MODULE prognostic_equations_mod !------------------------------------------------------------------------------! ! Actual revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: prognostic_equations.f90 4 2007-02-13 11:33:16Z raasch $ ! RCS Log replace by Id keyword, revision history cleaned up ! ! Revision 1.21 2006/08/04 15:01:07 raasch ! upstream scheme can be forced to be used for tke (use_upstream_for_tke) ! regardless of the timestep scheme used for the other quantities, ! new argument diss in call of diffusion_e ! ! Revision 1.1 2000/04/13 14:56:27 schroeter ! Initial revision ! ! ! Description: ! ------------ ! Solving the prognostic equations and advecting particles. !------------------------------------------------------------------------------! USE arrays_3d USE control_parameters USE cpulog USE grid_variables USE indices USE interfaces USE pegrid USE pointer_interfaces USE statistics USE advec_s_pw_mod USE advec_s_up_mod USE advec_u_pw_mod USE advec_u_up_mod USE advec_v_pw_mod USE advec_v_up_mod USE advec_w_pw_mod USE advec_w_up_mod USE buoyancy_mod USE calc_precipitation_mod USE calc_radiation_mod USE coriolis_mod USE diffusion_e_mod USE diffusion_s_mod USE diffusion_u_mod USE diffusion_v_mod USE diffusion_w_mod USE impact_of_latent_heat_mod USE production_e_mod USE user_actions_mod PRIVATE PUBLIC prognostic_equations, prognostic_equations_fast, & prognostic_equations_vec INTERFACE prognostic_equations MODULE PROCEDURE prognostic_equations END INTERFACE prognostic_equations INTERFACE prognostic_equations_fast MODULE PROCEDURE prognostic_equations_fast END INTERFACE prognostic_equations_fast INTERFACE prognostic_equations_vec MODULE PROCEDURE prognostic_equations_vec END INTERFACE prognostic_equations_vec CONTAINS SUBROUTINE prognostic_equations !------------------------------------------------------------------------------! ! Version with single loop optimization ! ! (Optimized over each single prognostic equation.) !------------------------------------------------------------------------------! IMPLICIT NONE CHARACTER (LEN=9) :: time_to_string INTEGER :: i, j, k REAL :: sat, sbt ! !-- Calculate those variables needed in the tendency terms which need !-- global communication CALL calc_mean_pt_profile( pt, 4 ) IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) ! !-- u-velocity component CALL cpu_log( log_point(5), 'u-equation', 'start' ) ! !-- u-tendency terms with communication IF ( momentum_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_u_ups ENDIF ! !-- u-tendency terms with no communication DO i = nxl, nxr+uxrp DO j = nys, nyn ! !-- Tendency terms IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend(:,j,i) = 0.0 CALL advec_u_pw( i, j ) ELSE IF ( momentum_advec /= 'ups-scheme' ) THEN tend(:,j,i) = 0.0 CALL advec_u_up( i, j ) ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, u_m, & usws_m, v_m, w_m, z0 ) ELSE CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, usws, & v, w, z0 ) ENDIF CALL coriolis( i, j, 1 ) IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) CALL user_actions( i, j, 'u-tendency' ) ! !-- Prognostic equation for u-velocity component DO k = nzb_u_inner(j,i)+1, nzt u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & ) - & tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_u_inner(j,i)+1, nzt tu_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_u_inner(j,i)+1, nzt tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) ENDDO ENDIF ENDIF ENDDO ENDDO CALL cpu_log( log_point(5), 'u-equation', 'stop' ) ! !-- v-velocity component CALL cpu_log( log_point(6), 'v-equation', 'start' ) ! !-- v-tendency terms with communication IF ( momentum_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_v_ups ENDIF ! !-- v-tendency terms with no communication DO i = nxl, nxr DO j = nys, nyn+vynp ! !