1 | | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> |
2 | | <html><head> |
3 | | |
4 | | |
5 | | |
6 | | |
7 | | |
8 | | |
9 | | |
10 | | |
11 | | |
12 | | |
13 | | |
14 | | |
15 | | |
16 | | <meta http-equiv="content-type" content="text/html; charset=ISO-8859-1"> |
17 | | |
18 | | |
19 | | |
20 | | |
21 | | |
22 | | |
23 | | |
24 | | |
25 | | |
26 | | |
27 | | |
28 | | |
29 | | <title>PALM chapter 4.1</title></head> |
30 | | <body> |
31 | | |
32 | | |
33 | | |
34 | | |
35 | | |
36 | | |
37 | | <h3><a name="chapter4.1"></a>4.1 |
38 | | Initialization parameters</h3> |
39 | | |
40 | | |
41 | | |
42 | | |
43 | | |
44 | | |
45 | | |
46 | | <br> |
47 | | |
48 | | |
49 | | |
50 | | |
51 | | |
52 | | |
53 | | <table style="text-align: left; width: 100%;" border="1" cellpadding="2" cellspacing="2"> |
54 | | |
55 | | |
56 | | |
57 | | |
58 | | |
59 | | |
60 | | <tbody> |
61 | | |
62 | | |
63 | | |
64 | | |
65 | | |
66 | | |
67 | | |
68 | | <tr> |
69 | | |
70 | | |
71 | | |
72 | | |
73 | | |
74 | | |
75 | | <td style="vertical-align: top;"><font size="4"><b>Parameter name</b></font></td> |
76 | | |
77 | | |
78 | | |
79 | | |
80 | | |
81 | | |
82 | | |
83 | | <td style="vertical-align: top;"><font size="4"><b>Type</b></font></td> |
84 | | |
85 | | |
86 | | |
87 | | |
88 | | |
89 | | |
90 | | |
91 | | <td style="vertical-align: top;"> |
92 | | |
93 | | |
94 | | |
95 | | |
96 | | |
97 | | |
98 | | <p><b><font size="4">Default</font></b> <br> |
99 | | |
100 | | |
101 | | |
102 | | |
103 | | |
104 | | |
105 | | <b><font size="4">value</font></b></p> |
106 | | |
107 | | |
108 | | |
109 | | |
110 | | |
111 | | |
112 | | </td> |
113 | | |
114 | | |
115 | | |
116 | | |
117 | | |
118 | | |
119 | | |
120 | | <td style="vertical-align: top;"><font size="4"><b>Explanation</b></font></td> |
121 | | |
122 | | |
123 | | |
124 | | |
125 | | |
126 | | |
127 | | |
128 | | </tr> |
129 | | |
130 | | |
131 | | |
132 | | |
133 | | |
134 | | |
135 | | <tr> |
136 | | |
137 | | |
138 | | |
139 | | |
140 | | |
141 | | |
142 | | <td style="vertical-align: top;"> |
143 | | |
144 | | |
145 | | |
146 | | |
147 | | |
148 | | |
149 | | <p><a name="adjust_mixing_length"></a><b>adjust_mixing_length</b></p> |
150 | | |
151 | | |
152 | | |
153 | | |
154 | | |
155 | | |
156 | | |
157 | | </td> |
158 | | |
159 | | |
160 | | |
161 | | |
162 | | |
163 | | |
164 | | <td style="vertical-align: top;">L</td> |
165 | | |
166 | | |
167 | | |
168 | | |
169 | | |
170 | | |
171 | | |
172 | | <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> |
173 | | |
174 | | |
175 | | |
176 | | |
177 | | |
178 | | |
179 | | <td style="vertical-align: top;"> |
180 | | |
181 | | |
182 | | |
183 | | |
184 | | |
185 | | |
186 | | <p style="font-style: normal;">Near-surface adjustment of the |
187 | | mixing length to the Prandtl-layer law. </p> |
188 | | |
189 | | |
190 | | |
191 | | |
192 | | |
193 | | |
194 | | |
195 | | |
196 | | |
197 | | |
198 | | |
199 | | |
200 | | |
201 | | <p>Usually |
202 | | the mixing length in LES models l<sub>LES</sub> |
203 | | depends (as in PALM) on the grid size and is possibly restricted |
204 | | further in case of stable stratification and near the lower wall (see |
205 | | parameter <a href="#wall_adjustment">wall_adjustment</a>). |
206 | | With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> |
207 | | the Prandtl' mixing length l<sub>PR</sub> = kappa * z/phi |
208 | | is calculated |
209 | | and the mixing length actually used in the model is set l = MIN (l<sub>LES</sub>, |
210 | | l<sub>PR</sub>). This usually gives a decrease of the |
211 | | mixing length at |
212 | | the bottom boundary and considers the fact that eddy sizes |
213 | | decrease in the vicinity of the wall. </p> |
214 | | |
215 | | |
216 | | |
217 | | |
218 | | |
219 | | |
220 | | |
221 | | |
222 | | |
223 | | |
224 | | |
225 | | |
226 | | |
227 | | <p style="font-style: normal;"><b>Warning:</b> So |
228 | | far, there is |
229 | | no good experience with <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> ! </p> |
230 | | |
231 | | |
232 | | |
233 | | |
234 | | |
235 | | |
236 | | |
237 | | |
238 | | |
239 | | |
240 | | |
241 | | |
242 | | |
243 | | <p>With <b>adjust_mixing_length</b> = <span style="font-style: italic;">.T.</span> and the |
244 | | Prandtl-layer being |
245 | | switched on (see <a href="#prandtl_layer">prandtl_layer</a>) |
246 | | <span style="font-style: italic;">'(u*)** 2+neumann'</span> |
247 | | should always be set as the lower boundary condition for the TKE (see <a href="#bc_e_b">bc_e_b</a>), |
248 | | otherwise the near-surface value of the TKE is not in agreement with |
249 | | the Prandtl-layer law (Prandtl-layer law and Prandtl-Kolmogorov-Ansatz |
250 | | should provide the same value for K<sub>m</sub>). A warning |
251 | | is given, |
252 | | if this is not the case.</p> |
253 | | |
254 | | |
255 | | |
256 | | |
257 | | |
258 | | |
259 | | </td> |
260 | | |
261 | | |
262 | | |
263 | | |
264 | | |
265 | | |
266 | | </tr> |
267 | | |
268 | | |
269 | | |
270 | | |
271 | | |
272 | | |
273 | | <tr> |
274 | | |
275 | | |
276 | | |
277 | | |
278 | | |
279 | | |
280 | | |
281 | | <td style="vertical-align: top;"> |
282 | | |
283 | | |
284 | | |
285 | | |
286 | | |
287 | | |
288 | | <p><a name="alpha_surface"></a><b>alpha_surface</b></p> |
289 | | |
290 | | |
291 | | |
292 | | |
293 | | |
294 | | |
295 | | |
296 | | </td> |
297 | | |
298 | | |
299 | | |
300 | | |
301 | | |
302 | | |
303 | | <td style="vertical-align: top;">R<br> |
304 | | |
305 | | |
306 | | |
307 | | |
308 | | |
309 | | |
310 | | </td> |
311 | | |
312 | | |
313 | | |
314 | | |
315 | | |
316 | | |
317 | | |
318 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> |
319 | | |
320 | | |
321 | | |
322 | | |
323 | | |
324 | | |
325 | | </td> |
326 | | |
327 | | |
328 | | |
329 | | |
330 | | |
331 | | |
332 | | |
333 | | <td style="vertical-align: top;"> |
334 | | |
335 | | |
336 | | |
337 | | |
338 | | |
339 | | |
340 | | <p style="font-style: normal;">Inclination of the model domain |
341 | | with respect to the horizontal (in degrees). </p> |
342 | | |
343 | | |
344 | | |
345 | | |
346 | | |
347 | | |
348 | | |
349 | | |
350 | | |
351 | | |
352 | | |
353 | | |
354 | | |
355 | | <p style="font-style: normal;">By means of <b>alpha_surface</b> |
356 | | the model domain can be inclined in x-direction with respect to the |
357 | | horizontal. In this way flows over inclined surfaces (e.g. drainage |
358 | | flows, gravity flows) can be simulated. In case of <b>alpha_surface |
359 | | </b>/= <span style="font-style: italic;">0</span> |
360 | | the buoyancy term |
361 | | appears both in |
362 | | the equation of motion of the u-component and of the w-component.<br> |
363 | | |
364 | | |
365 | | |
366 | | |
367 | | |
368 | | |
369 | | |
370 | | </p> |
371 | | |
372 | | |
373 | | |
374 | | |
375 | | |
376 | | |
377 | | |
378 | | |
379 | | |
380 | | |
381 | | |
382 | | |
383 | | |
384 | | <p style="font-style: normal;">An inclination |
385 | | is only possible in |
386 | | case of cyclic horizontal boundary conditions along x AND y (see <a href="#bc_lr">bc_lr</a> |
387 | | and <a href="#bc_ns">bc_ns</a>) and <a href="#topography">topography</a> = <span style="font-style: italic;">'flat'</span>. </p> |
388 | | |
389 | | |
390 | | |
391 | | |
392 | | |
393 | | |
394 | | |
395 | | |
396 | | |
397 | | |
398 | | |
399 | | |
400 | | |
401 | | <p>Runs with inclined surface still require additional |
402 | | user-defined code as well as modifications to the default code. Please |
403 | | ask the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM |
404 | | developer group</a>.</p> |
405 | | |
406 | | |
407 | | |
408 | | |
409 | | |
410 | | |
411 | | </td> |
412 | | |
413 | | |
414 | | |
415 | | |
416 | | |
417 | | |
418 | | </tr> |
419 | | |
420 | | |
421 | | |
422 | | |
423 | | |
424 | | |
425 | | |
426 | | <tr> |
427 | | |
428 | | |
429 | | |
430 | | |
431 | | |
432 | | |
433 | | <td style="vertical-align: top;"> |
434 | | |
435 | | |
436 | | |
437 | | |
438 | | |
439 | | |
440 | | <p><a name="bc_e_b"></a><b>bc_e_b</b></p> |
441 | | |
442 | | |
443 | | |
444 | | |
445 | | |
446 | | |
447 | | </td> |
448 | | |
449 | | |
450 | | |
451 | | |
452 | | |
453 | | |
454 | | |
455 | | <td style="vertical-align: top;">C * 20</td> |
456 | | |
457 | | |
458 | | |
459 | | |
460 | | |
461 | | |
462 | | <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> |
463 | | |
464 | | |
465 | | |
466 | | |
467 | | |
468 | | |
469 | | |
470 | | <td style="vertical-align: top;"> |
471 | | |
472 | | |
473 | | |
474 | | |
475 | | |
476 | | |
477 | | <p style="font-style: normal;">Bottom boundary condition of the |
478 | | TKE. </p> |
479 | | |
480 | | |
481 | | |
482 | | |
483 | | |
484 | | |
485 | | |
486 | | |
487 | | |
488 | | |
489 | | |
490 | | |
491 | | |
492 | | <p><b>bc_e_b</b> may be |
493 | | set to <span style="font-style: italic;">'neumann'</span> |
494 | | or <span style="font-style: italic;">'(u*) ** 2+neumann'</span>. |
495 | | <b>bc_e_b</b> |
496 | | = <span style="font-style: italic;">'neumann'</span> |
497 | | yields to |
498 | | e(k=0)=e(k=1) (Neumann boundary condition), where e(k=1) is calculated |
499 | | via the prognostic TKE equation. Choice of <span style="font-style: italic;">'(u*)**2+neumann'</span> |
500 | | also yields to |
501 | | e(k=0)=e(k=1), but the TKE at the Prandtl-layer top (k=1) is calculated |
502 | | diagnostically by e(k=1)=(us/0.1)**2. However, this is only allowed if |
503 | | a Prandtl-layer is used (<a href="#prandtl_layer">prandtl_layer</a>). |
504 | | If this is not the case, a warning is given and <b>bc_e_b</b> |
505 | | is reset |
506 | | to <span style="font-style: italic;">'neumann'</span>. |
507 | | </p> |
508 | | |
509 | | |
510 | | |
511 | | |
512 | | |
513 | | |
514 | | |
515 | | |
516 | | |
517 | | |
518 | | |
519 | | |
520 | | |
521 | | <p style="font-style: normal;">At the top |
522 | | boundary a Neumann |
523 | | boundary condition is generally used: (e(nz+1) = e(nz)).</p> |
524 | | |
525 | | |
526 | | |
527 | | |
528 | | |
529 | | |
530 | | </td> |
531 | | |
532 | | |
533 | | |
534 | | |
535 | | |
536 | | |
537 | | |
538 | | </tr> |
539 | | |
540 | | |
541 | | |
542 | | |
543 | | |
544 | | |
545 | | <tr> |
546 | | |
547 | | |
548 | | |
549 | | |
550 | | |
551 | | |
552 | | <td style="vertical-align: top;"> |
553 | | |
554 | | |
555 | | |
556 | | |
557 | | |
558 | | |
559 | | <p><a name="bc_lr"></a><b>bc_lr</b></p> |
560 | | |
561 | | |
562 | | |
563 | | |
564 | | |
565 | | |
566 | | |
567 | | </td> |
568 | | |
569 | | |
570 | | |
571 | | |
572 | | |
573 | | |
574 | | <td style="vertical-align: top;">C * 20</td> |
575 | | |
576 | | |
577 | | |
578 | | |
579 | | |
580 | | |
581 | | |
582 | | <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td> |
583 | | |
584 | | |
585 | | |
586 | | |
587 | | |
588 | | |
589 | | |
590 | | <td style="vertical-align: top;">Boundary |
591 | | condition along x (for all quantities).<br> |
592 | | |
593 | | |
594 | | |
595 | | |
596 | | |
597 | | |
598 | | <br> |
599 | | |
600 | | |
601 | | |
602 | | |
603 | | |
604 | | |
605 | | |
606 | | By default, a cyclic boundary condition is used along x.<br> |
607 | | |
608 | | |
609 | | |
610 | | |
611 | | |
612 | | |
613 | | <br> |
614 | | |
615 | | |
616 | | |
617 | | |
618 | | |
619 | | |
620 | | |
621 | | <span style="font-weight: bold;">bc_lr</span> may |
622 | | also be |
623 | | assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span> |
624 | | (inflow from left, outflow to the right) or <span style="font-style: italic;">'radiation/dirichlet'</span> |
625 | | (inflow from |
626 | | right, outflow to the left). This requires the multi-grid method to be |
627 | | used for solving the Poisson equation for perturbation pressure (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>) |
628 | | and it also requires cyclic boundary conditions along y (see <a href="#bc_ns">bc_ns</a>).<br> |
629 | | |
630 | | |
631 | | |
632 | | |
633 | | |
634 | | |
635 | | <br> |
636 | | |
637 | | |
638 | | |
639 | | |
640 | | |
641 | | |
642 | | |
643 | | In case of these non-cyclic lateral boundaries, a Dirichlet condition |
644 | | is used at the inflow for all quantities (initial vertical profiles - |
645 | | see <a href="#initializing_actions">initializing_actions</a> |
646 | | - are fixed during the run) except u, to which a Neumann (zero |
647 | | gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero |
648 | | gradient) condition is used for the scalars. For perturbation |
649 | | pressure Neumann (zero gradient) conditions are assumed both at the |
650 | | inflow and at the outflow.<br> |
651 | | |
652 | | |
653 | | |
654 | | |
655 | | |
656 | | |
657 | | <br> |
658 | | |
659 | | |
660 | | |
661 | | |
662 | | |
663 | | |
664 | | |
665 | | When using non-cyclic lateral boundaries, a filter is applied to the |
666 | | velocity field in the vicinity of the outflow in order to suppress any |
667 | | reflections of outgoing disturbances (see <a href="#km_damp_max">km_damp_max</a> |
668 | | and <a href="#outflow_damping_width">outflow_damping_width</a>).<br> |
669 | | |
670 | | |
671 | | |
672 | | |
673 | | |
674 | | |
675 | | |
676 | | <br> |
677 | | |
678 | | |
679 | | |
680 | | |
681 | | |
682 | | |
683 | | |
684 | | In order to maintain a turbulent state of the flow, it may be |
685 | | neccessary to continuously impose perturbations on the horizontal |
686 | | velocity field in the vicinity of the inflow throughout the whole run. |
687 | | This can be switched on using <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#create_disturbances">create_disturbances</a>. |
688 | | The horizontal range to which these perturbations are applied is |
689 | | controlled by the parameters <a href="#inflow_disturbance_begin">inflow_disturbance_begin</a> |
690 | | and <a href="#inflow_disturbance_end">inflow_disturbance_end</a>. |
691 | | The vertical range and the perturbation amplitude are given by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</a>, |
692 | | <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</a>, |
693 | | and <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</a>. |
694 | | The time interval at which perturbations are to be imposed is set by <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</a>.<br> |
695 | | |
696 | | |
697 | | |
698 | | |
699 | | |
700 | | |
701 | | |
702 | | <br> |
703 | | |
704 | | |
705 | | |
706 | | |
707 | | |
708 | | |
709 | | |
710 | | In case of non-cyclic horizontal boundaries <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver |
711 | | at_all_substeps</a> = .T. should be used.<br> |
712 | | |
713 | | |
714 | | |
715 | | |
716 | | |
717 | | |
718 | | <br> |
719 | | |
720 | | |
721 | | |
722 | | |
723 | | |
724 | | |
725 | | <span style="font-weight: bold;">Note:</span><br> |
726 | | |
727 | | |
728 | | |
729 | | |
730 | | |
731 | | |
732 | | |
733 | | Using non-cyclic lateral boundaries requires very sensitive adjustments |
734 | | of the inflow (vertical profiles) and the bottom boundary conditions, |
735 | | e.g. a surface heating should not be applied near the inflow boundary |
736 | | because this may significantly disturb the inflow. Please check the |
737 | | model results very carefully.</td> |
738 | | |
739 | | |
740 | | |
741 | | |
742 | | |
743 | | |
744 | | </tr> |
745 | | |
746 | | |
747 | | |
748 | | |
749 | | |
750 | | |
751 | | <tr> |
752 | | |
753 | | |
754 | | |
755 | | |
756 | | |
757 | | |
758 | | <td style="vertical-align: top;"> |
759 | | |
760 | | |
761 | | |
762 | | |
763 | | |
764 | | |
765 | | <p><a name="bc_ns"></a><b>bc_ns</b></p> |
766 | | |
767 | | |
768 | | |
769 | | |
770 | | |
771 | | |
772 | | |
773 | | </td> |
774 | | |
775 | | |
776 | | |
777 | | |
778 | | |
779 | | |
780 | | <td style="vertical-align: top;">C * 20</td> |
781 | | |
782 | | |
783 | | |
784 | | |
785 | | |
786 | | |
787 | | |
788 | | <td style="vertical-align: top;"><span style="font-style: italic;">'cyclic'</span></td> |
789 | | |
790 | | |
791 | | |
792 | | |
793 | | |
794 | | |
795 | | |
796 | | <td style="vertical-align: top;">Boundary |
797 | | condition along y (for all quantities).<br> |
798 | | |
799 | | |
800 | | |
801 | | |
802 | | |
803 | | |
804 | | <br> |
805 | | |
806 | | |
807 | | |
808 | | |
809 | | |
810 | | |
811 | | |
812 | | By default, a cyclic boundary condition is used along y.<br> |
813 | | |
814 | | |
815 | | |
816 | | |
817 | | |
818 | | |
819 | | <br> |
820 | | |
821 | | |
822 | | |
823 | | |
824 | | |
825 | | |
826 | | |
827 | | <span style="font-weight: bold;">bc_ns</span> may |
828 | | also be |
829 | | assigned the values <span style="font-style: italic;">'dirichlet/radiation'</span> |
830 | | (inflow from rear ("north"), outflow to the front ("south")) or <span style="font-style: italic;">'radiation/dirichlet'</span> |
831 | | (inflow from front ("south"), outflow to the rear ("north")). This |
832 | | requires the multi-grid |
833 | | method to be used for solving the Poisson equation for perturbation |
834 | | pressure (see <a href="chapter_4.2.html#psolver">psolver</a>) |
835 | | and it also requires cyclic boundary conditions along x (see<br> |
836 | | |
837 | | |
838 | | |
839 | | |
840 | | |
841 | | |
842 | | <a href="#bc_lr">bc_lr</a>).<br> |
843 | | |
844 | | |
845 | | |
846 | | |
847 | | |
848 | | |
849 | | <br> |
850 | | |
851 | | |
852 | | |
853 | | |
854 | | |
855 | | |
856 | | |
857 | | In case of these non-cyclic lateral boundaries, a Dirichlet condition |
858 | | is used at the inflow for all quantities (initial vertical profiles - |
859 | | see <a href="chapter_4.1.html#initializing_actions">initializing_actions</a> |
860 | | - are fixed during the run) except u, to which a Neumann (zero |
861 | | gradient) condition is applied. At the outflow, a radiation condition is used for all velocity components, while a Neumann (zero |
862 | | gradient) condition is used for the scalars. For perturbation |
863 | | pressure Neumann (zero gradient) conditions are assumed both at the |
864 | | inflow and at the outflow.<br> |
865 | | |
866 | | |
867 | | |
868 | | |
869 | | |
870 | | |
871 | | <br> |
872 | | |
873 | | |
874 | | |
875 | | |
