Ignore:
Timestamp:
Dec 23, 2010 12:06:00 PM (11 years ago)
Author:
suehring
Message:

summary:


Gryschka:

  • Coupling with different resolution and different numbers of PEs in ocean and atmosphere is available
  • Exchange of u and v from ocean surface to atmosphere surface
  • Mirror boundary condition for u and v at the bottom are replaced by dirichlet boundary conditions
  • Inflow turbulence is now defined by flucuations around spanwise mean
  • Bugfixes for cyclic_fill and constant_volume_flow

Suehring:

  • New advection added ( Wicker and Skamarock 5th order ), therefore:
    • New module advec_ws.f90
    • Modified exchange of ghost boundaries.
    • Modified evaluation of turbulent fluxes
    • New index bounds nxlg, nxrg, nysg, nyng

advec_ws.f90


Advection scheme for scalars and momentum using the flux formulation of
Wicker and Skamarock 5th order.
Additionally the module contains of a routine using for initialisation and
steering of the statical evaluation. The computation of turbulent fluxes takes
place inside the advection routines.
In case of vector architectures Dirichlet and Radiation boundary conditions are
outstanding and not available. Furthermore simulations within topography are
not possible so far. A further routine local_diss_ij is available and is used
if a control of dissipative fluxes is desired.

check_parameters.f90


Exchange of parameters between ocean and atmosphere via PE0
Check for illegal combination of ws-scheme and timestep scheme.
Check for topography and ws-scheme.
Check for not cyclic boundary conditions in combination with ws-scheme and
loop_optimization = 'vector'.
Check for call_psolver_at_all_substeps and ws-scheme for momentum_advec.

Different processor/grid topology in atmosphere and ocean is now allowed!
Bugfixes in checking for conserve_volume_flow_mode.

exchange_horiz.f90


Dynamic exchange of ghost points with nbgp_local to ensure that no useless
ghost points exchanged in case of multigrid. type_yz(0) and type_xz(0) used for
normal grid, the remaining types used for the several grid levels.
Exchange is done via MPI-Vectors with a dynamic value of ghost points which
depend on the advection scheme. Exchange of left and right PEs is 10% faster
with MPI-Vectors than without.

flow_statistics.f90


When advection is computed with ws-scheme, turbulent fluxes are already
computed in the respective advection routines and buffered in arrays
sums_xxxx_ws_l(). This is due to a consistent treatment of statistics
with the numerics and to avoid unphysical kinks near the surface. So some if-
requests has to be done to dicern between fluxes from ws-scheme other advection
schemes. Furthermore the computation of z_i is only done if the heat flux
exceeds a minimum value. This affects only simulations of a neutral boundary
layer and is due to reasons of computations in the advection scheme.

inflow_turbulence.f90


Using nbgp recycling planes for a better resolution of the turbulent flow near
the inflow.

init_grid.f90


Definition of new array bounds nxlg, nxrg, nysg, nyng on each PE.
Furthermore the allocation of arrays and steering of loops is done with these
parameters. Call of exchange_horiz are modified.
In case of dirichlet bounday condition at the bottom zu(0)=0.0
dzu_mg has to be set explicitly for a equally spaced grid near bottom.
ddzu_pres added to use a equally spaced grid near bottom.

init_pegrid.f90


Moved determination of target_id's from init_coupling
Determination of parameters needed for coupling (coupling_topology, ngp_a, ngp_o)
with different grid/processor-topology in ocean and atmosphere

Adaption of ngp_xy, ngp_y to a dynamic number of ghost points.
The maximum_grid_level changed from 1 to 0. 0 is the normal grid, 1 to
maximum_grid_level the grids for multigrid, in which 0 and 1 are normal grids.
This distinction is due to reasons of data exchange and performance for the
normal grid and grids in poismg.
The definition of MPI-Vectors adapted to a dynamic numer of ghost points.
New MPI-Vectors for data exchange between left and right boundaries added.
This is due to reasons of performance (10% faster).

