!> @file sum_up_3d_data.f90 !--------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the terms ! of the GNU General Public License as published by the Free Software Foundation, ! either version 3 of the License, or (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2016 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: sum_up_3d_data.f90 1950 2016-06-17 07:21:31Z suehring $ ! ! 1949 2016-06-17 07:19:16Z maronga ! Bugfix: calculation of lai_av, c_veg_av and c_liq_av. ! ! 1849 2016-04-08 11:33:18Z hoffmann ! precipitation_rate moved to arrays_3d ! ! 1788 2016-03-10 11:01:04Z maronga ! Added z0q and z0q_av ! ! 1693 2015-10-27 08:35:45Z maronga ! Last revision text corrected ! ! 1691 2015-10-26 16:17:44Z maronga ! Added output of Obukhov length and radiative heating rates for RRTMG. ! Corrected output of liquid water path. ! ! 1682 2015-10-07 23:56:08Z knoop ! Code annotations made doxygen readable ! ! 1585 2015-04-30 07:05:52Z maronga ! Adapted for RRTMG ! ! 1555 2015-03-04 17:44:27Z maronga ! Added output of r_a and r_s ! ! 1551 2015-03-03 14:18:16Z maronga ! Added support for land surface model and radiation model data. ! ! 1359 2014-04-11 17:15:14Z hoffmann ! New particle structure integrated. ! ! 1353 2014-04-08 15:21:23Z heinze ! REAL constants provided with KIND-attribute ! ! 1320 2014-03-20 08:40:49Z raasch ! ONLY-attribute added to USE-statements, ! kind-parameters added to all INTEGER and REAL declaration statements, ! kinds are defined in new module kinds, ! old module precision_kind is removed, ! revision history before 2012 removed, ! comment fields (!:) to be used for variable explanations added to ! all variable declaration statements ! ! 1318 2014-03-17 13:35:16Z raasch ! barrier argument removed from cpu_log, ! module interfaces removed ! ! 1115 2013-03-26 18:16:16Z hoffmann ! ql is calculated by calc_liquid_water_content ! ! 1053 2012-11-13 17:11:03Z hoffmann ! +nr, prr, qr ! ! 1036 2012-10-22 13:43:42Z raasch ! code put under GPL (PALM 3.9) ! ! 1007 2012-09-19 14:30:36Z franke ! Bugfix in calculation of ql_vp ! ! 978 2012-08-09 08:28:32Z fricke ! +z0h* ! ! Revision 1.1 2006/02/23 12:55:23 raasch ! Initial revision ! ! ! Description: ! ------------ !> Sum-up the values of 3d-arrays. The real averaging is later done in routine !> average_3d_data. !------------------------------------------------------------------------------! SUBROUTINE sum_up_3d_data USE arrays_3d, & ONLY: dzw, e, nr, ol, p, pt, precipitation_rate, q, qc, ql, ql_c, & ql_v, qr, qsws, rho, sa, shf, ts, u, us, v, vpt, w, z0, z0h, z0q USE averaging, & ONLY: e_av, lpt_av, lwp_av, nr_av, ol_av, p_av, pc_av, pr_av, prr_av, & precipitation_rate_av, pt_av, q_av, qc_av, ql_av, ql_c_av, & ql_v_av, ql_vp_av, qr_av, qsws_av, qv_av, rho_av, s_av, sa_av, & shf_av, ts_av, u_av, us_av, v_av, vpt_av, w_av, z0_av, z0h_av, & z0q_av USE cloud_parameters, & ONLY: l_d_cp, pt_d_t USE control_parameters, & ONLY: