!> @file virtual_flights_mod.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2017 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: virtual_flight_mod.f90 2716 2017-12-29 16:35:59Z kanani $ ! Corrected "Former revisions" section ! ! 2696 2017-12-14 17:12:51Z kanani ! Change in file header (GPL part) ! ! 2576 2017-10-24 13:49:46Z Giersch ! Definition of a new function called flight_skip_var_list to skip module ! parameters during reading restart data ! ! 2563 2017-10-19 15:36:10Z Giersch ! flight_read_restart_data is called in flight_parin in the case of a restart ! run. flight_skip_var_list is not necessary anymore due to marker changes in ! restart files. ! ! 2271 2017-06-09 12:34:55Z sward ! Todo added ! ! 2101 2017-01-05 16:42:31Z suehring ! ! 2000 2016-08-20 18:09:15Z knoop ! Forced header and separation lines into 80 columns ! ! 1960 2016-07-12 16:34:24Z suehring ! Separate humidity and passive scalar. ! Bugfix concerning labeling of timeseries. ! ! 1957 2016-07-07 10:43:48Z suehring ! Initial revision ! ! Description: ! ------------ !> Module for virtual flight measurements. !> @todo Err msg PA0438: flight can be inside topography -> extra check? !--------------------------------------------------------------------------------! MODULE flight_mod USE control_parameters, & ONLY: fl_max, num_leg, num_var_fl, num_var_fl_user, virtual_flight USE kinds CHARACTER(LEN=6), DIMENSION(fl_max) :: leg_mode = 'cyclic' !< flight mode through the model domain, either 'cyclic' or 'return' INTEGER(iwp) :: l !< index for flight leg INTEGER(iwp) :: var_index !< index for measured variable LOGICAL, DIMENSION(:), ALLOCATABLE :: cyclic_leg !< flag to identify fly mode REAL(wp) :: flight_end = 9999999.9_wp !< end time of virtual flight REAL(wp) :: flight_begin = 0.0_wp !< end time of virtual flight REAL(wp), DIMENSION(fl_max) :: flight_angle = 45.0_wp !< angle determining the horizontal flight direction REAL(wp), DIMENSION(fl_max) :: flight_level = 100.0_wp !< flight level REAL(wp), DIMENSION(fl_max) :: max_elev_change = 0.0_wp !< maximum elevation change for the respective flight leg REAL(wp), DIMENSION(fl_max) :: rate_of_climb = 0.0_wp !< rate of climb or descent REAL(wp), DIMENSION(fl_max) :: speed_agl = 25.0_wp !< absolute horizontal flight speed above ground level (agl) REAL(wp), DIMENSION(fl_max) :: x_start = 999999999.0_wp !< start x position REAL(wp), DIMENSION(fl_max) :: x_end = 999999999.0_wp !< end x position REAL(wp), DIMENSION(fl_max) :: y_start = 999999999.0_wp !< start y position REAL(wp), DIMENSION(fl_max) :: y_end = 999999999.0_wp !< end y position REAL(wp), DIMENSION(:), ALLOCATABLE :: u_agl !< u-component of flight speed REAL(wp), DIMENSION(:), ALLOCATABLE :: v_agl !< v-component of flight speed REAL(wp), DIMENSION(:), ALLOCATABLE :: w_agl !< w-component of flight speed REAL(wp), DIMENSION(:), ALLOCATABLE :: x_pos !< aircraft x-position REAL(wp), DIMENSION(:), ALLOCATABLE :: y_pos !< aircraft y-position REAL(wp), DIMENSION(:), ALLOCATABLE :: z_pos !< aircraft z-position REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sensor_l !< measured data on local PE REAL(wp), DIMENSION(:,:), ALLOCATABLE :: sensor !< measured data REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: var_u !