ATTENTION: nnz_x undefined problem still has to be solved!!!!!!!!
TEST OUTPUT (TO BE REMOVED) logging mpi2 ierr values

parin.f90


Steering parameter dissipation_control added in inipar.

Makefile


Module advec_ws added.

Modules


Removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc

For coupling with different resolution in ocean and atmophere:
+nx_a, +nx_o, ny_a, +ny_o, ngp_a, ngp_o, +total_2d_o, +total_2d_a,
+coupling_topology

Buffer arrays for the left sided advective fluxes added in arrays_3d.
+flux_s_u, +flux_s_v, +flux_s_w, +diss_s_u, +diss_s_v, +diss_s_w,
+flux_s_pt, +diss_s_pt, +flux_s_e, +diss_s_e, +flux_s_q, +diss_s_q,
+flux_s_sa, +diss_s_sa
3d arrays for dissipation control added. (only necessary for vector arch.)
+var_x, +var_y, +var_z, +gamma_x, +gamma_y, +gamma_z
Default of momentum_advec and scalar_advec changed to 'ws-scheme' .
+exchange_mg added in control_parameters to steer the data exchange.
Parameters +nbgp, +nxlg, +nxrg, +nysg, +nyng added in indices.
flag array +boundary_flags added in indices to steer the degradation of order
of the advective fluxes when non-cyclic boundaries are used.
MPI-datatypes +type_y, +type_y_int and +type_yz for data_exchange added in
pegrid.
+sums_wsus_ws_l, +sums_wsvs_ws_l, +sums_us2_ws_l, +sums_vs2_ws_l,
+sums_ws2_ws_l, +sums_wspts_ws_l, +sums_wssas_ws_l, +sums_wsqs_ws_l
and +weight_substep added in statistics to steer the statistical evaluation
of turbulent fluxes in the advection routines.
LOGICALS +ws_scheme_sca and +ws_scheme_mom added to get a better performance
in prognostic_equations.
LOGICAL +dissipation_control control added to steer numerical dissipation
in ws-scheme.

Changed length of string run_description_header

pres.f90


New allocation of tend when ws-scheme and multigrid is used. This is due to
reasons of perforance of the data_exchange. The same is done with p after
poismg is called.
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng when no
multigrid is used. Calls of exchange_horiz are modified.

bugfix: After pressure correction no volume flow correction in case of
non-cyclic boundary conditions
(has to be done only before pressure correction)

Call of SOR routine is referenced with ddzu_pres.

prognostic_equations.f90


Calls of the advection routines with WS5 added.
Calls of ws_statistics added to set the statistical arrays to zero after each
time step.

advec_particles.f90


Declaration of de_dx, de_dy, de_dz adapted to additional ghost points.
Furthermore the calls of exchange_horiz were modified.

asselin_filter.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

average_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

boundary_conds.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng
Removed mirror boundary conditions for u and v at the bottom in case of
ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set
in init_3d_model

calc_liquid_water_content.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

calc_spectra.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng for
allocation of tend.

check_open.f90


Output of total array size was adapted to nbgp.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays local_2d and total_2d.
Calls of exchange_horiz are modified.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Skip-value skip_do_avs changed to a dynamic adaption of ghost points.

data_output_mask.f90


Calls of exchange_horiz are modified.

diffusion_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_s.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_u.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_v.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_w.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

exchange_horiz_2d.f90


Dynamic exchange of ghost points with nbgp, which depends on the advection
scheme. Exchange between left and right PEs is now done with MPI-vectors.

global_min_max.f90


Adapting of the index arrays, because MINLOC assumes lowerbound
at 1 and not at nbgp.