876 | | |
877 | | |
878 | | |
879 | | For further details regarding non-cyclic lateral boundary conditions |
880 | | see <a href="#bc_lr">bc_lr</a>.</td> |
881 | | |
882 | | |
883 | | |
884 | | |
885 | | |
886 | | |
887 | | </tr> |
888 | | |
889 | | |
890 | | |
891 | | |
892 | | |
893 | | |
894 | | |
895 | | <tr> |
896 | | |
897 | | |
898 | | |
899 | | |
900 | | |
901 | | |
902 | | <td style="vertical-align: top;"> |
903 | | |
904 | | |
905 | | |
906 | | |
907 | | |
908 | | |
909 | | <p><a name="bc_p_b"></a><b>bc_p_b</b></p> |
910 | | |
911 | | |
912 | | |
913 | | |
914 | | |
915 | | |
916 | | </td> |
917 | | |
918 | | |
919 | | |
920 | | |
921 | | |
922 | | |
923 | | |
924 | | <td style="vertical-align: top;">C * 20</td> |
925 | | |
926 | | |
927 | | |
928 | | |
929 | | |
930 | | |
931 | | <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> |
932 | | |
933 | | |
934 | | |
935 | | |
936 | | |
937 | | |
938 | | |
939 | | <td style="vertical-align: top;"> |
940 | | |
941 | | |
942 | | |
943 | | |
944 | | |
945 | | |
946 | | <p style="font-style: normal;">Bottom boundary condition of the |
947 | | perturbation pressure. </p> |
948 | | |
949 | | |
950 | | |
951 | | |
952 | | |
953 | | |
954 | | |
955 | | |
956 | | |
957 | | |
958 | | |
959 | | |
960 | | |
961 | | <p>Allowed values |
962 | | are <span style="font-style: italic;">'dirichlet'</span>, |
963 | | <span style="font-style: italic;">'neumann'</span> |
964 | | and <span style="font-style: italic;">'neumann+inhomo'</span>. |
965 | | <span style="font-style: italic;">'dirichlet'</span> |
966 | | sets |
967 | | p(k=0)=0.0, <span style="font-style: italic;">'neumann'</span> |
968 | | sets p(k=0)=p(k=1). <span style="font-style: italic;">'neumann+inhomo'</span> |
969 | | corresponds to an extended Neumann boundary condition where heat flux |
970 | | or temperature inhomogeneities near the |
971 | | surface (pt(k=1)) are additionally regarded (see Shen and |
972 | | LeClerc |
973 | | (1995, Q.J.R. Meteorol. Soc., |
974 | | 1209)). This condition is only permitted with the Prandtl-layer |
975 | | switched on (<a href="#prandtl_layer">prandtl_layer</a>), |
976 | | otherwise the run is terminated. </p> |
977 | | |
978 | | |
979 | | |
980 | | |
981 | | |
982 | | |
983 | | |
984 | | |
985 | | |
986 | | |
987 | | |
988 | | |
989 | | |
990 | | <p>Since |
991 | | at the bottom boundary of the model the vertical |
992 | | velocity |
993 | | disappears (w(k=0) = 0.0), the consistent Neumann condition (<span style="font-style: italic;">'neumann'</span> or <span style="font-style: italic;">'neumann+inhomo'</span>) |
994 | | dp/dz = 0 should |
995 | | be used, which leaves the vertical component w unchanged when the |
996 | | pressure solver is applied. Simultaneous use of the Neumann boundary |
997 | | conditions both at the bottom and at the top boundary (<a href="#bc_p_t">bc_p_t</a>) |
998 | | usually yields no consistent solution for the perturbation pressure and |
999 | | should be avoided.</p> |
1000 | | |
1001 | | |
1002 | | |
1003 | | |
1004 | | |
1005 | | |
1006 | | </td> |
1007 | | |
1008 | | |
1009 | | |
1010 | | |
1011 | | |
1012 | | |
1013 | | </tr> |
1014 | | |
1015 | | |
1016 | | |
1017 | | |
1018 | | |
1019 | | |
1020 | | <tr> |
1021 | | |
1022 | | |
1023 | | |
1024 | | |
1025 | | |
1026 | | |
1027 | | <td style="vertical-align: top;"> |
1028 | | |
1029 | | |
1030 | | |
1031 | | |
1032 | | |
1033 | | |
1034 | | <p><a name="bc_p_t"></a><b>bc_p_t</b></p> |
1035 | | |
1036 | | |
1037 | | |
1038 | | |
1039 | | |
1040 | | |
1041 | | |
1042 | | </td> |
1043 | | |
1044 | | |
1045 | | |
1046 | | |
1047 | | |
1048 | | |
1049 | | <td style="vertical-align: top;">C * 20</td> |
1050 | | |
1051 | | |
1052 | | |
1053 | | |
1054 | | |
1055 | | |
1056 | | |
1057 | | <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> |
1058 | | |
1059 | | |
1060 | | |
1061 | | |
1062 | | |
1063 | | |
1064 | | |
1065 | | <td style="vertical-align: top;"> |
1066 | | |
1067 | | |
1068 | | |
1069 | | |
1070 | | |
1071 | | |
1072 | | <p style="font-style: normal;">Top boundary condition of the |
1073 | | perturbation pressure. </p> |
1074 | | |
1075 | | |
1076 | | |
1077 | | |
1078 | | |
1079 | | |
1080 | | |
1081 | | |
1082 | | |
1083 | | |
1084 | | |
1085 | | |
1086 | | |
1087 | | <p style="font-style: normal;">Allowed values are <span style="font-style: italic;">'dirichlet'</span> |
1088 | | (p(k=nz+1)= 0.0) or <span style="font-style: italic;">'neumann'</span> |
1089 | | (p(k=nz+1)=p(k=nz)). </p> |
1090 | | |
1091 | | |
1092 | | |
1093 | | |
1094 | | |
1095 | | |
1096 | | |
1097 | | |
1098 | | |
1099 | | |
1100 | | |
1101 | | |
1102 | | |
1103 | | <p>Simultaneous use |
1104 | | of Neumann boundary conditions both at the |
1105 | | top and bottom boundary (<a href="#bc_p_b">bc_p_b</a>) |
1106 | | usually yields no consistent solution for the perturbation pressure and |
1107 | | should be avoided. Since at the bottom boundary the Neumann |
1108 | | condition is a good choice (see <a href="#bc_p_b">bc_p_b</a>), |
1109 | | a Dirichlet condition should be set at the top boundary.</p> |
1110 | | |
1111 | | |
1112 | | |
1113 | | |
1114 | | |
1115 | | |
1116 | | </td> |
1117 | | |
1118 | | |
1119 | | |
1120 | | |
1121 | | |
1122 | | |
1123 | | |
1124 | | </tr> |
1125 | | |
1126 | | |
1127 | | |
1128 | | |
1129 | | |
1130 | | |
1131 | | <tr> |
1132 | | |
1133 | | |
1134 | | |
1135 | | |
1136 | | |
1137 | | |
1138 | | <td style="vertical-align: top;"> |
1139 | | |
1140 | | |
1141 | | |
1142 | | |
1143 | | |
1144 | | |
1145 | | <p><a name="bc_pt_b"></a><b>bc_pt_b</b></p> |
1146 | | |
1147 | | |
1148 | | |
1149 | | |
1150 | | |
1151 | | |
1152 | | |
1153 | | </td> |
1154 | | |
1155 | | |
1156 | | |
1157 | | |
1158 | | |
1159 | | |
1160 | | <td style="vertical-align: top;">C*20</td> |
1161 | | |
1162 | | |
1163 | | |
1164 | | |
1165 | | |
1166 | | |
1167 | | |
1168 | | <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> |
1169 | | |
1170 | | |
1171 | | |
1172 | | |
1173 | | |
1174 | | |
1175 | | |
1176 | | <td style="vertical-align: top;"> |
1177 | | |
1178 | | |
1179 | | |
1180 | | |
1181 | | |
1182 | | |
1183 | | <p style="font-style: normal;">Bottom boundary condition of the |
1184 | | potential temperature. </p> |
1185 | | |
1186 | | |
1187 | | |
1188 | | |
1189 | | |
1190 | | |
1191 | | |
1192 | | |
1193 | | |
1194 | | |
1195 | | |
1196 | | |
1197 | | |
1198 | | <p>Allowed values |
1199 | | are <span style="font-style: italic;">'dirichlet'</span> |
1200 | | (pt(k=0) = const. = <a href="#pt_surface">pt_surface</a> |
1201 | | + <a href="#pt_surface_initial_change">pt_surface_initial_change</a>; |
1202 | | the user may change this value during the run using user-defined code) |
1203 | | and <span style="font-style: italic;">'neumann'</span> |
1204 | | (pt(k=0)=pt(k=1)). <br> |
1205 | | |
1206 | | |
1207 | | |
1208 | | |
1209 | | |
1210 | | |
1211 | | |
1212 | | When a constant surface sensible heat flux is used (<a href="#surface_heatflux">surface_heatflux</a>), <b>bc_pt_b</b> |
1213 | | = <span style="font-style: italic;">'neumann'</span> |
1214 | | must be used, because otherwise the resolved scale may contribute to |
1215 | | the surface flux so that a constant value cannot be guaranteed.</p> |
1216 | | |
1217 | | |
1218 | | |
1219 | | |
1220 | | |
1221 | | |
1222 | | |
1223 | | |
1224 | | |
1225 | | |
1226 | | |
1227 | | |
1228 | | <p>In the <a href="chapter_3.8.html">coupled</a> atmosphere executable, <a href="chapter_4.2.html#bc_pt_b">bc_pt_b</a> is internally set and does not need to be prescribed.</p> |
1229 | | |
1230 | | |
1231 | | |
1232 | | |
1233 | | |
1234 | | |
1235 | | |
1236 | | </td> |
1237 | | |
1238 | | |
1239 | | |
1240 | | |
1241 | | |
1242 | | |
1243 | | </tr> |
1244 | | |
1245 | | |
1246 | | |
1247 | | |
1248 | | |
1249 | | |
1250 | | <tr> |
1251 | | |
1252 | | |
1253 | | |
1254 | | |
1255 | | |
1256 | | |
1257 | | <td style="vertical-align: top;"> |
1258 | | |
1259 | | |
1260 | | |
1261 | | |
1262 | | |
1263 | | |
1264 | | <p><a name="pc_pt_t"></a><b>bc_pt_t</b></p> |
1265 | | |
1266 | | |
1267 | | |
1268 | | |
1269 | | |
1270 | | |
1271 | | |
1272 | | </td> |
1273 | | |
1274 | | |
1275 | | |
1276 | | |
1277 | | |
1278 | | |
1279 | | <td style="vertical-align: top;">C * 20</td> |
1280 | | |
1281 | | |
1282 | | |
1283 | | |
1284 | | |
1285 | | |
1286 | | |
1287 | | <td style="vertical-align: top;"><span style="font-style: italic;">'initial_ gradient'</span></td> |
1288 | | |
1289 | | |
1290 | | |
1291 | | |
1292 | | |
1293 | | |
1294 | | |
1295 | | <td style="vertical-align: top;"> |
1296 | | |
1297 | | |
1298 | | |
1299 | | |
1300 | | |
1301 | | |
1302 | | <p style="font-style: normal;">Top boundary condition of the |
1303 | | potential temperature. </p> |
1304 | | |
1305 | | |
1306 | | |
1307 | | |
1308 | | |
1309 | | |
1310 | | |
1311 | | |
1312 | | |
1313 | | |
1314 | | |
1315 | | |
1316 | | |
1317 | | <p>Allowed are the |
1318 | | values <span style="font-style: italic;">'dirichlet' </span>(pt(k=nz+1) |
1319 | | does not change during the run), <span style="font-style: italic;">'neumann'</span> |
1320 | | (pt(k=nz+1)=pt(k=nz)), and <span style="font-style: italic;">'initial_gradient'</span>. |
1321 | | With the 'initial_gradient'-condition the value of the temperature |
1322 | | gradient at the top is |
1323 | | calculated from the initial |
1324 | | temperature profile (see <a href="#pt_surface">pt_surface</a>, |
1325 | | <a href="#pt_vertical_gradient">pt_vertical_gradient</a>) |
1326 | | by bc_pt_t_val = (pt_init(k=nz+1) - |
1327 | | pt_init(k=nz)) / dzu(nz+1).<br> |
1328 | | |
1329 | | |
1330 | | |
1331 | | |
1332 | | |
1333 | | |
1334 | | |
1335 | | Using this value (assumed constant during the |
1336 | | run) the temperature boundary values are calculated as </p> |
1337 | | |
1338 | | |
1339 | | |
1340 | | |
1341 | | |
1342 | | |
1343 | | |
1344 | | |
1345 | | |
1346 | | |
1347 | | |
1348 | | |
1349 | | |
1350 | | <ul> |
1351 | | |
1352 | | |
1353 | | |
1354 | | |
1355 | | |
1356 | | |
1357 | | |
1358 | | |
1359 | | |
1360 | | |
1361 | | |
1362 | | |
1363 | | |
1364 | | <p style="font-style: normal;">pt(k=nz+1) = |
1365 | | pt(k=nz) + |
1366 | | bc_pt_t_val * dzu(nz+1)</p> |
1367 | | |
1368 | | |
1369 | | |
1370 | | |
1371 | | |
1372 | | |
1373 | | |
1374 | | |
1375 | | |
1376 | | |
1377 | | |
1378 | | |
1379 | | |
1380 | | </ul> |
1381 | | |
1382 | | |
1383 | | |
1384 | | |
1385 | | |
1386 | | |
1387 | | |
1388 | | |
1389 | | |
1390 | | |
1391 | | |
1392 | | |
1393 | | |
1394 | | <p style="font-style: normal;">(up to k=nz the prognostic |
1395 | | equation for the temperature is solved).<br> |
1396 | | |
1397 | | |
1398 | | |
1399 | | |
1400 | | |
1401 | | |
1402 | | |
1403 | | When a constant sensible heat flux is used at the top boundary (<a href="chapter_4.1.html#top_heatflux">top_heatflux</a>), |
1404 | | <b>bc_pt_t</b> = <span style="font-style: italic;">'neumann'</span> |
1405 | | must be used, because otherwise the resolved scale may contribute to |
1406 | | the top flux so that a constant value cannot be guaranteed.</p> |
1407 | | |
1408 | | |
1409 | | |
1410 | | |
1411 | | |
1412 | | |
1413 | | </td> |
1414 | | |
1415 | | |
1416 | | |
1417 | | |
1418 | | |
1419 | | |
1420 | | |
1421 | | </tr> |
1422 | | |
1423 | | |
1424 | | |
1425 | | |
1426 | | |
1427 | | |
1428 | | <tr> |
1429 | | |
1430 | | |
1431 | | |
1432 | | |
1433 | | |
1434 | | |
1435 | | <td style="vertical-align: top;"> |
1436 | | |
1437 | | |
1438 | | |
1439 | | |
1440 | | |
1441 | | |
1442 | | <p><a name="bc_q_b"></a><b>bc_q_b</b></p> |
1443 | | |
1444 | | |
1445 | | |
1446 | | |
1447 | | |
1448 | | |
1449 | | |
1450 | | </td> |
1451 | | |
1452 | | |
1453 | | |
1454 | | |
1455 | | |
1456 | | |
1457 | | <td style="vertical-align: top;">C * 20</td> |
1458 | | |
1459 | | |
1460 | | |
1461 | | |
1462 | | |
1463 | | |
1464 | | |
1465 | | <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> |
1466 | | |
1467 | | |
1468 | | |
1469 | | |
1470 | | |
1471 | | |
1472 | | |
1473 | | <td style="vertical-align: top;"> |
1474 | | |
1475 | | |
1476 | | |
1477 | | |
1478 | | |
1479 | | |
1480 | | <p style="font-style: normal;">Bottom boundary condition of the |
1481 | | specific humidity / total water content. </p> |
1482 | | |
1483 | | |
1484 | | |
1485 | | |
1486 | | |
1487 | | |
1488 | | |
1489 | | |
1490 | | |
1491 | | |
1492 | | |
1493 | | |
1494 | | |
1495 | | <p>Allowed |
1496 | | values are <span style="font-style: italic;">'dirichlet'</span> |
1497 | | (q(k=0) = const. = <a href="#q_surface">q_surface</a> |
1498 | | + <a href="#q_surface_initial_change">q_surface_initial_change</a>; |
1499 | | the user may change this value during the run using user-defined code) |
1500 | | and <span style="font-style: italic;">'neumann'</span> |
1501 | | (q(k=0)=q(k=1)). <br> |
1502 | | |
1503 | | |
1504 | | |
1505 | | |
1506 | | |
1507 | | |
1508 | | |
1509 | | When a constant surface latent heat flux is used (<a href="#surface_waterflux">surface_waterflux</a>), <b>bc_q_b</b> |
1510 | | = <span style="font-style: italic;">'neumann'</span> |
1511 | | must be used, because otherwise the resolved scale may contribute to |
1512 | | the surface flux so that a constant value cannot be guaranteed.</p> |
1513 | | |
1514 | | |
1515 | | |
1516 | | |
1517 | | |
1518 | | |
1519 | | |
1520 | | </td> |
1521 | | |
1522 | | |
1523 | | |
1524 | | |
1525 | | |
1526 | | |
1527 | | </tr> |
1528 | | |
1529 | | |
1530 | | |
1531 | | |
1532 | | |
1533 | | |
1534 | | <tr> |
1535 | | |
1536 | | |
1537 | | |
1538 | | |
1539 | | |
1540 | | |
1541 | | <td style="vertical-align: top;"> |
1542 | | |
1543 | | |
1544 | | |
1545 | | |
1546 | | |
1547 | | |
1548 | | <p><a name="bc_q_t"></a><b>bc_q_t</b></p> |
1549 | | |
1550 | | |
1551 | | |
1552 | | |
1553 | | |
1554 | | |
1555 | | |
1556 | | </td> |
1557 | | |
1558 | | |
1559 | | |
1560 | | |
1561 | | |
1562 | | |
1563 | | <td style="vertical-align: top;"><span style="font-style: italic;">C |
1564 | | * 20</span></td> |
1565 | | |
1566 | | |
1567 | | |
1568 | | |
1569 | | |
1570 | | |
1571 | | <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> |
1572 | | |
1573 | | |
1574 | | |
1575 | | |
1576 | | |
1577 | | |
1578 | | |
1579 | | <td style="vertical-align: top;"> |
1580 | | |
1581 | | |
1582 | | |
1583 | | |
1584 | | |
1585 | | |
1586 | | <p style="font-style: normal;">Top boundary condition of the |
1587 | | specific humidity / total water content. </p> |
1588 | | |
1589 | | |
1590 | | |
1591 | | |
1592 | | |
1593 | | |
1594 | | |
1595 | | |
1596 | | |
1597 | | |
1598 | | |
1599 | | |
1600 | | |
1601 | | <p>Allowed |
1602 | | are the values <span style="font-style: italic;">'dirichlet'</span> |
1603 | | (q(k=nz) and q(k=nz+1) do |
1604 | | not change during the run) and <span style="font-style: italic;">'neumann'</span>. |
1605 | | With the Neumann boundary |
1606 | | condition the value of the humidity gradient at the top is calculated |
1607 | | from the |
1608 | | initial humidity profile (see <a href="#q_surface">q_surface</a>, |
1609 | | <a href="#q_vertical_gradient">q_vertical_gradient</a>) |
1610 | | by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<br> |
1611 | | |
1612 | | |
1613 | | |
1614 | | |
1615 | | |
1616 | | |
1617 | | |
1618 | | Using this value (assumed constant during the run) the humidity |
1619 | | boundary values |
1620 | | are calculated as </p> |
1621 | | |
1622 | | |
1623 | | |
1624 | | |
1625 | | |
1626 | | |
1627 | | |
1628 | | |
1629 | | |
1630 | | |
1631 | | |
1632 | | |
1633 | | |
1634 | | <ul> |
1635 | | |
1636 | | |
1637 | | |
1638 | | |
1639 | | |
1640 | | |
1641 | | |
1642 | | |
1643 | | |
1644 | | |
1645 | | |
1646 | | |
1647 | | |
1648 | | <p style="font-style: normal;">q(k=nz+1) =q(k=nz) + |
1649 | | bc_q_t_val * dzu(nz+1)</p> |
1650 | | |
1651 | | |
1652 | | |
1653 | | |
1654 | | |
1655 | | |
1656 | | |
1657 | | |
1658 | | |
1659 | | |
1660 | | |
1661 | | |
1662 | | |
1663 | | </ul> |
1664 | | |
1665 | | |
1666 | | |
1667 | | |
1668 | | |
1669 | | |
1670 | | |
1671 | | |
1672 | | |
1673 | | |
1674 | | |
1675 | | |
1676 | | |
1677 | | <p style="font-style: normal;">(up tp k=nz the prognostic |
1678 | | equation for q is solved). </p> |
1679 | | |
1680 | | |
1681 | | |
1682 | | |
1683 | | |
1684 | | |
1685 | | </td> |
1686 | | |
1687 | | |
1688 | | |
1689 | | |
1690 | | |
1691 | | |
1692 | | </tr> |
1693 | | |
1694 | | |
1695 | | |
1696 | | |
1697 | | |
1698 | | |
1699 | | <tr> |
1700 | | |
1701 | | |
1702 | | |
1703 | | |
1704 | | |
1705 | | |
1706 | | |
1707 | | <td style="vertical-align: top;"> |
1708 | | |
1709 | | |
1710 | | |
1711 | | |
1712 | | |
1713 | | |
1714 | | <p><a name="bc_s_b"></a><b>bc_s_b</b></p> |
1715 | | |
1716 | | |
1717 | | |
1718 | | |
1719 | | |
1720 | | |
1721 | | </td> |
1722 | | |
1723 | | |
1724 | | |
1725 | | |
1726 | | |
1727 | | |
1728 | | |
1729 | | <td style="vertical-align: top;">C * 20</td> |
1730 | | |
1731 | | |
1732 | | |
1733 | | |
1734 | | |
1735 | | |
1736 | | <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> |
1737 | | |
1738 | | |
1739 | | |
1740 | | |
1741 | | |
1742 | | |
1743 | | |
1744 | | <td style="vertical-align: top;"> |
1745 | | |
1746 | | |
1747 | | |
1748 | | |
1749 | | |
1750 | | |
1751 | | <p style="font-style: normal;">Bottom boundary condition of the |
1752 | | scalar concentration. </p> |
1753 | | |
1754 | | |
1755 | | |
1756 | | |
1757 | | |
1758 | | |
1759 | | |
1760 | | |
1761 | | |
1762 | | |
1763 | | |
1764 | | |
1765 | | |
1766 | | <p>Allowed values |
1767 | | are <span style="font-style: italic;">'dirichlet'</span> |
1768 | | (s(k=0) = const. = <a href="#s_surface">s_surface</a> |
1769 | | + <a href="#s_surface_initial_change">s_surface_initial_change</a>; |
1770 | | the user may change this value during the run using user-defined code) |
1771 | | and <span style="font-style: italic;">'neumann'</span> |
1772 | | (s(k=0) = |
1773 | | s(k=1)). <br> |
1774 | | |
1775 | | |
1776 | | |
1777 | | |
1778 | | |
1779 | | |
1780 | | |
1781 | | When a constant surface concentration flux is used (<a href="#surface_scalarflux">surface_scalarflux</a>), <b>bc_s_b</b> |
1782 | | = <span style="font-style: italic;">'neumann'</span> |
