOOKAT 3.1.6
#LUMP 3.1.7
#MONITOR 3.1.6
#SETFIX 3.1.8
#SETVAR 3.1.8
#TRANSPORT 3.1.9

3.1.1 Atom definitions (#ATOMS)

The atoms that will be further used to specify the compo-
nents of a species must be declared in an #ATOMS section,
e.g.:

#ATOMS N; O; Na; Br;

Usually, the names of the atoms are the ones specified in
the periodic table of elements. For this table there is a
predefined file containing all definitions that can be used
by the command:

#INCLUDE atoms

This should be the first line in a KPP input file, because
it allows to use any atom in the periodic table of elements
throughout the kinetic description file.

3.1.2 Mass balance checking (#CHECK)

KPP is able to do a mass balance checking for all equa-
tions. Some chemical equations are not balanced for all
atoms, and this might still be correct from a chemical point
of view. To accommodate for this, KPP can perform mass
balance checking only for the list of atoms specified in the
#CHECK section, e.g.:

#CHECK N; C; O;

The balance checking for all atoms can be enabled by using
the #CHECKALL command. Without #CHECK or #CHECKALL,
no checking is performed. The IGNORE atom can also be
used to control mass balance checking.

3.1.3 Species definitions (#DEFVAR and #DEFFIX)

There are two ways to declare new species together with
their atom composition: #DEFVAR and #DEFFIX. These
sections define all the species that will be used in the chem-
ical mechanism. Species can be variable or fixed. The
type is implicitly specified by defining the species in the
appropriate sections. A species can be considered fixed
if its concentration does not vary too much. The vari-
able species are medium or short lived species and their
concentrations vary in time. This division of species into
different categories is helpful for integrators that benefit
from treating them differently.

For each species the user has to declare the atom composi-
tion. This information is used for mass balance checking.
If the species is a lumped species without an exact com-
position, it can be ignored. To do this one can declare
the predefined atom IGNORE as being part of the species
composition. Examples for these sections are:

#DEFVAR
NO2 = N + 2O;
CH3OOH = C + 4H + 2O;
HSO4m = IGNORE;
RCHO = IGNORE;

#DEFFIX
CO2 = C + 2O;

3.1.4 Equations (#EQUATIONS)

The chemical mechanism is specified in the #EQUATIONS
section. Each equation is written in the natural way in
which a chemist would write it, e.g.:

#EQUATIONS
NO2 + hv = NO + O : 0.533*SUN;
OH + NO2 = HNO3 : k_3rd(temp,
cair,2.E-30,3.,2.5E-11,0.,0.6);

Only the names of already defined species can be used.
The rate coefficient has to be placed at the end of each
equation, separated by a colon. The rate coefficient does
not necessarily need to be a numerical value. Instead,
it can be a valid expression in the target language. If
there are several #EQUATIONS sections in the input, their
contents will be concatenated.

A minus sign in an equation shows that a secies is con-
sumed in a reaction but it does not affect the reaction
rate. For example, the oxidation of methane can be writ-
ten as:

CH4 + OH = CH3OO + H2O - O2 : k_CH4_OH;

Often, the stoichiometric factors are integers. However, it
is also possible to have non-integer yields, which is very
useful to parameterize organic reactions that branch into
several side reactions:
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CH4 + O1D = .75 CH3O2 + .75 OH + .25 HCHO
+ .4 H + .05 H2 : k_CH4_O1D;

One restriction is that the list of products must not be
empty. If you have such a reaction (e.g. the dry deposition
of atmospheric species to the surface), you can define a
DUMMY species as the product:

O3 = DUMMY : v_d_O3;

The same equation must not occur twice in the
#EQUATIONS section. For example, you may have both the
gas-phase reaction of N2O5 with water in your mechanism
and also the heterogeneous reaction on aerosols:

N2O5 + H2O = 2 HNO3 : k_gas;
N2O5 + H2O = 2 HNO3 : k_aerosol;

These reactions must be merged by adding the rate coef-
ficients:

N2O5 + H2O = 2 HNO3 : k_gas+k_aerosol;

3.1.5 Initial values (#INITVALUES)

The initial concentration values for all species can be de-
fined in the #INITVALUES section, e.g.:

#INITVALUES
CFACTOR = 2.5E19;
NO2 = 1.4E-9;
CO2 = MyCO2Func();
ALL_SPEC = 0.0;

If no value is specified for a particular species, the default
value zero is used. One can set the default values using
the generic species names: VAR_SPEC, FIX_SPEC, and ALL_
SPEC. In order to use coherent units for concentration and
rate coefficients, it is sometimes necessary to multiply each
value by a constant factor. This factor can be set by using
the generic name CFACTOR. Each of the initial values will
be multiplied by this factor before being used. If CFACTOR
is omitted, it defaults to one.

The information gathered in this section is used to gener-
ate the Initialize subroutine (see Sect. 4.1.3). In more
complex 3D models, the initial values are usually taken
from some input files or some global data structures. In
this case, #INITVALUES may not be needed.

3.1.6 Output data selection (#LOOKAT and
#MONITOR)

There are two sections in this category: #LOOKAT and
#MONITOR.

The #LOOKAT section instructs the preprocessor what are
the species for which the evolution of the concentration,

should be saved in a data file. By default, if no #LOOKAT
section is present, all the species are saved. If an atom
is specified in the #LOOKAT list then the total mass of the
particular atom is reported. This allows to check how the
mass of a specific atom was conserved by the integration
method. The #LOOKATALL command can be used to specify
all the species. Output of #LOOKAT can be directed to the
file root.dat using the utility subroutines described in
Sect. 4.1.16.

The #MONITOR section defines a different list of species and
atoms. This list is used by the driver to display the concen-
tration of the elements in the list during the integration.
This may give us a feedback of the evolution in time of
the selected species during the integration. The syntax is
similar to the #LOOKAT section. With the driver general,
output of #MONITOR goes to the screen (STDOUT). The
order of the output is: first variable species, then fixes
species, finally atoms. It is not the order in the #MONITOR
command.

Examples for these sections are:

#LOOKAT NO2; CO2; O3; N;
#MONITOR O3; N;

3.1.7 Lump species definitions (#LUMP)

To reduce the stiffness of some models, various lumping
of species may be defined in the #LUMP section. The ex-
ample below shows how the concentration of NO2 can be
replaced by the sum of concentrations for NO2 and NO
which is considered to be a single variable. At the end of
the integration, the concentration of NO2 is computed by
substraction from the lumped variable.

#LUMP NO2 + NO : NO2

3.1.8 Redefining species definitions (#SETVAR and
#SETFIX)

The commands #SETVAR and #SETFIX change the type of
an already defined species. Then, depending on the inte-
gration method, one may or may not use the initial clas-
sification, or can easily move one species from one cate-
gory to another. The use of the generic species VAR_SPEC,
FIX_SPEC, and ALL_SPEC is also allowed. Examples for
these sections are:

#SETVAR ALL_SPEC;
#SETFIX H2O; CO2;

3.1.9 Transport (#TRANSPORT)

The #TRANSPORT section is only used for transport chem-
istry models. It specifies the list of species that needs to
be included in the transport model, e.g.:
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Table 2: KPP commands

name see Sect.

#CHECKALL 3.2.16
#DOUBLE 3.2.1
#DRIVER 3.2.2
#DUMMYINDEX 3.2.3
#EQNTAGS 3.2.4
#FUNCTION 3.2.5
#HESSIAN 3.2.6
#INCLUDE 3.2.7
#INTEGRATOR 3.2.8
#INTFILE 3.2.8
#JACOBIAN 3.2.9
#LANGUAGE 3.2.10
#LOOKATALL 3.2.16
#MEX 3.2.11
#MODEL 3.2.12
#REORDER 3.2.13
#STOCHASTIC 3.2.14
#STOICMAT 3.2.15
#TRANSPORTALL 3.2.16

#TRANSPORT NO2; CO2; O3; N;

One may use a more complex chemical model from which
only a couple of species are considered for the transport
calculations. The #TRANSPORTALL command is also avail-
able as a shorthand for specifying that all the species used
in the chemical model have to be included in the transport
calculations.

3.2 KPP commands

A command begins on a new line with a # sign, followed
by a command name and one or more parameters. A sum-
mary of the commands available in KPP is shown in Ta-
ble 2. Details about each command are given in the fol-
lowing subsections.

3.2.1 Precision control (#DOUBLE)

The #DOUBLE command selects single or double precision
arithmetique. ON (the default) means use double precision,
OFF means use single precision (see Sect. 4.1.6).

3.2.2 Driver selection (#DRIVER)

The #DRIVER command selects the driver, i.e., the file from
which the main function is to be taken. The parameter is
a file name, without suffix. The appropriate suffix (.f90,
.f, .c, or .m) is automatically appended.

Normally, KPP tries to find the selected driver file in the
directory $KPP_HOME/drv/. However, if the supplied file
name contains a slash, it is assumed to be absolute. To
access a driver in the current directory, the prefix “./” can
be used, e.g.:

#DRIVER ./mydriver

It is possible to choose the empty dummy driver none,
if the user wants to include the KPP generated modules
into a larger model (e.g. a general circulation or a chemical
transport model) instead of creating a stand-alone version
of the chemical integrator. The driver none is also selected
when the #DRIVER command is missing. If the #DRIVER
command occurs twice, the second replaces the first.