< dummy array for possibly user-defined quantities SAVE PRIVATE INTERFACE flight_header MODULE PROCEDURE flight_header END INTERFACE flight_header INTERFACE flight_init MODULE PROCEDURE flight_init END INTERFACE flight_init INTERFACE flight_init_output MODULE PROCEDURE flight_init_output END INTERFACE flight_init_output INTERFACE flight_check_parameters MODULE PROCEDURE flight_check_parameters END INTERFACE flight_check_parameters INTERFACE flight_parin MODULE PROCEDURE flight_parin END INTERFACE flight_parin INTERFACE interpolate_xyz MODULE PROCEDURE interpolate_xyz END INTERFACE interpolate_xyz INTERFACE flight_measurement MODULE PROCEDURE flight_measurement END INTERFACE flight_measurement INTERFACE flight_skip_var_list MODULE PROCEDURE flight_skip_var_list END INTERFACE flight_skip_var_list INTERFACE flight_read_restart_data MODULE PROCEDURE flight_read_restart_data END INTERFACE flight_read_restart_data INTERFACE flight_write_restart_data MODULE PROCEDURE flight_write_restart_data END INTERFACE flight_write_restart_data ! !-- Private interfaces PRIVATE flight_check_parameters, flight_init_output, interpolate_xyz ! !-- Public interfaces PUBLIC flight_init, flight_header, flight_parin, flight_measurement, & flight_write_restart_data, flight_skip_var_list ! !-- Public variables PUBLIC fl_max, sensor, x_pos, y_pos, z_pos CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> Header output for flight module. !------------------------------------------------------------------------------! SUBROUTINE flight_header ( io ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file WRITE ( io, 1 ) WRITE ( io, 2 ) WRITE ( io, 3 ) num_leg WRITE ( io, 4 ) flight_begin WRITE ( io, 5 ) flight_end DO l=1, num_leg WRITE ( io, 6 ) l WRITE ( io, 7 ) speed_agl(l) WRITE ( io, 8 ) flight_level(l) WRITE ( io, 9 ) max_elev_change(l) WRITE ( io, 10 ) rate_of_climb(l) WRITE ( io, 11 ) leg_mode(l) ENDDO 1 FORMAT (' Virtual flights:'/ & ' ----------------') 2 FORMAT (' Output every timestep') 3 FORMAT (' Number of flight legs:', I3 ) 4 FORMAT (' Begin of measurements:', F10.1 , ' s' ) 5 FORMAT (' End of measurements:', F10.1 , ' s' ) 6 FORMAT (' Leg', I3/, & ' ------' ) 7 FORMAT (' Flight speed : ', F5.1, ' m/s' ) 8 FORMAT (' Flight level : ', F5.1, ' m' ) 9 FORMAT (' Maximum elevation change: ', F5.1, ' m/s' ) 10 FORMAT (' Rate of climb / descent : ', F5.1, ' m/s' ) 11 FORMAT (' Leg mode : ', A/ ) END SUBROUTINE flight_header !------------------------------------------------------------------------------! ! Description: ! ------------ !> Reads the namelist flight_par. !------------------------------------------------------------------------------! SUBROUTINE flight_parin USE control_parameters, & ONLY: initializing_actions IMPLICIT NONE CHARACTER (LEN=80) :: line !< dummy string that contains the current line of the parameter file NAMELIST /flight_par/ flight_angle, flight_end, flight_begin, leg_mode,& flight_level, max_elev_change, rate_of_climb, & speed_agl, x_end, x_start, y_end, y_start ! !-- Try to find the namelist flight_par REWIND ( 11 ) line = ' ' DO WHILE ( INDEX( line, '&flight_par' ) == 0 ) READ ( 11, '(A)', END=10 ) line ENDDO BACKSPACE ( 11 ) ! !-- Read namelist READ ( 11, flight_par ) ! !-- Set switch that virtual flights shall be carried out virtual_flight = .TRUE. IF ( TRIM( initializing_actions ) == 'read_restart_data' ) THEN CALL flight_read_restart_data ENDIF 10 CONTINUE END SUBROUTINE flight_parin !------------------------------------------------------------------------------! ! Description: ! ------------ !> Inititalization of required arrays, number of legs and flags. Moreover, !