1783 | | must be used, because otherwise the resolved scale may contribute to |
1784 | | the surface flux so that a constant value cannot be guaranteed.</p> |
1785 | | |
1786 | | |
1787 | | |
1788 | | |
1789 | | |
1790 | | |
1791 | | |
1792 | | </td> |
1793 | | |
1794 | | |
1795 | | |
1796 | | |
1797 | | |
1798 | | |
1799 | | </tr> |
1800 | | |
1801 | | |
1802 | | |
1803 | | |
1804 | | |
1805 | | |
1806 | | <tr> |
1807 | | |
1808 | | |
1809 | | |
1810 | | |
1811 | | |
1812 | | |
1813 | | <td style="vertical-align: top;"> |
1814 | | |
1815 | | |
1816 | | |
1817 | | |
1818 | | |
1819 | | |
1820 | | <p><a name="bc_s_t"></a><b>bc_s_t</b></p> |
1821 | | |
1822 | | |
1823 | | |
1824 | | |
1825 | | |
1826 | | |
1827 | | |
1828 | | </td> |
1829 | | |
1830 | | |
1831 | | |
1832 | | |
1833 | | |
1834 | | |
1835 | | <td style="vertical-align: top;">C * 20</td> |
1836 | | |
1837 | | |
1838 | | |
1839 | | |
1840 | | |
1841 | | |
1842 | | |
1843 | | <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> |
1844 | | |
1845 | | |
1846 | | |
1847 | | |
1848 | | |
1849 | | |
1850 | | |
1851 | | <td style="vertical-align: top;"> |
1852 | | |
1853 | | |
1854 | | |
1855 | | |
1856 | | |
1857 | | |
1858 | | <p style="font-style: normal;">Top boundary condition of the |
1859 | | scalar concentration. </p> |
1860 | | |
1861 | | |
1862 | | |
1863 | | |
1864 | | |
1865 | | |
1866 | | |
1867 | | |
1868 | | |
1869 | | |
1870 | | |
1871 | | |
1872 | | |
1873 | | <p>Allowed are the |
1874 | | values <span style="font-style: italic;">'dirichlet'</span> |
1875 | | (s(k=nz) and s(k=nz+1) do |
1876 | | not change during the run) and <span style="font-style: italic;">'neumann'</span>. |
1877 | | With the Neumann boundary |
1878 | | condition the value of the scalar concentration gradient at the top is |
1879 | | calculated |
1880 | | from the initial scalar concentration profile (see <a href="#s_surface">s_surface</a>, <a href="#s_vertical_gradient">s_vertical_gradient</a>) |
1881 | | by: bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<br> |
1882 | | |
1883 | | |
1884 | | |
1885 | | |
1886 | | |
1887 | | |
1888 | | |
1889 | | Using this value (assumed constant during the run) the concentration |
1890 | | boundary values |
1891 | | are calculated as </p> |
1892 | | |
1893 | | |
1894 | | |
1895 | | |
1896 | | |
1897 | | |
1898 | | |
1899 | | |
1900 | | |
1901 | | |
1902 | | |
1903 | | |
1904 | | |
1905 | | <ul> |
1906 | | |
1907 | | |
1908 | | |
1909 | | |
1910 | | |
1911 | | |
1912 | | |
1913 | | |
1914 | | |
1915 | | |
1916 | | |
1917 | | |
1918 | | |
1919 | | <p style="font-style: normal;">s(k=nz+1) = s(k=nz) + |
1920 | | bc_s_t_val * dzu(nz+1)</p> |
1921 | | |
1922 | | |
1923 | | |
1924 | | |
1925 | | |
1926 | | |
1927 | | |
1928 | | |
1929 | | |
1930 | | |
1931 | | |
1932 | | |
1933 | | |
1934 | | </ul> |
1935 | | |
1936 | | |
1937 | | |
1938 | | |
1939 | | |
1940 | | |
1941 | | |
1942 | | |
1943 | | |
1944 | | |
1945 | | |
1946 | | |
1947 | | |
1948 | | <p style="font-style: normal;">(up to k=nz the prognostic |
1949 | | equation for the scalar concentration is |
1950 | | solved).</p> |
1951 | | |
1952 | | |
1953 | | |
1954 | | |
1955 | | |
1956 | | |
1957 | | </td> |
1958 | | |
1959 | | |
1960 | | |
1961 | | |
1962 | | |
1963 | | |
1964 | | </tr> |
1965 | | |
1966 | | |
1967 | | |
1968 | | |
1969 | | |
1970 | | |
1971 | | <tr> |
1972 | | |
1973 | | |
1974 | | |
1975 | | |
1976 | | |
1977 | | |
1978 | | <td style="vertical-align: top;"><a name="bc_sa_t"></a><span style="font-weight: bold;">bc_sa_t</span></td> |
1979 | | |
1980 | | |
1981 | | |
1982 | | |
1983 | | |
1984 | | |
1985 | | <td style="vertical-align: top;">C * 20</td> |
1986 | | |
1987 | | |
1988 | | |
1989 | | |
1990 | | |
1991 | | |
1992 | | <td style="vertical-align: top;"><span style="font-style: italic;">'neumann'</span></td> |
1993 | | |
1994 | | |
1995 | | |
1996 | | |
1997 | | |
1998 | | |
1999 | | <td style="vertical-align: top;"> |
2000 | | |
2001 | | |
2002 | | |
2003 | | |
2004 | | |
2005 | | |
2006 | | <p style="font-style: normal;">Top boundary condition of the salinity. </p> |
2007 | | |
2008 | | |
2009 | | |
2010 | | |
2011 | | |
2012 | | |
2013 | | |
2014 | | |
2015 | | |
2016 | | |
2017 | | |
2018 | | |
2019 | | |
2020 | | <p>This parameter only comes into effect for ocean runs (see parameter <a href="#ocean">ocean</a>).</p> |
2021 | | |
2022 | | |
2023 | | |
2024 | | |
2025 | | |
2026 | | |
2027 | | |
2028 | | |
2029 | | |
2030 | | |
2031 | | |
2032 | | |
2033 | | <p style="font-style: normal;">Allowed are the |
2034 | | values <span style="font-style: italic;">'dirichlet' </span>(sa(k=nz+1) |
2035 | | does not change during the run) and <span style="font-style: italic;">'neumann'</span> |
2036 | | (sa(k=nz+1)=sa(k=nz))<span style="font-style: italic;"></span>. <br> |
2037 | | |
2038 | | |
2039 | | |
2040 | | |
2041 | | |
2042 | | |
2043 | | <br> |
2044 | | |
2045 | | |
2046 | | |
2047 | | |
2048 | | |
2049 | | |
2050 | | |
2051 | | When a constant salinity flux is used at the top boundary (<a href="chapter_4.1.html#top_salinityflux">top_salinityflux</a>), |
2052 | | <b>bc_sa_t</b> = <span style="font-style: italic;">'neumann'</span> |
2053 | | must be used, because otherwise the resolved scale may contribute to |
2054 | | the top flux so that a constant value cannot be guaranteed.</p> |
2055 | | |
2056 | | |
2057 | | |
2058 | | |
2059 | | |
2060 | | |
2061 | | </td> |
2062 | | |
2063 | | |
2064 | | |
2065 | | |
2066 | | |
2067 | | |
2068 | | </tr> |
2069 | | |
2070 | | |
2071 | | |
2072 | | |
2073 | | |
2074 | | |
2075 | | <tr> |
2076 | | |
2077 | | |
2078 | | |
2079 | | |
2080 | | |
2081 | | |
2082 | | <td style="vertical-align: top;"> |
2083 | | |
2084 | | |
2085 | | |
2086 | | |
2087 | | |
2088 | | |
2089 | | <p><a name="bc_uv_b"></a><b>bc_uv_b</b></p> |
2090 | | |
2091 | | |
2092 | | |
2093 | | |
2094 | | |
2095 | | |
2096 | | |
2097 | | </td> |
2098 | | |
2099 | | |
2100 | | |
2101 | | |
2102 | | |
2103 | | |
2104 | | <td style="vertical-align: top;">C * 20</td> |
2105 | | |
2106 | | |
2107 | | |
2108 | | |
2109 | | |
2110 | | |
2111 | | |
2112 | | <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> |
2113 | | |
2114 | | |
2115 | | |
2116 | | |
2117 | | |
2118 | | |
2119 | | |
2120 | | <td style="vertical-align: top;"> |
2121 | | |
2122 | | |
2123 | | |
2124 | | |
2125 | | |
2126 | | |
2127 | | <p style="font-style: normal;">Bottom boundary condition of the |
2128 | | horizontal velocity components u and v. </p> |
2129 | | |
2130 | | |
2131 | | |
2132 | | |
2133 | | |
2134 | | |
2135 | | |
2136 | | |
2137 | | |
2138 | | |
2139 | | |
2140 | | |
2141 | | |
2142 | | <p>Allowed |
2143 | | values are <span style="font-style: italic;">'dirichlet' </span>and |
2144 | | <span style="font-style: italic;">'neumann'</span>. <b>bc_uv_b</b> |
2145 | | = <span style="font-style: italic;">'dirichlet'</span> |
2146 | | yields the |
2147 | | no-slip condition with u=v=0 at the bottom. Due to the staggered grid |
2148 | | u(k=0) and v(k=0) are located at z = - 0,5 * <a href="#dz">dz</a> |
2149 | | (below the bottom), while u(k=1) and v(k=1) are located at z = +0,5 * |
2150 | | dz. u=v=0 at the bottom is guaranteed using mirror boundary |
2151 | | condition: </p> |
2152 | | |
2153 | | |
2154 | | |
2155 | | |
2156 | | |
2157 | | |
2158 | | |
2159 | | |
2160 | | |
2161 | | |
2162 | | |
2163 | | |
2164 | | |
2165 | | <ul> |
2166 | | |
2167 | | |
2168 | | |
2169 | | |
2170 | | |
2171 | | |
2172 | | |
2173 | | |
2174 | | |
2175 | | |
2176 | | |
2177 | | |
2178 | | |
2179 | | <p style="font-style: normal;">u(k=0) = - u(k=1) and v(k=0) = - |
2180 | | v(k=1)</p> |
2181 | | |
2182 | | |
2183 | | |
2184 | | |
2185 | | |
2186 | | |
2187 | | |
2188 | | |
2189 | | |
2190 | | |
2191 | | |
2192 | | |
2193 | | |
2194 | | </ul> |
2195 | | |
2196 | | |
2197 | | |
2198 | | |
2199 | | |
2200 | | |
2201 | | |
2202 | | |
2203 | | |
2204 | | |
2205 | | |
2206 | | |
2207 | | |
2208 | | <p style="font-style: normal;">The |
2209 | | Neumann boundary condition |
2210 | | yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) = |
2211 | | v(k=1). |
2212 | | With Prandtl - layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>), the free-slip condition is not |
2213 | | allowed (otherwise the run will be terminated)<font color="#000000">.</font></p> |
2214 | | |
2215 | | |
2216 | | |
2217 | | |
2218 | | |
2219 | | |
2220 | | |
2221 | | </td> |
2222 | | |
2223 | | |
2224 | | |
2225 | | |
2226 | | |
2227 | | |
2228 | | </tr> |
2229 | | |
2230 | | |
2231 | | |
2232 | | |
2233 | | |
2234 | | |
2235 | | <tr> |
2236 | | |
2237 | | |
2238 | | |
2239 | | |
2240 | | |
2241 | | |
2242 | | <td style="vertical-align: top;"> |
2243 | | |
2244 | | |
2245 | | |
2246 | | |
2247 | | |
2248 | | |
2249 | | <p><a name="bc_uv_t"></a><b>bc_uv_t</b></p> |
2250 | | |
2251 | | |
2252 | | |
2253 | | |
2254 | | |
2255 | | |
2256 | | |
2257 | | </td> |
2258 | | |
2259 | | |
2260 | | |
2261 | | |
2262 | | |
2263 | | |
2264 | | <td style="vertical-align: top;">C * 20</td> |
2265 | | |
2266 | | |
2267 | | |
2268 | | |
2269 | | |
2270 | | |
2271 | | |
2272 | | <td style="vertical-align: top;"><span style="font-style: italic;">'dirichlet'</span></td> |
2273 | | |
2274 | | |
2275 | | |
2276 | | |
2277 | | |
2278 | | |
2279 | | |
2280 | | <td style="vertical-align: top;"> |
2281 | | |
2282 | | |
2283 | | |
2284 | | |
2285 | | |
2286 | | |
2287 | | <p style="font-style: normal;">Top boundary condition of the |
2288 | | horizontal velocity components u and v. </p> |
2289 | | |
2290 | | |
2291 | | |
2292 | | |
2293 | | |
2294 | | |
2295 | | |
2296 | | |
2297 | | |
2298 | | |
2299 | | |
2300 | | |
2301 | | |
2302 | | <p>Allowed |
2303 | | values are <span style="font-style: italic;">'dirichlet'</span>, <span style="font-style: italic;">'dirichlet_0'</span> |
2304 | | and <span style="font-style: italic;">'neumann'</span>. |
2305 | | The |
2306 | | Dirichlet condition yields u(k=nz+1) = ug(nz+1) and v(k=nz+1) = |
2307 | | vg(nz+1), |
2308 | | Neumann condition yields the free-slip condition with u(k=nz+1) = |
2309 | | u(k=nz) and v(k=nz+1) = v(k=nz) (up to k=nz the prognostic equations |
2310 | | for the velocities are solved). The special condition <span style="font-style: italic;">'dirichlet_0'</span> can be used for channel flow, it yields the no-slip condition u(k=nz+1) = ug(nz+1) = 0 and v(k=nz+1) = |
2311 | | vg(nz+1) = 0.</p> |
2312 | | |
2313 | | |
2314 | | |
2315 | | |
2316 | | |
2317 | | |
2318 | | |
2319 | | |
2320 | | |
2321 | | |
2322 | | |
2323 | | |
2324 | | <p>In the <a href="chapter_3.8.html">coupled</a> ocean executable, <a href="chapter_4.2.html#bc_uv_t">bc_uv_t</a> is internally set ('neumann') and does not need to be prescribed.</p> |
2325 | | |
2326 | | |
2327 | | |
2328 | | |
2329 | | |
2330 | | |
2331 | | </td> |
2332 | | |
2333 | | |
2334 | | |
2335 | | |
2336 | | |
2337 | | |
2338 | | </tr> |
2339 | | |
2340 | | |
2341 | | |
2342 | | |
2343 | | |
2344 | | |
2345 | | <tr> |
2346 | | |
2347 | | |
2348 | | |
2349 | | |
2350 | | |
2351 | | |
2352 | | <td style="vertical-align: top;"><a name="bottom_salinityflux"></a><span style="font-weight: bold;">bottom_salinityflux</span></td> |
2353 | | |
2354 | | |
2355 | | |
2356 | | |
2357 | | |
2358 | | |
2359 | | <td style="vertical-align: top;">R</td> |
2360 | | |
2361 | | |
2362 | | |
2363 | | |
2364 | | |
2365 | | |
2366 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> |
2367 | | |
2368 | | |
2369 | | |
2370 | | |
2371 | | |
2372 | | |
2373 | | <td style="vertical-align: top;"> |
2374 | | |
2375 | | |
2376 | | |
2377 | | |
2378 | | |
2379 | | |
2380 | | <p>Kinematic salinity flux near the surface (in psu m/s). </p> |
2381 | | |
2382 | | |
2383 | | |
2384 | | |
2385 | | |
2386 | | |
2387 | | This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>). |
2388 | | |
2389 | | |
2390 | | |
2391 | | |
2392 | | |
2393 | | |
2394 | | <p>The |
2395 | | respective salinity flux value is used |
2396 | | as bottom (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann |
2397 | | condition must be used for the salinity, which is currently the only available condition.<br> |
2398 | | |
2399 | | |
2400 | | |
2401 | | |
2402 | | |
2403 | | |
2404 | | </p> |
2405 | | |
2406 | | |
2407 | | |
2408 | | |
2409 | | |
2410 | | |
2411 | | </td> |
2412 | | |
2413 | | |
2414 | | |
2415 | | |
2416 | | |
2417 | | |
2418 | | </tr> |
2419 | | |
2420 | | |
2421 | | |
2422 | | |
2423 | | |
2424 | | |
2425 | | <tr> |
2426 | | |
2427 | | |
2428 | | |
2429 | | |
2430 | | |
2431 | | |
2432 | | |
2433 | | <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_height"></a>building_height</span></td> |
2434 | | |
2435 | | |
2436 | | |
2437 | | |
2438 | | |
2439 | | |
2440 | | |
2441 | | <td style="vertical-align: top;">R</td> |
2442 | | |
2443 | | |
2444 | | |
2445 | | |
2446 | | |
2447 | | |
2448 | | <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td> |
2449 | | |
2450 | | |
2451 | | |
2452 | | |
2453 | | |
2454 | | |
2455 | | <td>Height |
2456 | | of a single building in m.<br> |
2457 | | |
2458 | | |
2459 | | |
2460 | | |
2461 | | |
2462 | | |
2463 | | <br> |
2464 | | |
2465 | | |
2466 | | |
2467 | | |
2468 | | |
2469 | | |
2470 | | <span style="font-weight: bold;">building_height</span> must |
2471 | | be less than the height of the model domain. This parameter requires |
2472 | | the use of <a href="#topography">topography</a> |
2473 | | = <span style="font-style: italic;">'single_building'</span>.</td> |
2474 | | |
2475 | | |
2476 | | |
2477 | | |
2478 | | |
2479 | | |
2480 | | |
2481 | | </tr> |
2482 | | |
2483 | | |
2484 | | |
2485 | | |
2486 | | |
2487 | | |
2488 | | <tr> |
2489 | | |
2490 | | |
2491 | | |
2492 | | |
2493 | | |
2494 | | |
2495 | | <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_x"></a>building_length_x</span></td> |
2496 | | |
2497 | | |
2498 | | |
2499 | | |
2500 | | |
2501 | | |
2502 | | |
2503 | | <td style="vertical-align: top;">R</td> |
2504 | | |
2505 | | |
2506 | | |
2507 | | |
2508 | | |
2509 | | |
2510 | | <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td> |
2511 | | |
2512 | | |
2513 | | |
2514 | | |
2515 | | |
2516 | | |
2517 | | <td><span style="font-style: italic;"></span>Width of a single |
2518 | | building in m.<br> |
2519 | | |
2520 | | |
2521 | | |
2522 | | |
2523 | | |
2524 | | |
2525 | | <br> |
2526 | | |
2527 | | |
2528 | | |
2529 | | |
2530 | | |
2531 | | |
2532 | | |
2533 | | Currently, <span style="font-weight: bold;">building_length_x</span> |
2534 | | must be at least <span style="font-style: italic;">3 |
2535 | | * </span><a style="font-style: italic;" href="#dx">dx</a> and no more than <span style="font-style: italic;">( </span><a style="font-style: italic;" href="#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="#dx">dx</a> |
2536 | | </span><span style="font-style: italic;">- <a href="#building_wall_left">building_wall_left</a></span>. |
2537 | | This parameter requires the use of <a href="#topography">topography</a> |
2538 | | = <span style="font-style: italic;">'single_building'</span>.</td> |
2539 | | |
2540 | | |
2541 | | |
2542 | | |
2543 | | |
2544 | | |
2545 | | |
2546 | | </tr> |
2547 | | |
2548 | | |
2549 | | |
2550 | | |
2551 | | |
2552 | | |
2553 | | <tr> |
2554 | | |
2555 | | |
2556 | | |
2557 | | |
2558 | | |
2559 | | |
2560 | | <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_length_y"></a>building_length_y</span></td> |
2561 | | |
2562 | | |
2563 | | |
2564 | | |
2565 | | |
2566 | | |
2567 | | |
2568 | | <td style="vertical-align: top;">R</td> |
2569 | | |
2570 | | |
2571 | | |
2572 | | |
2573 | | |
2574 | | |
2575 | | <td style="vertical-align: top;"><span style="font-style: italic;">50.0</span></td> |
2576 | | |
2577 | | |
2578 | | |
2579 | | |
2580 | | |
2581 | | |
2582 | | <td>Depth |
2583 | | of a single building in m.<br> |
2584 | | |
2585 | | |
2586 | | |
2587 | | |
2588 | | |
2589 | | |
2590 | | <br> |
2591 | | |
2592 | | |
2593 | | |
2594 | | |
2595 | | |
2596 | | |
2597 | | |
2598 | | Currently, <span style="font-weight: bold;">building_length_y</span> |
2599 | | must be at least <span style="font-style: italic;">3 |
2600 | | * </span><a style="font-style: italic;" href="#dy">dy</a> and no more than <span style="font-style: italic;">( </span><a style="font-style: italic;" href="#ny">ny</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="#dy">dy</a></span><span style="font-style: italic;"> - <a href="#building_wall_south">building_wall_south</a></span>. This parameter requires |
2601 | | the use of <a href="#topography">topography</a> |
2602 | | = <span style="font-style: italic;">'single_building'</span>.</td> |
2603 | | |
2604 | | |
2605 | | |
2606 | | |
2607 | | |
2608 | | |
2609 | | |
2610 | | </tr> |
2611 | | |
2612 | | |
2613 | | |
2614 | | |
2615 | | |
2616 | | |
2617 | | <tr> |
2618 | | |
2619 | | |
2620 | | |
2621 | | |
2622 | | |
2623 | | |
2624 | | <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_left"></a>building_wall_left</span></td> |
2625 | | |
2626 | | |
2627 | | |
2628 | | |
2629 | | |
2630 | | |
2631 | | |
2632 | | <td style="vertical-align: top;">R</td> |
2633 | | |
2634 | | |
2635 | | |
2636 | | |
2637 | | |
2638 | | |
2639 | | <td style="vertical-align: top;"><span style="font-style: italic;">building centered in x-direction</span></td> |
2640 | | |
2641 | | |
2642 | | |
2643 | | |
2644 | | |
2645 | | |
2646 | | |
2647 | | <td>x-coordinate of the left building wall (distance between the |
2648 | | left building wall and the left border of the model domain) in m.<br> |
2649 | | |
2650 | | |
2651 | | |
2652 | | |
2653 | | |
2654 | | |
2655 | | |
2656 | | <br> |
2657 | | |
2658 | | |
2659 | | |
2660 | | |
2661 | | |
2662 | | |
2663 | | |
2664 | | Currently, <span style="font-weight: bold;">building_wall_left</span> |
2665 | | must be at least <span style="font-style: italic;">1 |
2666 | | * </span><a style="font-style: italic;" href="#dx">dx</a> and less than <span style="font-style: italic;">( <a href="#nx">nx</a> |
2667 | | - 1 ) * <a href="#dx">dx</a> - <a href="#building_length_x">building_length_x</a></span>. |
2668 | | This parameter requires the use of <a href="#topography">topography</a> |