3.2.3 Dummy indices (#DUMMYINDEX)

It is possible to declare species in the #SPECIES section
that are not used in the #EQUATIONS section. If your model
needs to check at run-time if a certain species is included
in the current mechanism, you can set #DUMMYINDEX to
ON. Then, KPP will set the indices ind_spc to zero
for all species that do not occur in any reaction. With
#DUMMYINDEX OFF (the default), those ind_spc are unde-
fined variables. For example, if you frequently switch be-
tween mechanisms with and without sulfuric acid, you can
use this code:

IF (ind_H2SO4=0) THEN
PRINT *, ’no H2SO4 in current mechanism’

ELSE
PRINT *, ’c(H2SO4) =’, C(ind_H2SO4)

ENDIF

3.2.4 Generation of equation tags (#EQNTAGS)

Each reaction in the #EQUATIONS section may start with
an equation tag which is enclosed in angle brackets, e.g.:

<J1> NO2 + hv = NO + O : 0.533*SUN;

With #EQNTAGS set to ON, this equation tag can be used
to refer to a specific equation, as described in Sect. 4.1.5.
The default for #EQNTAGS is OFF.

3.2.5 The function generation (#FUNCTION)

The #FUNCTION command controls which functions are
generated to compute the production/destruction terms
for variable species. AGGREGATE generates one function
that computes the normal derivatives. SPLIT generates
two functions for the derivatives in production and de-
struction forms.
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3.2.6 Generation of Hessian (#HESSIAN)

The option ON (the default) of the #HESSIAN command
turns the Hessian generation on (see Sect. 4.1.12). With
OFF it is switched off.

3.2.7 File include command (#INCLUDE)

The #INCLUDE command instructs KPP to look for the file
specified as a parameter and parse the content of this file
before proceeding to the next line. This allows the atoms
definition, the species definition and even the equation
definition to be shared between several models. Moreover
this allows for custom configuration of KPP to accommo-
date various classes of users. Include files can be either in
one of the KPP directories or in the current directory.

3.2.8 Integrator selection (#INTEGRATOR and
#INTFILE)

The #INTEGRATOR command selects the integrator defini-
tion file. The parameter is the file name of an integrator,
without suffix. The effect of:

#INTEGRATOR integrator

is similar to:

#INCLUDE $KPP_HOME/int/integrator.def

The integrator definition file selects an integrator file with
#INTFILE and also defines some suitable options for it.
The #INTFILE command selects the file that contains the
integrator routine. This command allows the use of differ-
ent integration techniques on the same model. The param-
eter of the command is a file name, without suffix. The
appropriate suffix (.f90, .f, .c, or .m) is appended and the
result selects the file from which the integrator is taken.
This file will be copied into the code file in the appropri-
ate place. All integrators have to conform to the same
specific calling sequence. Normally, KPP tries to find the
selected integrator file in the directory $KPP_HOME/int/.
However, if the supplied file name contains a slash, it is
assumed to be absolute. To access an integrator in the
current directory, the prefix “./” can be used, e.g.:

#INTEGRATOR ./mydeffile
#INTFILE ./myintegrator

If the #INTEGRATOR command occurs twice, the second
replaces the first.

3.2.9 The Jacobian (#JACOBIAN)

The #JACOBIAN command controls which functions are
generated to compute the Jacobian. The option OFF in-
hibits the generation of the Jacobian routine. The option
FULL generates the Jacobian as a square (NVAR×NVAR) ma-
trix. It should be used if the integrator needs the whole

Jacobians. The options SPARSE_ROW and SPARSE_LU_ROW
(the default) both generate the Jacobian in sparse (com-
pressed on rows) format. They should be used if the inte-
grator needs the whole Jacobian, but in a sparse form. The
format used is compressed on rows. With SPARSE_LU_ROW,
KPP extends the number of nonzeros to account for the
fill-in due to the LU decomposition.

3.2.10 Target language selection (#LANGUAGE)

The #LANGUAGE command selects the target language in
which the code file is to be generated. Available options
are Fortran90, Fortran77, C, or Matlab.

3.2.11 Mex files (#MEX)

Mex is a matlab extension that allows to call functions
written in Fortran and C directly from within the Matlab
environment. KPP generates the mex interface routines
for the ODE function, Jacobian, and Hessian, for the tar-
get languages C, Fortran77, and Fortran90. The default
is ON. With OFF, no Mex files are generated.

3.2.12 Selcting a chemical model (#MODEL)

The chemical model contains the description of the atoms,
species, and chemical equations. It also contains default
initial values for the species and default options including
the best integrator for the model. In the simplest case,
the main kinetic description file, i.e. the one passed as pa-
rameter to KPP, can contain just a single line selecting
the model. KPP tries to find a file with the name of the
model and the suffix .def in the $KPP_HOME/models subdi-
rectory. This file is then parsed. The content of the model
definition file is written in the KPP language. The model
definition file points to a species file and an equation file.
The species file includes further the atom definition file.
All default values regarding the model are automatically
selected. For convenience, the best integrator and driver
for the given model are also automatically selected.

The #MODEL command is optional, and intended for using
a predefined model. Users who supply their own reaction
mechanism do not need it.

3.2.13 Reordering (#REORDER)

Reordering of the species is performed in order to mini-
mize the fill-in during the LU factorization, and therefore
preserve the sparsity structure and increase efficiency. The
reordering is done using a diagonal markowitz algorithm.
The details are explained in Sandu et al. (1996). The de-
fault is ON. OFF means that KPP does not reorder the
species. The order of the variables is the order in which
the species are declared in the #DEFVAR section.
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3.2.14 Stochastic simulation (#STOCHASTIC)

The option ON of the #STOCHASTIC command turns on the
generation of code for stochastic kinetic simulations (see
Sect. 4.1.15). The default option is OFF.

3.2.15 The Stoichiometric Formulation
(#STOICMAT)

Unless this command is set to OFF, KPP generates code for
the stoichiometric matrix, the vector of reactant products
in each reaction, and the partial derivative of the time
derivative function with respect to rate coefficients. These
elements are discussed in Sect. 4.1.14.

3.2.16 Shorthand commands (#CHECKALL,
#LOOKATALL and #TRANSPORTALL)

KPP defines a couple of shorthand commands. The
commands that fall into this category are #CHECKALL,
#LOOKATALL and #TRANSPORTALL. All of them have been
described in the previous sections.

3.3 Inlined code

In order to offer maximum flexibility, KPP allows the user
to include pieces of code in the kinetic description file.
Inlined code begins on a new line with #INLINE and the
inline type. Next, one or more lines of code follow, written
in the target language (Fortran90, Fortran77, C, or Mat-
lab) as specified by the inline type. The inlined code ends
with #ENDINLINE. The code is inserted into the KPP out-
put at a position which is also determined by inline type
as explained in Table 3. If two inline commands with the
same inline type are declared, then the contents of the
second is appended to the first one. In this manual, we
show the inline types for Fortran90. The inline types for
the other languages are produced by replacing “F90_” by
“F77_”, “C_”, or “MATLAB_”, respectively.

3.3.1 Inline type F90 DATA

This inline type was introduced in a previous version of
KPP to initialize variables. It is now obsolete but kept for
compatibility. For Fortran90, F90_GLOBAL should be used
instead.

3.3.2 Inline type F90 GLOBAL

F90_GLOBAL can be used to declare global variables, e.g.
for a special rate coefficient:

#INLINE F90_GLOBAL
REAL(dp) :: k_DMS_OH

#ENDINLINE

3.3.3 Inline type F90 INIT

F90_INIT can be used to define initial values before the
start of the integartion, e.g.:

#INLINE F90_INIT
TSTART = (12.*3600.)
TEND = TSTART + (3.*24.*3600.)
DT = 0.25*3600.
TEMP = 270.

#ENDINLINE

3.3.4 Inline type F90 RATES

F90_RATES can be used to add new subroutines to calcu-
late rate coefficients, e.g.:

#INLINE F90_RATES
REAL FUNCTION k_SIV_H2O2(k_298,tdep,cHp,temp)
! special rate function for S(IV) + H2O2
REAL, INTENT(IN) :: k_298, tdep, cHp, temp
k_SIV_H2O2 = k_298 &
* EXP(tdep*(1./temp-3.3540E-3)) &
* cHp / (cHp+0.1)

END FUNCTION k_SIV_H2O2
#ENDINLINE

3.3.5 Inline type F90 RCONST

F90_RCONST can be used to define time-dependent values
of rate coefficients that were declared with F90_GLOBAL:

#INLINE F90_RCONST
k_DMS_OH = 1.E-9*EXP(5820./temp)*C(ind_O2)/ &
(1.E30+5.*EXP(6280./temp)*C(ind_O2))

#ENDINLINE

3.3.6 Inline type F90 UTIL

F90_UTIL can be used to define utility subroutines.

3.4 Auxiliary files and the substitution
preprocessor

The auxiliary files (listed in Table 4) are templates for in-
tegrators, drivers, and utilities. They are inserted into the
KPP output after being run through the substitution pre-
processor. This preprocessor replaces several placeholders
(listed in Table 5) in the template files with their partic-
ular values in the model at hand. Usually, only KPP_ROOT
and KPP_REAL are needed because the other values can
also be obtained via the variables listed in Tab. 8.