-- Tendency terms IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend(:,j,i) = 0.0 CALL advec_v_pw( i, j ) ELSE IF ( momentum_advec /= 'ups-scheme' ) THEN tend(:,j,i) = 0.0 CALL advec_v_up( i, j ) ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, u_m, & v_m, vsws_m, w_m, z0 ) ELSE CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & vsws, w, z0 ) ENDIF CALL coriolis( i, j, 2 ) CALL user_actions( i, j, 'v-tendency' ) ! !-- Prognostic equation for v-velocity component DO k = nzb_v_inner(j,i)+1, nzt v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & ) - & tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_v_inner(j,i)+1, nzt tv_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_v_inner(j,i)+1, nzt tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) ENDDO ENDIF ENDIF ENDDO ENDDO CALL cpu_log( log_point(6), 'v-equation', 'stop' ) ! !-- w-velocity component CALL cpu_log( log_point(7), 'w-equation', 'start' ) ! !-- w-tendency terms with communication IF ( momentum_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_w_ups ENDIF ! !-- w-tendency terms with no communication DO i = nxl, nxr DO j = nys, nyn ! !-- Tendency terms IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend(:,j,i) = 0.0 CALL advec_w_pw( i, j ) ELSE IF ( momentum_advec /= 'ups-scheme' ) THEN tend(:,j,i) = 0.0 CALL advec_w_up( i, j ) ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, km_damp_y, & tend, u_m, v_m, w_m, z0 ) ELSE CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & tend, u, v, w, z0 ) ENDIF CALL coriolis( i, j, 3 ) IF ( .NOT. moisture ) THEN CALL buoyancy( i, j, pt, 3, 4 ) ELSE CALL buoyancy( i, j, vpt, 3, 44 ) ENDIF CALL user_actions( i, j, 'w-tendency' ) ! !-- Prognostic equation for w-velocity component DO k = nzb_w_inner(j,i)+1, nzt-1 w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & ) - & tsc(5) * rdf(k) * w(k,j,i) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_w_inner(j,i)+1, nzt-1 tw_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_w_inner(j,i)+1, nzt-1 tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) ENDDO ENDIF ENDIF ENDDO ENDDO CALL cpu_log( log_point(7), 'w-equation', 'stop' ) ! !-- potential temperature CALL cpu_log( log_point(13), 'pt-equation', 'start' ) ! !-- pt-tendency terms with communication IF ( scalar_advec == 'bc-scheme' ) THEN ! !-- Bott-Chlond scheme always uses Euler time step. Thus: sat = 1.0 sbt = 1.0 tend = 0.0 CALL advec_s_bc( pt, 'pt' ) ELSE sat = tsc(1) sbt = tsc(2) IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_s_ups( pt, 'pt' ) ENDIF ENDIF ! !-- pt-tendency terms with no communication DO i = nxl, nxr DO j = nys, nyn ! !-- Tendency terms IF ( scalar_advec == 'bc-scheme' ) THEN CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tend ) ELSE IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend(:,j,i) = 0.0 CALL advec_s_pw( i, j, pt ) ELSE IF ( scalar_advec /= 'ups-scheme' ) THEN tend(:,j,i) = 0.0 CALL advec_s_up( i, j, pt ) ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & THEN CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, tend ) ELSE CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tend ) ENDIF ENDIF ! !-- If required compute heating/cooling due to long wave radiation !-- processes IF ( radiation ) THEN CALL calc_radiation( i, j ) ENDIF ! !-- If required compute impact of latent heat due to precipitation IF ( precipitation ) THEN CALL impact_of_latent_heat( i, j ) ENDIF CALL user_actions( i, j, 'pt-tendency' ) ! !-- Prognostic equation for potential temperature DO k = nzb_s_inner(j,i)+1, nzt-1 pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & dt_3d * ( & sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & ) - & tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 tpt_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) ENDDO ENDIF ENDIF ENDDO ENDDO CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) ! !