2669 | | = <span style="font-style: italic;">'single_building'</span>.<br> |
2670 | | |
2671 | | |
2672 | | |
2673 | | |
2674 | | |
2675 | | |
2676 | | |
2677 | | <br> |
2678 | | |
2679 | | |
2680 | | |
2681 | | |
2682 | | |
2683 | | |
2684 | | |
2685 | | The default value <span style="font-weight: bold;">building_wall_left</span> |
2686 | | = <span style="font-style: italic;">( ( <a href="#nx">nx</a> + |
2687 | | 1 ) * <a href="#dx">dx</a> - <a href="#building_length_x">building_length_x</a> ) / 2</span> |
2688 | | centers the building in x-direction. <font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td> |
2689 | | |
2690 | | |
2691 | | |
2692 | | |
2693 | | |
2694 | | |
2695 | | </tr> |
2696 | | |
2697 | | |
2698 | | |
2699 | | |
2700 | | |
2701 | | |
2702 | | <tr> |
2703 | | |
2704 | | |
2705 | | |
2706 | | |
2707 | | |
2708 | | |
2709 | | |
2710 | | <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="building_wall_south"></a>building_wall_south</span></td> |
2711 | | |
2712 | | |
2713 | | |
2714 | | |
2715 | | |
2716 | | |
2717 | | |
2718 | | <td style="vertical-align: top;">R</td> |
2719 | | |
2720 | | |
2721 | | |
2722 | | |
2723 | | |
2724 | | |
2725 | | <td style="vertical-align: top;"><span style="font-style: italic;"></span><span style="font-style: italic;">building centered in y-direction</span></td> |
2726 | | |
2727 | | |
2728 | | |
2729 | | |
2730 | | |
2731 | | |
2732 | | |
2733 | | <td>y-coordinate of the South building wall (distance between the |
2734 | | South building wall and the South border of the model domain) in m.<br> |
2735 | | |
2736 | | |
2737 | | |
2738 | | |
2739 | | |
2740 | | |
2741 | | |
2742 | | <br> |
2743 | | |
2744 | | |
2745 | | |
2746 | | |
2747 | | |
2748 | | |
2749 | | |
2750 | | Currently, <span style="font-weight: bold;">building_wall_south</span> |
2751 | | must be at least <span style="font-style: italic;">1 |
2752 | | * </span><a style="font-style: italic;" href="#dy">dy</a> and less than <span style="font-style: italic;">( <a href="#ny">ny</a> |
2753 | | - 1 ) * <a href="#dy">dy</a> - <a href="#building_length_y">building_length_y</a></span>. |
2754 | | This parameter requires the use of <a href="#topography">topography</a> |
2755 | | = <span style="font-style: italic;">'single_building'</span>.<br> |
2756 | | |
2757 | | |
2758 | | |
2759 | | |
2760 | | |
2761 | | |
2762 | | |
2763 | | <br> |
2764 | | |
2765 | | |
2766 | | |
2767 | | |
2768 | | |
2769 | | |
2770 | | |
2771 | | The default value <span style="font-weight: bold;">building_wall_south</span> |
2772 | | = <span style="font-style: italic;">( ( <a href="#ny">ny</a> + |
2773 | | 1 ) * <a href="#dy">dy</a> - <a href="#building_length_y">building_length_y</a> ) / 2</span> |
2774 | | centers the building in y-direction. <font color="#000000">Due to the staggered grid the building will be displaced by -0.5 <a href="chapter_4.1.html#dx">dx</a> in x-direction and -0.5 <a href="chapter_4.1.html#dy">dy</a> in y-direction.</font> </td> |
2775 | | |
2776 | | |
2777 | | |
2778 | | |
2779 | | |
2780 | | |
2781 | | </tr> |
2782 | | |
2783 | | |
2784 | | |
2785 | | |
2786 | | |
2787 | | |
2788 | | <tr> |
2789 | | |
2790 | | <td style="vertical-align: top;"><a name="canopy_mode"></a><span style="font-weight: bold;">canopy_mode</span></td> |
2791 | | |
2792 | | <td style="vertical-align: top;">C * 20</td> |
2793 | | |
2794 | | <td style="vertical-align: top;"><span style="font-style: italic;">'block'</span></td> |
2795 | | |
2796 | | <td style="vertical-align: top;">Canopy mode.<br> |
2797 | | |
2798 | | <br> |
2799 | | |
2800 | | <font color="#000000"> |
2801 | | Besides using the default value, that will create a horizontally |
2802 | | homogeneous plant canopy that extends over the total horizontal |
2803 | | extension of the model domain, the user may add code to the user |
2804 | | interface subroutine <a href="chapter_3.5.1.html#user_init_plant_canopy">user_init_plant_canopy</a> |
2805 | | to allow further canopy modes. <br> |
2806 | | |
2807 | | <br> |
2808 | | |
2809 | | The setting of <a href="#canopy_mode">canopy_mode</a> becomes only active, if <a href="#plant_canopy">plant_canopy</a> has been set <span style="font-style: italic;">.T.</span> and a non-zero <a href="#drag_coefficient">drag_coefficient</a> has been defined.</font></td> |
2810 | | |
2811 | | </tr> |
2812 | | |
2813 | | <tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_height"></a>canyon_height</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">50.0</td><td>Street canyon height |
2814 | | in m.<br> |
2815 | | |
2816 | | |
2817 | | |
2818 | | |
2819 | | |
2820 | | |
2821 | | <br> |
2822 | | |
2823 | | |
2824 | | |
2825 | | |
2826 | | |
2827 | | |
2828 | | <span style="font-weight: bold;">canyon_height</span> must |
2829 | | be less than the height of the model domain. This parameter requires <a href="chapter_4.1.html#topography">topography</a> |
2830 | | = <span style="font-style: italic;">'single_street_canyon'</span>.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_width_x"></a>canyon_width_x</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">9999999.9</td><td>Street canyon width in x-direction in m.<br> |
2831 | | |
2832 | | |
2833 | | |
2834 | | |
2835 | | |
2836 | | |
2837 | | <br> |
2838 | | |
2839 | | |
2840 | | |
2841 | | |
2842 | | |
2843 | | |
2844 | | |
2845 | | Currently, <span style="font-weight: bold;">canyon_width_x</span> |
2846 | | must be at least <span style="font-style: italic;">3 |
2847 | | * </span><a style="font-style: italic;" href="chapter_4.1.html#dx">dx</a> and no more than <span style="font-style: italic;">( </span><a style="font-style: italic;" href="chapter_4.1.html#nx">nx</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="chapter_4.1.html#dx">dx</a> |
2848 | | </span><span style="font-style: italic;">- <a href="chapter_4.1.html#canyon_wall_left">canyon_wall_left</a></span>. |
2849 | | This parameter requires <a href="chapter_4.1.html#topography">topography</a> |
2850 | | = <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>. A non-default value implies a canyon orientation in y-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_width_y"></a>canyon_width_y</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;">9999999.9</td><td>Street canyon width in y-direction in m.<br> |
2851 | | |
2852 | | |
2853 | | |
2854 | | |
2855 | | |
2856 | | |
2857 | | <br> |
2858 | | |
2859 | | |
2860 | | |
2861 | | |
2862 | | |
2863 | | |
2864 | | |
2865 | | Currently, <span style="font-weight: bold;">canyon_width_y</span> |
2866 | | must be at least <span style="font-style: italic;">3 |
2867 | | * </span><a style="font-style: italic;" href="chapter_4.1.html#dy">dy</a> and no more than <span style="font-style: italic;">( </span><a style="font-style: italic;" href="chapter_4.1.html#ny">ny</a><span style="font-style: italic;"> - 1 ) </span><span style="font-style: italic;"> * <a href="chapter_4.1.html#dy">dy</a></span><span style="font-style: italic;"> - <a href="chapter_4.1.html#canyon_wall_south">canyon_wall_south</a></span>. This parameter requires <a href="chapter_4.1.html#topography">topography</a> |
2868 | | = <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span>. A non-default value implies a canyon orientation in x-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_wall_left"></a>canyon_wall_left</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;"><span style="font-style: italic;">canyon centered in x-direction</span></td><td>x-coordinate of the left canyon wall (distance between the |
2869 | | left canyon wall and the left border of the model domain) in m.<br> |
2870 | | |
2871 | | |
2872 | | |
2873 | | |
2874 | | |
2875 | | |
2876 | | |
2877 | | <br> |
2878 | | |
2879 | | |
2880 | | |
2881 | | |
2882 | | |
2883 | | |
2884 | | |
2885 | | Currently, <span style="font-weight: bold;">canyon_wall_left</span> |
2886 | | must be at least <span style="font-style: italic;">1 |
2887 | | * </span><a style="font-style: italic;" href="chapter_4.1.html#dx">dx</a> and less than <span style="font-style: italic;">( <a href="chapter_4.1.html#nx">nx</a> |
2888 | | - 1 ) * <a href="chapter_4.1.html#dx">dx</a> - <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a></span>. |
2889 | | This parameter requires <a href="chapter_4.1.html#topography">topography</a> |
2890 | | = <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>.<br> |
2891 | | |
2892 | | |
2893 | | |
2894 | | |
2895 | | |
2896 | | |
2897 | | |
2898 | | <br> |
2899 | | |
2900 | | |
2901 | | |
2902 | | |
2903 | | |
2904 | | |
2905 | | |
2906 | | The default value <span style="font-weight: bold;">canyon_wall_left</span> |
2907 | | = <span style="font-style: italic;">( ( <a href="chapter_4.1.html#nx">nx</a> + |
2908 | | 1 ) * <a href="chapter_4.1.html#dx">dx</a> - <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a> ) / 2</span> |
2909 | | centers the canyon in x-direction.</td></tr><tr><td style="font-weight: bold; vertical-align: top;"><a name="canyon_wall_south"></a>canyon_wall_south</td><td style="vertical-align: top;">R</td><td style="font-style: italic; vertical-align: top;"><span style="font-style: italic;">canyon centered in y-direction</span></td><td>y-coordinate of the South canyon wall (distance between the |
2910 | | South canyon wall and the South border of the model domain) in m.<br> |
2911 | | |
2912 | | |
2913 | | |
2914 | | |
2915 | | |
2916 | | |
2917 | | |
2918 | | <br> |
2919 | | |
2920 | | |
2921 | | |
2922 | | |
2923 | | |
2924 | | |
2925 | | |
2926 | | Currently, <span style="font-weight: bold;">canyon_wall_south</span> |
2927 | | must be at least <span style="font-style: italic;">1 |
2928 | | * </span><a style="font-style: italic;" href="chapter_4.1.html#dy">dy</a> and less than <span style="font-style: italic;">( <a href="chapter_4.1.html#ny">ny</a> |
2929 | | - 1 ) * <a href="chapter_4.1.html#dy">dy</a> - <a href="chapter_4.1.html#canyon_width_y">canyon_width_y</a></span>. |
2930 | | This parameter requires <a href="chapter_4.1.html#topography">topography</a> |
2931 | | = <span style="font-style: italic;">'</span><span style="font-style: italic;">single_street_canyon</span><span style="font-style: italic;">'</span>.<br> |
2932 | | |
2933 | | |
2934 | | |
2935 | | |
2936 | | |
2937 | | |
2938 | | |
2939 | | <br> |
2940 | | |
2941 | | |
2942 | | |
2943 | | |
2944 | | |
2945 | | |
2946 | | |
2947 | | The default value <span style="font-weight: bold;">canyon_wall_south</span> |
2948 | | = <span style="font-style: italic;">( ( <a href="chapter_4.1.html#ny">ny</a> + |
2949 | | 1 ) * <a href="chapter_4.1.html#dy">dy</a> - </span><a href="chapter_4.1.html#building_length_y"><span style="font-style: italic;"></span></a><a style="font-style: italic;" href="chapter_4.1.html#canyon_width_y">canyon_wid</a><span style="font-style: italic;"><a style="font-style: italic;" href="chapter_4.1.html#canyon_width_y">th_y</a> ) / 2</span> |
2950 | | centers the canyon in y-direction.</td></tr><tr> |
2951 | | |
2952 | | |
2953 | | |
2954 | | |
2955 | | |
2956 | | |
2957 | | |
2958 | | <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="cloud_droplets"></a>cloud_droplets</span><br> |
2959 | | |
2960 | | |
2961 | | |
2962 | | |
2963 | | |
2964 | | |
2965 | | |
2966 | | </td> |
2967 | | |
2968 | | |
2969 | | |
2970 | | |
2971 | | |
2972 | | |
2973 | | <td style="vertical-align: top;">L<br> |
2974 | | |
2975 | | |
2976 | | |
2977 | | |
2978 | | |
2979 | | |
2980 | | </td> |
2981 | | |
2982 | | |
2983 | | |
2984 | | |
2985 | | |
2986 | | |
2987 | | |
2988 | | <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span><br> |
2989 | | |
2990 | | |
2991 | | |
2992 | | |
2993 | | |
2994 | | |
2995 | | </td> |
2996 | | |
2997 | | |
2998 | | |
2999 | | |
3000 | | |
3001 | | |
3002 | | |
3003 | | <td style="vertical-align: top;">Parameter to switch on |
3004 | | usage of cloud droplets.<br> |
3005 | | |
3006 | | |
3007 | | |
3008 | | |
3009 | | |
3010 | | |
3011 | | <br> |
3012 | | |
3013 | | |
3014 | | |
3015 | | |
3016 | | |
3017 | | |
3018 | | |
3019 | | <span style="font-weight: bold;"></span><span style="font-family: monospace;"></span> |
3020 | | |
3021 | | |
3022 | | |
3023 | | |
3024 | | Cloud droplets require to use particles (i.e. the NAMELIST group <span style="font-family: Courier New,Courier,monospace;">particles_par</span> has to be included in the parameter file<span style="font-family: monospace;"></span>). Then each particle is a representative for a certain number of droplets. The droplet |
3025 | | features (number of droplets, initial radius, etc.) can be steered with |
3026 | | the respective particle parameters (see e.g. <a href="#chapter_4.2.html#radius">radius</a>). |
3027 | | The real number of initial droplets in a grid cell is equal to the |
3028 | | initial number of droplets (defined by the particle source parameters <span lang="en-GB"><font face="Thorndale, serif"> </font></span><a href="chapter_4.2.html#pst"><span lang="en-GB"><font face="Thorndale, serif">pst</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psl"><span lang="en-GB"><font face="Thorndale, serif">psl</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psr"><span lang="en-GB"><font face="Thorndale, serif">psr</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pss"><span lang="en-GB"><font face="Thorndale, serif">pss</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psn"><span lang="en-GB"><font face="Thorndale, serif">psn</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#psb"><span lang="en-GB"><font face="Thorndale, serif">psb</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdx"><span lang="en-GB"><font face="Thorndale, serif">pdx</font></span></a><span lang="en-GB"><font face="Thorndale, serif">, </font></span><a href="chapter_4.2.html#pdy"><span lang="en-GB"><font face="Thorndale, serif">pdy</font></span></a> |
3029 | | <span lang="en-GB"><font face="Thorndale, serif">and |
3030 | | </font></span><a href="chapter_4.2.html#pdz"><span lang="en-GB"><font face="Thorndale, serif">pdz</font></span></a><span lang="en-GB"></span><span lang="en-GB"></span>) |
3031 | | times the <a href="#initial_weighting_factor">initial_weighting_factor</a>.<br> |
3032 | | |
3033 | | |
3034 | | |
3035 | | |
3036 | | |
3037 | | |
3038 | | |
3039 | | <br> |
3040 | | |
3041 | | |
3042 | | |
3043 | | |
3044 | | |
3045 | | |
3046 | | |
3047 | | In case of using cloud droplets, the default condensation scheme in |
3048 | | PALM cannot be used, i.e. <a href="#cloud_physics">cloud_physics</a> |
3049 | | must be set <span style="font-style: italic;">.F.</span>.<br> |
3050 | | |
3051 | | |
3052 | | |
3053 | | |
3054 | | |
3055 | | |
3056 | | |
3057 | | </td> |
3058 | | |
3059 | | |
3060 | | |
3061 | | |
3062 | | |
3063 | | |
3064 | | </tr> |
3065 | | |
3066 | | |
3067 | | |
3068 | | |
3069 | | |
3070 | | |
3071 | | <tr> |
3072 | | |
3073 | | |
3074 | | |
3075 | | |
3076 | | |
3077 | | |
3078 | | <td style="vertical-align: top;"> |
3079 | | |
3080 | | |
3081 | | |
3082 | | |
3083 | | |
3084 | | |
3085 | | <p><a name="cloud_physics"></a><b>cloud_physics</b></p> |
3086 | | |
3087 | | |
3088 | | |
3089 | | |
3090 | | |
3091 | | |
3092 | | |
3093 | | </td> |
3094 | | |
3095 | | |
3096 | | |
3097 | | |
3098 | | |
3099 | | |
3100 | | <td style="vertical-align: top;">L<br> |
3101 | | |
3102 | | |
3103 | | |
3104 | | |
3105 | | |
3106 | | |
3107 | | </td> |
3108 | | |
3109 | | |
3110 | | |
3111 | | |
3112 | | |
3113 | | |
3114 | | |
3115 | | <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> |
3116 | | |
3117 | | |
3118 | | |
3119 | | |
3120 | | |
3121 | | |
3122 | | <td style="vertical-align: top;"> |
3123 | | |
3124 | | |
3125 | | |
3126 | | |
3127 | | |
3128 | | |
3129 | | <p>Parameter to switch |
3130 | | on the condensation scheme. </p> |
3131 | | |
3132 | | |
3133 | | |
3134 | | |
3135 | | |
3136 | | |
3137 | | |
3138 | | For <b>cloud_physics =</b> <span style="font-style: italic;">.TRUE.</span>, equations |
3139 | | for the |
3140 | | liquid water |
3141 | | content and the liquid water potential temperature are solved instead |
3142 | | of those for specific humidity and potential temperature. Note |
3143 | | that a grid volume is assumed to be either completely saturated or |
3144 | | completely |
3145 | | unsaturated (0%-or-100%-scheme). A simple precipitation scheme can |
3146 | | additionally be switched on with parameter <a href="#precipitation">precipitation</a>. |
3147 | | Also cloud-top cooling by longwave radiation can be utilized (see <a href="#radiation">radiation</a>)<br> |
3148 | | |
3149 | | |
3150 | | |
3151 | | |
3152 | | |
3153 | | |
3154 | | <b><br> |
3155 | | |
3156 | | |
3157 | | |
3158 | | |
3159 | | |
3160 | | |
3161 | | |
3162 | | cloud_physics =</b> <span style="font-style: italic;">.TRUE. |
3163 | | </span>requires <a href="#humidity">humidity</a> |
3164 | | =<span style="font-style: italic;"> .TRUE.</span> .<br> |
3165 | | |
3166 | | |
3167 | | |
3168 | | |
3169 | | |
3170 | | |
3171 | | |
3172 | | Detailed information about the condensation scheme is given in the |
3173 | | description of the <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud |
3174 | | physics module</a> (pdf-file, only in German).<br> |
3175 | | |
3176 | | |
3177 | | |
3178 | | |
3179 | | |
3180 | | |
3181 | | <br> |
3182 | | |
3183 | | |
3184 | | |
3185 | | |
3186 | | |
3187 | | |
3188 | | |
3189 | | This condensation scheme is not allowed if cloud droplets are simulated |
3190 | | explicitly (see <a href="#cloud_droplets">cloud_droplets</a>).<br> |
3191 | | |
3192 | | |
3193 | | |
3194 | | |
3195 | | |
3196 | | |
3197 | | |
3198 | | </td> |
3199 | | |
3200 | | |
3201 | | |
3202 | | |
3203 | | |
3204 | | |
3205 | | </tr> |
3206 | | |
3207 | | |
3208 | | |
3209 | | |
3210 | | |
3211 | | |
3212 | | <tr> |
3213 | | |
3214 | | |
3215 | | |
3216 | | |
3217 | | |
3218 | | |
3219 | | <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow"></a>conserve_volume_flow</span></td> |
3220 | | |
3221 | | |
3222 | | |
3223 | | |
3224 | | |
3225 | | |
3226 | | |
3227 | | <td style="vertical-align: top;">L</td> |
3228 | | |
3229 | | |
3230 | | |
3231 | | |
3232 | | |
3233 | | |
3234 | | <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> |