> initialize flight speed and -direction, as well as start positions. !------------------------------------------------------------------------------! SUBROUTINE flight_init USE constants, & ONLY: pi USE control_parameters, & ONLY: initializing_actions USE indices, & ONLY: nxlg, nxrg, nysg, nyng, nzb, nzt IMPLICIT NONE REAL(wp) :: distance !< distance between start and end position of a flight leg ! !-- Determine the number of flight legs l = 1 DO WHILE ( x_start(l) /= 999999999.0_wp .AND. l <= SIZE(x_start) ) l = l + 1 ENDDO num_leg = l-1 ! !-- Check for proper parameter settings CALL flight_check_parameters ! !-- Allocate and initialize logical array for flight pattern ALLOCATE( cyclic_leg(1:num_leg) ) ! !-- Initialize flags for cyclic/return legs DO l = 1, num_leg cyclic_leg(l) = MERGE( .TRUE., .FALSE., & TRIM( leg_mode(l) ) == 'cyclic' & ) ENDDO ! !-- Allocate and initialize arraxs for flight position and speed. In case of !-- restart runs these data are read by the routine read_flight_restart_data !-- instead. IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN ALLOCATE( x_pos(1:num_leg), y_pos(1:num_leg ), z_pos(1:num_leg) ) ! !-- Inititalize x-, y-, and z-positions with initial start position x_pos(1:num_leg) = x_start(1:num_leg) y_pos(1:num_leg) = y_start(1:num_leg) z_pos(1:num_leg) = flight_level(1:num_leg) ! !-- Allocate arrays for flight-speed components ALLOCATE( u_agl(1:num_leg), & v_agl(1:num_leg), & w_agl(1:num_leg) ) ! !-- Inititalize u-, v- and w-component. DO l = 1, num_leg ! !-- In case of return-legs, the flight direction, i.e. the horizontal !-- flight-speed components, are derived from the given start/end !-- positions. IF ( .NOT. cyclic_leg(l) ) THEN distance = SQRT( ( x_end(l) - x_start(l) )**2 & + ( y_end(l) - y_start(l) )**2 ) u_agl(l) = speed_agl(l) * ( x_end(l) - x_start(l) ) / distance v_agl(l) = speed_agl(l) * ( y_end(l) - y_start(l) ) / distance w_agl(l) = rate_of_climb(l) ! !-- In case of cyclic-legs, flight direction is directly derived from !-- the given flight angle. ELSE u_agl(l) = speed_agl(l) * COS( flight_angle(l) * pi / 180.0_wp ) v_agl(l) = speed_agl(l) * SIN( flight_angle(l) * pi / 180.0_wp ) w_agl(l) = rate_of_climb(l) ENDIF ENDDO ENDIF ! !-- Initialized data output CALL flight_init_output ! !-- Allocate array required for user-defined quantities if necessary. IF ( num_var_fl_user > 0 ) & ALLOCATE( var_u(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ! !-- Allocate and initialize arrays containing the measured data ALLOCATE( sensor_l(1:num_var_fl,1:num_leg) ) ALLOCATE( sensor(1:num_var_fl,1:num_leg) ) sensor_l = 0.0_wp sensor = 0.0_wp END SUBROUTINE flight_init !------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialization of output-variable names and units. !------------------------------------------------------------------------------! SUBROUTINE flight_init_output USE control_parameters, & ONLY: cloud_droplets, cloud_physics, humidity, neutral, & passive_scalar USE netcdf_interface IMPLICIT NONE CHARACTER(LEN=10) :: label_leg !< dummy argument to convert integer to string INTEGER(iwp) :: i !< loop variable INTEGER(iwp) :: id_pt !< identifyer for labeling INTEGER(iwp) :: id_q !< identifyer for labeling INTEGER(iwp) :: id_ql !< identifyer for labeling INTEGER(iwp) :: id_s !< identifyer for labeling INTEGER(iwp) :: id_u = 1 !< identifyer for labeling INTEGER(iwp) :: id_v = 2 !< identifyer for labeling INTEGER(iwp) :: id_w = 3 !