init_3d_model.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Call ws_init to initialize arrays needed for statistical evaluation and
optimization when ws-scheme is used.
Initial volume flow is now calculated by using the variable hom_sum.
Therefore the correction of initial volume flow for non-flat topography
removed (removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc)
Changed surface boundary conditions for u and v in case of ibc_uv_b == 0 from
mirror bc to dirichlet boundary conditions (u=v=0), so that k=nzb is
representative for the height z0

Bugfix: type conversion of '1' to 64bit for the MAX function (ngp_3d_inner)

init_coupling.f90


determination of target_id's moved to init_pegrid

init_pt_anomaly.f90


Call of exchange_horiz are modified.

init_rankine.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

init_slope.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

header.f90


Output of advection scheme.

poismg.f90


Calls of exchange_horiz are modified.

prandtl_fluxes.f90


Changed surface boundary conditions for u and v from mirror bc to dirichelt bc,
therefore u(uzb,:,:) and v(nzb,:,:) is now representative for the height z0
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

production_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

read_3d_binary.f90


+/- 1 replaced with +/- nbgp when swapping and allocating variables.

sor.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Call of exchange_horiz are modified.
bug removed in declaration of ddzw(), nz replaced by nzt+1

subsidence.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

sum_up_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

surface_coupler.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in
MPI_SEND() and MPI_RECV.
additional case for nonequivalent processor and grid topopolgy in ocean and
atmosphere added (coupling_topology = 1)

Added exchange of u and v from Ocean to Atmosphere

time_integration.f90


Calls of exchange_horiz are modified.
Adaption to slooping surface.

timestep.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_3d_data_averaging.f90, user_data_output_2d.f90, user_data_output_3d.f90,
user_actions.f90, user_init.f90, user_init_plant_canopy.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_read_restart_data.f90


Allocation with nbgp.

wall_fluxes.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

write_compressed.f90


Array bounds and nx, ny adapted with nbgp.

sor.f90


bug removed in declaration of ddzw(), nz replaced by nzt+1

Location:
palm/trunk/SOURCE
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/SOURCE

    • Property svn:mergeinfo set to (toggle deleted branches)
      /palm/branches/suehring423-666
      /palm/branches/letzel/masked_output/SOURCE296-409
  • palm/trunk/SOURCE/sum_up_3d_data.f90

    r484 r667  
    44! Current revisions:
    55! -----------------
    6 
     6nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
    77!
    88! Former revisions:
     
    6565             CASE ( 'e' )
    6666                IF ( .NOT. ALLOCATED( e_av ) )  THEN
    67                    ALLOCATE( e_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     67                   ALLOCATE( e_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    6868                ENDIF
    6969                e_av = 0.0
     
    7171             CASE ( 'lwp*' )
    7272                IF ( .NOT. ALLOCATED( lwp_av ) )  THEN
    73                    ALLOCATE( lwp_av(nys-1:nyn+1,nxl-1:nxr+1) )
     73                   ALLOCATE( lwp_av(nysg:nyng,nxlg:nxrg) )
    7474                ENDIF
    7575                lwp_av = 0.0
     
    7777             CASE ( 'p' )
    7878                IF ( .NOT. ALLOCATED( p_av ) )  THEN
    79                    ALLOCATE( p_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     79                   ALLOCATE( p_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    8080                ENDIF
    8181                p_av = 0.0
     
    8383             CASE ( 'pc' )
    8484                IF ( .NOT. ALLOCATED( pc_av ) )  THEN
    85                    ALLOCATE( pc_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     85                   ALLOCATE( pc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    8686                ENDIF
    8787                pc_av = 0.0
     
    8989             CASE ( 'pr' )
    9090                IF ( .NOT. ALLOCATED( pr_av ) )  THEN
    91                    ALLOCATE( pr_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     91                   ALLOCATE( pr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    9292                ENDIF
    9393                pr_av = 0.0
     