3235 | | |
3236 | | |
3237 | | |
3238 | | |
3239 | | |
3240 | | |
3241 | | <td>Conservation |
3242 | | of volume flow in x- and y-direction.<br> |
3243 | | |
3244 | | |
3245 | | |
3246 | | |
3247 | | |
3248 | | |
3249 | | <br> |
3250 | | |
3251 | | |
3252 | | |
3253 | | |
3254 | | |
3255 | | |
3256 | | <span style="font-weight: bold;">conserve_volume_flow</span> |
3257 | | = <span style="font-style: italic;">.T.</span> |
3258 | | guarantees that the volume flow through the xz- and yz-cross-sections of |
3259 | | the total model domain remains constant throughout the run depending on the chosen <a href="#conserve_volume_flow_mode">conserve_volume_flow_mode</a>.<br><br>Note that <span style="font-weight: bold;">conserve_volume_flow</span> |
3260 | | = <span style="font-style: italic;">.T.</span> requires <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.F.</span> .<br> |
3261 | | |
3262 | | |
3263 | | |
3264 | | |
3265 | | |
3266 | | |
3267 | | |
3268 | | </td> |
3269 | | |
3270 | | |
3271 | | |
3272 | | |
3273 | | |
3274 | | |
3275 | | </tr> |
3276 | | |
3277 | | |
3278 | | |
3279 | | |
3280 | | |
3281 | | |
3282 | | <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="conserve_volume_flow_mode"></a>conserve_volume_flow_mode</span></td><td style="vertical-align: top;">C * 16</td><td style="vertical-align: top;"><span style="font-style: italic;">'default'</span></td><td>Modus of volume flow conservation.<br><br>The following values are allowed:<br><p style="font-style: normal;"><span style="font-style: italic;">'default'</span> |
3283 | | </p> |
3284 | | |
3285 | | |
3286 | | |
3287 | | |
3288 | | |
3289 | | |
3290 | | |
3291 | | |
3292 | | |
3293 | | |
3294 | | |
3295 | | |
3296 | | |
3297 | | <ul><p>Per default, PALM uses <span style="font-style: italic;">'initial_profiles'</span> for cyclic lateral boundary conditions (<a href="#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>) and <span style="font-style: italic;">'inflow_profile'</span> for non-cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> /= <span style="font-style: italic;">'cyclic'</span> or <a href="chapter_4.1.html#bc_ns">bc_ns</a> /= <span style="font-style: italic;">'cyclic'</span>).</p></ul> |
3298 | | |
3299 | | |
3300 | | |
3301 | | |
3302 | | |
3303 | | |
3304 | | |
3305 | | |
3306 | | |
3307 | | |
3308 | | |
3309 | | |
3310 | | |
3311 | | <p style="font-style: italic;">'initial_profiles' </p> |
3312 | | |
3313 | | |
3314 | | |
3315 | | |
3316 | | |
3317 | | |
3318 | | |
3319 | | |
3320 | | |
3321 | | |
3322 | | |
3323 | | |
3324 | | |
3325 | | <ul><p>The |
3326 | | target volume flow is calculated at t=0 from the initial profiles |
3327 | | of u and v. This setting is only allowed for cyclic lateral |
3328 | | boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="chapter_4.1.html#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>).</p></ul> |
3329 | | |
3330 | | |
3331 | | |
3332 | | |
3333 | | |
3334 | | |
3335 | | |
3336 | | |
3337 | | |
3338 | | |
3339 | | |
3340 | | |
3341 | | |
3342 | | <p style="font-style: normal;"><span style="font-style: italic;">'inflow_profile'</span> |
3343 | | </p> |
3344 | | |
3345 | | |
3346 | | |
3347 | | |
3348 | | |
3349 | | |
3350 | | |
3351 | | |
3352 | | |
3353 | | |
3354 | | |
3355 | | |
3356 | | |
3357 | | <ul><p>The |
3358 | | target volume flow is calculated at every timestep from the |
3359 | | inflow profile of u or v, respectively. This setting is only |
3360 | | allowed for non-cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> /= <span style="font-style: italic;">'cyclic'</span> or <a href="chapter_4.1.html#bc_ns">bc_ns</a> /= <span style="font-style: italic;">'cyclic'</span>).</p></ul> |
3361 | | |
3362 | | |
3363 | | |
3364 | | |
3365 | | |
3366 | | |
3367 | | |
3368 | | |
3369 | | |
3370 | | |
3371 | | |
3372 | | |
3373 | | |
3374 | | <p style="font-style: italic;">'bulk_velocity' </p> |
3375 | | |
3376 | | |
3377 | | |
3378 | | |
3379 | | |
3380 | | |
3381 | | |
3382 | | |
3383 | | |
3384 | | |
3385 | | |
3386 | | |
3387 | | |
3388 | | <ul><p>The target volume flow is calculated from a predefined bulk velocity (see <a href="#u_bulk">u_bulk</a> and <a href="#v_bulk">v_bulk</a>). This setting is only allowed for cyclic lateral boundary conditions (<a href="chapter_4.1.html#bc_lr">bc_lr</a> = <span style="font-style: italic;">'cyclic'</span> and <a href="chapter_4.1.html#bc_ns">bc_ns</a> = <span style="font-style: italic;">'cyclic'</span>).</p></ul> |
3389 | | |
3390 | | |
3391 | | |
3392 | | |
3393 | | |
3394 | | |
3395 | | |
3396 | | |
3397 | | |
3398 | | |
3399 | | |
3400 | | |
3401 | | |
3402 | | <span style="font-style: italic;"></span>Note that <span style="font-weight: bold;">conserve_volume_flow_mode</span> |
3403 | | only comes into effect if <a href="#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T. .</span> </td></tr><tr> |
3404 | | |
3405 | | <td style="vertical-align: top;"><a name="cthf"></a><span style="font-weight: bold;">cthf</span></td> |
3406 | | |
3407 | | <td style="vertical-align: top;">R</td> |
3408 | | |
3409 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> |
3410 | | |
3411 | | <td style="vertical-align: top;">Average heat flux that is prescribed at the top of the plant canopy.<br> |
3412 | | |
3413 | | |
3414 | | <br> |
3415 | | |
3416 | | |
3417 | | If <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>, the user can prescribe a heat flux at the top of the plant canopy.<br> |
3418 | | |
3419 | | |
3420 | | It is assumed that solar radiation penetrates the canopy and warms the |
3421 | | foliage which, in turn, warms the air in contact with it. <br> |
3422 | | |
3423 | | |
3424 | | Note: Instead of using the value prescribed by <a href="#surface_heatflux">surface_heatflux</a>, |
3425 | | the near surface heat flux is determined from an exponential function |
3426 | | that is dependent on the cumulative leaf_area_index (Shaw and Schumann |
3427 | | (1992, Boundary Layer Meteorol., 61, 47-64)).</td> |
3428 | | |
3429 | | </tr> |
3430 | | |
3431 | | <tr> |
3432 | | |
3433 | | |
3434 | | |
3435 | | |
3436 | | |
3437 | | |
3438 | | <td style="vertical-align: top;"> |
3439 | | |
3440 | | |
3441 | | |
3442 | | |
3443 | | |
3444 | | |
3445 | | <p><a name="cut_spline_overshoot"></a><b>cut_spline_overshoot</b></p> |
3446 | | |
3447 | | |
3448 | | |
3449 | | |
3450 | | |
3451 | | |
3452 | | |
3453 | | </td> |
3454 | | |
3455 | | |
3456 | | |
3457 | | |
3458 | | |
3459 | | |
3460 | | <td style="vertical-align: top;">L</td> |
3461 | | |
3462 | | |
3463 | | |
3464 | | |
3465 | | |
3466 | | |
3467 | | |
3468 | | <td style="vertical-align: top;"><span style="font-style: italic;">.T.</span></td> |
3469 | | |
3470 | | |
3471 | | |
3472 | | |
3473 | | |
3474 | | |
3475 | | <td style="vertical-align: top;"> |
3476 | | |
3477 | | |
3478 | | |
3479 | | |
3480 | | |
3481 | | |
3482 | | <p>Cuts off of |
3483 | | so-called overshoots, which can occur with the |
3484 | | upstream-spline scheme. </p> |
3485 | | |
3486 | | |
3487 | | |
3488 | | |
3489 | | |
3490 | | |
3491 | | |
3492 | | |
3493 | | |
3494 | | |
3495 | | |
3496 | | |
3497 | | |
3498 | | <p><font color="#000000">The cubic splines tend to overshoot in |
3499 | | case of discontinuous changes of variables between neighbouring grid |
3500 | | points.</font><font color="#ff0000"> </font><font color="#000000">This |
3501 | | may lead to errors in calculating the advection tendency.</font> |
3502 | | Choice |
3503 | | of <b>cut_spline_overshoot</b> = <i>.TRUE.</i> |
3504 | | (switched on by |
3505 | | default) |
3506 | | allows variable values not to exceed an interval defined by the |
3507 | | respective adjacent grid points. This interval can be adjusted |
3508 | | seperately for every prognostic variable (see initialization parameters |
3509 | | <a href="#overshoot_limit_e">overshoot_limit_e</a>, <a href="#overshoot_limit_pt">overshoot_limit_pt</a>, <a href="#overshoot_limit_u">overshoot_limit_u</a>, |
3510 | | etc.). This might be necessary in case that the |
3511 | | default interval has a non-tolerable effect on the model |
3512 | | results. </p> |
3513 | | |
3514 | | |
3515 | | |
3516 | | |
3517 | | |
3518 | | |
3519 | | |
3520 | | |
3521 | | |
3522 | | |
3523 | | |
3524 | | |
3525 | | |
3526 | | <p>Overshoots may also be removed |
3527 | | using the parameters <a href="#ups_limit_e">ups_limit_e</a>, |
3528 | | <a href="#ups_limit_pt">ups_limit_pt</a>, |
3529 | | etc. as well as by applying a long-filter (see <a href="#long_filter_factor">long_filter_factor</a>).</p> |
3530 | | |
3531 | | |
3532 | | |
3533 | | |
3534 | | |
3535 | | |
3536 | | |
3537 | | </td> |
3538 | | |
3539 | | |
3540 | | |
3541 | | |
3542 | | |
3543 | | |
3544 | | </tr> |
3545 | | |
3546 | | |
3547 | | |
3548 | | |
3549 | | |
3550 | | |
3551 | | <tr> |
3552 | | |
3553 | | |
3554 | | |
3555 | | |
3556 | | |
3557 | | |
3558 | | <td style="vertical-align: top;"> |
3559 | | |
3560 | | |
3561 | | |
3562 | | |
3563 | | |
3564 | | |
3565 | | <p><a name="damp_level_1d"></a><b>damp_level_1d</b></p> |
3566 | | |
3567 | | |
3568 | | |
3569 | | |
3570 | | |
3571 | | |
3572 | | |
3573 | | </td> |
3574 | | |
3575 | | |
3576 | | |
3577 | | |
3578 | | |
3579 | | |
3580 | | <td style="vertical-align: top;">R</td> |
3581 | | |
3582 | | |
3583 | | |
3584 | | |
3585 | | |
3586 | | |
3587 | | |
3588 | | <td style="vertical-align: top;"><span style="font-style: italic;">zu(nz+1)</span></td> |
3589 | | |
3590 | | |
3591 | | |
3592 | | |
3593 | | |
3594 | | |
3595 | | |
3596 | | <td style="vertical-align: top;"> |
3597 | | |
3598 | | |
3599 | | |
3600 | | |
3601 | | |
3602 | | |
3603 | | <p>Height where |
3604 | | the damping layer begins in the 1d-model |
3605 | | (in m). </p> |
3606 | | |
3607 | | |
3608 | | |
3609 | | |
3610 | | |
3611 | | |
3612 | | |
3613 | | |
3614 | | |
3615 | | |
3616 | | |
3617 | | |
3618 | | |
3619 | | <p>This parameter is used to |
3620 | | switch on a damping layer for the |
3621 | | 1d-model, which is generally needed for the damping of inertia |
3622 | | oscillations. Damping is done by gradually increasing the value |
3623 | | of the eddy diffusivities about 10% per vertical grid level |
3624 | | (starting with the value at the height given by <b>damp_level_1d</b>, |
3625 | | or possibly from the next grid pint above), i.e. K<sub>m</sub>(k+1) |
3626 | | = |
3627 | | 1.1 * K<sub>m</sub>(k). |
3628 | | The values of K<sub>m</sub> are limited to 10 m**2/s at |
3629 | | maximum. <br> |
3630 | | |
3631 | | |
3632 | | |
3633 | | |
3634 | | |
3635 | | |
3636 | | |
3637 | | This parameter only comes into effect if the 1d-model is switched on |
3638 | | for |
3639 | | the initialization of the 3d-model using <a href="#initializing_actions">initializing_actions</a> |
3640 | | = <span style="font-style: italic;">'set_1d-model_profiles'</span>. |
3641 | | <br> |
3642 | | |
3643 | | |
3644 | | |
3645 | | |
3646 | | |
3647 | | |
3648 | | </p> |
3649 | | |
3650 | | |
3651 | | |
3652 | | |
3653 | | |
3654 | | |
3655 | | </td> |
3656 | | |
3657 | | |
3658 | | |
3659 | | |
3660 | | |
3661 | | |
3662 | | </tr> |
3663 | | |
3664 | | |
3665 | | |
3666 | | |
3667 | | |
3668 | | |
3669 | | <tr> |
3670 | | |
3671 | | |
3672 | | |
3673 | | |
3674 | | |
3675 | | |
3676 | | <td style="vertical-align: top;"><a name="dissipation_1d"></a><span style="font-weight: bold;">dissipation_1d</span><br> |
3677 | | |
3678 | | |
3679 | | |
3680 | | |
3681 | | |
3682 | | |
3683 | | |
3684 | | </td> |
3685 | | |
3686 | | |
3687 | | |
3688 | | |
3689 | | |
3690 | | |
3691 | | <td style="vertical-align: top;">C*20<br> |
3692 | | |
3693 | | |
3694 | | |
3695 | | |
3696 | | |
3697 | | |
3698 | | |
3699 | | </td> |
3700 | | |
3701 | | |
3702 | | |
3703 | | |
3704 | | |
3705 | | |
3706 | | <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;"> |
3707 | | |
3708 | | |
3709 | | |
3710 | | |
3711 | | |
3712 | | |
3713 | | <span style="font-style: italic;">model'</span><br> |
3714 | | |
3715 | | |
3716 | | |
3717 | | |
3718 | | |
3719 | | |
3720 | | </td> |
3721 | | |
3722 | | |
3723 | | |
3724 | | |
3725 | | |
3726 | | |
3727 | | |
3728 | | <td style="vertical-align: top;">Calculation method for |
3729 | | the energy dissipation term in the TKE equation of the 1d-model.<br> |
3730 | | |
3731 | | |
3732 | | |
3733 | | |
3734 | | |
3735 | | |
3736 | | |
3737 | | <br> |
3738 | | |
3739 | | |
3740 | | |
3741 | | |
3742 | | |
3743 | | |
3744 | | |
3745 | | By default the dissipation is calculated as in the 3d-model using diss |
3746 | | = (0.19 + 0.74 * l / l_grid) * e**1.5 / l.<br> |
3747 | | |
3748 | | |
3749 | | |
3750 | | |
3751 | | |
3752 | | |
3753 | | <br> |
3754 | | |
3755 | | |
3756 | | |
3757 | | |
3758 | | |
3759 | | |
3760 | | |
3761 | | Setting <span style="font-weight: bold;">dissipation_1d</span> |
3762 | | = <span style="font-style: italic;">'detering'</span> |
3763 | | forces the dissipation to be calculated as diss = 0.064 * e**1.5 / l.<br> |
3764 | | |
3765 | | |
3766 | | |
3767 | | |
3768 | | |
3769 | | |
3770 | | |
3771 | | </td> |
3772 | | |
3773 | | |
3774 | | |
3775 | | |
3776 | | |
3777 | | |
3778 | | </tr> |
3779 | | <tr><td style="vertical-align: top;"><p><a name="dp_external"></a><b>dp_external</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top; font-style: italic;">.F.</td><td>External pressure gradient switch.<br><br>This |
3780 | | parameter is used to switch on/off an external pressure gradient as |
3781 | | driving force. The external pressure gradient is controlled by the |
3782 | | parameters <a href="#dp_smooth">dp_smooth</a>, <a href="#dp_level_b">dp_level_b</a> and <a href="#dpdxy">dpdxy</a>.<br><br>Note that <span style="font-weight: bold;">dp_external</span> = <span style="font-style: italic;">.T.</span> requires <a href="#conserve_volume_flow">conserve_volume_flow</a> =<span style="font-style: italic;"> .F. </span>It is normally recommended to disable the Coriolis force by setting <a href="l#omega">omega</a> = 0.0.</td></tr><tr><td style="vertical-align: top;"><p><a name="dp_smooth"></a><b>dp_smooth</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top; font-style: italic;">.F.</td><td>Vertically smooth the external pressure gradient using a sinusoidal smoothing function.<br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span>. It is useful in combination with <a href="#dp_level_b">dp_level_b</a> >> 0 to generate a non-accelerated boundary layer well below <a href="#dp_level_b">dp_level_b</a>.</td></tr><tr><td style="vertical-align: top;"><p><a name="dp_level_b"></a><b>dp_level_b</b></p></td><td style="vertical-align: top;">R</td><td style="vertical-align: top; font-style: italic;">0.0</td><td><font size="3">Lower |
3783 | | limit of the vertical range for which the external pressure gradient is applied (</font>in <font size="3">m).</font><br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span><span lang="en-GB">It |
3784 | | must hold the condition zu(0) <= <b>dp_level_b</b> |
3785 | | <= zu(</span><a href="#nz"><span lang="en-GB">nz</span></a><span lang="en-GB">)</span><span lang="en-GB">. </span>It can be used in combination with <a href="#dp_smooth">dp_smooth</a> = <span style="font-style: italic;">.T.</span> to generate a non-accelerated boundary layer well below <span style="font-weight: bold;">dp_level_b</span> if <span style="font-weight: bold;">dp_level_b</span> >> 0.<br><br>Note |
3786 | | that there is no upper limit of the vertical range because the external |
3787 | | pressure gradient is always applied up to the top of the model domain.</td></tr><tr><td style="vertical-align: top;"><p><a name="dpdxy"></a><b>dpdxy</b></p></td><td style="vertical-align: top;">R(2)</td><td style="font-style: italic; vertical-align: top;">2 * 0.0</td><td>Values of the external pressure gradient applied in x- and y-direction, respectively (in Pa/m).<br><br>This parameter only applies if <a href="#dp_external">dp_external</a> = <span style="font-style: italic;">.T. </span>It sets the pressure gradient values. Negative values mean an acceleration, positive values mean deceleration. For example, <span style="font-weight: bold;">dpdxy</span> = -0.0002, 0.0, drives the flow in positive x-direction, <span lang="en-GB"></span></td></tr> |
3788 | | |
3789 | | |
3790 | | |
3791 | | |
3792 | | |
3793 | | |
3794 | | <tr> |
3795 | | |
3796 | | <td style="vertical-align: top;"><a name="drag_coefficient"></a><span style="font-weight: bold;">drag_coefficient</span></td> |
3797 | | |
3798 | | <td style="vertical-align: top;">R</td> |
3799 | | |
3800 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> |
3801 | | |
3802 | | <td style="vertical-align: top;">Drag coefficient used in the plant canopy model.<br> |
3803 | | |
3804 | | <br> |
3805 | | |
3806 | | This parameter has to be non-zero, if the parameter <a href="#plant_canopy">plant_canopy</a> is set <span style="font-style: italic;">.T.</span>.</td> |
3807 | | |
3808 | | </tr> |
3809 | | |
3810 | | <tr> |
3811 | | |
3812 | | |
3813 | | |
3814 | | |
3815 | | |
3816 | | |
3817 | | <td style="vertical-align: top;"> |
3818 | | |
3819 | | |
3820 | | |
3821 | | |
3822 | | |
3823 | | |
3824 | | <p><a name="dt"></a><b>dt</b></p> |
3825 | | |
3826 | | |
3827 | | |
3828 | | |
3829 | | |
3830 | | |
3831 | | </td> |
3832 | | |
3833 | | |
3834 | | |
3835 | | |
3836 | | |
3837 | | |
3838 | | |
3839 | | <td style="vertical-align: top;">R</td> |
3840 | | |
3841 | | |
3842 | | |
3843 | | |
3844 | | |
3845 | | |
3846 | | <td style="vertical-align: top;"><span style="font-style: italic;">variable</span></td> |
3847 | | |
3848 | | |
3849 | | |
3850 | | |
3851 | | |
3852 | | |
3853 | | |
3854 | | <td style="vertical-align: top;"> |
3855 | | |
3856 | | |
3857 | | |
3858 | | |
3859 | | |
3860 | | |
3861 | | <p>Time step for |
3862 | | the 3d-model (in s). </p> |
3863 | | |
3864 | | |
3865 | | |
3866 | | |
3867 | | |
3868 | | |
3869 | | |
3870 | | |
3871 | | |
3872 | | |
3873 | | |
3874 | | |
3875 | | |
3876 | | <p>By default, (i.e. |
3877 | | if a Runge-Kutta scheme is used, see <a href="#timestep_scheme">timestep_scheme</a>) |
3878 | | the value of the time step is calculating after each time step |
3879 | | (following the time step criteria) and |