< identifyer for labeling INTEGER(iwp) :: k !< index variable LOGICAL :: init = .TRUE. !< flag to distiquish calls of user_init_flight ! !-- Define output quanities, at least three variables are measured (u,v,w) num_var_fl = 3 IF ( .NOT. neutral ) THEN num_var_fl = num_var_fl + 1 id_pt = num_var_fl ENDIF IF ( humidity ) THEN num_var_fl = num_var_fl + 1 id_q = num_var_fl ENDIF IF ( cloud_physics .OR. cloud_droplets ) THEN num_var_fl = num_var_fl + 1 id_ql = num_var_fl ENDIF IF ( passive_scalar ) THEN num_var_fl = num_var_fl + 1 id_s = num_var_fl ENDIF ! !-- Write output strings for dimensions x, y, z DO l=1, num_leg IF ( l < 10 ) WRITE( label_leg, '(I1)') l IF ( l >= 10 .AND. l < 100 ) WRITE( label_leg, '(I2)') l IF ( l >= 100 .AND. l < 1000 ) WRITE( label_leg, '(I3)') l dofl_dim_label_x(l) = 'x_' // TRIM( label_leg ) dofl_dim_label_y(l) = 'y_' // TRIM( label_leg ) dofl_dim_label_z(l) = 'z_' // TRIM( label_leg ) ENDDO ! !-- Call user routine to initialize further variables CALL user_init_flight( init ) ! !-- Write output labels and units for the quanities k = 1 DO l=1, num_leg IF ( l < 10 ) WRITE( label_leg, '(I1)') l IF ( l >= 10 .AND. l < 100 ) WRITE( label_leg, '(I2)') l IF ( l >= 100 .AND. l < 1000 ) WRITE( label_leg, '(I3)') l label_leg = 'leg_' // TRIM(label_leg) DO i=1, num_var_fl IF ( i == id_u ) THEN dofl_label(k) = TRIM( label_leg ) // '_u' dofl_unit(k) = 'm/s' k = k + 1 ELSEIF ( i == id_v ) THEN dofl_label(k) = TRIM( label_leg ) // '_v' dofl_unit(k) = 'm/s' k = k + 1 ELSEIF ( i == id_w ) THEN dofl_label(k) = TRIM( label_leg ) // '_w' dofl_unit(k) = 'm/s' k = k + 1 ELSEIF ( i == id_pt ) THEN dofl_label(k) = TRIM( label_leg ) // '_pt' dofl_unit(k) = 'K' k = k + 1 ELSEIF ( i == id_q ) THEN dofl_label(k) = TRIM( label_leg ) // '_q' dofl_unit(k) = 'kg/kg' k = k + 1 ELSEIF ( i == id_ql ) THEN dofl_label(k) = TRIM( label_leg ) // '_ql' dofl_unit(k) = 'kg/kg' k = k + 1 ELSEIF ( i == id_s ) THEN dofl_label(k) = TRIM( label_leg ) // '_s' dofl_unit(k) = 'kg/kg' k = k + 1 ENDIF ENDDO DO i=1, num_var_fl_user CALL user_init_flight( init, k, i, label_leg ) ENDDO ENDDO ! !-- Finally, set the total number of flight-output quantities. num_var_fl = num_var_fl + num_var_fl_user END SUBROUTINE flight_init_output !------------------------------------------------------------------------------! ! Description: ! ------------ !> This routine calculates the current flight positions and calls the !> respective interpolation routine to measures the data at the current !> flight position. !------------------------------------------------------------------------------! SUBROUTINE flight_measurement USE arrays_3d, & ONLY: ddzu, ddzw, pt, q, ql, s, u, v, w, zu, zw USE control_parameters, & ONLY: cloud_droplets, cloud_physics, dz, dz_stretch_level, dt_3d, & humidity, neutral, passive_scalar, simulated_time USE cpulog, & ONLY: cpu_log, log_point USE grid_variables, & ONLY: ddx, ddy, dx, dy USE indices, & ONLY: nx, nxl, nxlg, nxr, nxrg, ny, nys, nysg, nyn, nyng, nzb, nzt USE pegrid IMPLICIT NONE LOGICAL :: on_pe !< flag to check if current flight position is on current PE REAL(wp) :: x !< distance between left edge of current grid box and flight position REAL(wp) :: y !< distance between south edge of current grid box and flight position INTEGER(iwp) :: i !< index of current grid box along x INTEGER(iwp) :: j !< index of current grid box along y INTEGER(iwp) :: n !