-- If required, compute prognostic equation for total water content / scalar IF ( moisture .OR. passive_scalar ) THEN CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) ! !-- Scalar/q-tendency terms with communication IF ( scalar_advec == 'bc-scheme' ) THEN ! !-- Bott-Chlond scheme always uses Euler time step. Thus: sat = 1.0 sbt = 1.0 tend = 0.0 CALL advec_s_bc( q, 'q' ) ELSE sat = tsc(1) sbt = tsc(2) IF ( tsc(2) /= 2.0 ) THEN IF ( scalar_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_s_ups( q, 'q' ) ENDIF ENDIF ENDIF ! !-- Scalar/q-tendency terms with no communication DO i = nxl, nxr DO j = nys, nyn ! !-- Tendency-terms IF ( scalar_advec == 'bc-scheme' ) THEN CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, tend ) ELSE IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend(:,j,i) = 0.0 CALL advec_s_pw( i, j, q ) ELSE IF ( scalar_advec /= 'ups-scheme' ) THEN tend(:,j,i) = 0.0 CALL advec_s_up( i, j, q ) ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& THEN CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, & tend ) ELSE CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, tend ) ENDIF ENDIF ! !-- If required compute decrease of total water content due to !-- precipitation IF ( precipitation ) THEN CALL calc_precipitation( i, j ) ENDIF CALL user_actions( i, j, 'q-tendency' ) ! !-- Prognostic equation for total water content / scalar DO k = nzb_s_inner(j,i)+1, nzt-1 q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & dt_3d * ( & sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & ) - & tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 tq_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) ENDDO ENDIF ENDIF ENDDO ENDDO CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) ENDIF ! !-- If required, compute prognostic equation for turbulent kinetic !-- energy (TKE) IF ( .NOT. constant_diffusion ) THEN CALL cpu_log( log_point(16), 'tke-equation', 'start' ) ! !-- TKE-tendency terms with communication CALL production_e_init IF ( .NOT. use_upstream_for_tke ) THEN IF ( scalar_advec == 'bc-scheme' ) THEN ! !-- Bott-Chlond scheme always uses Euler time step. Thus: sat = 1.0 sbt = 1.0 tend = 0.0 CALL advec_s_bc( e, 'e' ) ELSE sat = tsc(1) sbt = tsc(2) IF ( tsc(2) /= 2.0 ) THEN IF ( scalar_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_s_ups( e, 'e' ) ENDIF ENDIF ENDIF ENDIF ! !-- TKE-tendency terms with no communication DO i = nxl, nxr DO j = nys, nyn ! !-- Tendency-terms IF ( scalar_advec == 'bc-scheme' .AND. & .NOT. use_upstream_for_tke ) THEN IF ( .NOT. moisture ) THEN CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & l_grid, pt, rif, tend, zu ) ELSE CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & l_grid, vpt, rif, tend, zu ) ENDIF ELSE IF ( use_upstream_for_tke ) THEN tend(:,j,i) = 0.0 CALL advec_s_up( i, j, e ) ELSE IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & THEN tend(:,j,i) = 0.0 CALL advec_s_pw( i, j, e ) ELSE IF ( scalar_advec /= 'ups-scheme' ) THEN tend(:,j,i) = 0.0 CALL advec_s_up( i, j, e ) ENDIF ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& THEN IF ( .NOT. moisture ) THEN CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & km_m, l_grid, pt_m, rif_m, tend, zu ) ELSE CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & km_m, l_grid, vpt_m, rif_m, tend, zu ) ENDIF ELSE IF ( .NOT. moisture ) THEN CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & l_grid, pt, rif, tend, zu ) ELSE CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & l_grid, vpt, rif, tend, zu ) ENDIF ENDIF ENDIF CALL production_e( i, j ) CALL user_actions( i, j, 'e-tendency' ) ! !-- Prognostic equation for TKE. !-- Eliminate negative TKE values, which can occur due to numerical !-- reasons in the course of the integration. In such cases the old TKE !