3880 | | used for the next step.</p> |
3881 | | |
3882 | | |
3883 | | |
3884 | | |
3885 | | |
3886 | | |
3887 | | |
3888 | | |
3889 | | |
3890 | | |
3891 | | |
3892 | | |
3893 | | |
3894 | | <p>If the user assigns <b>dt</b> |
3895 | | a value, then the time step is |
3896 | | fixed to this value throughout the whole run (whether it fulfills the |
3897 | | time step |
3898 | | criteria or not). However, changes are allowed for restart runs, |
3899 | | because <b>dt</b> can also be used as a <a href="chapter_4.2.html#dt_laufparameter">run |
3900 | | parameter</a>. </p> |
3901 | | |
3902 | | |
3903 | | |
3904 | | |
3905 | | |
3906 | | |
3907 | | |
3908 | | |
3909 | | |
3910 | | |
3911 | | |
3912 | | |
3913 | | |
3914 | | <p>In case that the |
3915 | | calculated time step meets the condition<br> |
3916 | | |
3917 | | |
3918 | | |
3919 | | |
3920 | | |
3921 | | |
3922 | | </p> |
3923 | | |
3924 | | |
3925 | | |
3926 | | |
3927 | | |
3928 | | |
3929 | | |
3930 | | |
3931 | | |
3932 | | |
3933 | | |
3934 | | |
3935 | | |
3936 | | <ul> |
3937 | | |
3938 | | |
3939 | | |
3940 | | |
3941 | | |
3942 | | |
3943 | | |
3944 | | |
3945 | | |
3946 | | |
3947 | | |
3948 | | |
3949 | | |
3950 | | <p><b>dt</b> < 0.00001 * <a href="chapter_4.2.html#dt_max">dt_max</a> (with dt_max |
3951 | | = 20.0)</p> |
3952 | | |
3953 | | |
3954 | | |
3955 | | |
3956 | | |
3957 | | |
3958 | | |
3959 | | |
3960 | | |
3961 | | |
3962 | | |
3963 | | |
3964 | | |
3965 | | </ul> |
3966 | | |
3967 | | |
3968 | | |
3969 | | |
3970 | | |
3971 | | |
3972 | | |
3973 | | |
3974 | | |
3975 | | |
3976 | | |
3977 | | |
3978 | | |
3979 | | <p>the simulation will be |
3980 | | aborted. Such situations usually arise |
3981 | | in case of any numerical problem / instability which causes a |
3982 | | non-realistic increase of the wind speed. </p> |
3983 | | |
3984 | | |
3985 | | |
3986 | | |
3987 | | |
3988 | | |
3989 | | |
3990 | | |
3991 | | |
3992 | | |
3993 | | |
3994 | | |
3995 | | |
3996 | | <p>A |
3997 | | small time step due to a large mean horizontal windspeed |
3998 | | speed may be enlarged by using a coordinate transformation (see <a href="#galilei_transformation">galilei_transformation</a>), |
3999 | | in order to spare CPU time.<br> |
4000 | | |
4001 | | |
4002 | | |
4003 | | |
4004 | | |
4005 | | |
4006 | | </p> |
4007 | | |
4008 | | |
4009 | | |
4010 | | |
4011 | | |
4012 | | |
4013 | | |
4014 | | |
4015 | | |
4016 | | |
4017 | | |
4018 | | |
4019 | | |
4020 | | <p>If the |
4021 | | leapfrog timestep scheme is used (see <a href="#timestep_scheme">timestep_scheme</a>) |
4022 | | a temporary time step value dt_new is calculated first, with dt_new = <a href="chapter_4.2.html#fcl_factor">cfl_factor</a> |
4023 | | * dt_crit where dt_crit is the maximum timestep allowed by the CFL and |
4024 | | diffusion condition. Next it is examined whether dt_new exceeds or |
4025 | | falls below the |
4026 | | value of the previous timestep by at |
4027 | | least +5 % / -2%. If it is smaller, <span style="font-weight: bold;">dt</span> |
4028 | | = dt_new is immediately used for the next timestep. If it is larger, |
4029 | | then <span style="font-weight: bold;">dt </span>= |
4030 | | 1.02 * dt_prev |
4031 | | (previous timestep) is used as the new timestep, however the time |
4032 | | step is only increased if the last change of the time step is dated |
4033 | | back at |
4034 | | least 30 iterations. If dt_new is located in the interval mentioned |
4035 | | above, then dt |
4036 | | does not change at all. By doing so, permanent time step changes as |
4037 | | well as large |
4038 | | sudden changes (increases) in the time step are avoided.</p> |
4039 | | |
4040 | | |
4041 | | |
4042 | | |
4043 | | |
4044 | | |
4045 | | </td> |
4046 | | |
4047 | | |
4048 | | |
4049 | | |
4050 | | |
4051 | | |
4052 | | |
4053 | | </tr> |
4054 | | |
4055 | | |
4056 | | |
4057 | | |
4058 | | |
4059 | | |
4060 | | <tr> |
4061 | | |
4062 | | |
4063 | | |
4064 | | |
4065 | | |
4066 | | |
4067 | | <td style="vertical-align: top;"> |
4068 | | |
4069 | | |
4070 | | |
4071 | | |
4072 | | |
4073 | | |
4074 | | <p><a name="dt_pr_1d"></a><b>dt_pr_1d</b></p> |
4075 | | |
4076 | | |
4077 | | |
4078 | | |
4079 | | |
4080 | | |
4081 | | |
4082 | | </td> |
4083 | | |
4084 | | |
4085 | | |
4086 | | |
4087 | | |
4088 | | |
4089 | | <td style="vertical-align: top;">R</td> |
4090 | | |
4091 | | |
4092 | | |
4093 | | |
4094 | | |
4095 | | |
4096 | | |
4097 | | <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td> |
4098 | | |
4099 | | |
4100 | | |
4101 | | |
4102 | | |
4103 | | |
4104 | | |
4105 | | <td style="vertical-align: top;"> |
4106 | | |
4107 | | |
4108 | | |
4109 | | |
4110 | | |
4111 | | |
4112 | | <p>Temporal |
4113 | | interval of vertical profile output of the 1D-model |
4114 | | (in s). </p> |
4115 | | |
4116 | | |
4117 | | |
4118 | | |
4119 | | |
4120 | | |
4121 | | |
4122 | | |
4123 | | |
4124 | | |
4125 | | |
4126 | | |
4127 | | |
4128 | | <p>Data are written in ASCII |
4129 | | format to file <a href="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</a>. |
4130 | | This parameter is only in effect if the 1d-model has been switched on |
4131 | | for the |
4132 | | initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a> |
4133 | | = <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p> |
4134 | | |
4135 | | |
4136 | | |
4137 | | |
4138 | | |
4139 | | |
4140 | | |
4141 | | </td> |
4142 | | |
4143 | | |
4144 | | |
4145 | | |
4146 | | |
4147 | | |
4148 | | </tr> |
4149 | | |
4150 | | |
4151 | | |
4152 | | |
4153 | | |
4154 | | |
4155 | | <tr> |
4156 | | |
4157 | | |
4158 | | |
4159 | | |
4160 | | |
4161 | | |
4162 | | <td style="vertical-align: top;"> |
4163 | | |
4164 | | |
4165 | | |
4166 | | |
4167 | | |
4168 | | |
4169 | | <p><a name="dt_run_control_1d"></a><b>dt_run_control_1d</b></p> |
4170 | | |
4171 | | |
4172 | | |
4173 | | |
4174 | | |
4175 | | |
4176 | | |
4177 | | </td> |
4178 | | |
4179 | | |
4180 | | |
4181 | | |
4182 | | |
4183 | | |
4184 | | <td style="vertical-align: top;">R</td> |
4185 | | |
4186 | | |
4187 | | |
4188 | | |
4189 | | |
4190 | | |
4191 | | |
4192 | | <td style="vertical-align: top;"><span style="font-style: italic;">60.0</span></td> |
4193 | | |
4194 | | |
4195 | | |
4196 | | |
4197 | | |
4198 | | |
4199 | | <td style="vertical-align: top;"> |
4200 | | |
4201 | | |
4202 | | |
4203 | | |
4204 | | |
4205 | | |
4206 | | <p>Temporal interval of |
4207 | | runtime control output of the 1d-model |
4208 | | (in s). </p> |
4209 | | |
4210 | | |
4211 | | |
4212 | | |
4213 | | |
4214 | | |
4215 | | |
4216 | | |
4217 | | |
4218 | | |
4219 | | |
4220 | | |
4221 | | |
4222 | | <p>Data are written in ASCII |
4223 | | format to file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>. |
4224 | | This parameter is only in effect if the 1d-model is switched on for the |
4225 | | initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a> |
4226 | | = <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p> |
4227 | | |
4228 | | |
4229 | | |
4230 | | |
4231 | | |
4232 | | |
4233 | | |
4234 | | </td> |
4235 | | |
4236 | | |
4237 | | |
4238 | | |
4239 | | |
4240 | | |
4241 | | </tr> |
4242 | | |
4243 | | |
4244 | | |
4245 | | |
4246 | | |
4247 | | |
4248 | | <tr> |
4249 | | |
4250 | | |
4251 | | |
4252 | | |
4253 | | |
4254 | | |
4255 | | <td style="vertical-align: top;"> |
4256 | | |
4257 | | |
4258 | | |
4259 | | |
4260 | | |
4261 | | |
4262 | | <p><a name="dx"></a><b>dx</b></p> |
4263 | | |
4264 | | |
4265 | | |
4266 | | |
4267 | | |
4268 | | |
4269 | | |
4270 | | </td> |
4271 | | |
4272 | | |
4273 | | |
4274 | | |
4275 | | |
4276 | | |
4277 | | <td style="vertical-align: top;">R</td> |
4278 | | |
4279 | | |
4280 | | |
4281 | | |
4282 | | |
4283 | | |
4284 | | |
4285 | | <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td> |
4286 | | |
4287 | | |
4288 | | |
4289 | | |
4290 | | |
4291 | | |
4292 | | <td style="vertical-align: top;"> |
4293 | | |
4294 | | |
4295 | | |
4296 | | |
4297 | | |
4298 | | |
4299 | | <p>Horizontal grid |
4300 | | spacing along the x-direction (in m). </p> |
4301 | | |
4302 | | |
4303 | | |
4304 | | |
4305 | | |
4306 | | |
4307 | | |
4308 | | |
4309 | | |
4310 | | |
4311 | | |
4312 | | |
4313 | | |
4314 | | <p>Along |
4315 | | x-direction only a constant grid spacing is allowed.</p> |
4316 | | |
4317 | | |
4318 | | |
4319 | | |
4320 | | |
4321 | | |
4322 | | |
4323 | | |
4324 | | |
4325 | | |
4326 | | |
4327 | | |
4328 | | <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a> |
4329 | | and <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p> |
4330 | | |
4331 | | |
4332 | | |
4333 | | |
4334 | | |
4335 | | |
4336 | | </td> |
4337 | | |
4338 | | |
4339 | | |
4340 | | |
4341 | | |
4342 | | |
4343 | | |
4344 | | </tr> |
4345 | | |
4346 | | |
4347 | | |
4348 | | |
4349 | | |
4350 | | |
4351 | | <tr> |
4352 | | |
4353 | | |
4354 | | |
4355 | | |
4356 | | |
4357 | | |
4358 | | <td style="vertical-align: top;"> |
4359 | | |
4360 | | |
4361 | | |
4362 | | |
4363 | | |
4364 | | |
4365 | | <p><a name="dy"></a><b>dy</b></p> |
4366 | | |
4367 | | |
4368 | | |
4369 | | |
4370 | | |
4371 | | |
4372 | | |
4373 | | </td> |
4374 | | |
4375 | | |
4376 | | |
4377 | | |
4378 | | |
4379 | | |
4380 | | <td style="vertical-align: top;">R</td> |
4381 | | |
4382 | | |
4383 | | |
4384 | | |
4385 | | |
4386 | | |
4387 | | |
4388 | | <td style="vertical-align: top;"><span style="font-style: italic;">1.0</span></td> |
4389 | | |
4390 | | |
4391 | | |
4392 | | |
4393 | | |
4394 | | |
4395 | | <td style="vertical-align: top;"> |
4396 | | |
4397 | | |
4398 | | |
4399 | | |
4400 | | |
4401 | | |
4402 | | <p>Horizontal grid |
4403 | | spacing along the y-direction (in m). </p> |
4404 | | |
4405 | | |
4406 | | |
4407 | | |
4408 | | |
4409 | | |
4410 | | |
4411 | | |
4412 | | |
4413 | | |
4414 | | |
4415 | | |
4416 | | |
4417 | | <p>Along y-direction only a constant grid spacing is allowed.</p> |
4418 | | |
4419 | | |
4420 | | |
4421 | | |
4422 | | |
4423 | | |
4424 | | |
4425 | | |
4426 | | |
4427 | | |
4428 | | |
4429 | | |
4430 | | <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a> |
4431 | | and <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p> |
4432 | | |
4433 | | |
4434 | | |
4435 | | |
4436 | | |
4437 | | |
4438 | | </td> |
4439 | | |
4440 | | |
4441 | | |
4442 | | |
4443 | | |
4444 | | |
4445 | | |
4446 | | </tr> |
4447 | | |
4448 | | |
4449 | | |
4450 | | |
4451 | | |
4452 | | |
4453 | | <tr> |
4454 | | |
4455 | | |
4456 | | |
4457 | | |
4458 | | |
4459 | | |
4460 | | <td style="vertical-align: top;"> |
4461 | | |
4462 | | |
4463 | | |
4464 | | |
4465 | | |
4466 | | |
4467 | | <p><a name="dz"></a><b>dz</b></p> |
4468 | | |
4469 | | |
4470 | | |
4471 | | |
4472 | | |
4473 | | |
4474 | | |
4475 | | </td> |
4476 | | |
4477 | | |
4478 | | |
4479 | | |
4480 | | |
4481 | | |
4482 | | <td style="vertical-align: top;">R</td> |
4483 | | |
4484 | | |
4485 | | |
4486 | | |
4487 | | |
4488 | | |
4489 | | |
4490 | | <td style="vertical-align: top;"><br> |
4491 | | |
4492 | | |
4493 | | |
4494 | | |
4495 | | |
4496 | | |
4497 | | </td> |
4498 | | |
4499 | | |
4500 | | |
4501 | | |
4502 | | |
4503 | | |
4504 | | <td style="vertical-align: top;"> |
4505 | | |
4506 | | |
4507 | | |
4508 | | |
4509 | | |
4510 | | |
4511 | | <p>Vertical grid |
4512 | | spacing (in m). </p> |
4513 | | |
4514 | | |
4515 | | |
4516 | | |
4517 | | |
4518 | | |
4519 | | |
4520 | | |
4521 | | |
4522 | | |
4523 | | |
4524 | | |
4525 | | |
4526 | | <p>This parameter must be |
4527 | | assigned by the user, because no |
4528 | | default value is given.<br> |
4529 | | |
4530 | | |
4531 | | |
4532 | | |
4533 | | |
4534 | | |
4535 | | </p> |
4536 | | |
4537 | | |
4538 | | |
4539 | | |
4540 | | |
4541 | | |
4542 | | |
4543 | | |
4544 | | |
4545 | | |
4546 | | |
4547 | | |
4548 | | |
4549 | | <p>By default, the |
4550 | | model uses constant grid spacing along z-direction, but it can be |
4551 | | stretched using the parameters <a href="#dz_stretch_level">dz_stretch_level</a> |
4552 | | and <a href="#dz_stretch_factor">dz_stretch_factor</a>. |
4553 | | In case of stretching, a maximum allowed grid spacing can be given by <a href="#dz_max">dz_max</a>.<br> |
4554 | | |
4555 | | |
4556 | | |
4557 | | |
4558 | | |
4559 | | |
4560 | | </p> |
4561 | | |
4562 | | |
4563 | | |
4564 | | |
4565 | | |
4566 | | |
4567 | | |
4568 | | |
4569 | | |
4570 | | |
4571 | | |
4572 | | |
4573 | | |
4574 | | <p>Assuming |
4575 | | a constant <span style="font-weight: bold;">dz</span>, |
4576 | | the scalar levels (zu) are calculated directly by: </p> |
4577 | | |
4578 | | |
4579 | | |
4580 | | |
4581 | | |
4582 | | |
4583 | | |
4584 | | |
4585 | | |
4586 | | |
4587 | | |
4588 | | |
4589 | | |
4590 | | <ul> |
4591 | | |
4592 | | |
4593 | | |
4594 | | |
4595 | | |
4596 | | |
4597 | | |
4598 | | |
4599 | | |
4600 | | |
4601 | | |
4602 | | |
4603 | | |
4604 | | <p>zu(0) = - dz * 0.5 <br> |
4605 | | |
4606 | | |
4607 | | |
4608 | | |
4609 | | |
4610 | | |
4611 | | |
4612 | | zu(1) = dz * 0.5</p> |
4613 | | |
4614 | | |
4615 | | |
4616 | | |
4617 | | |
4618 | | |
4619 | | |
4620 | | |
4621 | | |
4622 | | |
4623 | | |
4624 | | |
4625 | | |
4626 | | </ul> |
4627 | | |
4628 | | |
4629 | | |
4630 | | |
4631 | | |
4632 | | |
4633 | | |
4634 | | |
4635 | | |
4636 | | |
4637 | | |
4638 | | |
4639 | | |
4640 | | <p>The w-levels lie |
4641 | | half between them: </p> |
4642 | | |
4643 | | |
4644 | | |
4645 | | |
4646 | | |
4647 | | |
4648 | | |
4649 | | |
4650 | | |
4651 | | |
4652 | | |
4653 | | |
4654 | | |
4655 | | <ul> |
4656 | | |
4657 | | |
4658 | | |
4659 | | |
4660 | | |
4661 | | |
4662 | | |
4663 | | |
4664 | | |
4665 | | |
4666 | | |
4667 | | |
4668 | | |
4669 | | <p>zw(k) = |
4670 | | ( zu(k) + zu(k+1) ) * 0.5</p> |
4671 | | |
4672 | | |
4673 | | |
4674 | | |
4675 | | |
4676 | | |
4677 | | |
4678 | | |
4679 | | |
4680 | | |
4681 | | |
4682 | | |
4683 | | |
4684 | | </ul> |
4685 | | |
4686 | | |
4687 | | |
4688 | | |
4689 | | |
4690 | | |
4691 | | </td> |
4692 | | |
4693 | | |
4694 | | |
4695 | | |
4696 | | |
4697 | | |
4698 | | </tr> |
4699 | | |
4700 | | |
4701 | | |
4702 | | |
4703 | | |
4704 | | |
4705 | | |
4706 | | <tr> |
4707 | | |
4708 | | |
4709 | | |
4710 | | |
4711 | | |
4712 | | |
4713 | | <td style="vertical-align: top;"><a name="dz_max"></a><span style="font-weight: bold;">dz_max</span></td> |
4714 | | |
4715 | | |
4716 | | |
4717 | | |
4718 | | |
4719 | | |
4720 | | <td style="vertical-align: top;">R</td> |
4721 | | |
4722 | | |
4723 | | |
4724 | | |
4725 | | |
4726 | | |
4727 | | <td style="vertical-align: top;"><span style="font-style: italic;">9999999.9</span></td> |
4728 | | |
4729 | | |
4730 | | |
4731 | | |
4732 | | |
4733 | | |
4734 | | <td style="vertical-align: top;">Allowed maximum vertical grid |
4735 | | spacing (in m).<br> |
4736 | | |
4737 | | |
4738 | | |
4739 | | |
4740 | | |
4741 | | |
4742 | | <br> |
4743 | | |
4744 | | |
4745 | | |
4746 | | |
4747 | | |
4748 | | |
4749 | | If the vertical grid is stretched |
4750 | | (see <a href="#dz_stretch_factor">dz_stretch_factor</a> |
4751 | | and <a href="#dz_stretch_level">dz_stretch_level</a>), |
4752 | | <span style="font-weight: bold;">dz_max</span> can |
4753 | | be used to limit the vertical grid spacing.</td> |
4754 | | |
4755 | | |
4756 | | |
4757 | | |
4758 | | |
4759 | | |
4760 | | </tr> |
4761 | | |
4762 | | |
4763 | | |
4764 | | |
4765 | | |
4766 | | |
4767 | | <tr> |
4768 | | |
4769 | | |
4770 | | |
4771 | | |
4772 | | |
4773 | | |
4774 | | |
4775 | | <td style="vertical-align: top;"> |
4776 | | |
4777 | | |
4778 | | |
4779 | | |
4780 | | |
4781 | | |
4782 | | <p><a name="dz_stretch_factor"></a><b>dz_stretch_factor</b></p> |
4783 | | |
4784 | | |
4785 | | |
4786 | | |
4787 | | |
4788 | | |
4789 | | |
4790 | | </td> |
4791 | | |
4792 | | |
4793 | | |
4794 | | |
4795 | | |
4796 | | |
4797 | | <td style="vertical-align: top;">R</td> |
4798 | | |
4799 | | |
4800 | | |
4801 | | |
4802 | | |
4803 | | |
4804 | | |
4805 | | <td style="vertical-align: top;"><span style="font-style: italic;">1.08</span></td> |
4806 | | |
4807 | | |
4808 | | |
4809 | | |
4810 | | |
4811 | | |
4812 | | <td style="vertical-align: top;"> |
4813 | | |
4814 | | |
4815 | | |
4816 | | |
4817 | | |
4818 | | |
4819 | | <p>Stretch factor for a |
4820 | | vertically stretched grid (see <a href="#dz_stretch_level">dz_stretch_level</a>). |
4821 | | </p> |
4822 | | |
4823 | | |
4824 | | |
4825 | | |
4826 | | |
4827 | | |
4828 | | |
4829 | | |
4830 | | |
4831 | | |
4832 | | |
4833 | | |
4834 | | |
4835 | | <p>The stretch factor should not exceed a value of |
4836 | | approx. 1.10 - |
4837 | | 1.12, otherwise the discretization errors due to the stretched grid not |
4838 | | negligible any more. (refer Kalnay de Rivas)</p> |
4839 | | |
4840 | | |
4841 | | |
4842 | | |
4843 | | |
4844 | | |
4845 | | </td> |
4846 | | |
4847 | | |
4848 | | |
4849 | | |
4850 | | |
4851 | | |
4852 | | </tr> |
4853 | | |
4854 | | |
4855 | | |
4856 | | |
4857 | | |
4858 | | |
4859 | | |
4860 | | <tr> |
4861 | | |
4862 | | |
4863 | | |
4864 | | |
4865 | | |
4866 | | |
4867 | | <td style="vertical-align: top;"> |
4868 | | |
4869 | | |
4870 | | |
4871 | | |
4872 | | |
4873 | | |
4874 | | <p><a name="dz_stretch_level"></a><b>dz_stretch_level</b></p> |
4875 | | |
4876 | | |
4877 | | |
4878 | | |
4879 | | |
4880 | | |
4881 | | |
4882 | | </td> |
4883 | | |
4884 | | |
4885 | | |
4886 | | |
4887 | | |
4888 | | |
4889 | | <td style="vertical-align: top;">R</td> |
4890 | | |
4891 | | |
4892 | | |
4893 | | |
4894 | | |
4895 | | |
4896 | | |
4897 | | <td style="vertical-align: top;"><span style="font-style: italic;">100000.0</span><br> |
4898 | | |
4899 | | |
4900 | | |
4901 | | |
4902 | | |
4903 | | |
4904 | | </td> |
4905 | | |
4906 | | |
4907 | | |
4908 | | |
4909 | | |
4910 | | |
4911 | | |
4912 | | <td style="vertical-align: top;"> |
4913 | | |
4914 | | |
4915 | | |
4916 | | |
4917 | | |
4918 | | |
4919 | | <p>Height level |
4920 | | above/below which the grid is to be stretched |
4921 | | vertically (in m). </p> |
4922 | | |
4923 | | |
4924 | | |
4925 | | |
4926 | | |
4927 | | |
4928 | | |
4929 | | |
4930 | | |
4931 | | |
4932 | | |