< loop variable for number of user-defined output quantities CALL cpu_log( log_point(65), 'flight_measurement', 'start' ) ! !-- Perform flight measurement if start time is reached. IF ( simulated_time >= flight_begin .AND. & simulated_time <= flight_end ) THEN sensor_l = 0.0_wp sensor = 0.0_wp ! !-- Loop over all flight legs DO l=1, num_leg ! !-- Update location for each leg x_pos(l) = x_pos(l) + u_agl(l) * dt_3d y_pos(l) = y_pos(l) + v_agl(l) * dt_3d z_pos(l) = z_pos(l) + w_agl(l) * dt_3d ! !-- Check if location must be modified for return legs. !-- Carry out horizontal reflection if required. IF ( .NOT. cyclic_leg(l) ) THEN ! !-- Outward flight, i.e. from start to end IF ( u_agl(l) >= 0.0_wp .AND. x_pos(l) > x_end(l) ) THEN x_pos(l) = 2.0_wp * x_end(l) - x_pos(l) u_agl(l) = - u_agl(l) ! !-- Return flight, i.e. from end to start ELSEIF ( u_agl(l) < 0.0_wp .AND. x_pos(l) < x_start(l) ) THEN x_pos(l) = 2.0_wp * x_start(l) - x_pos(l) u_agl(l) = - u_agl(l) ENDIF ! !-- Outward flight, i.e. from start to end IF ( v_agl(l) >= 0.0_wp .AND. y_pos(l) > y_end(l) ) THEN y_pos(l) = 2.0_wp * y_end(l) - y_pos(l) v_agl(l) = - v_agl(l) ! !-- Return flight, i.e. from end to start ELSEIF ( v_agl(l) < 0.0_wp .AND. y_pos(l) < y_start(l) ) THEN y_pos(l) = 2.0_wp * y_start(l) - y_pos(l) v_agl(l) = - v_agl(l) ENDIF ! !-- Check if flight position is out of the model domain and apply !-- cyclic conditions if required ELSEIF ( cyclic_leg(l) ) THEN ! !-- Check if aircraft leaves the model domain at the right boundary IF ( ( flight_angle(l) >= 0.0_wp .AND. & flight_angle(l) <= 90.0_wp ) .OR. & ( flight_angle(l) >= 270.0_wp .AND. & flight_angle(l) <= 360.0_wp ) ) THEN IF ( x_pos(l) >= ( nx + 0.5_wp ) * dx ) & x_pos(l) = x_pos(l) - ( nx + 1 ) * dx ! !-- Check if aircraft leaves the model domain at the left boundary ELSEIF ( flight_angle(l) > 90.0_wp .AND. & flight_angle(l) < 270.0_wp ) THEN IF ( x_pos(l) < -0.5_wp * dx ) & x_pos(l) = ( nx + 1 ) * dx + x_pos(l) ENDIF ! !-- Check if aircraft leaves the model domain at the north boundary IF ( flight_angle(l) >= 0.0_wp .AND. & flight_angle(l) <= 180.0_wp ) THEN IF ( y_pos(l) >= ( ny + 0.5_wp ) * dy ) & y_pos(l) = y_pos(l) - ( ny + 1 ) * dy ! !-- Check if aircraft leaves the model domain at the south boundary ELSEIF ( flight_angle(l) > 180.0_wp .AND. & flight_angle(l) < 360.0_wp ) THEN IF ( y_pos(l) < -0.5_wp * dy ) & y_pos(l) = ( ny + 1 ) * dy + y_pos(l) ENDIF ENDIF ! !-- Check if maximum elevation change is already reached. If required !-- reflect vertically. IF ( rate_of_climb(l) /= 0.0_wp ) THEN ! !-- First check if aircraft is too high IF ( w_agl(l) > 0.0_wp .AND. & z_pos(l) - flight_level(l) > max_elev_change(l) ) THEN z_pos(l) = 2.0_wp * ( flight_level(l) + max_elev_change(l) )& - z_pos(l) w_agl(l) = - w_agl(l) ! !-- Check if aircraft is too low ELSEIF ( w_agl(l) < 0.0_wp .AND. z_pos(l) < flight_level(l) ) THEN z_pos(l) = 2.0_wp * flight_level(l) - z_pos(l) w_agl(l) = - w_agl(l) ENDIF ENDIF ! !-- Determine grid indices for flight position along x- and y-direction. !-- Please note, there is a special treatment for the index !-- along z-direction, which is due to vertical grid stretching. i = ( x_pos(l) + 0.5_wp * dx ) * ddx j = ( y_pos(l) + 0.5_wp * dy ) * ddy ! !-- Check if indices are on current PE on_pe = ( i >= nxl .AND. i <= nxr .AND. & j >= nys .AND. j <= nyn ) IF ( on_pe ) THEN var_index = 1 ! !-- Recalculate indices, as u is shifted by -0.5*dx. i = x_pos(l) * ddx j = ( y_pos(l) + 0.5_wp * dy ) * ddy ! !