-- value is reduced by 90%. DO k = nzb_s_inner(j,i)+1, nzt-1 e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & dt_3d * ( & sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & ) IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 te_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) ENDDO ENDIF ENDIF ENDDO ENDDO CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) ENDIF END SUBROUTINE prognostic_equations SUBROUTINE prognostic_equations_fast !------------------------------------------------------------------------------! ! Version with one optimized loop over all equations. It is only allowed to ! be called for the standard Piascek-Williams advection scheme. ! ! The call of this subroutine is embedded in two DO loops over i and j, thus ! communication between CPUs is not allowed in this subroutine. ! ! (Optimized to avoid cache missings, i.e. for Power4/5-architectures.) !------------------------------------------------------------------------------! IMPLICIT NONE CHARACTER (LEN=9) :: time_to_string INTEGER :: i, j, k ! !-- Time measurement can only be performed for the whole set of equations CALL cpu_log( log_point(32), 'all progn.equations', 'start' ) ! !-- Calculate those variables needed in the tendency terms which need !-- global communication CALL calc_mean_pt_profile( pt, 4 ) IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) IF ( .NOT. constant_diffusion ) CALL production_e_init ! !-- Loop over all prognostic equations !$OMP PARALLEL private (i,j,k) !$OMP DO DO i = nxl, nxr+uxrp ! Additional levels for non cyclic boundary DO j = nys, nyn+vynp ! conditions are included ! !-- Tendency terms for u-velocity component IF ( j < nyn+1 ) THEN tend(:,j,i) = 0.0 IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN CALL advec_u_pw( i, j ) ELSE CALL advec_u_up( i, j ) ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & THEN CALL diffusion_u( i, j, ddzu, ddzw, km_m, km_damp_y, tend, & u_m, usws_m, v_m, w_m, z0 ) ELSE CALL diffusion_u( i, j, ddzu, ddzw, km, km_damp_y, tend, u, & usws, v, w, z0 ) ENDIF CALL coriolis( i, j, 1 ) IF ( sloping_surface ) CALL buoyancy( i, j, pt, 1, 4 ) CALL user_actions( i, j, 'u-tendency' ) ! !-- Prognostic equation for u-velocity component DO k = nzb_u_inner(j,i)+1, nzt u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & ) - & tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_u_inner(j,i)+1, nzt tu_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_u_inner(j,i)+1, nzt tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) ENDDO ENDIF ENDIF ENDIF ! !-- Tendency terms for v-velocity component IF ( i < nxr+1 ) THEN tend(:,j,i) = 0.0 IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN CALL advec_v_pw( i, j ) ELSE CALL advec_v_up( i, j ) ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & THEN CALL diffusion_v( i, j, ddzu, ddzw, km_m, km_damp_x, tend, & u_m, v_m, vsws_m, w_m, z0 ) ELSE CALL diffusion_v( i, j, ddzu, ddzw, km, km_damp_x, tend, u, v, & vsws, w, z0 ) ENDIF CALL coriolis( i, j, 2 ) CALL user_actions( i, j, 'v-tendency' ) ! !-- Prognostic equation for v-velocity component DO k = nzb_v_inner(j,i)+1, nzt v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & ) - & tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_v_inner(j,i)+1, nzt tv_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_v_inner(j,i)+1, nzt tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) ENDDO ENDIF ENDIF ENDIF ! !-- Tendency terms for w-velocity component IF ( i < nxr+1 .AND. j < nyn+1 ) THEN tend(:,j,i) = 0.0 IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN CALL advec_w_pw( i, j ) ELSE CALL advec_w_up( i, j ) ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & THEN CALL diffusion_w( i, j, ddzu, ddzw, km_m, km_damp_x, & km_damp_y, tend, u_m, v_m, w_m, z0 ) ELSE CALL diffusion_w( i, j, ddzu, ddzw, km, km_damp_x, km_damp_y, & tend, u, v, w, z0 ) ENDIF CALL coriolis( i, j, 3 ) IF ( .NOT. moisture ) THEN CALL buoyancy( i, j, pt, 3, 4 ) ELSE CALL buoyancy( i, j, vpt, 3, 44 ) ENDIF CALL user_actions( i, j, 'w-tendency' ) ! !