average_count_3d, cloud_physics, doav, doav_n, rho_surface USE cpulog, & ONLY: cpu_log, log_point USE indices, & ONLY: nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt USE kinds USE land_surface_model_mod, & ONLY: c_liq, c_liq_av, c_soil_av, c_veg, c_veg_av, ghf_eb, & ghf_eb_av, lai, lai_av, m_liq_eb, m_liq_eb_av, m_soil, & m_soil_av, nzb_soil, nzt_soil, qsws_eb, qsws_eb_av, & qsws_liq_eb, qsws_liq_eb_av, qsws_soil_eb, qsws_soil_eb_av, & qsws_veg_eb, qsws_veg_eb_av, shf_eb, shf_eb_av, r_a, r_a_av, & r_s, r_s_av, t_soil, t_soil_av USE particle_attributes, & ONLY: grid_particles, number_of_particles, particles, prt_count USE radiation_model_mod, & ONLY: rad_net, rad_net_av, rad_sw_in, rad_sw_in_av, rad_sw_out, & rad_sw_out_av, rad_sw_cs_hr, rad_sw_cs_hr_av, rad_sw_hr, & rad_sw_hr_av, rad_lw_in, rad_lw_in_av, rad_lw_out, & rad_lw_out_av, rad_lw_cs_hr, rad_lw_cs_hr_av, rad_lw_hr, & rad_lw_hr_av IMPLICIT NONE INTEGER(iwp) :: i !< INTEGER(iwp) :: ii !< INTEGER(iwp) :: j !< INTEGER(iwp) :: k !< INTEGER(iwp) :: n !< INTEGER(iwp) :: psi !< REAL(wp) :: mean_r !< REAL(wp) :: s_r2 !< REAL(wp) :: s_r3 !< CALL cpu_log (log_point(34),'sum_up_3d_data','start') ! !-- Allocate and initialize the summation arrays if called for the very first !-- time or the first time after average_3d_data has been called !-- (some or all of the arrays may have been already allocated !-- in read_3d_binary) IF ( average_count_3d == 0 ) THEN DO ii = 1, doav_n SELECT CASE ( TRIM( doav(ii) ) ) CASE ( 'c_liq*' ) IF ( .NOT. ALLOCATED( c_liq_av ) ) THEN ALLOCATE( c_liq_av(nysg:nyng,nxlg:nxrg) ) ENDIF c_liq_av = 0.0_wp CASE ( 'c_soil*' ) IF ( .NOT. ALLOCATED( c_soil_av ) ) THEN ALLOCATE( c_soil_av(nysg:nyng,nxlg:nxrg) ) ENDIF c_soil_av = 0.0_wp CASE ( 'c_veg*' ) IF ( .NOT. ALLOCATED( c_veg_av ) ) THEN ALLOCATE( c_veg_av(nysg:nyng,nxlg:nxrg) ) ENDIF c_veg_av = 0.0_wp CASE ( 'e' ) IF ( .NOT. ALLOCATED( e_av ) ) THEN ALLOCATE( e_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF e_av = 0.0_wp CASE ( 'ghf_eb*' ) IF ( .NOT. ALLOCATED( ghf_eb_av ) ) THEN ALLOCATE( ghf_eb_av(nysg:nyng,nxlg:nxrg) ) ENDIF ghf_eb_av = 0.0_wp CASE ( 'lai*' ) IF ( .NOT. ALLOCATED( lai_av ) ) THEN ALLOCATE( lai_av(nysg:nyng,nxlg:nxrg) ) ENDIF lai_av = 0.0_wp CASE ( 'lpt' ) IF ( .NOT. ALLOCATED( lpt_av ) ) THEN ALLOCATE( lpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF lpt_av = 0.0_wp CASE ( 'lwp*' ) IF ( .NOT. ALLOCATED( lwp_av ) ) THEN ALLOCATE( lwp_av(nysg:nyng,nxlg:nxrg) ) ENDIF lwp_av = 0.0_wp CASE ( 'm_liq_eb*' ) IF ( .NOT. ALLOCATED( m_liq_eb_av ) ) THEN ALLOCATE( m_liq_eb_av(nysg:nyng,nxlg:nxrg) ) ENDIF m_liq_eb_av = 0.0_wp CASE ( 'm_soil' ) IF ( .NOT. ALLOCATED( m_soil_av ) ) THEN ALLOCATE( m_soil_av(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) ENDIF m_soil_av = 0.0_wp CASE ( 'nr' ) IF ( .NOT. ALLOCATED( nr_av ) ) THEN ALLOCATE( nr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF nr_av = 0.0_wp CASE ( 'ol*' ) IF ( .NOT. ALLOCATED( ol_av ) ) THEN ALLOCATE( ol_av(nysg:nyng,nxlg:nxrg) ) ENDIF ol_av = 0.0_wp CASE ( 'p' ) IF ( .NOT. ALLOCATED( p_av ) ) THEN ALLOCATE( p_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF p_av = 0.0_wp CASE ( 'pc' ) IF ( .NOT. ALLOCATED( pc_av ) ) THEN ALLOCATE( pc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF pc_av = 0.0_wp CASE ( 'pr' ) IF ( .NOT. ALLOCATED( pr_av ) ) THEN ALLOCATE( pr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF pr_av = 0.0_wp CASE ( 'prr' ) IF ( .NOT. ALLOCATED( prr_av ) ) THEN ALLOCATE( prr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF prr_av = 0.0_wp CASE ( 'prr*' ) IF ( .NOT. ALLOCATED( precipitation_rate_av ) ) THEN ALLOCATE( precipitation_rate_av(nysg:nyng,nxlg:nxrg) ) ENDIF precipitation_rate_av = 0.0_wp CASE ( 'pt' ) IF ( .NOT. ALLOCATED( pt_av ) ) THEN ALLOCATE( pt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF pt_av = 0.0_wp CASE ( 'q' ) IF ( .NOT. ALLOCATED( q_av ) ) THEN ALLOCATE( q_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF q_av = 0.0_wp CASE ( 'qc' ) IF ( .NOT. ALLOCATED( qc_av ) ) THEN ALLOCATE( qc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF qc_av = 0.0_wp CASE ( 'ql' ) IF ( .NOT. ALLOCATED( ql_av ) ) THEN ALLOCATE( ql_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ql_av = 0.0_wp CASE ( 'ql_c' ) IF ( .NOT. ALLOCATED( ql_c_av ) ) THEN ALLOCATE( ql_c_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ql_c_av = 0.0_wp CASE ( 'ql_v' ) IF ( .NOT. ALLOCATED( ql_v_av ) ) THEN ALLOCATE( ql_v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ql_v_av = 0.0_wp CASE ( 'ql_vp' ) IF ( .NOT. ALLOCATED( ql_vp_av ) ) THEN ALLOCATE( ql_vp_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ql_vp_av = 0.0_wp CASE ( 'qr' ) IF ( .NOT. ALLOCATED( qr_av ) ) THEN ALLOCATE( qr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF qr_av = 0.0_wp CASE ( 'qsws*' ) IF ( .NOT. ALLOCATED( qsws_av ) ) THEN ALLOCATE( qsws_av(nysg:nyng,nxlg:nxrg) ) ENDIF qsws_av = 0.0_wp CASE ( 'qsws_eb*' ) IF ( .NOT. ALLOCATED( qsws_eb_av ) ) THEN ALLOCATE( qsws_eb_av(nysg:nyng,nxlg:nxrg) ) ENDIF qsws_eb_av = 0.0_wp CASE ( 'qsws_liq_eb*' ) IF ( .NOT. ALLOCATED( qsws_liq_eb_av ) ) THEN ALLOCATE( qsws_liq_eb_av(nysg:nyng,nxlg:nxrg) ) ENDIF qsws_liq_eb_av = 0.0_wp CASE ( 'qsws_soil_eb*' ) IF ( .NOT. ALLOCATED( qsws_soil_eb_av ) ) THEN ALLOCATE( qsws_soil_eb_av(nysg:nyng,nxlg:nxrg) ) ENDIF qsws_soil_eb_av = 0.0_wp CASE ( 'qsws_veg_eb*' ) IF ( .NOT. ALLOCATED( qsws_veg_eb_av ) ) THEN ALLOCATE( qsws_veg_eb_av(nysg:nyng,nxlg:nxrg) ) ENDIF qsws_veg_eb_av = 0.0_wp CASE ( 'qv' ) IF ( .NOT. ALLOCATED( qv_av ) ) THEN ALLOCATE( qv_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF qv_av = 0.0_wp CASE ( 'rad_net*' ) IF ( .NOT. ALLOCATED( rad_net_av ) ) THEN ALLOCATE( rad_net_av(nysg:nyng,nxlg:nxrg) ) ENDIF rad_net_av = 0.0_wp CASE ( 'rad_lw_in' ) IF ( .NOT. ALLOCATED( rad_lw_in_av ) ) THEN ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF rad_lw_in_av = 0.0_wp CASE ( 'rad_lw_out' ) IF ( .NOT. ALLOCATED( rad_lw_out_av ) ) THEN ALLOCATE( rad_lw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF rad_lw_out_av = 0.0_wp CASE ( 'rad_lw_cs_hr' ) IF ( .NOT. ALLOCATED( rad_lw_cs_hr_av ) ) THEN ALLOCATE( rad_lw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF rad_lw_cs_hr_av = 0.0_wp CASE ( 'rad_lw_hr' ) IF ( .NOT. ALLOCATED( rad_lw_hr_av ) ) THEN ALLOCATE( rad_lw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF rad_lw_hr_av = 0.0_wp CASE ( 'rad_sw_in' ) IF ( .NOT. ALLOCATED( rad_sw_in_av ) ) THEN ALLOCATE( rad_sw_in_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF rad_sw_in_av = 0.0_wp CASE ( 'rad_sw_out' ) IF ( .NOT. ALLOCATED( rad_sw_out_av ) ) THEN ALLOCATE( rad_sw_out_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF rad_sw_out_av = 0.0_wp CASE ( 'rad_sw_cs_hr' ) IF ( .NOT. ALLOCATED( rad_sw_cs_hr_av ) ) THEN ALLOCATE( rad_sw_cs_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF rad_sw_cs_hr_av = 0.0_wp CASE ( 'rad_sw_hr' ) IF ( .NOT. ALLOCATED( rad_sw_hr_av ) ) THEN ALLOCATE( rad_sw_hr_av(nzb+1:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF rad_sw_hr_av = 0.0_wp CASE ( 'rho' ) IF ( .NOT. ALLOCATED( rho_av ) ) THEN ALLOCATE( rho_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF rho_av = 0.0_wp CASE ( 'r_a*' ) IF ( .NOT. ALLOCATED( r_a_av ) ) THEN ALLOCATE( r_a_av(nysg:nyng,nxlg:nxrg) ) ENDIF r_a_av = 0.0_wp CASE ( 'r_s*' ) IF ( .NOT. ALLOCATED( r_s_av ) ) THEN ALLOCATE( r_s_av(nysg:nyng,nxlg:nxrg) ) ENDIF r_s_av = 0.0_wp CASE ( 's' ) IF ( .NOT. ALLOCATED( s_av ) ) THEN ALLOCATE( s_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF s_av = 0.0_wp CASE ( 'sa' ) IF ( .NOT. ALLOCATED( sa_av ) ) THEN ALLOCATE( sa_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF sa_av = 0.0_wp CASE ( 'shf*' ) IF ( .NOT. ALLOCATED( shf_av ) ) THEN ALLOCATE( shf_av(nysg:nyng,nxlg:nxrg) ) ENDIF shf_av = 0.0_wp CASE ( 'shf_eb*' ) IF ( .NOT. ALLOCATED( shf_eb_av ) ) THEN ALLOCATE( shf_eb_av(nysg:nyng,nxlg:nxrg) ) ENDIF shf_eb_av = 0.0_wp CASE ( 't_soil' ) IF ( .NOT. ALLOCATED( t_soil_av ) ) THEN ALLOCATE( t_soil_av(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) ENDIF t_soil_av = 0.0_wp CASE ( 't*' ) IF ( .NOT. ALLOCATED( ts_av ) ) THEN ALLOCATE( ts_av(nysg:nyng,nxlg:nxrg) ) ENDIF ts_av = 0.0_wp CASE ( 'u' ) IF ( .NOT. ALLOCATED( u_av ) ) THEN ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF u_av = 0.0_wp CASE ( 'u*' ) IF ( .NOT. ALLOCATED( us_av ) ) THEN ALLOCATE( us_av(nysg:nyng,nxlg:nxrg) ) ENDIF us_av = 0.0_wp CASE ( 'v' ) IF ( .NOT. ALLOCATED( v_av ) ) THEN ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF v_av = 0.0_wp CASE ( 'vpt' ) IF ( .NOT. ALLOCATED( vpt_av ) ) THEN ALLOCATE( vpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF vpt_av = 0.0_wp CASE ( 'w' ) IF ( .NOT. ALLOCATED( w_av ) ) THEN ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF w_av = 0.0_wp CASE ( 'z0*' ) IF ( .NOT. ALLOCATED( z0_av ) ) THEN ALLOCATE( z0_av(nysg:nyng,nxlg:nxrg) ) ENDIF z0_av = 0.0_wp CASE ( 'z0h*' ) IF ( .NOT. ALLOCATED( z0h_av ) ) THEN ALLOCATE( z0h_av(nysg:nyng,nxlg:nxrg) ) ENDIF z0h_av = 0.0_wp CASE ( 'z0q*' ) IF ( .NOT. ALLOCATED( z0q_av ) ) THEN ALLOCATE( z0q_av(nysg:nyng,nxlg:nxrg) ) ENDIF z0q_av = 0.0_wp CASE DEFAULT ! !