KPP_REAL is replaced by the appropriate single or double
precision declaration type. Depending on the target lan-
guage KPP will select the correct declaration type. For
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Table 3: Inline types

inline type file placement usage

F90_DATA root_Monitor.f90 specification section (obsolete)
F90_GLOBAL root_Global.f90 specification section global variables
F90_INIT root_Initialize.f90 subroutine Initialize integration parameters
F90_RATES root_Rates.f90 executable section rate law functions
F90_RCONST root_Rates.f90 subroutine UPDATE_RCONST USE statements and definitions of rate coefficients
F90_UTIL root_Util.f90 executable section utility functions

Table 4: Auxiliary files (for Fortran90)

File Contents

dFun_dRcoeff.f90 derivatives with respect to reaction rates
dJac_dRcoeff.f90 derivatives with respect to reaction rates
Makefile.f90 unix makefiles
Mex_Fun.f90 mex files
Mex_Jac_SP.f90 mex files
Mex_Hessian.f90 mex files
sutil.f90 Sparse utility functions
tag2num.f90 Function related to equation tags
UpdateSun.f90 Function related to solar zenith angle
UserRateLaws.f90 User-defined rate law functions
util.f90 Input/output utilities

example if one needs to declare an array BIG of size 1000,
a declaration like the following must be used:

KPP_REAL BIG(1000)

When used with the option #DOUBLE ON, the above line
will be automatically translated into:

REAL(dp) BIG(1000)

and when used with the option #DOUBLE OFF, the same
line will become:

REAL(sp) BIG(1000)

in the resulting Fortran90 output file.

KPP_ROOT is replaced by the root file name of the main
kinetic description file. In our example where we are pro-
cessing small_strato.kpp, a line in an auxiliary Fortran90
file like

USE KPP_ROOT_Monitor

will be translated into

USE small_strato_Monitor

in the generated Fortran90 output file.

4 Output from KPP

4.1 The Fortran90 Code

The code generated by KPP is organized in a set of sepa-
rate files. Each has a time stamp and a complete descrip-
tion of how it was generated at the begining of the file. The
files associated with root are named with a correspond-
ing prefix “root_”. The list of files and a short descrip-
tion is shown in Table 6. All subroutines and functions,
global parameters, variables, and sparsity data structures
are encapsulated in modules. There is exactly one module
in each file, and the name of the module is identical to
the file name but without the suffix .f90. Fig. 1 shows
how these modules are related to each other. A concise
list of the main subroutines generated by KPP is shown
in Table 7. The generated code is consistent with the For-
tran90 standard. It will not exceed the maximum number
of 39 continuation lines. If KPP cannot properly split an
expression to keep the number of continuation lines be-
low the threshold then it will generate a warning message
pointing to the location of this expression.
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Table 5: List of symbols replaced by the substitution preprocessor with their particular values for the simulation at
hand

Placeholder Replaced by Example

KPP_ROOT the root name small_strato
KPP_REAL the real data type REAL(kind=dp)
KPP_NSPEC number of species 7
KPP_NVAR number of variable species 5
KPP_NFIX number of fixed species 2
KPP_NREACT number of chemical reactions 10
KPP_NONZERO number of Jacobian nonzero elements 18
KPP_LU_NONZERO number of Jacobian nonzero elements, with LU fill-in 19
KPP_NHESS number of Hessian nonzero elements 10

Table 6: List of model files generated by KPP (for Fortran90). Optional files are only produced under certain
circumstances, as specified in the third column.

File Description Only if. . . see Sect.

root_Main.f90 Driver #DRIVER 6= none 4.1.1

root_Function.f90 ODE function 4.1.10
root_Global.f90 Global data headers 4.1.9
root_Initialize.f90 Initialization 4.1.3
root_Integrator.f90 Numerical integration 4.1.4
root_LinearAlgebra.f90 Sparse linear algebra 4.1.13
root_Model.f90 Summary of modules 4.1.2
root_Monitor.f90 Equation info 4.1.5
root_Parameters.f90 Model parameters 4.1.8
root_Precision.f90 Parameterized types 4.1.6
root_Rates.f90 User-defined rate laws 4.1.7
root_Util.f90 Utility input-output 4.1.16

root_Jacobian.f90 ODE Jacobian 4.1.11
root_JacobianSP.f90 Jacobian sparsity #JACOBIAN SPARSE_∗ 4.1.11

root_Hessian.f90 ODE Hessian #HESSIAN ON 4.1.12
root_HessianSP.f90 Sparse Hessian data #HESSIAN ON and #JACOBIAN SPARSE_∗ 4.1.12

root_Stochastic.f90 Stochastic functions #STOCHASTIC ON 4.1.15

root_Stoichiom.f90 Stoichiometric model #STOICMAT ON 4.1.14
root_StoichiomSP.f90 Stoichiometric matrix #STOICMAT ON and #JACOBIAN SPARSE_∗ 4.1.14

root_mex_Fun.f90 Matlab interface Fun #MEX ON 4.1.17
root_mex_Jac_SP.f90 Matlab interface Jac #MEX ON and #JACOBIAN SPARSE_∗ 4.1.17
root_mex_Hessian.f90 Matlab interface Hess #MEX ON and #HESSIAN ON 4.1.17

Makefile_root Makefile 4.1.18

root.map Human-readable info 4.5

4.1.1 root Main.f90

root_Main.f90 is the main Fortran90 program. It con-
tains the driver after modifications by the substitution pre-

processor. The name of the file is computed by KPP by
appending the suffix _Main.f90 to the root name.
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Figure 1: Interdependencies of the KPP-generated files. Each arrow starts at the module that exports a variable or
subroutine and points to the module that imports it via the Fortran90 USE instruction. The prefix root has been
omitted from the module names for better readability. Dotted boxes show optional files that are only produced under
certain circumstances, as listed in Tab. 6.

4.1.2 root Model.f90

The file root Model.f90 completely defines the model by
using all the associated modules.

4.1.3 root Initialize.f90

The file root Initialize.f90 contains the subroutine
Initialize which defines initial values of the chemical
species. The driver calls the subroutine Initialize once
before the time integration loop starts.

4.1.4 root Integrator.f90

The file root Integrator.f90 contains the subrou-
tine INTEGRATE which is called every time step during
the integration. The integrator that was chosen with
#INTEGRATOR is also included in root Integrator.f90.

4.1.5 root Monitor.f90

The file root Monitor.f90 contains PARAMETER arrays
with information about the chemical mechanism. The
names of all species are included in SPC_NAMES and the
names of all equations are included in EQN_NAMES.

It was shown above (Sect. 3.2.4) that each reaction in the
#EQUATIONS section may start with an equation tag which
is enclosed in angle brackets, e.g.:

<J1> NO2 + hv = NO + O : 0.533*SUN;

If the equation tags are switched on, KPP also gener-
ates the PARAMETER array EQN_TAGS. In combination with
EQN_NAMES and the function tag2num that converts the
equation tag to the KPP-internal equation number, this
can be used to describe a reaction:

PRINT *,’Reaction J1 is:’, &
EQN_NAMES(tag2num(’J1’))

4.1.6 root Precision.f90

Fortran90 code uses parameterized real types.
root_Precision.f90 contains the following real kind
definitions:

! KPP_SP - Single precision kind
INTEGER, PARAMETER :: &
SP = SELECTED_REAL_KIND(6,30)

! KPP_DP - Double precision kind
INTEGER, PARAMETER :: &
DP = SELECTED_REAL_KIND(12,300)
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Table 7: List of selected Fortran90 subroutines generated by KPP

Subroutine Description File

Fun ODE function root_Function.f90

Jac_SP ODE Jacobian in sparse format root_Jacobian.f90
Jac_SP_Vec sparse multiplication root_Jacobian.f90
JacTR_SP_Vec sparse multiplication root_Jacobian.f90
Jac ODE Jacobian in full format root_Jacobian.f90

Hessian ODE Hessian in sparse format root_Hessian.f90
Hess_Vec Hessian action on vectors root_Hessian.f90
HessTR_Vec Transposed Hessian action on vectors root_Hessian.f90

dFun_dRcoeff Derivatives of Fun with respect to rate coefficients root_Stoichiom.f90
dJac_dRcoeff Derivatives of Jac with respect to rate coefficients root_Stoichiom.f90
ReactantProd Reactant products root_Stoichiom.f90
JacReactantProd Jacobian of reactant products root_Stoichiom.f90

KppDecomp Sparse LU decomposition root_LinearAlgebra.f90
KppSolve Sparse back substitution root_LinearAlgebra.f90

Update_PHOTO Update photolysis rate coefficients root_Rates.f90
Update_RCONST Update all rate coefficients root_Rates.f90
Update_SUN Update solar intensity root_Rates.f90

Initialize Set initial values root_Initialize.f90

Integrate Integrate one time step root_Integrator.f90

GetMass Check mass balance for selected atoms root_Util.f90
Shuffle_kpp2user Shuffle concentration vector root_Util.f90
Shuffle_user2kpp Shuffle concentration vector root_Util.f90
InitSaveData Utility for #LOOKAT command root_Util.f90
SaveData Utility for #LOOKAT command root_Util.f90
CloseSaveData Utility for #LOOKAT command root_Util.f90
tag2num Calculate reaction number from equation tag root_Util.f90

Depending on the choice of the #DOUBLE command, the
real variables are of type double (REAL(kind=R_8)) or sin-
gle precision (REAL(kind=R_4)). Changing the parame-
ters of the SELECTED_REAL_KIND function in this module
will cause a change in the working precision for the whole
model.

4.1.7 root Rates.f90

The code to update the rate constants is in
root_Rates.f90. The user defined rate law functions are
also placed here.

4.1.8 root Parameters.f90

The global parameters (Table 8) are defined and initialized
in root_Parameters.f90.

KPP orders the variable species such that the sparsity
pattern of the Jacobian is maintained after an LU decom-
position. For our small_strato example there are five
variable species (NVAR=5) ordered as

ind_O1D=1, ind_O=2, ind_O3=3,
ind_NO=4, ind_NO2=5

and two fixed species (NFIX=2)

ind_M = 6, ind_O2 = 7.