    9595             CASE ( 'prr*' )
    9696                IF ( .NOT. ALLOCATED( precipitation_rate_av ) )  THEN
    97                    ALLOCATE( precipitation_rate_av(nys-1:nyn+1,nxl-1:nxr+1) )
     97                   ALLOCATE( precipitation_rate_av(nysg:nyng,nxlg:nxrg) )
    9898                ENDIF
    9999                precipitation_rate_av = 0.0
     
    101101             CASE ( 'pt' )
    102102                IF ( .NOT. ALLOCATED( pt_av ) )  THEN
    103                    ALLOCATE( pt_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     103                   ALLOCATE( pt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    104104                ENDIF
    105105                pt_av = 0.0
     
    107107             CASE ( 'q' )
    108108                IF ( .NOT. ALLOCATED( q_av ) )  THEN
    109                    ALLOCATE( q_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     109                   ALLOCATE( q_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    110110                ENDIF
    111111                q_av = 0.0
     
    113113             CASE ( 'ql' )
    114114                IF ( .NOT. ALLOCATED( ql_av ) )  THEN
    115                    ALLOCATE( ql_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     115                   ALLOCATE( ql_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    116116                ENDIF
    117117                ql_av = 0.0
     
    119119             CASE ( 'ql_c' )
    120120                IF ( .NOT. ALLOCATED( ql_c_av ) )  THEN
    121                    ALLOCATE( ql_c_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     121                   ALLOCATE( ql_c_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    122122                ENDIF
    123123                ql_c_av = 0.0
     
    125125             CASE ( 'ql_v' )
    126126                IF ( .NOT. ALLOCATED( ql_v_av ) )  THEN
    127                    ALLOCATE( ql_v_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     127                   ALLOCATE( ql_v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    128128                ENDIF
    129129                ql_v_av = 0.0
     
    131131             CASE ( 'ql_vp' )
    132132                IF ( .NOT. ALLOCATED( ql_vp_av ) )  THEN
    133                    ALLOCATE( ql_vp_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     133                   ALLOCATE( ql_vp_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    134134                ENDIF
    135135                ql_vp_av = 0.0
     
    137137             CASE ( 'qsws*' )
    138138                IF ( .NOT. ALLOCATED( qsws_av ) )  THEN
    139                    ALLOCATE( qsws_av(nys-1:nyn+1,nxl-1:nxr+1) )
     139                   ALLOCATE( qsws_av(nysg:nyng,nxlg:nxrg) )
    140140                ENDIF
    141141                qsws_av = 0.0
     
    143143             CASE ( 'qv' )
    144144                IF ( .NOT. ALLOCATED( qv_av ) )  THEN
    145                    ALLOCATE( qv_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     145                   ALLOCATE( qv_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    146146                ENDIF
    147147                qv_av = 0.0
     
    149149             CASE ( 'rho' )
    150150                IF ( .NOT. ALLOCATED( rho_av ) )  THEN
    151                    ALLOCATE( rho_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     151                   ALLOCATE( rho_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    152152                ENDIF
    153153                rho_av = 0.0
     
    155155             CASE ( 's' )
    156156                IF ( .NOT. ALLOCATED( s_av ) )  THEN
    157                    ALLOCATE( s_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     157                   ALLOCATE( s_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    158158                ENDIF
    159159                s_av = 0.0
     
    161161             CASE ( 'sa' )
    162162                IF ( .NOT. ALLOCATED( sa_av ) )  THEN
    163                    ALLOCATE( sa_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     163                   ALLOCATE( sa_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    164164                ENDIF
    165165                sa_av = 0.0
     
    167167             CASE ( 'shf*' )
    168168                IF ( .NOT. ALLOCATED( shf_av ) )  THEN
    169                    ALLOCATE( shf_av(nys-1:nyn+1,nxl-1:nxr+1) )
     169                   ALLOCATE( shf_av(nysg:nyng,nxlg:nxrg) )
    170170                ENDIF
    171171                shf_av = 0.0
     