-- User-defined quantity CALL user_3d_data_averaging( 'allocate', doav(ii) ) END SELECT ENDDO ENDIF ! !-- Loop of all variables to be averaged. DO ii = 1, doav_n ! !-- Store the array chosen on the temporary array. SELECT CASE ( TRIM( doav(ii) ) ) CASE ( 'c_liq*' ) DO i = nxlg, nxrg DO j = nysg, nyng c_liq_av(j,i) = c_liq_av(j,i) + c_liq(j,i) ENDDO ENDDO CASE ( 'c_soil*' ) DO i = nxlg, nxrg DO j = nysg, nyng c_soil_av(j,i) = c_soil_av(j,i) + (1.0 - c_veg(j,i)) ENDDO ENDDO CASE ( 'c_veg*' ) DO i = nxlg, nxrg DO j = nysg, nyng c_veg_av(j,i) = c_veg_av(j,i) + c_veg(j,i) ENDDO ENDDO CASE ( 'e' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 e_av(k,j,i) = e_av(k,j,i) + e(k,j,i) ENDDO ENDDO ENDDO CASE ( 'ghf_eb*' ) DO i = nxlg, nxrg DO j = nysg, nyng ghf_eb_av(j,i) = ghf_eb_av(j,i) + ghf_eb(j,i) ENDDO ENDDO CASE ( 'lai*' ) DO i = nxlg, nxrg DO j = nysg, nyng lai_av(j,i) = lai_av(j,i) + lai(j,i) ENDDO ENDDO CASE ( 'lpt' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 lpt_av(k,j,i) = lpt_av(k,j,i) + pt(k,j,i) ENDDO ENDDO ENDDO CASE ( 'lwp*' ) DO i = nxlg, nxrg DO j = nysg, nyng lwp_av(j,i) = lwp_av(j,i) + SUM( ql(nzb:nzt,j,i) & * dzw(1:nzt+1) ) * rho_surface ENDDO ENDDO CASE ( 'm_liq_eb*' ) DO i = nxlg, nxrg DO j = nysg, nyng m_liq_eb_av(j,i) = m_liq_eb_av(j,i) + m_liq_eb(j,i) ENDDO ENDDO CASE ( 'm_soil' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb_soil, nzt_soil m_soil_av(k,j,i) = m_soil_av(k,j,i) + m_soil(k,j,i) ENDDO ENDDO ENDDO CASE ( 'nr' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 nr_av(k,j,i) = nr_av(k,j,i) + nr(k,j,i) ENDDO ENDDO ENDDO CASE ( 'ol*' ) DO i = nxlg, nxrg DO j = nysg, nyng ol_av(j,i) = ol_av(j,i) + ol(j,i) ENDDO ENDDO CASE ( 'p' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 p_av(k,j,i) = p_av(k,j,i) + p(k,j,i) ENDDO ENDDO ENDDO CASE ( 'pc' ) DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 pc_av(k,j,i) = pc_av(k,j,i) + prt_count(k,j,i) ENDDO ENDDO ENDDO CASE ( 'pr' ) DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 number_of_particles = prt_count(k,j,i) IF ( number_of_particles <= 0 ) CYCLE particles => grid_particles(k,j,i)%particles(1:number_of_particles) s_r2 = 0.0_wp s_r3 = 0.0_wp DO n = 1, number_of_particles IF ( particles(n)%particle_mask ) THEN s_r2 = s_r2 + particles(n)%radius**2 * & particles(n)%weight_factor s_r3 = s_r3 + particles(n)%radius**3 * & particles(n)%weight_factor ENDIF ENDDO IF ( s_r2 > 0.0_wp ) THEN mean_r = s_r3 / s_r2 ELSE mean_r = 0.0_wp ENDIF pr_av(k,j,i) = pr_av(k,j,i) + mean_r ENDDO ENDDO