-- Prognostic equation for w-velocity component DO k = nzb_w_inner(j,i)+1, nzt-1 w_p(k,j,i) = ( 1.0-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & ) - & tsc(5) * rdf(k) * w(k,j,i) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_w_inner(j,i)+1, nzt-1 tw_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_w_inner(j,i)+1, nzt-1 tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) ENDDO ENDIF ENDIF ! !-- Tendency terms for potential temperature tend(:,j,i) = 0.0 IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN CALL advec_s_pw( i, j, pt ) ELSE CALL advec_s_up( i, j, pt ) ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) & THEN CALL diffusion_s( i, j, ddzu, ddzw, kh_m, pt_m, shf_m, tend ) ELSE CALL diffusion_s( i, j, ddzu, ddzw, kh, pt, shf, tend ) ENDIF ! !-- If required compute heating/cooling due to long wave radiation !-- processes IF ( radiation ) THEN CALL calc_radiation( i, j ) ENDIF ! !-- If required compute impact of latent heat due to precipitation IF ( precipitation ) THEN CALL impact_of_latent_heat( i, j ) ENDIF CALL user_actions( i, j, 'pt-tendency' ) ! !-- Prognostic equation for potential temperature DO k = nzb_s_inner(j,i)+1, nzt-1 pt_p(k,j,i) = ( 1.0-tsc(1) ) * pt_m(k,j,i) + tsc(1)*pt(k,j,i) +& dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & ) - & tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 tpt_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + & 5.3125 * tpt_m(k,j,i) ENDDO ENDIF ENDIF ! !-- If required, compute prognostic equation for total water content / !-- scalar IF ( moisture .OR. passive_scalar ) THEN ! !-- Tendency-terms for total water content / scalar tend(:,j,i) = 0.0 IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & THEN CALL advec_s_pw( i, j, q ) ELSE CALL advec_s_up( i, j, q ) ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& THEN CALL diffusion_s( i, j, ddzu, ddzw, kh_m, q_m, qsws_m, tend ) ELSE CALL diffusion_s( i, j, ddzu, ddzw, kh, q, qsws, tend ) ENDIF ! !-- If required compute decrease of total water content due to !-- precipitation IF ( precipitation ) THEN CALL calc_precipitation( i, j ) ENDIF CALL user_actions( i, j, 'q-tendency' ) ! !-- Prognostic equation for total water content / scalar DO k = nzb_s_inner(j,i)+1, nzt-1 q_p(k,j,i) = ( 1.0-tsc(1) ) * q_m(k,j,i) + tsc(1)*q(k,j,i) +& dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & ) - & tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 tq_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 tq_m(k,j,i) = -9.5625 * tend(k,j,i) + & 5.3125 * tq_m(k,j,i) ENDDO ENDIF ENDIF ENDIF ! !-- If required, compute prognostic equation for turbulent kinetic !-- energy (TKE) IF ( .NOT. constant_diffusion ) THEN ! !-- Tendency-terms for TKE tend(:,j,i) = 0.0 IF ( ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) & .AND. .NOT. use_upstream_for_tke ) THEN CALL advec_s_pw( i, j, e ) ELSE CALL advec_s_up( i, j, e ) ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' )& THEN IF ( .NOT. moisture ) THEN CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & km_m, l_grid, pt_m, rif_m, tend, zu ) ELSE CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e_m, & km_m, l_grid, vpt_m, rif_m, tend, zu ) ENDIF ELSE IF ( .NOT. moisture ) THEN CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & l_grid, pt, rif, tend, zu ) ELSE CALL diffusion_e( i, j, ddzu, dd2zu, ddzw, diss, e, km, & l_grid, vpt, rif, tend, zu ) ENDIF ENDIF CALL production_e( i, j ) CALL user_actions( i, j, 'e-tendency' ) ! !-- Prognostic equation for TKE. !-- Eliminate negative TKE values, which can occur due to numerical !-- reasons in the course of the integration. In such cases the old !