-- Calculate distance from left and south grid-box edges. x = x_pos(l) - ( 0.5_wp - i ) * dx y = y_pos(l) - j * dy ! !-- Interpolate u-component onto current flight position. CALL interpolate_xyz( u, zu, ddzu, 1.0_wp, x, y, var_index, j, i ) var_index = var_index + 1 ! !-- Recalculate indices, as v is shifted by -0.5*dy. i = ( x_pos(l) + 0.5_wp * dx ) * ddx j = y_pos(l) * ddy x = x_pos(l) - i * dx y = y_pos(l) - ( 0.5_wp - j ) * dy CALL interpolate_xyz( v, zu, ddzu, 1.0_wp, x, y, var_index, j, i ) var_index = var_index + 1 ! !-- Interpolate w and scalar quantities. Recalculate indices. i = ( x_pos(l) + 0.5_wp * dx ) * ddx j = ( y_pos(l) + 0.5_wp * dy ) * ddy x = x_pos(l) - i * dx y = y_pos(l) - j * dy ! !-- Interpolate w-velocity component. CALL interpolate_xyz( w, zw, ddzw, 0.0_wp, x, y, var_index, j, i ) var_index = var_index + 1 ! !-- Potential temerature IF ( .NOT. neutral ) THEN CALL interpolate_xyz( pt, zu, ddzu, 1.0_wp, x, y, var_index, j, i ) var_index = var_index + 1 ENDIF ! !-- Humidity IF ( humidity ) THEN CALL interpolate_xyz( q, zu, ddzu, 1.0_wp, x, y, var_index, j, i ) var_index = var_index + 1 ENDIF ! !-- Liquid water content IF ( cloud_physics .OR. cloud_droplets ) THEN CALL interpolate_xyz( ql, zu, ddzu, 1.0_wp, x, y, var_index, j, i ) var_index = var_index + 1 ENDIF ! !-- Passive scalar IF ( passive_scalar ) THEN CALL interpolate_xyz( s, zu, ddzu, 1.0_wp, x, y, var_index, j, i ) var_index = var_index + 1 ENDIF ! !-- Treat user-defined variables if required DO n = 1, num_var_fl_user CALL user_flight( var_u, n ) CALL interpolate_xyz( var_u, zu, ddzu, 1.0_wp, x, y, var_index, j, i ) var_index = var_index + 1 ENDDO ENDIF ENDDO ! !-- Write local data on global array. #if defined( __parallel ) CALL MPI_ALLREDUCE(sensor_l(1,1), sensor(1,1), & num_var_fl*num_leg, MPI_REAL, MPI_SUM, & comm2d, ierr ) #else sensor = sensor_l #endif ENDIF CALL cpu_log( log_point(65), 'flight_measurement', 'stop' ) END SUBROUTINE flight_measurement !------------------------------------------------------------------------------! ! Description: ! ------------ !> This subroutine bi-linearly interpolates the respective data onto the current !> flight position. !------------------------------------------------------------------------------! SUBROUTINE interpolate_xyz( var, z_uw, ddz_uw, fac, x, y, var_ind, j, i ) USE control_parameters, & ONLY: dz, dz_stretch_level USE grid_variables, & ONLY: dx, dy USE indices, & ONLY: nzb, nzt, nxlg, nxrg, nysg, nyng IMPLICIT NONE INTEGER(iwp) :: i !< index along x INTEGER(iwp) :: j !< index along y INTEGER(iwp) :: k !< index along z INTEGER(iwp) :: k1 !< dummy variable INTEGER(iwp) :: var_ind !< index variable for output quantity REAL(wp) :: aa !< dummy argument for horizontal interpolation REAL(wp) :: bb !< dummy argument for horizontal interpolation REAL(wp) :: cc !< dummy argument for horizontal interpolation REAL(wp) :: dd !< dummy argument for horizontal interpolation REAL(wp) :: gg !< dummy argument for horizontal interpolation REAL(wp) :: fac !< flag to indentify if quantity is on zu or zw level REAL(wp) :: var_int !< horizontal interpolated variable at current position REAL(wp) :: var_int_l !< horizontal interpolated variable at k-level REAL(wp) :: var_int_u !< horizontal interpolated variable at (k+1)-level REAL(wp) :: x !< distance between left edge of current grid box and flight position REAL(wp) :: y !