4933 | | |
4934 | | |
4935 | | <p>For <a href="chapter_4.1.html#ocean">ocean</a> = .F., <b>dz_stretch_level </b>is the height level (in m) <span style="font-weight: bold;">above </span>which the grid is to be stretched |
4936 | | vertically. The vertical grid |
4937 | | spacings <a href="#dz">dz</a> |
4938 | | above this level are calculated as </p> |
4939 | | |
4940 | | |
4941 | | |
4942 | | |
4943 | | |
4944 | | |
4945 | | |
4946 | | |
4947 | | |
4948 | | |
4949 | | |
4950 | | |
4951 | | |
4952 | | <ul> |
4953 | | |
4954 | | |
4955 | | |
4956 | | |
4957 | | |
4958 | | |
4959 | | |
4960 | | |
4961 | | |
4962 | | |
4963 | | |
4964 | | |
4965 | | |
4966 | | <p><b>dz</b>(k+1) |
4967 | | = <b>dz</b>(k) * <a href="#dz_stretch_factor">dz_stretch_factor</a></p> |
4968 | | |
4969 | | |
4970 | | |
4971 | | |
4972 | | |
4973 | | |
4974 | | |
4975 | | |
4976 | | |
4977 | | |
4978 | | |
4979 | | |
4980 | | |
4981 | | </ul> |
4982 | | |
4983 | | |
4984 | | |
4985 | | |
4986 | | |
4987 | | |
4988 | | |
4989 | | |
4990 | | |
4991 | | |
4992 | | |
4993 | | |
4994 | | |
4995 | | <p>and used as spacings for the scalar levels (zu). |
4996 | | The |
4997 | | w-levels are then defined as: </p> |
4998 | | |
4999 | | |
5000 | | |
5001 | | |
5002 | | |
5003 | | |
5004 | | |
5005 | | |
5006 | | |
5007 | | |
5008 | | |
5009 | | |
5010 | | |
5011 | | <ul> |
5012 | | |
5013 | | |
5014 | | |
5015 | | |
5016 | | |
5017 | | |
5018 | | |
5019 | | |
5020 | | |
5021 | | |
5022 | | |
5023 | | |
5024 | | |
5025 | | <p>zw(k) |
5026 | | = ( zu(k) + zu(k+1) ) * 0.5. |
5027 | | |
5028 | | |
5029 | | |
5030 | | </p> |
5031 | | |
5032 | | |
5033 | | |
5034 | | |
5035 | | |
5036 | | |
5037 | | |
5038 | | |
5039 | | </ul> |
5040 | | |
5041 | | |
5042 | | |
5043 | | |
5044 | | |
5045 | | |
5046 | | |
5047 | | |
5048 | | <p>For <a href="#ocean">ocean</a> = .T., <b>dz_stretch_level </b>is the height level (in m, negative) <span style="font-weight: bold;">below</span> which the grid is to be stretched |
5049 | | vertically. The vertical grid |
5050 | | spacings <a href="chapter_4.1.html#dz">dz</a> below this level are calculated correspondingly as |
5051 | | |
5052 | | |
5053 | | |
5054 | | </p> |
5055 | | |
5056 | | |
5057 | | |
5058 | | |
5059 | | |
5060 | | |
5061 | | |
5062 | | |
5063 | | <ul> |
5064 | | |
5065 | | |
5066 | | |
5067 | | |
5068 | | |
5069 | | |
5070 | | |
5071 | | |
5072 | | <p><b>dz</b>(k-1) |
5073 | | = <b>dz</b>(k) * <a href="chapter_4.1.html#dz_stretch_factor">dz_stretch_factor</a>.</p> |
5074 | | |
5075 | | |
5076 | | |
5077 | | |
5078 | | |
5079 | | |
5080 | | |
5081 | | |
5082 | | </ul> |
5083 | | |
5084 | | |
5085 | | |
5086 | | |
5087 | | |
5088 | | |
5089 | | </td> |
5090 | | |
5091 | | |
5092 | | |
5093 | | |
5094 | | |
5095 | | |
5096 | | </tr> |
5097 | | |
5098 | | |
5099 | | |
5100 | | |
5101 | | |
5102 | | |
5103 | | |
5104 | | <tr> |
5105 | | |
5106 | | |
5107 | | |
5108 | | |
5109 | | |
5110 | | <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_init"></a>e_init</span></td> |
5111 | | |
5112 | | |
5113 | | |
5114 | | |
5115 | | |
5116 | | <td style="vertical-align: top;">R</td> |
5117 | | |
5118 | | |
5119 | | |
5120 | | |
5121 | | |
5122 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> |
5123 | | |
5124 | | |
5125 | | |
5126 | | |
5127 | | |
5128 | | <td>Initial subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br> |
5129 | | |
5130 | | |
5131 | | |
5132 | | |
5133 | | |
5134 | | |
5135 | | |
5136 | | <br> |
5137 | | |
5138 | | |
5139 | | |
5140 | | |
5141 | | |
5142 | | |
5143 | | This |
5144 | | option prescribes an initial subgrid-scale TKE from which the initial diffusion coefficients K<sub>m</sub> and K<sub>h</sub> will be calculated if <span style="font-weight: bold;">e_init</span> is positive. This option only has an effect if <a href="#km_constant">km_constant</a> is not set.</td> |
5145 | | |
5146 | | |
5147 | | |
5148 | | |
5149 | | |
5150 | | </tr> |
5151 | | |
5152 | | |
5153 | | |
5154 | | |
5155 | | |
5156 | | <tr> |
5157 | | |
5158 | | |
5159 | | |
5160 | | |
5161 | | |
5162 | | |
5163 | | <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="e_min"></a>e_min</span></td> |
5164 | | |
5165 | | |
5166 | | |
5167 | | |
5168 | | |
5169 | | |
5170 | | |
5171 | | <td style="vertical-align: top;">R</td> |
5172 | | |
5173 | | |
5174 | | |
5175 | | |
5176 | | |
5177 | | |
5178 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> |
5179 | | |
5180 | | |
5181 | | |
5182 | | |
5183 | | |
5184 | | |
5185 | | <td>Minimum |
5186 | | subgrid-scale TKE in m<sup>2</sup>s<sup>-2</sup>.<br> |
5187 | | |
5188 | | |
5189 | | |
5190 | | |
5191 | | |
5192 | | |
5193 | | |
5194 | | <br> |
5195 | | |
5196 | | |
5197 | | |
5198 | | |
5199 | | |
5200 | | |
5201 | | This |
5202 | | option adds artificial viscosity to the flow by ensuring that |
5203 | | the |
5204 | | subgrid-scale TKE does not fall below the minimum threshold <span style="font-weight: bold;">e_min</span>.</td> |
5205 | | |
5206 | | |
5207 | | |
5208 | | |
5209 | | |
5210 | | |
5211 | | </tr> |
5212 | | |
5213 | | |
5214 | | |
5215 | | |
5216 | | |
5217 | | |
5218 | | |
5219 | | <tr> |
5220 | | |
5221 | | |
5222 | | |
5223 | | |
5224 | | |
5225 | | |
5226 | | <td style="vertical-align: top;"> |
5227 | | |
5228 | | |
5229 | | |
5230 | | |
5231 | | |
5232 | | |
5233 | | <p><a name="end_time_1d"></a><b>end_time_1d</b></p> |
5234 | | |
5235 | | |
5236 | | |
5237 | | |
5238 | | |
5239 | | |
5240 | | |
5241 | | </td> |
5242 | | |
5243 | | |
5244 | | |
5245 | | |
5246 | | |
5247 | | |
5248 | | <td style="vertical-align: top;">R</td> |
5249 | | |
5250 | | |
5251 | | |
5252 | | |
5253 | | |
5254 | | |
5255 | | |
5256 | | <td style="vertical-align: top;"><span style="font-style: italic;">864000.0</span><br> |
5257 | | |
5258 | | |
5259 | | |
5260 | | |
5261 | | |
5262 | | |
5263 | | </td> |
5264 | | |
5265 | | |
5266 | | |
5267 | | |
5268 | | |
5269 | | |
5270 | | |
5271 | | <td style="vertical-align: top;"> |
5272 | | |
5273 | | |
5274 | | |
5275 | | |
5276 | | |
5277 | | |
5278 | | <p>Time to be |
5279 | | simulated for the 1d-model (in s). </p> |
5280 | | |
5281 | | |
5282 | | |
5283 | | |
5284 | | |
5285 | | |
5286 | | |
5287 | | |
5288 | | |
5289 | | |
5290 | | |
5291 | | |
5292 | | |
5293 | | <p>The |
5294 | | default value corresponds to a simulated time of 10 days. |
5295 | | Usually, after such a period the inertia oscillations have completely |
5296 | | decayed and the solution of the 1d-model can be regarded as stationary |
5297 | | (see <a href="#damp_level_1d">damp_level_1d</a>). |
5298 | | This parameter is only in effect if the 1d-model is switched on for the |
5299 | | initialization of the 3d-model with <a href="#initializing_actions">initializing_actions</a> |
5300 | | = <span style="font-style: italic;">'set_1d-model_profiles'</span>.</p> |
5301 | | |
5302 | | |
5303 | | |
5304 | | |
5305 | | |
5306 | | |
5307 | | |
5308 | | </td> |
5309 | | |
5310 | | |
5311 | | |
5312 | | |
5313 | | |
5314 | | |
5315 | | </tr> |
5316 | | |
5317 | | |
5318 | | |
5319 | | |
5320 | | |
5321 | | |
5322 | | <tr> |
5323 | | |
5324 | | |
5325 | | |
5326 | | |
5327 | | |
5328 | | |
5329 | | <td style="vertical-align: top;"> |
5330 | | |
5331 | | |
5332 | | |
5333 | | |
5334 | | |
5335 | | |
5336 | | <p><a name="fft_method"></a><b>fft_method</b></p> |
5337 | | |
5338 | | |
5339 | | |
5340 | | |
5341 | | |
5342 | | |
5343 | | |
5344 | | </td> |
5345 | | |
5346 | | |
5347 | | |
5348 | | |
5349 | | |
5350 | | |
5351 | | <td style="vertical-align: top;">C * 20</td> |
5352 | | |
5353 | | |
5354 | | |
5355 | | |
5356 | | |
5357 | | |
5358 | | |
5359 | | <td style="vertical-align: top;"><span style="font-style: italic;">'system-</span><br style="font-style: italic;"> |
5360 | | |
5361 | | |
5362 | | |
5363 | | |
5364 | | |
5365 | | |
5366 | | <span style="font-style: italic;">specific'</span></td> |
5367 | | |
5368 | | |
5369 | | |
5370 | | |
5371 | | |
5372 | | |
5373 | | |
5374 | | <td style="vertical-align: top;"> |
5375 | | |
5376 | | |
5377 | | |
5378 | | |
5379 | | |
5380 | | |
5381 | | <p>FFT-method to |
5382 | | be used.<br> |
5383 | | |
5384 | | |
5385 | | |
5386 | | |
5387 | | |
5388 | | |
5389 | | </p> |
5390 | | |
5391 | | |
5392 | | |
5393 | | |
5394 | | |
5395 | | |
5396 | | |
5397 | | |
5398 | | |
5399 | | |
5400 | | |
5401 | | |
5402 | | |
5403 | | <p><br> |
5404 | | |
5405 | | |
5406 | | |
5407 | | |
5408 | | |
5409 | | |
5410 | | |
5411 | | The fast fourier transformation (FFT) is used for solving the |
5412 | | perturbation pressure equation with a direct method (see <a href="chapter_4.2.html#psolver">psolver</a>) |
5413 | | and for calculating power spectra (see optional software packages, |
5414 | | section <a href="chapter_4.2.html#spectra_package">4.2</a>).</p> |
5415 | | |
5416 | | |
5417 | | |
5418 | | |
5419 | | |
5420 | | |
5421 | | |
5422 | | |
5423 | | |
5424 | | |
5425 | | |
5426 | | |
5427 | | |
5428 | | <p><br> |
5429 | | |
5430 | | |
5431 | | |
5432 | | |
5433 | | |
5434 | | |
5435 | | |
5436 | | By default, system-specific, optimized routines from external |
5437 | | vendor libraries are used. However, these are available only on certain |
5438 | | computers and there are more or less severe restrictions concerning the |
5439 | | number of gridpoints to be used with them.<br> |
5440 | | |
5441 | | |
5442 | | |
5443 | | |
5444 | | |
5445 | | |
5446 | | </p> |
5447 | | |
5448 | | |
5449 | | |
5450 | | |
5451 | | |
5452 | | |
5453 | | |
5454 | | |
5455 | | |
5456 | | |
5457 | | |
5458 | | |
5459 | | |
5460 | | <p>There |
5461 | | are two other PALM internal methods available on every |
5462 | | machine (their respective source code is part of the PALM source code):</p> |
5463 | | |
5464 | | |
5465 | | |
5466 | | |
5467 | | |
5468 | | |
5469 | | |
5470 | | |
5471 | | |
5472 | | |
5473 | | |
5474 | | |
5475 | | |
5476 | | <p>1.: The <span style="font-weight: bold;">Temperton</span>-method |
5477 | | from Clive Temperton (ECWMF) which is computationally very fast and |
5478 | | switched on with <b>fft_method</b> = <span style="font-style: italic;">'temperton-algorithm'</span>. |
5479 | | The number of horizontal gridpoints (nx+1, ny+1) to be used with this |
5480 | | method must be composed of prime factors 2, 3 and 5.<br> |
5481 | | |
5482 | | |
5483 | | |
5484 | | |
5485 | | |
5486 | | |
5487 | | </p> |
5488 | | |
5489 | | |
5490 | | |
5491 | | |
5492 | | |
5493 | | |
5494 | | |
5495 | | 2.: The <span style="font-weight: bold;">Singleton</span>-method |
5496 | | which is very slow but has no restrictions concerning the number of |
5497 | | gridpoints to be used with, switched on with <b>fft_method</b> |
5498 | | = <span style="font-style: italic;">'singleton-algorithm'</span>. |
5499 | | </td> |
5500 | | |
5501 | | |
5502 | | |
5503 | | |
5504 | | |
5505 | | |
5506 | | </tr> |
5507 | | |
5508 | | |
5509 | | |
5510 | | |
5511 | | |
5512 | | |
5513 | | <tr> |
5514 | | |
5515 | | |
5516 | | |
5517 | | |
5518 | | |
5519 | | |
5520 | | <td style="vertical-align: top;"> |
5521 | | |
5522 | | |
5523 | | |
5524 | | |
5525 | | |
5526 | | |
5527 | | <p><a name="galilei_transformation"></a><b>galilei_transformation</b></p> |
5528 | | |
5529 | | |
5530 | | |
5531 | | |
5532 | | |
5533 | | |
5534 | | |
5535 | | </td> |
5536 | | |
5537 | | |
5538 | | |
5539 | | |
5540 | | |
5541 | | |
5542 | | <td style="vertical-align: top;">L</td> |
5543 | | |
5544 | | |
5545 | | |
5546 | | |
5547 | | |
5548 | | |
5549 | | |
5550 | | <td style="vertical-align: top;"><i>.F.</i></td> |
5551 | | |
5552 | | |
5553 | | |
5554 | | |
5555 | | |
5556 | | |
5557 | | |
5558 | | <td style="vertical-align: top;">Application of a |
5559 | | Galilei-transformation to the |
5560 | | coordinate |
5561 | | system of the model.<br> |
5562 | | |
5563 | | |
5564 | | |
5565 | | |
5566 | | |
5567 | | |
5568 | | |
5569 | | |
5570 | | |
5571 | | |
5572 | | |
5573 | | |
5574 | | <p>With <b>galilei_transformation</b> |
5575 | | = <i>.T.,</i> a so-called |
5576 | | Galilei-transformation is switched on which ensures that the coordinate |
5577 | | system of the model is moved along with the geostrophical wind. |
5578 | | Alternatively, the model domain can be moved along with the averaged |
5579 | | horizontal wind (see <a href="#use_ug_for_galilei_tr">use_ug_for_galilei_tr</a>, |
5580 | | this can and will naturally change in time). With this method, |
5581 | | numerical inaccuracies of the Piascek - Williams - scheme (concerns in |
5582 | | particular the momentum advection) are minimized. Beyond that, in the |
5583 | | majority of cases the lower relative velocities in the moved system |
5584 | | permit a larger time step (<a href="#dt">dt</a>). |
5585 | | Switching the transformation on is only worthwhile if the geostrophical |
5586 | | wind (ug, vg) |
5587 | | and the averaged horizontal wind clearly deviate from the value 0. In |
5588 | | each case, the distance the coordinate system has been moved is written |
5589 | | to the file <a href="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>. |
5590 | | </p> |
5591 | | |
5592 | | |
5593 | | |
5594 | | |
5595 | | |
5596 | | |
5597 | | |
5598 | | |
5599 | | |
5600 | | |
5601 | | |
5602 | | |
5603 | | |
5604 | | <p>Non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a> |
5605 | | and <a href="#bc_ns">bc_ns</a>), the specification |
5606 | | of a gestrophic |
5607 | | wind that is not constant with height |
5608 | | as well as e.g. stationary inhomogeneities at the bottom boundary do |
5609 | | not allow the use of this transformation.</p> |
5610 | | |
5611 | | |
5612 | | |
5613 | | |
5614 | | |
5615 | | |
5616 | | </td> |
5617 | | |
5618 | | |
5619 | | |
5620 | | |
5621 | | |
5622 | | |
5623 | | </tr> |
5624 | | |
5625 | | |
5626 | | |
5627 | | |
5628 | | |
5629 | | |
5630 | | |
5631 | | <tr> |
5632 | | |
5633 | | |
5634 | | |
5635 | | |
5636 | | |
5637 | | |
5638 | | <td style="vertical-align: top;"> |
5639 | | |
5640 | | |
5641 | | |
5642 | | |
5643 | | |
5644 | | |
5645 | | <p><a name="grid_matching"></a><b>grid_matching</b></p> |
5646 | | |
5647 | | |
5648 | | |
5649 | | |
5650 | | |
5651 | | |
5652 | | |
5653 | | </td> |
5654 | | |
5655 | | |
5656 | | |
5657 | | |
5658 | | |
5659 | | |
5660 | | <td style="vertical-align: top;">C * 6</td> |
5661 | | |
5662 | | |
5663 | | |
5664 | | |
5665 | | |
5666 | | |
5667 | | |
5668 | | <td style="vertical-align: top;"><span style="font-style: italic;">'strict'</span></td> |
5669 | | |
5670 | | |
5671 | | |
5672 | | |
5673 | | |
5674 | | |
5675 | | <td style="vertical-align: top;">Variable to adjust the |
5676 | | subdomain |
5677 | | sizes in parallel runs.<br> |
5678 | | |
5679 | | |
5680 | | |
5681 | | |
5682 | | |
5683 | | |
5684 | | <br> |
5685 | | |
5686 | | |
5687 | | |
5688 | | |
5689 | | |
5690 | | |
5691 | | |
5692 | | For <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span>, |
5693 | | the subdomains are forced to have an identical |
5694 | | size on all processors. In this case the processor numbers in the |
5695 | | respective directions of the virtual processor net must fulfill certain |
5696 | | divisor conditions concerning the grid point numbers in the three |
5697 | | directions (see <a href="#nx">nx</a>, <a href="#ny">ny</a> |
5698 | | and <a href="#nz">nz</a>). |
5699 | | Advantage of this method is that all PEs bear the same computational |
5700 | | load.<br> |
5701 | | |
5702 | | |
5703 | | |
5704 | | |
5705 | | |
5706 | | |
5707 | | <br> |
5708 | | |
5709 | | |
5710 | | |
5711 | | |
5712 | | |
5713 | | |
5714 | | |
5715 | | There is no such restriction by default, because then smaller |
5716 | | subdomains are allowed on those processors which |
5717 | | form the right and/or north boundary of the virtual processor grid. On |
5718 | | all other processors the subdomains are of same size. Whether smaller |
5719 | | subdomains are actually used, depends on the number of processors and |
5720 | | the grid point numbers used. Information about the respective settings |
5721 | | are given in file <a href="file:///home/raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</a>.<br> |
5722 | | |
5723 | | |
5724 | | |
5725 | | |
5726 | | |
5727 | | |
5728 | | |
5729 | | <br> |
5730 | | |
5731 | | |
5732 | | |
5733 | | |
5734 | | |
5735 | | |
5736 | | |
5737 | | When using a multi-grid method for solving the Poisson equation (see <a href="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</a>) |
5738 | | only <b>grid_matching</b> = <span style="font-style: italic;">'strict'</span> |
5739 | | is allowed.<br> |
5740 | | |
5741 | | |
5742 | | |
5743 | | |
5744 | | |
5745 | | |
5746 | | <br> |
5747 | | |
5748 | | |
5749 | | |
5750 | | |
5751 | | |
5752 | | |
5753 | | <b>Note:</b><br> |
5754 | | |
5755 | | |
5756 | | |
5757 | | |
5758 | | |
5759 | | |
5760 | | |
5761 | | In some cases for small processor numbers there may be a very bad load |
5762 | | balancing among the |
5763 | | processors which may reduce the performance of the code.</td> |
5764 | | |
5765 | | |
5766 | | |
5767 | | |
5768 | | |
5769 | | |
5770 | | </tr> |
5771 | | |
5772 | | |
5773 | | |
5774 | | |
5775 | | |
5776 | | |
5777 | | |
5778 | | <tr><td style="vertical-align: top;"><p><a name="humidity"></a><b>humidity</b></p></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><i>.F.</i></td><td style="vertical-align: top;"><p>Parameter to |
5779 | | switch on the prognostic equation for specific |
5780 | | humidity q.<br> |
5781 | | |
5782 | | |
5783 | | |
5784 | | |
5785 | | |
5786 | | |
5787 | | </p> |
5788 | | |
5789 | | |
5790 | | |
5791 | | |
5792 | | |
5793 | | |
5794 | | |
5795 | | |
5796 | | |
5797 | | |
5798 | | |
5799 | | |
5800 | | |
5801 | | <p>The initial vertical |
5802 | | profile of q can be set via parameters <a href="chapter_4.1.html#q_surface">q_surface</a>, <a href="chapter_4.1.html#q_vertical_gradient">q_vertical_gradient</a> |
5803 | | and <a href="chapter_4.1.html#q_vertical_gradient_level">q_vertical_gradient_level</a>. |
5804 | | Boundary conditions can be set via <a href="chapter_4.1.html#q_surface_initial_change">q_surface_initial_change</a> |
5805 | | and <a href="chapter_4.1.html#surface_waterflux">surface_waterflux</a>.<br> |
5806 | | |