-- TKE value is reduced by 90%. DO k = nzb_s_inner(j,i)+1, nzt-1 e_p(k,j,i) = ( 1.0-tsc(1) ) * e_m(k,j,i) + tsc(1)*e(k,j,i) +& dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * te_m(k,j,i) & ) IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 te_m(k,j,i) = tend(k,j,i) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO k = nzb_s_inner(j,i)+1, nzt-1 te_m(k,j,i) = -9.5625 * tend(k,j,i) + & 5.3125 * te_m(k,j,i) ENDDO ENDIF ENDIF ENDIF ! TKE equation ENDIF ! Gridpoints excluding the non-cyclic wall ENDDO ENDDO !$OMP END PARALLEL CALL cpu_log( log_point(32), 'all progn.equations', 'stop' ) END SUBROUTINE prognostic_equations_fast SUBROUTINE prognostic_equations_vec !------------------------------------------------------------------------------! ! Version for vector machines !------------------------------------------------------------------------------! IMPLICIT NONE CHARACTER (LEN=9) :: time_to_string INTEGER :: i, j, k REAL :: sat, sbt ! !-- Calculate those variables needed in the tendency terms which need !-- global communication CALL calc_mean_pt_profile( pt, 4 ) IF ( moisture ) CALL calc_mean_pt_profile( vpt, 44 ) ! !-- u-velocity component CALL cpu_log( log_point(5), 'u-equation', 'start' ) ! !-- u-tendency terms with communication IF ( momentum_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_u_ups ENDIF ! !-- u-tendency terms with no communication IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend = 0.0 CALL advec_u_pw ELSE IF ( momentum_advec /= 'ups-scheme' ) THEN tend = 0.0 CALL advec_u_up ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN CALL diffusion_u( ddzu, ddzw, km_m, km_damp_y, tend, u_m, usws_m, v_m, & w_m, z0 ) ELSE CALL diffusion_u( ddzu, ddzw, km, km_damp_y, tend, u, usws, v, w, z0 ) ENDIF CALL coriolis( 1 ) IF ( sloping_surface ) CALL buoyancy( pt, 1, 4 ) CALL user_actions( 'u-tendency' ) ! !-- Prognostic equation for u-velocity component DO i = nxl, nxr+uxrp DO j = nys, nyn DO k = nzb_u_inner(j,i)+1, nzt u_p(k,j,i) = ( 1.0-tsc(1) ) * u_m(k,j,i) + tsc(1) * u(k,j,i) + & dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tu_m(k,j,i) & - tsc(4) * ( p(k,j,i) - p(k,j,i-1) ) * ddx & ) - & tsc(5) * rdf(k) * ( u(k,j,i) - ug(k) ) ENDDO ENDDO ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO i = nxl, nxr+uxrp DO j = nys, nyn DO k = nzb_u_inner(j,i)+1, nzt tu_m(k,j,i) = tend(k,j,i) ENDDO ENDDO ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO i = nxl, nxr+uxrp DO j = nys, nyn DO k = nzb_u_inner(j,i)+1, nzt tu_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tu_m(k,j,i) ENDDO ENDDO ENDDO ENDIF ENDIF CALL cpu_log( log_point(5), 'u-equation', 'stop' ) ! !-- v-velocity component CALL cpu_log( log_point(6), 'v-equation', 'start' ) ! !-- v-tendency terms with communication IF ( momentum_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_v_ups ENDIF ! !-- v-tendency terms with no communication IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend = 0.0 CALL advec_v_pw ELSE IF ( momentum_advec /= 'ups-scheme' ) THEN tend = 0.0 CALL advec_v_up ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN CALL diffusion_v( ddzu, ddzw, km_m, km_damp_x, tend, u_m, v_m, vsws_m, & w_m, z0 ) ELSE CALL diffusion_v( ddzu, ddzw, km, km_damp_x, tend, u, v, vsws, w, z0 ) ENDIF CALL coriolis( 2 ) CALL user_actions( 'v-tendency' ) ! !-- Prognostic equation for v-velocity component DO i = nxl, nxr DO j = nys, nyn+vynp DO k = nzb_v_inner(j,i)+1, nzt v_p(k,j,i) = ( 1.0-tsc(1) ) * v_m(k,j,i) + tsc(1) * v(k,j,i) + & dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tv_m(k,j,i) & - tsc(4) * ( p(k,j,i) - p(k,j-1,i) ) * ddy & ) - & tsc(5) * rdf(k) * ( v(k,j,i) - vg(k) ) ENDDO ENDDO ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO i = nxl, nxr DO j = nys, nyn+vynp DO k = nzb_v_inner(j,i)+1, nzt tv_m(k,j,i) = tend(k,j,i) ENDDO ENDDO ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO i = nxl, nxr DO j = nys, nyn+vynp DO k = nzb_v_inner(j,i)+1, nzt tv_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tv_m(k,j,i) ENDDO ENDDO ENDDO ENDIF ENDIF CALL cpu_log( log_point(6), 'v-equation', 'stop' ) ! !