KPP defines a complete set of simulation parameters, in-
cluding the numbers of variable and fixed species, the num-
ber of chemical reactions, the number of nonzero entries in
the sparse Jacobian and in the sparse Hessian, etc. Some
important simulation parameters generated by KPP are
presented in Table 8.
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Table 8: List of important simulation parameters and their
values for the small strato example

Parameter Represents Value

NSPEC No. chemical species 7
NVAR No. variable species 5
NFIX No. fixed species 2
NREACT No. reactions 10
NONZERO No. nonzero entries Jacobian 18
LU_NONZERO As above, after LU factorization 19
NHESS Length, sparse Hessian 10
NJVRP Length, sparse Jacobian JVRP 13
NSTOICM Length, stoichiometric matrix 22
ind_spc Index of species spc in C()
indf_spc Index of fixed species spc in FIX()

Table 9: List of important global variables

Global variable Represents

C(NSPEC) Concentrations, all species
VAR(NVAR) Concentrations, variable species
FIX(NFIX) Concentrations, fixed species
RCONST(NREACT) Rate coefficient values
TIME Current integration time
SUN Sun intensity between 0 and 1
TEMP Temperature
RTOLS Relative tolerance (scalar)
TSTART,TEND Simulation start/end time
DT Simulation step
ATOL(NSPEC) Absolute tolerances
RTOL(NSPEC) Relative tolerances
STEPMIN Lower bound for time step
STEPMAX Upper bound for time step
CFACTOR Conversion factor
SPC_NAMES(NSPEC) Names of chemical species
EQN_NAMES(NREACT) Names of chemical equations

4.1.9 root Global.f90

The global variables (Table 9) are declared in
root_Global.f90. Global variables are presented
in Table 9.

Both variable and fixed species are stored in the one-
dimensional array C. The first part (indices from 1 to
NVAR) contains the variable species, and the second part
(indices from NVAR+1 to NSPEC) the fixed species. The to-
tal number of species NSPEC is the sum of the NVAR and
NFIX. The parts can also be accessed separately through
the arrays VAR and FIX:

VAR(1:NVAR) = C(1:NVAR)
FIX(1:NFIX) = C(NVAR+1:NSPEC)

4.1.10 root Function.f90

The code for the ODE function is in root_Function.f90.
The chemical reaction mechanism represents a set of or-
dinary differential equations (ODEs) of dimension NVAR.
The concentrations of fixed species are parameters in the
derivative function. The subroutine Fun computes first
the vector A of reaction rates and then the vector Vdot
of variable species time derivatives. The input arguments
V, F, and RCT are the concentrations of variable species,
fixed species, and the rate coefficients, respectively. Be-
low is the Fortran90 code generated by KPP for the ODE
function of our small_strato example.

SUBROUTINE Fun (V, F, RCT, Vdot )
REAL(kind=DP) :: V(NVAR), &

F(NFIX), RCT(NREACT), &
Vdot(NVAR), A(NREACT) &

! Computation of equation rates
A(1) = RCT(1)*F(2)
A(2) = RCT(2)*V(2)*F(2)
A(3) = RCT(3)*V(3)
A(4) = RCT(4)*V(2)*V(3)
A(5) = RCT(5)*V(3)
A(6) = RCT(6)*V(1)*F(1)
A(7) = RCT(7)*V(1)*V(3)
A(8) = RCT(8)*V(3)*V(4)
A(9) = RCT(9)*V(2)*V(5)
A(10) = RCT(10)*V(5)

! Aggregate function
Vdot(1) = A(5)-A(6)-A(7)
Vdot(2) = 2*A(1)-A(2)+A(3) &

-A(4)+A(6)-A(9)+A(10)
Vdot(3) = A(2)-A(3)-A(4)-A(5) &

-A(7)-A(8)
Vdot(4) = -A(8)+A(9)+A(10)
Vdot(5) = A(8)-A(9)-A(10)

END SUBROUTINE Fun

4.1.11 root Jacobian.f90 and
root JacobianSP.f90

The sparse data structures for the Jacobian are de-
clared and initialized in root_JacobianSP.f90. The code
for the ODE Jacobian and sparse multiplications is in
root_Jacobian.f90. The Jacobian of the ODE func-
tion is automatically constructed by KPP. KPP generates
the Jacobian subroutine Jac or Jac_SP where the latter is
generated when the sparse format is required. Using the
variable species V, the fixed species F, and the rate coeffi-
cients RCT as input, the subroutine calculates the Jacobian
JVS. The default data structures for the sparse compressed
on rows Jacobian representation are shown in Table 10
(for the case where the LU fill-in is accounted for). JVS
stores the LU_NONZERO elements of the Jacobian in row
order. Each row I starts at position LU_CROW(I), and
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Figure 2: The sparsity pattern of the Jacobian for the
small strato example.

Table 10: Sparse Jacobian Data Structures

Global variable Represents

JVS(LU_NONZERO) Jacobian nonzero elements
LU_IROW(LU_NONZERO) Row indices
LU_ICOL(LU_NONZERO) Column indices
LU_CROW(NVAR+1) Start of rows
LU_DIAG(NVAR+1) Diagonal entries

LU_CROW(NVAR+1)=LU_NONZERO+1. The location of the I-
th diagonal element is LU_DIAG(I). The sparse element
JVS(K) is the Jacobian entry in row LU_IROW(K) and col-
umn LU_ICOL(K). For the small_strato example KPP
generates the following Jacobian sparse data structure:

LU_ICOL = (/ 1,3,1,2,3,5,1,2,3,4, &
5,2,3,4,5,2,3,4,5 /)

LU_IROW = (/ 1,1,2,2,2,2,3,3,3,3, &
3,4,4,4,4,5,5,5,5 /)

LU_CROW = (/ 1,3,7,12,16,20 /)
LU_DIAG = (/ 1,4,9,14,19,20 /)

This is visualized in Fig. 2. The sparsity coordinate vec-
tors are computed by KPP and initialized statically. These
vectors are constant as the sparsity pattern of the Jaco-
bian does not change during the computation.

Two other KPP-generated routines, Jac_SP_Vec and
JacTR_SP_Vec are useful for direct and adjoint sensitivity
analysis. They perform sparse multiplication of JVS (or
its transpose for JacTR_SP_Vec) with the user-supplied
vector UV without any indirect addressing.

Table 11: Sparse Hessian Data

Variable Represents

HESS(NHESS) Hessian nonzero elements Hi,j,k

IHESS_I(NHESS) Index i of element Hi,j,k

IHESS_J(NHESS) Index j of element Hi,j,k

IHESS_K(NHESS) Index k of element Hi,j,k

4.1.12 root Hessian.f90 and root HessianSP.f90

The sparse data structures for the Hessian are declared
and initialized in root_HessianSP.f90. The Hessian
function and associated sparse multiplications are in
root_Hessian.f90. The Hessian contains the second or-
der derivatives of the time derivative functions. More ex-
actly, the Hessian is a 3-tensor such that

Hi,j,k =
∂2(dc/dt)i

∂cj ∂ck
, 1 ≤ i, j, k ≤ Nvar . (11)

KPP generates the routine Hessian. Using the variable
species V, the fixed species F, and the rate coefficients
RCT as input, the subroutine calculates the Hessian. The
Hessian is a very sparse tensor. The sparsity of the Hes-
sian for our small_strato example is visualized in Fig. 3.
KPP computes the number of nonzero Hessian entries and
saves it in the variable NHESS. The Hessian itself is rep-
resented in coordinate sparse format. The real vector
HESS holds the values, and the integer vectors IHESS_I,
IHESS_J, and IHESS_K hold the indices of nonzero en-
tries as illustrated in Table 11. Since the time derivative
function is smooth, these Hessian matrices are symmet-
ric, HESSi,j,k=HESSi,k,j . KPP stores only those entries
HESSi,j,k with j ≤ k. The sparsity coordinate vectors
IHESS_I, IHESS_J, and IHESS_K are computed by KPP
and initialized statically. They are constant as the spar-
sity pattern of the Hessian does not change during the
computation.

The routines Hess_Vec and HessTR_Vec compute the ac-
tion of the Hessian (or its transpose) on a pair of user-
supplied vectors U1 and U2. Sparse operations are em-
ployed to produce the result vector.

4.1.13 root LinearAlgebra.f90

Sparse linear algebra routines are in the file
root_LinearAlgebra.f90. To numerically solve for
the chemical concentrations one must employ an implicit
timestepping technique, as the system is usually stiff.
Implicit integrators solve systems of the form

P x = (I − hγJ) x = b (12)

where the matrix P = I − hγJ is refered to as the “pre-
diction matrix”. I the identity matrix, h the integration
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Figure 3: The Hessian of the small strato example.

time step, γ a scalar parameter depending on the method,
and J the system Jacobian. The vector b is the system
right hand side and the solution x typically represents an
increment to update the solution.

The chemical Jacobians are typically sparse, i.e. only a
relatively small number of entries are nonzero. The spar-
sity structure of P is given by the sparsity structure of the
Jacobian, and is produced by KPP (with account for the
fill-in) as discussed above.

KPP generates the sparse linear algebra subroutine
KppDecomp which performs an in-place, non-pivoting,
sparse LU decomposition of the prediction matrix P .
Since the sparsity structure accounts for fill-in, all ele-
ments of the full LU decomposition are actually stored.
The output argument IER returns a value that is nonzero
if singularity is detected.

The subroutines KppSolve and KppSolveTR use the in-
place LU factorization P as computed by KppDecomp and
perform sparse backward and forward substitutions (using
P or its transpose). The sparse linear algebra routines
KppDecomp and KppSolve are extremely efficient, as shown
by (Sandu et al., 1996).