< distance between south edge of current grid box and flight position REAL(wp), DIMENSION(1:nzt+1) :: ddz_uw !< inverse vertical grid spacing REAL(wp), DIMENSION(nzb:nzt+1) :: z_uw !< height level REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: var !< treted quantity ! !-- Calculate interpolation coefficients aa = x**2 + y**2 bb = ( dx - x )**2 + y**2 cc = x**2 + ( dy - y )**2 dd = ( dx - x )**2 + ( dy - y )**2 gg = aa + bb + cc + dd ! !-- Obtain vertical index. Special treatment for grid index along z-direction !-- if flight position is above the vertical grid-stretching level. !-- fac=1 if variable is on scalar grid level, fac=0 for w-component. IF ( z_pos(l) < dz_stretch_level ) THEN k = ( z_pos(l) + fac * 0.5_wp * dz ) / dz ELSE ! !-- Search for k-index DO k1=nzb, nzt IF ( z_pos(l) >= z_uw(k1) .AND. z_pos(l) < z_uw(k1+1) ) THEN k = k1 EXIT ENDIF ENDDO ENDIF ! !-- (x,y)-interpolation at k-level var_int_l = ( ( gg - aa ) * var(k,j,i) + & ( gg - bb ) * var(k,j,i+1) + & ( gg - cc ) * var(k,j+1,i) + & ( gg - dd ) * var(k,j+1,i+1) & ) / ( 3.0_wp * gg ) ! !-- (x,y)-interpolation on (k+1)-level var_int_u = ( ( gg - aa ) * var(k+1,j,i) + & ( gg - bb ) * var(k+1,j,i+1) + & ( gg - cc ) * var(k+1,j+1,i) + & ( gg - dd ) * var(k+1,j+1,i+1) & ) / ( 3.0_wp * gg ) ! !-- z-interpolation onto current flight postion var_int = var_int_l & + ( z_pos(l) - z_uw(k) ) * ddz_uw(k+1) & * (var_int_u - var_int_l ) ! !-- Store on local data array sensor_l(var_ind,l) = var_int END SUBROUTINE interpolate_xyz !------------------------------------------------------------------------------! ! Description: ! ------------ !> Perform parameter checks. !------------------------------------------------------------------------------! SUBROUTINE flight_check_parameters USE arrays_3d, & ONLY: zu USE control_parameters, & ONLY: bc_lr_cyc, bc_ns_cyc, dz, message_string USE grid_variables, & ONLY: dx, dy USE indices, & ONLY: nx, ny, nz USE netcdf_interface, & ONLY: netcdf_data_format IMPLICIT NONE ! !-- Check if start positions are properly set. DO l=1, num_leg IF ( x_start(l) < 0.0_wp .OR. x_start(l) > ( nx + 1 ) * dx ) THEN message_string = 'Start x position is outside the model domain' CALL message( 'flight_check_parameters', 'PA0431', 1, 2, 0, 6, 0 ) ENDIF IF ( y_start(l) < 0.0_wp .OR. y_start(l) > ( ny + 1 ) * dy ) THEN message_string = 'Start y position is outside the model domain' CALL message( 'flight_check_parameters', 'PA0432', 1, 2, 0, 6, 0 ) ENDIF ENDDO ! !-- Check for leg mode DO l=1, num_leg ! !-- Check if leg mode matches the overall lateral model boundary !-- conditions. IF ( TRIM( leg_mode(l) ) == 'cyclic' ) THEN IF ( .NOT. bc_lr_cyc .OR. .NOT. bc_ns_cyc ) THEN message_string = 'Cyclic flight leg does not match ' // & 'lateral boundary condition' CALL message( 'flight_check_parameters', 'PA0433', 1, 2, 0, 6, 0 ) ENDIF ! !-- Check if end-positions are inside the model domain in case of !.. return-legs. ELSEIF ( TRIM( leg_mode(l) ) == 'return' ) THEN IF ( x_end(l) > ( nx + 1 ) * dx .OR. & y_end(l) > ( ny + 1 ) * dx ) THEN message_string = 'Flight leg or parts of it are outside ' // & 'the model domain' CALL message( 'flight_check_parameters', 'PA0434', 1, 2, 0, 6, 0 ) ENDIF ELSE message_string = 'Unknown flight mode' CALL message( 'flight_check_parameters', 'PA0435', 1, 2, 0, 6, 0 ) ENDIF ENDDO ! !