-- w-velocity component CALL cpu_log( log_point(7), 'w-equation', 'start' ) ! !-- w-tendency terms with communication IF ( momentum_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_w_ups ENDIF ! !-- w-tendency terms with no communication IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend = 0.0 CALL advec_w_pw ELSE IF ( momentum_advec /= 'ups-scheme' ) THEN tend = 0.0 CALL advec_w_up ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN CALL diffusion_w( ddzu, ddzw, km_m, km_damp_x, km_damp_y, tend, u_m, & v_m, w_m, z0 ) ELSE CALL diffusion_w( ddzu, ddzw, km, km_damp_x, km_damp_y, tend, u, v, w, & z0 ) ENDIF CALL coriolis( 3 ) IF ( .NOT. moisture ) THEN CALL buoyancy( pt, 3, 4 ) ELSE CALL buoyancy( vpt, 3, 44 ) ENDIF CALL user_actions( 'w-tendency' ) ! !-- Prognostic equation for w-velocity component DO i = nxl, nxr DO j = nys, nyn DO k = nzb_w_inner(j,i)+1, nzt-1 w_p(k,j,i) = ( 1-tsc(1) ) * w_m(k,j,i) + tsc(1) * w(k,j,i) + & dt_3d * ( & tsc(2) * tend(k,j,i) + tsc(3) * tw_m(k,j,i) & - tsc(4) * ( p(k+1,j,i) - p(k,j,i) ) * ddzu(k+1) & ) - & tsc(5) * rdf(k) * w(k,j,i) ENDDO ENDDO ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_w_inner(j,i)+1, nzt-1 tw_m(k,j,i) = tend(k,j,i) ENDDO ENDDO ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_w_inner(j,i)+1, nzt-1 tw_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tw_m(k,j,i) ENDDO ENDDO ENDDO ENDIF ENDIF CALL cpu_log( log_point(7), 'w-equation', 'stop' ) ! !-- potential temperature CALL cpu_log( log_point(13), 'pt-equation', 'start' ) ! !-- pt-tendency terms with communication IF ( scalar_advec == 'bc-scheme' ) THEN ! !-- Bott-Chlond scheme always uses Euler time step. Thus: sat = 1.0 sbt = 1.0 tend = 0.0 CALL advec_s_bc( pt, 'pt' ) ELSE sat = tsc(1) sbt = tsc(2) IF ( tsc(2) /= 2.0 .AND. scalar_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_s_ups( pt, 'pt' ) ENDIF ENDIF ! !-- pt-tendency terms with no communication IF ( scalar_advec == 'bc-scheme' ) THEN CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tend ) ELSE IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend = 0.0 CALL advec_s_pw( pt ) ELSE IF ( scalar_advec /= 'ups-scheme' ) THEN tend = 0.0 CALL advec_s_up( pt ) ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN CALL diffusion_s( ddzu, ddzw, kh_m, pt_m, shf_m, tend ) ELSE CALL diffusion_s( ddzu, ddzw, kh, pt, shf, tend ) ENDIF ENDIF ! !-- If required compute heating/cooling due to long wave radiation !-- processes IF ( radiation ) THEN CALL calc_radiation ENDIF ! !-- If required compute impact of latent heat due to precipitation IF ( precipitation ) THEN CALL impact_of_latent_heat ENDIF CALL user_actions( 'pt-tendency' ) ! !-- Prognostic equation for potential temperature DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 pt_p(k,j,i) = ( 1 - sat ) * pt_m(k,j,i) + sat * pt(k,j,i) + & dt_3d * ( & sbt * tend(k,j,i) + tsc(3) * tpt_m(k,j,i) & ) - & tsc(5) * rdf(k) * ( pt(k,j,i) - pt_init(k) ) ENDDO ENDDO ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 tpt_m(k,j,i) = tend(k,j,i) ENDDO ENDDO ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 tpt_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tpt_m(k,j,i) ENDDO ENDDO ENDDO ENDIF ENDIF CALL cpu_log( log_point(13), 'pt-equation', 'stop' ) ! !-- If required, compute prognostic equation for total water content / scalar IF ( moisture .OR. passive_scalar ) THEN CALL cpu_log( log_point(29), 'q/s-equation', 'start' ) ! !-- Scalar/q-tendency terms with communication IF ( scalar_advec == 'bc-scheme' ) THEN ! !-- Bott-Chlond scheme always uses Euler time step. Thus: sat = 1.0 sbt = 1.0 tend = 0.0 CALL advec_s_bc( q, 'q' ) ELSE sat = tsc(1) sbt = tsc(2) IF ( tsc(2) /= 2.0 ) THEN IF ( scalar_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_s_ups( q, 'q' ) ENDIF ENDIF ENDIF ! !