    173173             CASE ( 't*' )
    174174                IF ( .NOT. ALLOCATED( ts_av ) )  THEN
    175                    ALLOCATE( ts_av(nys-1:nyn+1,nxl-1:nxr+1) )
     175                   ALLOCATE( ts_av(nysg:nyng,nxlg:nxrg) )
    176176                ENDIF
    177177                ts_av = 0.0
     
    179179             CASE ( 'u' )
    180180                IF ( .NOT. ALLOCATED( u_av ) )  THEN
    181                    ALLOCATE( u_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     181                   ALLOCATE( u_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    182182                ENDIF
    183183                u_av = 0.0
     
    185185             CASE ( 'u*' )
    186186                IF ( .NOT. ALLOCATED( us_av ) )  THEN
    187                    ALLOCATE( us_av(nys-1:nyn+1,nxl-1:nxr+1) )
     187                   ALLOCATE( us_av(nysg:nyng,nxlg:nxrg) )
    188188                ENDIF
    189189                us_av = 0.0
     
    191191             CASE ( 'v' )
    192192                IF ( .NOT. ALLOCATED( v_av ) )  THEN
    193                    ALLOCATE( v_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     193                   ALLOCATE( v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    194194                ENDIF
    195195                v_av = 0.0
     
    197197             CASE ( 'vpt' )
    198198                IF ( .NOT. ALLOCATED( vpt_av ) )  THEN
    199                    ALLOCATE( vpt_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     199                   ALLOCATE( vpt_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    200200                ENDIF
    201201                vpt_av = 0.0
     
    203203             CASE ( 'w' )
    204204                IF ( .NOT. ALLOCATED( w_av ) )  THEN
    205                    ALLOCATE( w_av(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) )
     205                   ALLOCATE( w_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
    206206                ENDIF
    207207                w_av = 0.0
     
    209209             CASE ( 'z0*' )
    210210                IF ( .NOT. ALLOCATED( z0_av ) )  THEN
    211                    ALLOCATE( z0_av(nys-1:nyn+1,nxl-1:nxr+1) )
     211                   ALLOCATE( z0_av(nysg:nyng,nxlg:nxrg) )
    212212                ENDIF
    213213                z0_av = 0.0
     
    233233
    234234          CASE ( 'e' )
    235              DO  i = nxl-1, nxr+1
    236                 DO  j = nys-1, nyn+1
     235             DO  i = nxlg, nxrg
     236                DO  j = nysg, nyng
    237237                   DO  k = nzb, nzt+1
    238238                      e_av(k,j,i) = e_av(k,j,i) + e(k,j,i)
     
    242242
    243243          CASE ( 'lwp*' )
    244              DO  i = nxl-1, nxr+1
    245                 DO  j = nys-1, nyn+1
     244             DO  i = nxlg, nxrg
     245                DO  j = nysg, nyng
    246246                   lwp_av(j,i) = lwp_av(j,i) + SUM( ql(nzb:nzt,j,i) * &
    247247                                                    dzw(1:nzt+1) )
     
    250250
    251251          CASE ( 'p' )
    252              DO  i = nxl-1, nxr+1
    253                 DO  j = nys-1, nyn+1
     252             DO  i = nxlg, nxrg
     253                DO  j = nysg, nyng
    254254                   DO  k = nzb, nzt+1
    255255                      p_av(k,j,i) = p_av(k,j,i) + p(k,j,i)
     
    289289
    290290          CASE ( 'pr*' )
    291              DO  i = nxl-1, nxr+1
    292                 DO  j = nys-1, nyn+1
     291             DO  i = nxlg, nxrg
     292                DO  j = nysg, nyng
    293293                   precipitation_rate_av(j,i) = precipitation_rate_av(j,i) + &
    294294                                                precipitation_rate(j,i)
     