4.1.14 root Stoichiom.f90 and
root StoichiomSP.f90

These files contain a description of the chemi-
cal mechanism in stoichiometric form. The file
root_Stoichiom.f90 contains the functions for reactant
products and its Jacobian, and derivatives with respect
to rate coefficients. The declaration and initialization of
the stoichiometric matrix and the associated sparse data
structures is done in root_StoichiomSP.f90.

The stoichiometric matrix is constant sparse. For our
example the matrix has NSTOICM=22 nonzero entries out
of 50 entries. KPP produces the stoichiometric matrix
in sparse, column-compressed format, as shown in Table
12. Elements are stored in columnwise order in the one-
dimensional vector of values STOICM. Their row and col-
umn indices are stored in IROW_STOICM and ICOL_STOICM
respectively. The vector CCOL_STOICM contains point-
ers to the start of each column. For example column j

Table 12: Sparse Stoichiometric Matrix

Global variable Represents

STOICM(NSTOICM) Stoichiometric matrix
IROW_STOICM(NSTOICM) Row indices
ICOL_STOICM(NSTOICM) Column indices
CCOL_STOICM(NREACT+1) Start of columns

Table 13: Sparse Data for Jacobian of Reactant Products

Global variable Represents

JVRP(NJVRP) Nonzero elements of JVRP
ICOL_JVRP(NJVRP) Column indices in JVRP
IROW_JVRP(NJVRP) Row indices in JVRP
CROW_JVRP(NREACT+1) Start of rows in JVRP

starts in the sparse vector at position CCOL_STOICM(j)
and ends at CCOL_STOICM(j+1)-1. The last value CCOL_
STOICM(NVAR+1)=NSTOICM+1 simplifies the handling of
sparse data structures.

The subroutine ReactantProd computes the reactant
products ARP for each reaction, and the subroutine
JacReactantProd computes the Jacobian of reactant
products vector, i.e.:

JVRP = ∂ARP/∂V (13)

The matrix JVRP is sparse and is computed and stored in
row compressed sparse format, as shown in Table 13. The
parameter NJVRP holds the number of nonzero elements.
For our example:

NJVRP = 13
CROW_JVRP = (/ 1,1,2,3,5,6,7,9,11,13,14 /)
ICOL_JVRP = (/ 2,3,2,3,3,1,1,3,3,4,2,5,4 /)

If #STOICMAT is set to ON, the stoichiometric formulation
allows a direct computation of the derivatives with respect
to rate coefficients.
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The subroutine dFun_dRcoeff computes the partial
derivative DFDR of the ODE function with respect to a
subset of NCOEFF reaction coefficients, whose indices are
specifies in the array JCOEFF

DFDR = ∂Vdot/∂RCT(JCOEFF) (14)

Similarly one can obtain the partial derivative of the Jaco-
bian with respect to a subset of the rate coefficients. More
exactly, KPP generates the subroutine dJac_dRcoeff
which calculates DJDR, the product of this partial deriva-
tive with a user-supplied vector:

DJDR = [∂JVS/∂RCT(JCOEFF)]× U (15)

4.1.15 root Stochastic.f90

If the generation of stochastic functions is switched on,
KPP produces the file root_Stochastic.f90 with the
following functions:

Propensity calculates the propensity vector. The propen-
sity function uses the number of molecules of variable
(NmlcV) and fixed (NmlcF) species, as well as the stochas-
tic rate coefficients (SCT) to calculate the vector of propen-
sity rates (Propensity). The propensity Propj defines the
probability that the next reaction in the system is the jth

reaction.

StochasticRates converts deterministic rates to stochas-
tic. The stochastic rate coefficients (SCT) are obtained
through a scaling of the deterministic rate coefficients
(RCT). The scaling depends on the Volume of the reaction
container and on the number of molecules which react.

MoleculeChange calculates changes in the number of
molecules. When the reaction with index IRCT takes place,
the number of molecules of species involved in that reac-
tion changes. The total number of molecules NmlcV is
updated by the function.

These functions are used by the Gillespie numerical in-
tegrators (direct stochastic simulation algorithm). These
integrators are provided in both Fortran90 and C imple-
mentations (the template file name is gillespie). Drivers
for stochastic simulations are also implemented (the tem-
plate file name is general_stochastic).

4.1.16 root Util.f90

The utility and input/output functions are in
root_Util.f90. In addition to the chemical system
description routines discussed above, KPP generates
several utility routines, some of which are summarized in
Table 7.

The subroutines InitSaveData, SaveData, and
CloseSaveData can be used to print the concentra-
tion of the species that were selected with #LOOKAT to the
file root.dat.

4.1.17 root mex Fun.f90, root mex Jac SP.f90,
and root mex Hessian.f90

Mex is a Matlab extension. KPP generates the mex rou-
tines for the ODE function, Jacobian, and Hessian, for
the target languages C, Fortran77, and Fortran90. After
compilation (using Matlab’s mex compiler) the mex func-
tions can be called instead of the corresponding Matlab m-
functions. Since the calling syntaxes are identical, the user
only has to insert the mex string within the corresponding
function name. Replacing m-functions by mex-functions
gives the same numerical results, but the computational
time could be considerably smaller, especially for large ki-
netic systems.

If possible we recommend to build mex files using the C
language, as Matlab offers most mex interface options for
the C language. Moreover, Matlab distributions come
with a native C compiler (lcc) for building executable
functions from mex files. Fortran77 mex files work well
on most platforms without additional efforts. However,
the mex files built using Fortran90 may require further
platform-specific tuning of the mex compiler options.

4.1.18 The Makefile

KPP produces a Makefile that allows for an easy compi-
lation of all KPP-generated source files. The file name is
Makefile_root. The Makefile assumes that the selected
driver contains the main program. However, if no driver
was selected (i.e. #DRIVER none), it is necessary to add
the name of the main program file manually to the Make-
file.

4.2 The C Code

The driver file root.c contains the main (driver) and
numerical integrator functions, as well as declarations
and initializations of global variables. The generated C
code includes three header files which are #include-d in
other files as appropriate. The global parameters (Table
8) are #define-d in the header file root_Parameters.h.
The global variables (Table 9) are extern-declared in
root_Global.h, and declared in the driver file root.c.
The header file root_Sparse.h contains extern declara-
tions of sparse data structures for the Jacobian (Table
10), Hessian (Table 11), stoichiometric matrix (Table 12),
and the Jacobian of reaction products (Table 13). The
actual declarations of each data structures is done in the
corresponding files.

The code for the ODE function (Sect. 4.1.10) is in
root_Function.c. The code for the ODE Jaco-
bian and sparse multiplications (Sect. 4.1.11) is in
root_Jacobian.c, and the declaration and initialization
of the Jacobian sparse data structures (Table 10) is in
the file root_JacobianSP.c. Similarly, the Hessian func-
tion and associated sparse multiplications (Section 4.1.12)
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are in root_Hessian.c, and the declaration and initial-
ization of Hessian sparse data structures (Table 11) in
root_HessianSP.c.

The file root_Stoichiom.c contains the functions for re-
actant products and its Jacobian, and derivatives with re-
spect to rate coefficients (Sect. 4.1.14). The declaration
and initialization of the stoichiometric matrix and the as-
sociated sparse data structures (Tables 12 and 13) is done
in root_StoichiomSP.c.

Sparse linear algebra routines (Sect. 4.1.13) are in the
file root_LinearAlgebra.c. The code to update the
rate constants and user defined code for rate laws is in
root_Rates.c.

Various utility and input/output functions (Sect. 4.1.16)
are in root_Util.c and root_Monitor.c.

Finally, mex gateway routines that allow the C implemen-
tation of the ODE function, Jacobian, and Hessian to be
called directly from Matlab (Sect. 4.1.17) are also gener-
ated (in the files root_mex_Fun.c, root_mex_Jac_SP.c,
and root_mex_Hessian.c).

4.3 The Fortran77 Code

The general layout of the Fortran77 code is similar to the
layout of the C code. The driver file root.f contains the
main (driver) and numerical integrator functions.

The generated Fortran77 code includes three header files.
The global parameters (Table 8) are defined as parameters
and initialized in the header file root_Parameters.h. The
global variables (Table 9) are declared in root_Global.h
as common block variables. There are global common
blocks for real (GDATA), integer (INTGDATA), and charac-
ter (CHARGDATA) global data. They can be accessed from
within each program unit that includes the global header
file.

The header file root_Sparse.h contains common block
declarations of sparse data structures for the Jacobian
(Table 10), Hessian (Table 11), stoichiometric matrix
(Table 12), and the Jacobian of reaction products (Ta-
ble 13). These sparse data structures are initialized in
four named block data statements: JACOBIAN_SPARSE_
DATA (in root_HessianSP.f), HESSIAN_SPARSE_DATA (in
root_HessianSP.f), JVRP_SPARSE_DATA and STOICM_
MATRIX (in root_StoichiomSP.f).

The code for the ODE function (Sect. 4.1.10) is in
root_Function.f. The code for the ODE Jaco-
bian and sparse multiplications (Sect. 4.1.11) is in
root_Jacobian.f. The Hessian function and as-
sociated sparse multiplications (Sect. 4.1.12) are in
root_Hessian.f.

The file root_Stoichiom.f contains the functions for re-
actant products and its Jacobian, and derivatives with re-
spect to rate coefficients (Sect. 4.1.14). The declaration

and initialization of the stoichiometric matrix and the as-
sociated sparse data structures (Tables 12 and 13) is done
in the STOICM_MATRIX block data statement.

Sparse linear algebra routines (Sect. 4.1.13) are in the file
root_LinearAlgebra.f. The code to update the rate
constants is in root_Rates.f, and the utility and in-
put/output functions (Sect. 4.1.16) are in root_Util.f
and root_Monitor.f.