-- Scalar/q-tendency terms with no communication IF ( scalar_advec == 'bc-scheme' ) THEN CALL diffusion_s( ddzu, ddzw, kh, q, qsws, tend ) ELSE IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend = 0.0 CALL advec_s_pw( q ) ELSE IF ( scalar_advec /= 'ups-scheme' ) THEN tend = 0.0 CALL advec_s_up( q ) ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN CALL diffusion_s( ddzu, ddzw, kh_m, q_m, qsws_m, tend ) ELSE CALL diffusion_s( ddzu, ddzw, kh, q, qsws, tend ) ENDIF ENDIF ! !-- If required compute decrease of total water content due to !-- precipitation IF ( precipitation ) THEN CALL calc_precipitation ENDIF CALL user_actions( 'q-tendency' ) ! !-- Prognostic equation for total water content / scalar DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 q_p(k,j,i) = ( 1 - sat ) * q_m(k,j,i) + sat * q(k,j,i) + & dt_3d * ( & sbt * tend(k,j,i) + tsc(3) * tq_m(k,j,i) & ) - & tsc(5) * rdf(k) * ( q(k,j,i) - q_init(k) ) ENDDO ENDDO ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 tq_m(k,j,i) = tend(k,j,i) ENDDO ENDDO ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 tq_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * tq_m(k,j,i) ENDDO ENDDO ENDDO ENDIF ENDIF CALL cpu_log( log_point(29), 'q/s-equation', 'stop' ) ENDIF ! !-- If required, compute prognostic equation for turbulent kinetic !-- energy (TKE) IF ( .NOT. constant_diffusion ) THEN CALL cpu_log( log_point(16), 'tke-equation', 'start' ) ! !-- TKE-tendency terms with communication CALL production_e_init IF ( .NOT. use_upstream_for_tke ) THEN IF ( scalar_advec == 'bc-scheme' ) THEN ! !-- Bott-Chlond scheme always uses Euler time step. Thus: sat = 1.0 sbt = 1.0 tend = 0.0 CALL advec_s_bc( e, 'e' ) ELSE sat = tsc(1) sbt = tsc(2) IF ( tsc(2) /= 2.0 ) THEN IF ( scalar_advec == 'ups-scheme' ) THEN tend = 0.0 CALL advec_s_ups( e, 'e' ) ENDIF ENDIF ENDIF ENDIF ! !-- TKE-tendency terms with no communication IF ( scalar_advec == 'bc-scheme' .AND. .NOT. use_upstream_for_tke ) & THEN IF ( .NOT. moisture ) THEN CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & rif, tend, zu ) ELSE CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & rif, tend, zu ) ENDIF ELSE IF ( use_upstream_for_tke ) THEN tend = 0.0 CALL advec_s_up( e ) ELSE IF ( tsc(2) == 2.0 .OR. timestep_scheme(1:5) == 'runge' ) THEN tend = 0.0 CALL advec_s_pw( e ) ELSE IF ( scalar_advec /= 'ups-scheme' ) THEN tend = 0.0 CALL advec_s_up( e ) ENDIF ENDIF ENDIF IF ( tsc(2) == 2.0 .AND. timestep_scheme(1:8) == 'leapfrog' ) THEN IF ( .NOT. moisture ) THEN CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & pt_m, rif_m, tend, zu ) ELSE CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e_m, km_m, l_grid, & vpt_m, rif_m, tend, zu ) ENDIF ELSE IF ( .NOT. moisture ) THEN CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, pt, & rif, tend, zu ) ELSE CALL diffusion_e( ddzu, dd2zu, ddzw, diss, e, km, l_grid, vpt, & rif, tend, zu ) ENDIF ENDIF ENDIF CALL production_e CALL user_actions( 'e-tendency' ) ! !-- Prognostic equation for TKE. !-- Eliminate negative TKE values, which can occur due to numerical !-- reasons in the course of the integration. In such cases the old TKE !-- value is reduced by 90%. DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 e_p(k,j,i) = ( 1 - sat ) * e_m(k,j,i) + sat * e(k,j,i) + & dt_3d * ( & sbt * tend(k,j,i) + tsc(3) * te_m(k,j,i) & ) IF ( e_p(k,j,i) < 0.0 ) e_p(k,j,i) = 0.1 * e(k,j,i) ENDDO ENDDO ENDDO ! !-- Calculate tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 te_m(k,j,i) = tend(k,j,i) ENDDO ENDDO ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, nzt-1 te_m(k,j,i) = -9.5625 * tend(k,j,i) + 5.3125 * te_m(k,j,i) ENDDO ENDDO ENDDO ENDIF ENDIF CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) ENDIF END SUBROUTINE prognostic_equations_vec END MODULE prognostic_equations_mod