    298298          CASE ( 'pt' )
    299299             IF ( .NOT. cloud_physics ) THEN
    300                 DO  i = nxl-1, nxr+1
    301                    DO  j = nys-1, nyn+1
    302                       DO  k = nzb, nzt+1
     300             DO  i = nxlg, nxrg
     301                DO  j = nysg, nyng
     302                   DO  k = nzb, nzt+1
    303303                         pt_av(k,j,i) = pt_av(k,j,i) + pt(k,j,i)
    304304                      ENDDO
     
    306306                ENDDO
    307307             ELSE
    308                 DO  i = nxl-1, nxr+1
    309                    DO  j = nys-1, nyn+1
    310                       DO  k = nzb, nzt+1
     308             DO  i = nxlg, nxrg
     309                DO  j = nysg, nyng
     310                   DO  k = nzb, nzt+1
    311311                         pt_av(k,j,i) = pt_av(k,j,i) + pt(k,j,i) + l_d_cp * &
    312312                                                       pt_d_t(k) * ql(k,j,i)
     
    317317
    318318          CASE ( 'q' )
    319              DO  i = nxl-1, nxr+1
    320                 DO  j = nys-1, nyn+1
     319             DO  i = nxlg, nxrg
     320                DO  j = nysg, nyng
    321321                   DO  k = nzb, nzt+1
    322322                      q_av(k,j,i) = q_av(k,j,i) + q(k,j,i)
     
    326326
    327327          CASE ( 'ql' )
    328              DO  i = nxl-1, nxr+1
    329                 DO  j = nys-1, nyn+1
     328             DO  i = nxlg, nxrg
     329                DO  j = nysg, nyng
    330330                   DO  k = nzb, nzt+1
    331331                      ql_av(k,j,i) = ql_av(k,j,i) + ql(k,j,i)
     
    335335
    336336          CASE ( 'ql_c' )
    337              DO  i = nxl-1, nxr+1
    338                 DO  j = nys-1, nyn+1
     337             DO  i = nxlg, nxrg
     338                DO  j = nysg, nyng
    339339                   DO  k = nzb, nzt+1
    340340                      ql_c_av(k,j,i) = ql_c_av(k,j,i) + ql_c(k,j,i)
     
    344344
    345345          CASE ( 'ql_v' )
    346              DO  i = nxl-1, nxr+1
    347                 DO  j = nys-1, nyn+1
     346             DO  i = nxlg, nxrg
     347                DO  j = nysg, nyng
    348348                   DO  k = nzb, nzt+1
    349349                      ql_v_av(k,j,i) = ql_v_av(k,j,i) + ql_v(k,j,i)
     
    353353
    354354          CASE ( 'ql_vp' )
    355              DO  i = nxl-1, nxr+1
    356                 DO  j = nys-1, nyn+1
     355             DO  i = nxlg, nxrg
     356                DO  j = nysg, nyng
    357357                   DO  k = nzb, nzt+1
    358358                      ql_vp_av(k,j,i) = ql_vp_av(k,j,i) + ql_vp(k,j,i)
     
    362362
    363363          CASE ( 'qsws*' )
    364              DO  i = nxl-1, nxr+1
    365                 DO  j = nys-1, nyn+1
     364             DO  i = nxlg, nxrg
     365                DO  j = nysg, nyng
    366366                   qsws_av(j,i) = qsws_av(j,i) + qsws(j,i)
    367367                ENDDO
     
    369369
    370370          CASE ( 'qv' )
    371              DO  i = nxl-1, nxr+1
    372                 DO  j = nys-1, nyn+1
     371             DO  i = nxlg, nxrg
     372                DO  j = nysg, nyng
    373373                   DO  k = nzb, nzt+1
    374374                      qv_av(k,j,i) = qv_av(k,j,i) + q(k,j,i) - ql(k,j,i)
     
    378378
    379379          CASE ( 'rho' )
    380              DO  i = nxl-1, nxr+1
    381                 DO  j = nys-1, nyn+1
     380             DO  i = nxlg, nxrg
     381                DO  j = nysg, nyng
    382382                   DO  k = nzb, nzt+1
    383383                      rho_av(k,j,i) = rho_av(k,j,i) + rho(k,j,i)
     