Matlab-mex gateway routines for the ODE function, Ja-
cobian, and Hessian are discussed in Sect. 4.1.17.

4.4 The Matlab Code

Matlab (http://www.mathworks.com/products/
matlab/) provides a high-level programming envi-
ronment that allows algorithm development, numerical
computations, and data analysis and visualization. The
KPP-generated Matlab code allows for a rapid proto-
typing of chemical kinetic schemes, and for a convenient
analysis and visualization of the results. Differences
between different kinetic mechanisms can be easily under-
stood. The Matlab code can be used to derive reference
numerical solutions, which are then compared against the
results obtained with user-supplied numerical techniques.
Last but not least Matlab is an excellent environment for
educational purposes. KPP/Matlab can be used to teach
students fundamentals of chemical kinetics and chemical
numerical simulations.

Each Matlab function has to reside in a separate m-
file. Function calls use the m-function-file names to ref-
erence the function. Consequently, KPP generates one
m-function-file for each of the functions discussed in Sec-
tions 4.1.10, 4.1.11, 4.1.12, 4.1.13, 4.1.14, and 4.1.16. The
names of the m-function-files are the same as the names
of the functions (prefixed by the model name root).

The Matlab syntax for calling each function is

[Vdot] = Fun (V, F, RCT);
[JVS ] = Jac_SP (V, F, RCT);
[HESS] = Hessian(V, F, RCT);

The global parameters (Table 8) are defined as
Matlab global variables and initialized in the file
root_parameter_defs.m. The variables of Table 9
are declared as Matlab global variables in the file
root_Global_defs.m. They can be accessed from within
each Matlab function by using global declarations of the
variables of interest.

The sparse data structures for the Jacobian (Table 10),
the Hessian (Table 11), the stoichiometric matrix (Ta-
ble 12), and the Jacobian of reaction products (Table
13) are declared as Matlab global variables in the file
root_Sparse_defs.m. They are initialized in separate
m-files, namely root_JacobianSP.m root_HessianSP.m,
and root_StoichiomSP.m respectively.
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Two wrappers (root_Fun_Chem.m and root_Jac_SP_
Chem.m) are provided for interfacing the ODE function and
the sparse ODE Jacobian with Matlab’s suite of ODE in-
tegrators. Specifically, the syntax of the wrapper calls
matches the syntax required by Matlab’s integrators like
ode15s. Moreover, the Jacobian wrapper converts the
sparse KPP format into a Matlab sparse matrix.

4.5 The map file

The map file root.map contains a summary of all the func-
tions, subroutines and data structures defined in the code
file, plus a summary of the numbering and category of the
species involved.

This file contains supplementary information for the user.
Several statistics are listed here, like the total number
equations, the total number of species, the number of vari-
able and fixed species. Each species from the chemical
mechanism is then listed followed by its type and number-
ing.

Furthermore it contains the complete list of all the func-
tions generated in the target source file. For each func-
tion, a brief description of the computation performed is
attached containing also the meaning of the input and
output parameters.

5 KPP Internal Structure

This chapter is mainly concerned with describing the in-
ternal architecture of the KPP preprocessor. It describes
the basic modules and their functionalities, and all the
preprocessing analysis performed on the input files. KPP
can be very easily configured to suit a broad class of users.

5.1 KPP directory structure

The KPP distribution will unfold a directory $KPP_HOME
with the following subdirectories:

� src/ Contains the KPP source code files, as listed
in Table 15.

� bin/ Contains the KPP executable. The path to
this directory needs to be added to the environment
PATH variable.

� util/ Contains different function templates useful
for the simulation. Each template file has a suffix
that matches the appropriate target language (.f90,
.f, .c, or .m). KPP will run the template files through
the substitution preprocessor. The user can define
their own auxiliary functions by inserting them into
the files.

Table 15: Source code files

File Description

kpp.c main program

code.c generic code generation functions
code.h header file
code_c.c generation of C code
code_f77.c generation of Fortran77 code
code_f90.c generation of Fortran90 code
code_matlab.c generation of matlab code
debug.c debugging output
gdata.h header file
gdef.h header file
gen.c generic code generation functions
lex.yy.c flex/yacc-generated file
scan.h input for flex/yacc
scan.l input for flex/yacc
scan.y input for flex/yacc
scanner.c evaluate parsed input
scanutil.c evaluate parsed input
y.tab.c flex/yacc-generated file
y.tab.h flex/yacc-generated header file

� models/ Contains the description of the chemical
models. Users can define their own models by plac-
ing the model description files in this directory. The
KPP distribution contains several models from at-
mospheric chemistry which can be used as templates
for model definitions.

� drv/ Contains driver templates for chemical simula-
tions. Each driver has a suffix that matches the ap-
propriate target language (.f90, .f, .c, or .m). KPP
will run the appropriate driver through the substitu-
tion preprocessor. The driver template general pro-
vided with the distribution works with any example.
Users can define here their own driver templates.

� int/ Contains numerical time stepping (integrator)
routines. The command “#INTEGRATOR integrator”
will force KPP to look into this directory for a defi-
nition file integrator.def. This file selects the numer-
ical routine (with the #INTFILE command) and sets
the function type, the Jacobian sparsity type, the
target language, etc. Each integrator template is
found in a file that ends with the appropriate suffix
(.f90, .f, .c, or .m). The selected template is pro-
cessed by the substitution preprocessor. Users can
define here their own numerical integration routines.

� examples/ Contains several model description ex-
amples (.kpp files) which can be used as templates
for building simulations with KPP.
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Table 14: List of Matlab model files

File Description

root.m driver

root_parameter_defs.m Global parameters
root_global_defs.m Global variables
root_monitor_defs.m Global monitor variables
root_sparse_defs.m Global sparsity data

root_Fun_Chem.m Template for ODE function
root_Fun.m ODE function

root_Jac_Chem.m Template for ODE Jacobian
root_Jac_SP.m ODE Jacobian in sparse format
root_JacobianSP.m Sparsity data structures

root_Hessian.m ODE Hessian in sparse format
root_HessianSP.m Sparsity data structures
root_HessTR_Vec.m Hessian action on vectors
root_Hess_Vec.m Transposed Hessian action on vectors

root_stoichiom.m Derivatives of Fun and Jac with respect to rate coefficients
root_StoichiomSP.m Sparse data
root_ReactantProd.m Reactant products
root_JacReactantProd.m Jacobian of reactant products

root_rates.m User-defined reaction rate laws
root_Update_PHOTO.m Update photolysis rate coefficients
root_Update_RCONST.m Update all rate coefficients
root_Update_SUN.m Update solar intensity

root_GetMass.m Check mass balance for selected atoms
root_Initialize.m Set initial values
root_Shuffle_kpp2user.m Shuffle concentration vector
root_Shuffle_user2kpp.m Shuffle concentration vector

� site-lisp/ Contains the file kpp.el which provides a
KPP mode for emacs with color highlighting.

5.2 KPP environment variables

In order for KPP to find its components, it has to know
the path to the location where the KPP distribution is
installed. This is achieved by requiring the $KPP_HOME
environment variable to be set to the path where KPP is
installed.

The PATH variable should be updated to contain the
$KPP_HOME/bin directory.

There are several optional environment variable that con-
trol the places where KPP looks for module files, integra-
tors, and drivers. They are all summarized in Table 16.

5.3 KPP internal modules

5.3.1 Scanner and Parser

This module is responsible for reading the kinetic descrip-
tion files and extracting the information necessary in the
code generation phase. We make use of the flex and yacc
generic tools in implementing our own scanner and parser.
Using these tools this module gathers information from
the input files and fills in the following data structures in
memory:

� The atom list

� The species list

� The left hand side matrix of coefficients

� The right hand side matrix of coefficients

� The equation rates
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Table 16: Environment variables used by KPP

Variable Description Default assumed

$KPP_HOME Required, stores the absolute path to the KPP distribution no default
$KPP_MODEL Optional, specifies additional places were KPP will look for model

files before searching the default
$KPP_HOME/models

$KPP_INT Optional, specifies additional places were KPP will look for inte-
grator files before searching the default.

$KPP_HOME/int

$KPP_DRV Optional, specifies additional places were KPP will look for driver
files before searching the default

$KPP_HOME/drv

� The option list

Error checking is performed at each step in the scanner
and the parser. For each syntax error the exact line and
input file, along with an appropriate error message are
produced. In most of the cases the exact cause of the
error can be identified, therefore the error messages are
very precise. Some other errors like mass balance, and
equation duplicates, are tested at the end of this phase.

5.3.2 Species reordering

When parsing the input files, the species list is updated as
soon as a new species is encountered in a chemical equa-
tion. Therefore the ordering of the species is the order
in which they appear in the equation description section.
This is not a useful order for subsequent operations. The
species have to be first sorted such that all variable species
and all fixed species are put together. Then if a sparsity
structure of the Jacobian is required, it might be better to
reorder the species in such a way that the factorization of
the Jacobian will preserve the sparsity. This reordering is
done using a Markovitz type of algorithm.

5.3.3 Expression trees computation

This is the core of the preprocessor. This module has to
generate the production/destruction functions the Jaco-
bian and all the data structure nedeed by these functions.
This module has to build a language independent struc-
ture of each function and statement in the target source
file. Instead of using an intermediate format for this as
some other compilers do, KPP generates the intermedi-
ate format for just one statement at a time. The vast
majority of the statements in the target source file are
assignments. The expression tree for each assignment is
incrementally build by scanning the coefficient matrices
and the rate constant vector. At the end these expres-
sion trees are simplified. Similar approaches are applied
to function declaration and prototypes, data declaration
and initialization.