ENDDO CASE ( 'pr*' ) DO i = nxlg, nxrg DO j = nysg, nyng precipitation_rate_av(j,i) = precipitation_rate_av(j,i) + & precipitation_rate(j,i) ENDDO ENDDO CASE ( 'pt' ) IF ( .NOT. cloud_physics ) THEN DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 pt_av(k,j,i) = pt_av(k,j,i) + pt(k,j,i) ENDDO ENDDO ENDDO ELSE DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 pt_av(k,j,i) = pt_av(k,j,i) + pt(k,j,i) + l_d_cp * & pt_d_t(k) * ql(k,j,i) ENDDO ENDDO ENDDO ENDIF CASE ( 'q' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 q_av(k,j,i) = q_av(k,j,i) + q(k,j,i) ENDDO ENDDO ENDDO CASE ( 'qc' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 qc_av(k,j,i) = qc_av(k,j,i) + qc(k,j,i) ENDDO ENDDO ENDDO CASE ( 'ql' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 ql_av(k,j,i) = ql_av(k,j,i) + ql(k,j,i) ENDDO ENDDO ENDDO CASE ( 'ql_c' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 ql_c_av(k,j,i) = ql_c_av(k,j,i) + ql_c(k,j,i) ENDDO ENDDO ENDDO CASE ( 'ql_v' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 ql_v_av(k,j,i) = ql_v_av(k,j,i) + ql_v(k,j,i) ENDDO ENDDO ENDDO CASE ( 'ql_vp' ) DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 number_of_particles = prt_count(k,j,i) IF ( number_of_particles <= 0 ) CYCLE particles => grid_particles(k,j,i)%particles(1:number_of_particles) DO n = 1, number_of_particles IF ( particles(n)%particle_mask ) THEN ql_vp_av(k,j,i) = ql_vp_av(k,j,i) + & particles(n)%weight_factor / & number_of_particles ENDIF ENDDO ENDDO ENDDO ENDDO CASE ( 'qr' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 qr_av(k,j,i) = qr_av(k,j,i) + qr(k,j,i) ENDDO ENDDO ENDDO CASE ( 'qsws*' ) DO i = nxlg, nxrg DO j = nysg, nyng qsws_av(j,i) = qsws_av(j,i) + qsws(j,i) ENDDO ENDDO CASE ( 'qsws_eb*' ) DO i = nxlg, nxrg DO j = nysg, nyng qsws_eb_av(j,i) = qsws_eb_av(j,i) + qsws_eb(j,i) ENDDO ENDDO CASE ( 'qsws_liq_eb*' ) DO i = nxlg, nxrg DO j = nysg, nyng qsws_liq_eb_av(j,i) = qsws_liq_eb_av(j,i) + qsws_liq_eb(j,i) ENDDO ENDDO CASE ( 'qsws_soil_eb*' ) DO i = nxlg, nxrg DO j = nysg, nyng qsws_soil_eb_av(j,i) = qsws_soil_eb_av(j,i) + qsws_soil_eb(j,i) ENDDO ENDDO CASE ( 'qsws_veg_eb*' ) DO i = nxlg, nxrg DO j = nysg, nyng qsws_veg_eb_av(j,i) = qsws_veg_eb_av(j,i) + qsws_veg_eb(j,i) ENDDO ENDDO CASE ( 'qv' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 qv_av(k,j,i) = qv_av(k,j,i) + q(k,j,i) - ql(k,j,i) ENDDO ENDDO ENDDO CASE ( 'rad_net*' ) DO i = nxlg, nxrg DO j = nysg, nyng rad_net_av(j,i) = rad_net_av(j,i) + rad_net(j,i) ENDDO ENDDO CASE ( 'rad_lw_in' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 rad_lw_in_av(k,j,i) = rad_lw_in_av(k,j,i) + rad_lw_in(k,j,i) ENDDO ENDDO ENDDO CASE ( 'rad_lw_out' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 rad_lw_out_av(k,j,i) = rad_lw_out_av(k,j,i) + rad_lw_out(k,j,i) ENDDO ENDDO ENDDO CASE ( 'rad_lw_cs_hr' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 rad_lw_cs_hr_av(k,j,i) = rad_lw_cs_hr_av(k,j,i) + rad_lw_cs_hr(k,j,i) ENDDO