    387387
    388388          CASE ( 's' )
    389              DO  i = nxl-1, nxr+1
    390                 DO  j = nys-1, nyn+1
     389             DO  i = nxlg, nxrg
     390                DO  j = nysg, nyng
    391391                   DO  k = nzb, nzt+1
    392392                      s_av(k,j,i) = s_av(k,j,i) + q(k,j,i)
     
    396396
    397397          CASE ( 'sa' )
    398              DO  i = nxl-1, nxr+1
    399                 DO  j = nys-1, nyn+1
     398             DO  i = nxlg, nxrg
     399                DO  j = nysg, nyng
    400400                   DO  k = nzb, nzt+1
    401401                      sa_av(k,j,i) = sa_av(k,j,i) + sa(k,j,i)
     
    405405
    406406          CASE ( 'shf*' )
    407              DO  i = nxl-1, nxr+1
    408                 DO  j = nys-1, nyn+1
     407             DO  i = nxlg, nxrg
     408                DO  j = nysg, nyng
    409409                   shf_av(j,i) = shf_av(j,i) + shf(j,i)
    410410                ENDDO
     
    412412
    413413          CASE ( 't*' )
    414              DO  i = nxl-1, nxr+1
    415                 DO  j = nys-1, nyn+1
     414             DO  i = nxlg, nxrg
     415                DO  j = nysg, nyng
    416416                   ts_av(j,i) = ts_av(j,i) + ts(j,i)
    417417                ENDDO
     
    419419
    420420          CASE ( 'u' )
    421              DO  i = nxl-1, nxr+1
    422                 DO  j = nys-1, nyn+1
     421             DO  i = nxlg, nxrg
     422                DO  j = nysg, nyng
    423423                   DO  k = nzb, nzt+1
    424424                      u_av(k,j,i) = u_av(k,j,i) + u(k,j,i)
     
    428428
    429429          CASE ( 'u*' )
    430              DO  i = nxl-1, nxr+1
    431                 DO  j = nys-1, nyn+1
     430             DO  i = nxlg, nxrg
     431                DO  j = nysg, nyng
    432432                   us_av(j,i) = us_av(j,i) + us(j,i)
    433433                ENDDO
     
    435435
    436436          CASE ( 'v' )
    437              DO  i = nxl-1, nxr+1
    438                 DO  j = nys-1, nyn+1
     437             DO  i = nxlg, nxrg
     438                DO  j = nysg, nyng
    439439                   DO  k = nzb, nzt+1
    440440                      v_av(k,j,i) = v_av(k,j,i) + v(k,j,i)
     
    444444
    445445          CASE ( 'vpt' )
    446              DO  i = nxl-1, nxr+1
    447                 DO  j = nys-1, nyn+1
     446             DO  i = nxlg, nxrg
     447                DO  j = nysg, nyng
    448448                   DO  k = nzb, nzt+1
    449449                      vpt_av(k,j,i) = vpt_av(k,j,i) + vpt(k,j,i)
     
    453453
    454454          CASE ( 'w' )
    455              DO  i = nxl-1, nxr+1
    456                 DO  j = nys-1, nyn+1
     455             DO  i = nxlg, nxrg
     456                DO  j = nysg, nyng
    457457                   DO  k = nzb, nzt+1
    458458                      w_av(k,j,i) = w_av(k,j,i) + w(k,j,i)
     
    462462
    463463          CASE ( 'z0*' )
    464              DO  i = nxl-1, nxr+1
    465                 DO  j = nys-1, nyn+1
     464             DO  i = nxlg, nxrg
     465                DO  j = nysg, nyng
    466466                   z0_av(j,i) = z0_av(j,i) + z0(j,i)
    467467                ENDDO
Note: See TracChangeset for help on using the changeset viewer.