5.3.4 Code generation

There are basically two modules, each dealing with the
syntax particularities of the target language. For exam-
ple, the C module includes a function that generates a
valid C assignment when given an expression tree. Sim-
ilarly there are functions for data declaration, initializa-
tions, comments, function prototypes, etc. Each of these
functions produce the code into an output buffer. A lan-
guage specific routine reads from this buffer and splits the
statements into lines to improve readability of the gener-
ated code.

6 Numerical methods

The KPP numerical library contains a set of numerical in-
tegrators selected to be very efficient in the low to medium
accuracy regime (relative errors ∼ 10−2 . . . 10−5). In ad-
dition, the KPP numerical integrators preserve the linear
invariants (i.e., mass) of the chemical system.

KPP implements several Rosenbrock methods: Ros–1 and
Ros–2 (Verwer et al., 1999), Ros–3 (Sandu et al., 1997),
Rodas–3 (Sandu et al., 1997), Ros–4 (Hairer and Wanner,
1991), and Rodas–4 (Hairer and Wanner, 1991). For each
of them KPP implements the tangent linear model (direct
decoupled sensitivity) and the adjoint models. The imple-
mentations distinguish between sensitivities with respect
to initial values and sensitivities with respect to parame-
ters for efficiency.

Note that KPP produces the building blocks for the sim-
ulation and also for the sensitivity calculations. It also
provides application programming templates. Some mini-
mal programming may be required from the users in order
to construct their own application from the KPP building
blocks.

In order to offer more control over the integrator, the
KPP-generated subroutine INTEGRATE provides the op-
tional input parameters ICNTRL_U and RCNTRL_U. Each of
them is an array of 20 elements that allow the fine-tuning
of the integrator, e.g. by setting a particular integrator
method, tolerances, minimum and maximum step sizes,
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Table 17: Symbols used in the decription of the numerical methods implemented in KPP

Symbol Description

s Number of stages
tn Discrete time moment
h Time step h = tn+1 − tn

yn Numerical solution (concentration) at tn

δyn tangent linear solution at tn

λn Adjoint numerical solution at tn

f(·, ·) The ODE derivative function: y′ = f(t, y)
ft(·, ·) Partial time derivative ft(t, y) = ∂f(t, y)/∂t
J(·, ·) The Jacobian J(t, y) = ∂f(t, y)/∂y
Jt(·, ·) Partial time derivative of Jacobian Jt(t, y) = ∂J(t, y)/∂t

A The system matrix
H(·, ·) The Hessian H(t, y) = ∂2f(t, y)/∂y2

Ti Internal stage time moment for Runge Kutta and Rosenbrock methods
Yi Internal stage solution for Runge Kutta and Rosenbrock methods

ki, `i, ui, vi Internal stage vectors for Runge Kutta and Rosenbrock methods, their
tangent linear and adjoint models

αi, αij , aij , bi, ci, cij , ei, mi Method coefficients

and more. The exact meaning of the elements depends
on the integrator and may change in the future. Please
read the comment lines in the individual integrator files
$KPP_HOME/int/*.f90.

Similarly, to obtain more information about the integra-
tion, the subroutine INTEGRATE provides the optional out-
put parameters ISTATUS_U and RSTATUS_U. They are
both arrays of 20 elements and contain the length of
the last time step, the number of accepted and rejected
steps, the number of miscellaneous function calls, and
more. Again, for the exact meaning, the reader is ref-
ered to the comment lines in the individual integrator files
$KPP_HOME/int/*.f90.

In the following sections we introduce the numerical meth-
ods implemented in KPP. The symbols used in the formu-
las are explained in Table 17.

6.1 Rosenbrock Methods

An s-stage Rosenbrock method (Hairer and Wanner, 1991,
Section IV.7) computes the next-step solution by the for-
mulas

yn+1 = yn +
s∑

i=1

miki , Errn+1 =
s∑

i=1

eiki (16)

Ti = tn + αih , Yi = yn +
i−1∑
j=1

aijkj ,

A =
[

1
hγ

− JT (tn, yn)
]

A · ki = f ( Ti, Yi ) +
i−1∑
j=1

cij

h
kj + hγift (tn, yn) .

where s is the number of stages, αi =
∑

j αij and γi =∑
j γij . The formula coefficients (aij and γij) give the or-

der of consistency and the stability properties. A is the
system matrix (in the linear systems to be solved during
implicit integration, or in the Newton’s method used to
solve the nonlinear systems). It is the scaled identity ma-
trix minus the Jacobian.

The coefficients of the methods implemented in KPP are
shown in Table 18.

6.1.1 Tangent Linear Model

The method (16) is combined with the sensitivity equa-
tions. One step of the method reads

δyn+1 = δyn +
s∑

i=1

mi`i (17)

Ti = tn + αih , δYi = δyn +
i−1∑
j=1

aij`j

A · `i = J ( Ti, Yi ) · δYi +
i−1∑
j=1

cij

h
`j

+(H(tn, yn)× ki) · δyn + hγiJt (tn, yn) · δyn

The method requires a single n×n LU decomposition per
step to obtain both the concentrations and the sensitivi-
ties.
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Table 18: Rosenbrock methods implemented in KPP

Method Stages Function Order Stability Method
name (s) calls properties coefficients

Ros–2 2 2 2(1) L-stable γ = 1 + 1/
√

2, a2,1 = 1/γ, c2,1 = −2/γ, m1 = 3/(2γ), m2 =
1/(2γ), e1 = 1/(2γ), e2 = 1/(2γ), α1 = 0, α2 = 1, γ1 = γ,
γ2 = −γ

Ros–3 3 2 3(2) L-stable a2,1 = 1, a3,1 = 1, a3,2 = 0, c2,1 = −1.015, c3,1 = 4.075,
c3,2 = 9.207, m1 = 1, m2 = 6.169, m3 = −0.427, e1 = 0.5,
e2 = −2.908, e3 = 0.223, α1 = 0, α2 = 0.436, α3 = 0.436,
γ1 = 0.436, γ2 = 0.243, γ3 = 2.185

Ros–4 4 3 4(3) L-stable a2,1 = 2, a3,1 = 1.868, a3,2 = 0.234, a4,1 = a3,1, a4,2 = a3,2,
a4,3 = 0, c2,1 = −7.137, c3,1 = 2.581, c3,2 = 0.652, c4,1 =
−2.137, c4,2 = −0.321, c4,3 = −0.695, m1 = 2.256, m2 =
0.287, m3 = 0.435, m4 = 1.094, e1 = −0.282, e2 = −0.073,
e3 = −0.108, e4 = −1.093, α1 = 0, α2 = 1.146, α3 = 0.655,
α4 = α3, γ1 = 0.573, γ2 = −1.769, γ3 = 0.759, γ4 = −0.104

Rodas–3 4 3 3(2) Stiffly
accurate

a2,1 = 0, a3,1 = 2, a3,2 = 0, a4,1 = 2, a4,2 = 0, a4,3 = 1,
c2,1 = 4, c3,1 = 1, c3,2 = −1, c4,1 = 1, c4,2 = −1, c4,3 = −8/3,
m1 = 2, m2 = 0, m3 = 1, m4 = 1, e1 = 0, e2 = 0, e3 = 0,
e4 = 1, α1 = 0, α2 = 0, α3 = 1, α4 = 1, γ1 = 0.5, γ2 = 1.5,
γ3 = 0, γ4 = 0

Rodas–4 6 5 4(3) Stiffly
accurate

α1 = 0, α2 = 0.386, α3 = 0.210, α4 = 0.630, α5 = 1, α6 = 1,
γ1 = 0.25, γ2 = −0.104, γ3 = 0.104, γ4 = −0.036, γ5 = 0,
γ6 = 0, a2,1 = 1.544, a3,1 = 0.946, a3,2 = 0.255, a4,1 = 3.314,
a4,2 = 2.896, a4,3 = 0.998, a5,1 = 1.221, a5,2 = 6.019, a5,3 =
12.537, a5,4 = −0.687, a6,1 = a5,1, a6,2 = a5,2, a6,3 = a5,3,
a6,4 = a5,4, a6,5 = 1, c2,1 = −5.668, c3,1 = −2.430, c3,2 =
−0.206, c4,1 = −0.107, c4,2 = −9.594, c4,3 = −20.47, c5,1 =
7.496, c5,2 = −0.124, c5,3 = −34, c5,4 = 11.708, c6,1 = 8.083,
c6,2 = −7.981, c6,3 = −31.521, c6,4 = 16.319, c6,5 = −6.058,
m1 = a5,1, m2 = a5,2, m3 = a5,3, m4 = a5,4, m5 = 1, m6 = 1,
e1 = 0, e2 = 0, e3 = 0, e4 = 0, e5 = 0, e6 = 1

KPP contains tangent linear models (for direct decou-
pled sensitivity analysis) for each of the Rosenbrock meth-
ods (Ros–1, Ros–2, Ros–3, Ros–4, Rodas–3, and Rodas–
4). The implementations distinguish between sensitivities
with respect to initial values and sensitivities with respect
to parameters for efficiency.

6.1.2 The Discrete Adjoint

To obtain the adjoint we first differentiate the method
with respect to yn. Here J denotes the Jacobian and H
the Hessian of the derivative function f . The discrete
adjoint of the (non-autonomous) Rosenbrock method is

A · ui = miλ
n+1 +

s∑
j=i+1

(
ajivj +

cji

h
uj

)
, (18)

vi = JT (Ti, Yi) · ui , i = s, s− 1, · · · , 1 ,

λn = λn+1 +
s∑

i=1

(H(tn, yn)× ki)
T · ui

+hJT
t (tn, yn) ·

s∑
i=1

γiui +
s∑

i=1

vi

KPP contains adjoint models (for direct decoupled sensi-
tivity analysis) for each of the Rosenbrock methods (Ros–
1, Ros–2, Ros–3, Ros–4, Rodas–3, and Rodas–4).