-- Check if start and end positions are properly set in case of return legs. DO l=1, num_leg IF ( x_start(l) > x_end(l) .AND. leg_mode(l) == 'return' ) THEN message_string = 'x_start position must be <= x_end ' // & 'position for return legs' CALL message( 'flight_check_parameters', 'PA0436', 1, 2, 0, 6, 0 ) ENDIF IF ( y_start(l) > y_end(l) .AND. leg_mode(l) == 'return' ) THEN message_string = 'y_start position must be <= y_end ' // & 'position for return legs' CALL message( 'flight_check_parameters', 'PA0437', 1, 2, 0, 6, 0 ) ENDIF ENDDO ! !-- Check if given flight object remains inside model domain if a rate of !-- climb / descent is prescribed. DO l=1, num_leg IF ( flight_level(l) + max_elev_change(l) > zu(nz) .OR. & flight_level(l) + max_elev_change(l) <= 0.0_wp ) THEN message_string = 'Flight level is outside the model domain ' CALL message( 'flight_check_parameters', 'PA0438', 1, 2, 0, 6, 0 ) ENDIF ENDDO ! !-- Check for appropriate NetCDF format. Definition of more than one !-- unlimited dimension is unfortunately only possible with NetCDF4/HDF5. IF ( netcdf_data_format <= 2 ) THEN message_string = 'netcdf_data_format must be > 2' CALL message( 'flight_check_parameters', 'PA0439', 1, 2, 0, 6, 0 ) ENDIF END SUBROUTINE flight_check_parameters !------------------------------------------------------------------------------! ! Description: ! ------------ !> Skipping the flight-module variables from restart-file (binary format). !------------------------------------------------------------------------------! SUBROUTINE flight_skip_var_list IMPLICIT NONE CHARACTER (LEN=1) :: cdum CHARACTER (LEN=30) :: variable_chr READ ( 13 ) variable_chr DO WHILE ( TRIM( variable_chr ) /= '*** end flight ***' ) READ ( 13 ) cdum READ ( 13 ) variable_chr ENDDO END SUBROUTINE flight_skip_var_list !------------------------------------------------------------------------------! ! Description: ! ------------ !> This routine reads the respective restart data. !------------------------------------------------------------------------------! SUBROUTINE flight_read_restart_data IMPLICIT NONE CHARACTER (LEN=30) :: variable_chr !< dummy variable to read string READ ( 13 ) variable_chr DO WHILE ( TRIM( variable_chr ) /= '*** end flight ***' ) SELECT CASE ( TRIM( variable_chr ) ) CASE ( 'u_agl' ) IF ( .NOT. ALLOCATED( u_agl ) ) ALLOCATE( u_agl(1:num_leg) ) READ ( 13 ) u_agl CASE ( 'v_agl' ) IF ( .NOT. ALLOCATED( v_agl ) ) ALLOCATE( v_agl(1:num_leg) ) READ ( 13 ) v_agl CASE ( 'w_agl' ) IF ( .NOT. ALLOCATED( w_agl ) ) ALLOCATE( w_agl(1:num_leg) ) READ ( 13 ) w_agl CASE ( 'x_pos' ) IF ( .NOT. ALLOCATED( x_pos ) ) ALLOCATE( x_pos(1:num_leg) ) READ ( 13 ) x_pos CASE ( 'y_pos' ) IF ( .NOT. ALLOCATED( y_pos ) ) ALLOCATE( y_pos(1:num_leg) ) READ ( 13 ) y_pos CASE ( 'z_pos' ) IF ( .NOT. ALLOCATED( z_pos ) ) ALLOCATE( z_pos(1:num_leg) ) READ ( 13 ) z_pos END SELECT READ ( 13 ) variable_chr ENDDO END SUBROUTINE flight_read_restart_data !------------------------------------------------------------------------------! ! Description: ! ------------ !> This routine writes the respective restart data. !------------------------------------------------------------------------------! SUBROUTINE flight_write_restart_data IMPLICIT NONE WRITE ( 14 ) 'u_agl ' WRITE ( 14 ) u_agl WRITE ( 14 ) 'v_agl ' WRITE ( 14 ) v_agl WRITE ( 14 ) 'w_agl ' WRITE ( 14 ) w_agl WRITE ( 14 ) 'x_pos ' WRITE ( 14 ) x_pos WRITE ( 14 ) 'y_pos ' WRITE ( 14 ) y_pos WRITE ( 14 ) 'z_pos ' WRITE ( 14 ) z_pos WRITE ( 14 ) '*** end flight *** ' END SUBROUTINE flight_write_restart_data END MODULE flight_mod