ENDDO ENDDO CASE ( 'rad_lw_hr' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 rad_lw_hr_av(k,j,i) = rad_lw_hr_av(k,j,i) + rad_lw_hr(k,j,i) ENDDO ENDDO ENDDO CASE ( 'rad_sw_in' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 rad_sw_in_av(k,j,i) = rad_sw_in_av(k,j,i) + rad_sw_in(k,j,i) ENDDO ENDDO ENDDO CASE ( 'rad_sw_out' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 rad_sw_out_av(k,j,i) = rad_sw_out_av(k,j,i) + rad_sw_out(k,j,i) ENDDO ENDDO ENDDO CASE ( 'rad_sw_cs_hr' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 rad_sw_cs_hr_av(k,j,i) = rad_sw_cs_hr_av(k,j,i) + rad_sw_cs_hr(k,j,i) ENDDO ENDDO ENDDO CASE ( 'rad_sw_hr' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 rad_sw_hr_av(k,j,i) = rad_sw_hr_av(k,j,i) + rad_sw_hr(k,j,i) ENDDO ENDDO ENDDO CASE ( 'r_a*' ) DO i = nxlg, nxrg DO j = nysg, nyng r_a_av(j,i) = r_a_av(j,i) + r_a(j,i) ENDDO ENDDO CASE ( 'r_s*' ) DO i = nxlg, nxrg DO j = nysg, nyng r_s_av(j,i) = r_s_av(j,i) + r_s(j,i) ENDDO ENDDO CASE ( 'rho' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 rho_av(k,j,i) = rho_av(k,j,i) + rho(k,j,i) ENDDO ENDDO ENDDO CASE ( 's' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 s_av(k,j,i) = s_av(k,j,i) + q(k,j,i) ENDDO ENDDO ENDDO CASE ( 'sa' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 sa_av(k,j,i) = sa_av(k,j,i) + sa(k,j,i) ENDDO ENDDO ENDDO CASE ( 'shf*' ) DO i = nxlg, nxrg DO j = nysg, nyng shf_av(j,i) = shf_av(j,i) + shf(j,i) ENDDO ENDDO CASE ( 'shf_eb*' ) DO i = nxlg, nxrg DO j = nysg, nyng shf_eb_av(j,i) = shf_eb_av(j,i) + shf_eb(j,i) ENDDO ENDDO CASE ( 't*' ) DO i = nxlg, nxrg DO j = nysg, nyng ts_av(j,i) = ts_av(j,i) + ts(j,i) ENDDO ENDDO CASE ( 't_soil' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb_soil, nzt_soil t_soil_av(k,j,i) = t_soil_av(k,j,i) + t_soil(k,j,i) ENDDO ENDDO ENDDO CASE ( 'u' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 u_av(k,j,i) = u_av(k,j,i) + u(k,j,i) ENDDO ENDDO ENDDO CASE ( 'u*' ) DO i = nxlg, nxrg DO j = nysg, nyng us_av(j,i) = us_av(j,i) + us(j,i) ENDDO ENDDO CASE ( 'v' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 v_av(k,j,i) = v_av(k,j,i) + v(k,j,i) ENDDO ENDDO ENDDO CASE ( 'vpt' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 vpt_av(k,j,i) = vpt_av(k,j,i) + vpt(k,j,i) ENDDO ENDDO ENDDO CASE ( 'w' ) DO i = nxlg, nxrg DO j = nysg, nyng DO k = nzb, nzt+1 w_av(k,j,i) = w_av(k,j,i) + w(k,j,i) ENDDO ENDDO ENDDO CASE ( 'z0*' ) DO i = nxlg, nxrg DO j = nysg, nyng z0_av(j,i) = z0_av(j,i) + z0(j,i) ENDDO ENDDO CASE ( 'z0h*' ) DO i = nxlg, nxrg DO j = nysg, nyng z0h_av(j,i) = z0h_av(j,i) + z0h(j,i) ENDDO ENDDO CASE ( 'z0q*' ) DO i = nxlg, nxrg DO j = nysg, nyng z0q_av(j,i) = z0q_av(j,i) + z0q(j,i) ENDDO ENDDO CASE DEFAULT ! !-- User-defined quantity CALL user_3d_data_averaging( 'sum', doav(ii) ) END SELECT ENDDO CALL cpu_log( log_point(34), 'sum_up_3d_data', 'stop' ) END SUBROUTINE sum_up_3d_data