6.2 Runge-Kutta methods

A general s-stage Runge-Kutta method is defined as
(Hairer et al., 1993, Section II.1)

yn+1 = yn + h
s∑

i=1

biki , (19)

Ti = tn + cih , Yi = yn + h
s∑

j=1

aijkj ,
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Table 19: Runge-Kutta methods implemented in KPP

Method File(s) Description

Radau5 atm radau5.f,
kpp radau5.f90

This Runge Kutta method of order 5 based on Radau-IIA quadra-
ture (Hairer and Wanner, 1991) is stiffly accurate. The KPP im-
plementation follows the original implementation of Hairer and
Wanner (1991). While Radau5 is relatively expensive (when com-
pared to the Rosenbrock methods), it is more robust and is useful
to obtain accurate reference solutions.

SDIRK4 kpp sdirk.f,
kpp sdirk.f90

The implementation is based on the implementation of Hairer and
Wanner (1991). SDIRK4 is an L-stable, singly-diagonally-implicit
Runge Kutta method of order 4.

SEULEX kpp seulex.f,
kpp seulex.f90

SEULEX is a variable order stiff extrapolation code able to pro-
duce highly accurate solutions. The KPP implementation is based
on the implementation of Hairer and Wanner (1991).

ki = f ( Ti, Yi ) ,

where the coefficients aij , bi and ci are prescribed for
the desired accuracy and stability properties. The stage
derivative values ki are defined implicitly, and require solv-
ing a (set of) nonlinear system(s). Newton-type methods
solve coupled linear systems of dimension (at most) n× s.

KPP numerical library implements a Radau5, a Runge
Kutta method of order 5 based on Radau-IIA quadrature
(Hairer and Wanner, 1991, Section IV.10). This numeri-
cal method is stiffly accurate. The KPP implementation
follows the original implementation of Hairer and Wanner
(1991). While Radau5 is relatively expensive (when com-
pared to the Rosenbrock methods), it is more robust and
is useful to obtain highly accurate reference solutions.

The Runge-Kutta methods implemented in KPP are sum-
marized in Table 19.

6.2.1 Tangent Linear Model

The tangent linear method associated with the Runge
Kutta method is

δyn+1 = δyn + h
s∑

i=1

bi`i , (20)

δYi = δyn + h
s∑

j=1

aij`j ,

`i = J (Ti, Yi) · δYi .

The system (20) is linear and does not require an iterative
procedure. However, even for a SDIRK method (aij = 0
for i > j and aii = γ) each stage requires the LU factor-
ization of a different matrix.

No Runge Kutta tangent linear model is currently imple-
mented in KPP.

6.2.2 Discrete Adjoint Model

The first order Runge-Kutta adjoint is

ui = h JT (Ti, Yi) ·

biλ
n+1 +

s∑
j=1

ajiuj

 (21)

λn = λn+1 +
s∑

j=1

uj .

For bi 6= 0 the Runge-Kutta adjoint can be rewritten as
another Runge-Kutta method:

ui = h JT (Ti, Yi) ·

λn+1 +
s∑

j=1

bj aji

bi
uj

 (22)

λn = λn+1 +
s∑

j=1

bj uj .

No Runge Kutta adjoint model is currently implemented
in KPP.

6.3 Backward Differentiation Formulas

Backward differentiation formulas (BDF) are linear mul-
tistep methods with excellent stability properties for the
integration of chemical systems (Hairer and Wanner, 1991,
Section V.1). The k-step BDF method reads

k∑
i=0

αiy
n−i = hnβ f (tn, yn) (23)

where the coefficients αi and β are chosen such that the
method has order of consistency k.

The KPP library contains two off-the-shelf, highly popular
implementations of BDF methods, described in Table 20.
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Table 20: BDF methods implemented in KPP

Method File(s) Description

LSODE kpp lsode.f90 LSODE, the Livermore ODE solver (Radhakrishnan and Hind-
marsh, 1993), implements backward differentiation formula (BDF)
methods for stiff problems. LSODE has been translated to For-
tran90 for the incorporation into the KPP library.

LSODES atm lsodes.f LSODES (Radhakrishnan and Hindmarsh, 1993), the sparse ver-
sion of the Livermore ODE solver LSODE, is modified to interface
directly with the KPP generated code

VODE kpp dvode.f VODE (Brown et al., 1989) uses another formulation of backward
differentiation formulas. The version of VODE present in the KPP
library uses directly the KPP sparse linear algebra routines.

ODESSA atm odessa.f The BDF-based direct-decoupled sensitivity integrator Odessa
(Leis and Kramer, 1986) has been modified to use the KPP sparse
linear algebra routines.

7 Differences between KPP-2.1
and Previous Versions

7.1 New features of KPP-2.1

This user manual describes recently added features of KPP
as well as those which have been available for a longer pe-
riod. Here we give an overview about the recent changes:

� Fortran90 output has been available since the
preliminary version “1.1-f90-alpha12” provided in
Sander et al. (2005).

� Matlab is a new target language (see Sect. 4.4).

� The set of integrators has been extended with a gen-
eral Rosenbrock integrator, and the corresponding
tangent linear and adjoint methods.

� The KPP-generated Fortran90 code has a different
file structure than the C or Fortran77 output (see
Sects. 4.2 and 4.3).

� An automatically generated Makefile facilitates
the compilation of the KPP-generated code (see
Sect. 4.1.18).

� Equation tags provide a convenient way to refer to
specific chemical reactions (see Sect. 4.1.5).

� The dummy index allows to test if a certain species
occurs in the current chemistry mechanism. (see
Sect. 3.2.3).

� Lines starting with “//” are comment lines.

7.2 Upgrading KPP input files from pre-
vious versions to KPP-2.1

KPP users who want to upgrade from previous versions to
KPP-2.1 need to make a few modifications to their input
files.

� To select the target language, change the previous
command name “#USE” to “#LANGUAGE”.

� To access global variables, change “USE gdata” to
“USE root_global”.

� Rename all inline types “*_DECL” and “*_DATA” to
“*_GLOBAL”.

If you have already used the Fortran90 output of the
preliminary version “1.1-f90-alpha12” from Sander et al.
(2005), these changes are also necessary:

� Change “#USE Fortran95” to “#LANGUAGE
Fortran90”.

� Change the names of the indices of the species from
“kpp_*” to “ind_*”.

� Rename all inline types from “F95_*” to “F90_*”.

� Since the name of the initialization subroutine has
changed, replace

USE ROOT_Init, ONLY: initval
CALL initval

by

USE ROOT_Initialize, ONLY: initialize
CALL initialize
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A BNF Description of the KPP Language

Following is the BNF-like specification of the language:

program ::= module | module program

module ::= section | command | inline code

section ::= #ATOMS atom definition list |
#CHECK atom list |
#DEFFIX species definition list |
#DEFVAR species definition list |
#EQUATIONS equation list |
#INITVALUES initvalues list |
#LOOKAT species list atom list |
#LUMP lump list |
#MONITOR species list atom list |
#SETFIX species list plus |
#SETVAR species list plus |
#TRANSPORT species list

command ::= #CHECKALL |
#DOUBLE [ ON | OFF ] |
#DRIVER driver name |
#DUMMYINDEX [ ON | OFF ] |
#EQNTAGS [ ON | OFF ] |
#FUNCTION [ AGGREGATE | SPLIT ] |
#HESSIAN [ ON | OFF ] |
#INCLUDE file name |
#INTEGRATOR integrator name |
#INTFILE integrator name |
#JACOBIAN [ OFF | FULL | SPARSE_LU_ROW | SPARSE_ROW ] |
#LANGUAGE [ Fortran90 | Fortran77 | C | Matlab ] |
#LOOKATALL |
#MEX [ ON | OFF ] |
#MODEL model name |
#REORDER [ ON | OFF ] |
#STOCHASTIC [ ON | OFF ] |
#STOICMAT [ ON | OFF ] |
#TRANSPORTALL

inline code ::= #INLINE inline type
inline code
#ENDINLINE
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atom count ::= integer atom name |
atom name

atom definition list ::= atom definition |
atom definition atom definition list

atom list ::= atom name; |
atom name; atom list

equation ::= <equation tag> expression = expression : rate; |
expression = expression : rate;

equation list ::= equation |
equation equation list

expression ::= term |
term + expression |
term − expression

initvalues assignment ::= species name plus = program expression; |
CFACTOR = program expression;

initvalues list ::= initvalues assignment |
initvalues assignment initvalues list

inline type ::= F90_RATES | F90_RCONST | F90_GLOBAL | F90_INIT | F90_DATA | F90_UTIL |
F77_RATES | F77_RCONST | F77_GLOBAL | F77_INIT | F77_DATA | F77_UTIL |
C_RATES | C_RCONST | C_GLOBAL | C_INIT | C_DATA | C_UTIL |
MATLAB_RATES | MATLAB_RCONST | MATLAB_GLOBAL |
MATLAB_INIT | MATLAB_DATA | MATLAB_UTIL

lump ::= lump sum : species name;

lump list ::= lump |
lump lump list

lump sum ::= species name |
species name + lump sum

rate ::= number |
program expression

species composition ::= atom count |
atom count + species composition |
IGNORE

species definition ::= species name = species composition;

species definition list ::= species definition |
species definition species definition list

species list ::= species name; |
species name; species list

species list plus ::= species name plus; |
species name plus; species list plus

species name plus ::= species name |
VAR_SPEC |
FIX_SPEC |
ALL_SPEC

term ::= number species name |
species name |
hv