5807 | | |
5808 | | |
5809 | | |
5810 | | |
5811 | | |
5812 | | |
5813 | | </p> |
5814 | | |
5815 | | |
5816 | | |
5817 | | |
5818 | | |
5819 | | |
5820 | | |
5821 | | If the condensation scheme is switched on (<a href="chapter_4.1.html#cloud_physics">cloud_physics</a> |
5822 | | = .TRUE.), q becomes the total liquid water content (sum of specific |
5823 | | humidity and liquid water content).</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_height"></a>inflow_damping_height</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">from precursor run</span></td><td style="vertical-align: top;">Height below which the turbulence signal is used for turbulence recycling (in m).<br><br>In case of a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>), |
5824 | | this parameter defines the vertical thickness of the turbulent layer up |
5825 | | to which the turbulence extracted at the recycling plane (see <a href="chapter_4.1.html#recycling_width">recycling_width</a>) |
5826 | | shall be imposed to the inflow. Above this level the turbulence signal |
5827 | | is linearly damped to zero. The transition range within which the |
5828 | | signal falls to zero is given by the parameter <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>By default, this height is set as the height of the convective boundary layer as calculated from a precursor run. See <a href="chapter_3.9.html">chapter 3.9</a> about proper settings for getting this CBL height from a precursor run. </td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="inflow_damping_width"></a>inflow_damping_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#inflow_damping_height">inflow_damping</a></span><a href="chapter_4.1.html#inflow_damping_height"><br style="font-style: italic;"><span style="font-style: italic;">_height</span></a></td><td style="vertical-align: top;">Transition range within which the turbulance signal is damped to zero (in m).<br><br>See <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> for explanation.</td></tr><tr> |
5829 | | |
5830 | | |
5831 | | |
5832 | | |
5833 | | |
5834 | | |
5835 | | <td style="vertical-align: top;"><a name="inflow_disturbance_begin"></a><b>inflow_disturbance_<br> |
5836 | | |
5837 | | |
5838 | | |
5839 | | |
5840 | | |
5841 | | |
5842 | | |
5843 | | begin</b></td> |
5844 | | |
5845 | | |
5846 | | |
5847 | | |
5848 | | |
5849 | | |
5850 | | <td style="vertical-align: top;">I</td> |
5851 | | |
5852 | | |
5853 | | |
5854 | | |
5855 | | |
5856 | | |
5857 | | |
5858 | | <td style="vertical-align: top;"><span style="font-style: italic;">MIN(10,</span><br style="font-style: italic;"> |
5859 | | |
5860 | | |
5861 | | |
5862 | | |
5863 | | |
5864 | | |
5865 | | <span style="font-style: italic;">nx/2 or ny/2)</span></td> |
5866 | | |
5867 | | |
5868 | | |
5869 | | |
5870 | | |
5871 | | |
5872 | | |
5873 | | <td style="vertical-align: top;">Lower |
5874 | | limit of the horizontal range for which random perturbations are to be |
5875 | | imposed on the horizontal velocity field (gridpoints).<br> |
5876 | | |
5877 | | |
5878 | | |
5879 | | |
5880 | | |
5881 | | |
5882 | | <br> |
5883 | | |
5884 | | |
5885 | | |
5886 | | |
5887 | | |
5888 | | |
5889 | | |
5890 | | If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a> |
5891 | | or <a href="#bc_ns">bc_ns</a>), |
5892 | | this parameter gives the gridpoint number (counted horizontally from |
5893 | | the inflow) from which on perturbations are imposed on the |
5894 | | horizontal velocity field. Perturbations must be switched on with |
5895 | | parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td> |
5896 | | |
5897 | | |
5898 | | |
5899 | | |
5900 | | |
5901 | | |
5902 | | |
5903 | | </tr> |
5904 | | |
5905 | | |
5906 | | |
5907 | | |
5908 | | |
5909 | | |
5910 | | <tr> |
5911 | | |
5912 | | |
5913 | | |
5914 | | |
5915 | | |
5916 | | |
5917 | | <td style="vertical-align: top;"><a name="inflow_disturbance_end"></a><b>inflow_disturbance_<br> |
5918 | | |
5919 | | |
5920 | | |
5921 | | |
5922 | | |
5923 | | |
5924 | | |
5925 | | end</b></td> |
5926 | | |
5927 | | |
5928 | | |
5929 | | |
5930 | | |
5931 | | |
5932 | | <td style="vertical-align: top;">I</td> |
5933 | | |
5934 | | |
5935 | | |
5936 | | |
5937 | | |
5938 | | |
5939 | | |
5940 | | <td style="vertical-align: top;"><span style="font-style: italic;">MIN(100,</span><br style="font-style: italic;"> |
5941 | | |
5942 | | |
5943 | | |
5944 | | |
5945 | | |
5946 | | |
5947 | | <span style="font-style: italic;">3/4*nx or</span><br style="font-style: italic;"> |
5948 | | |
5949 | | |
5950 | | |
5951 | | |
5952 | | |
5953 | | |
5954 | | <span style="font-style: italic;">3/4*ny)</span></td> |
5955 | | |
5956 | | |
5957 | | |
5958 | | |
5959 | | |
5960 | | |
5961 | | <td style="vertical-align: top;">Upper |
5962 | | limit of the horizontal range for which random perturbations are |
5963 | | to be imposed on the horizontal velocity field (gridpoints).<br> |
5964 | | |
5965 | | |
5966 | | |
5967 | | |
5968 | | |
5969 | | |
5970 | | <br> |
5971 | | |
5972 | | |
5973 | | |
5974 | | |
5975 | | |
5976 | | |
5977 | | |
5978 | | If non-cyclic lateral boundary conditions are used (see <a href="#bc_lr">bc_lr</a> |
5979 | | or <a href="#bc_ns">bc_ns</a>), |
5980 | | this parameter gives the gridpoint number (counted horizontally from |
5981 | | the inflow) unto which perturbations are imposed on the |
5982 | | horizontal |
5983 | | velocity field. Perturbations must be switched on with parameter <a href="chapter_4.2.html#create_disturbances">create_disturbances</a>.</td> |
5984 | | |
5985 | | |
5986 | | |
5987 | | |
5988 | | |
5989 | | |
5990 | | |
5991 | | </tr> |
5992 | | |
5993 | | |
5994 | | |
5995 | | |
5996 | | |
5997 | | |
5998 | | <tr> |
5999 | | |
6000 | | |
6001 | | |
6002 | | |
6003 | | |
6004 | | |
6005 | | <td style="vertical-align: top;"> |
6006 | | |
6007 | | |
6008 | | |
6009 | | |
6010 | | |
6011 | | |
6012 | | <p><a name="initializing_actions"></a><b>initializing_actions</b></p> |
6013 | | |
6014 | | |
6015 | | |
6016 | | |
6017 | | |
6018 | | |
6019 | | |
6020 | | </td> |
6021 | | |
6022 | | |
6023 | | |
6024 | | |
6025 | | |
6026 | | |
6027 | | <td style="vertical-align: top;">C * 100</td> |
6028 | | |
6029 | | |
6030 | | |
6031 | | |
6032 | | |
6033 | | |
6034 | | |
6035 | | <td style="vertical-align: top;"><br> |
6036 | | |
6037 | | |
6038 | | |
6039 | | |
6040 | | |
6041 | | |
6042 | | </td> |
6043 | | |
6044 | | |
6045 | | |
6046 | | |
6047 | | |
6048 | | |
6049 | | <td style="vertical-align: top;"> |
6050 | | |
6051 | | |
6052 | | |
6053 | | |
6054 | | |
6055 | | |
6056 | | <p style="font-style: normal;">Initialization actions |
6057 | | to be carried out. </p> |
6058 | | |
6059 | | |
6060 | | |
6061 | | |
6062 | | |
6063 | | |
6064 | | |
6065 | | |
6066 | | |
6067 | | |
6068 | | |
6069 | | |
6070 | | |
6071 | | <p style="font-style: normal;">This parameter does not have a |
6072 | | default value and therefore must be assigned with each model run. For |
6073 | | restart runs <b>initializing_actions</b> = <span style="font-style: italic;">'read_restart_data'</span> |
6074 | | must be set. For the initial run of a job chain the following values |
6075 | | are allowed: </p> |
6076 | | |
6077 | | |
6078 | | |
6079 | | |
6080 | | |
6081 | | |
6082 | | |
6083 | | |
6084 | | |
6085 | | |
6086 | | |
6087 | | |
6088 | | |
6089 | | <p style="font-style: normal;"><span style="font-style: italic;">'set_constant_profiles'</span> |
6090 | | </p> |
6091 | | |
6092 | | |
6093 | | |
6094 | | |
6095 | | |
6096 | | |
6097 | | |
6098 | | |
6099 | | |
6100 | | |
6101 | | |
6102 | | |
6103 | | |
6104 | | <ul> |
6105 | | |
6106 | | |
6107 | | |
6108 | | |
6109 | | |
6110 | | |
6111 | | |
6112 | | |
6113 | | |
6114 | | |
6115 | | |
6116 | | |
6117 | | |
6118 | | <p>A horizontal wind profile consisting |
6119 | | of linear sections (see <a href="#ug_surface">ug_surface</a>, |
6120 | | <a href="#ug_vertical_gradient">ug_vertical_gradient</a>, |
6121 | | <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a> |
6122 | | and <a href="#vg_surface">vg_surface</a>, <a href="#vg_vertical_gradient">vg_vertical_gradient</a>, |
6123 | | <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>, |
6124 | | respectively) as well as a vertical temperature (humidity) profile |
6125 | | consisting of |
6126 | | linear sections (see <a href="#pt_surface">pt_surface</a>, |
6127 | | <a href="#pt_vertical_gradient">pt_vertical_gradient</a>, |
6128 | | <a href="#q_surface">q_surface</a> |
6129 | | and <a href="#q_vertical_gradient">q_vertical_gradient</a>) |
6130 | | are assumed as initial profiles. The subgrid-scale TKE is set to 0 but K<sub>m</sub> |
6131 | | and K<sub>h</sub> are set to very small values because |
6132 | | otherwise no TKE |
6133 | | would be generated.</p> |
6134 | | |
6135 | | |
6136 | | |
6137 | | |
6138 | | |
6139 | | |
6140 | | |
6141 | | |
6142 | | |
6143 | | |
6144 | | |
6145 | | |
6146 | | |
6147 | | </ul> |
6148 | | |
6149 | | |
6150 | | |
6151 | | |
6152 | | |
6153 | | |
6154 | | |
6155 | | |
6156 | | |
6157 | | |
6158 | | |
6159 | | |
6160 | | |
6161 | | <p style="font-style: italic;">'set_1d-model_profiles' </p> |
6162 | | |
6163 | | |
6164 | | |
6165 | | |
6166 | | |
6167 | | |
6168 | | |
6169 | | |
6170 | | |
6171 | | |
6172 | | |
6173 | | |
6174 | | |
6175 | | <ul> |
6176 | | |
6177 | | |
6178 | | |
6179 | | |
6180 | | |
6181 | | |
6182 | | |
6183 | | |
6184 | | |
6185 | | |
6186 | | |
6187 | | |
6188 | | |
6189 | | <p>The arrays of the 3d-model are initialized with |
6190 | | the |
6191 | | (stationary) solution of the 1d-model. These are the variables e, kh, |
6192 | | km, u, v and with Prandtl layer switched on rif, us, usws, vsws. The |
6193 | | temperature (humidity) profile consisting of linear sections is set as |
6194 | | for 'set_constant_profiles' and assumed as constant in time within the |
6195 | | 1d-model. For steering of the 1d-model a set of parameters with suffix |
6196 | | "_1d" (e.g. <a href="#end_time_1d">end_time_1d</a>, |
6197 | | <a href="#damp_level_1d">damp_level_1d</a>) |
6198 | | is available.</p> |
6199 | | |
6200 | | |
6201 | | |
6202 | | |
6203 | | |
6204 | | |
6205 | | |
6206 | | |
6207 | | |
6208 | | |
6209 | | |
6210 | | |
6211 | | |
6212 | | </ul> |
6213 | | |
6214 | | |
6215 | | |
6216 | | |
6217 | | |
6218 | | |
6219 | | |
6220 | | |
6221 | | |
6222 | | |
6223 | | |
6224 | | |
6225 | | |
6226 | | <p><span style="font-style: italic;">'by_user'</span></p> |
6227 | | |
6228 | | |
6229 | | |
6230 | | |
6231 | | |
6232 | | |
6233 | | |
6234 | | |
6235 | | |
6236 | | |
6237 | | |
6238 | | |
6239 | | <p style="margin-left: 40px;">The initialization of the arrays |
6240 | | of the 3d-model is under complete control of the user and has to be |
6241 | | done in routine <a href="chapter_3.5.1.html#user_init_3d_model">user_init_3d_model</a> |
6242 | | of the user-interface.<span style="font-style: italic;"></span></p> |
6243 | | |
6244 | | |
6245 | | |
6246 | | |
6247 | | |
6248 | | |
6249 | | |
6250 | | |
6251 | | |
6252 | | |
6253 | | |
6254 | | |
6255 | | <p><span style="font-style: italic;">'initialize_vortex'</span> |
6256 | | </p> |
6257 | | |
6258 | | |
6259 | | |
6260 | | |
6261 | | |
6262 | | |
6263 | | |
6264 | | |
6265 | | |
6266 | | |
6267 | | |
6268 | | |
6269 | | |
6270 | | <div style="margin-left: 40px;">The initial |
6271 | | velocity field of the |
6272 | | 3d-model corresponds to a |
6273 | | Rankine-vortex with vertical axis. This setting may be used to test |
6274 | | advection schemes. Free-slip boundary conditions for u and v (see <a href="#bc_uv_b">bc_uv_b</a>, <a href="#bc_uv_t">bc_uv_t</a>) |
6275 | | are necessary. In order not to distort the vortex, an initial |
6276 | | horizontal wind profile constant |
6277 | | with height is necessary (to be set by <b>initializing_actions</b> |
6278 | | = <span style="font-style: italic;">'set_constant_profiles'</span>) |
6279 | | and some other conditions have to be met (neutral stratification, |
6280 | | diffusion must be |
6281 | | switched off, see <a href="#km_constant">km_constant</a>). |
6282 | | The center of the vortex is located at jc = (nx+1)/2. It |
6283 | | extends from k = 0 to k = nz+1. Its radius is 8 * <a href="#dx">dx</a> |
6284 | | and the exponentially decaying part ranges to 32 * <a href="#dx">dx</a> |
6285 | | (see init_rankine.f90). </div> |
6286 | | |
6287 | | |
6288 | | |
6289 | | |
6290 | | |
6291 | | |
6292 | | |
6293 | | |
6294 | | |
6295 | | |
6296 | | |
6297 | | |
6298 | | |
6299 | | <p><span style="font-style: italic;">'initialize_ptanom'</span> |
6300 | | </p> |
6301 | | |
6302 | | |
6303 | | |
6304 | | |
6305 | | |
6306 | | |
6307 | | |
6308 | | |
6309 | | |
6310 | | |
6311 | | |
6312 | | |
6313 | | |
6314 | | <ul> |
6315 | | |
6316 | | |
6317 | | |
6318 | | |
6319 | | |
6320 | | |
6321 | | |
6322 | | |
6323 | | |
6324 | | |
6325 | | |
6326 | | |
6327 | | |
6328 | | <p>A 2d-Gauss-like shape disturbance |
6329 | | (x,y) is added to the |
6330 | | initial temperature field with radius 10.0 * <a href="#dx">dx</a> |
6331 | | and center at jc = (nx+1)/2. This may be used for tests of scalar |
6332 | | advection schemes |
6333 | | (see <a href="#scalar_advec">scalar_advec</a>). |
6334 | | Such tests require a horizontal wind profile constant with hight and |
6335 | | diffusion |
6336 | | switched off (see <span style="font-style: italic;">'initialize_vortex'</span>). |
6337 | | Additionally, the buoyancy term |
6338 | | must be switched of in the equation of motion for w (this |
6339 | | requires the user to comment out the call of <span style="font-family: monospace;">buoyancy</span> in the |
6340 | | source code of <span style="font-family: monospace;">prognostic_equations.f90</span>).</p></ul> |
6341 | | |
6342 | | |
6343 | | |
6344 | | |
6345 | | |
6346 | | |
6347 | | |
6348 | | |
6349 | | |
6350 | | |
6351 | | |
6352 | | |
6353 | | |
6354 | | <p style="font-style: italic;">'cyclic_fill'</p><p style="font-style: normal; margin-left: 40px;">Here, |
6355 | | 3d-data from a precursor run are read by the initial (main) run. The |
6356 | | precursor run is allowed to have a smaller domain along x and y |
6357 | | compared with the main run. Also, different numbers of processors can |
6358 | | be used for these two runs. Limitations are that the precursor run must |
6359 | | use cyclic horizontal boundary conditions and that the number of vertical grid points, <a href="#nz">nz</a>, must be same for the precursor run and the main run. If the total domain of the main run is larger than that of the precursor |
6360 | | run, the domain is filled by cyclic repetition of the (cyclic) |
6361 | | precursor data. This initialization method is recommended if a |
6362 | | turbulent inflow is used (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). 3d-data must be made available to the run by activating an appropriate file connection statement for local file BININ. See <a href="chapter_3.9.html">chapter 3.9</a> for more details, where usage of a turbulent inflow is explained. </p><p style="font-style: normal;">Values may be |
6363 | | combined, e.g. <b>initializing_actions</b> = <span style="font-style: italic;">'set_constant_profiles |
6364 | | initialize_vortex'</span>, but the values of <span style="font-style: italic;">'set_constant_profiles'</span>, |
6365 | | <span style="font-style: italic;">'set_1d-model_profiles'</span> |
6366 | | , and <span style="font-style: italic;">'by_user'</span> |
6367 | | must not be given at the same time.</p> |
6368 | | |
6369 | | |
6370 | | |
6371 | | |
6372 | | |
6373 | | |
6374 | | |
6375 | | |
6376 | | |
6377 | | |
6378 | | |
6379 | | |
6380 | | |
6381 | | |
6382 | | |
6383 | | |
6384 | | |
6385 | | |
6386 | | |
6387 | | |
6388 | | </td> |
6389 | | |
6390 | | |
6391 | | |
6392 | | |
6393 | | |
6394 | | |
6395 | | </tr> |
6396 | | |
6397 | | |
6398 | | |
6399 | | |
6400 | | |
6401 | | |
6402 | | |
6403 | | <tr> |
6404 | | |
6405 | | |
6406 | | |
6407 | | |
6408 | | |
6409 | | |
6410 | | <td style="vertical-align: top;"> |
6411 | | |
6412 | | |
6413 | | |
6414 | | |
6415 | | |
6416 | | |
6417 | | <p><a name="km_constant"></a><b>km_constant</b></p> |
6418 | | |
6419 | | |
6420 | | |
6421 | | |
6422 | | |
6423 | | |
6424 | | |
6425 | | </td> |
6426 | | |
6427 | | |
6428 | | |
6429 | | |
6430 | | |
6431 | | |
6432 | | <td style="vertical-align: top;">R</td> |
6433 | | |
6434 | | |
6435 | | |
6436 | | |
6437 | | |
6438 | | |
6439 | | |
6440 | | <td style="vertical-align: top;"><i>variable<br> |
6441 | | |
6442 | | |
6443 | | |
6444 | | |
6445 | | |
6446 | | |
6447 | | |
6448 | | (computed from TKE)</i></td> |
6449 | | |
6450 | | |
6451 | | |
6452 | | |
6453 | | |
6454 | | |
6455 | | <td style="vertical-align: top;"> |
6456 | | |
6457 | | |
6458 | | |
6459 | | |
6460 | | |
6461 | | |
6462 | | <p>Constant eddy |
6463 | | diffusivities are used (laminar |
6464 | | simulations). </p> |
6465 | | |
6466 | | |
6467 | | |
6468 | | |
6469 | | |
6470 | | |
6471 | | |
6472 | | |
6473 | | |
6474 | | |
6475 | | |
6476 | | |
6477 | | |
6478 | | <p>If this parameter is |
6479 | | specified, both in the 1d and in the |
6480 | | 3d-model constant values for the eddy diffusivities are used in |
6481 | | space and time with K<sub>m</sub> = <b>km_constant</b> |
6482 | | and K<sub>h</sub> = K<sub>m</sub> / <a href="chapter_4.2.html#prandtl_number">prandtl_number</a>. |
6483 | | The prognostic equation for the subgrid-scale TKE is switched off. |
6484 | | Constant eddy diffusivities are only allowed with the Prandtl layer (<a href="#prandtl_layer">prandtl_layer</a>) |
6485 | | switched off.</p> |
6486 | | |
6487 | | |
6488 | | |
6489 | | |
6490 | | |
6491 | | |
6492 | | </td> |
6493 | | |
6494 | | |
6495 | | |
6496 | | |
6497 | | |
6498 | | |
6499 | | </tr> |
6500 | | |
6501 | | |
6502 | | |
6503 | | |
6504 | | |
6505 | | |
6506 | | <tr> |
6507 | | |
6508 | | |
6509 | | |
6510 | | |
6511 | | |
6512 | | |
6513 | | <td style="vertical-align: top;"> |
6514 | | |
6515 | | |
6516 | | |
6517 | | |
6518 | | |
6519 | | |
6520 | | <p><a name="km_damp_max"></a><b>km_damp_max</b></p> |
6521 | | |
6522 | | |
6523 | | |
6524 | | |
6525 | | |
6526 | | |
6527 | | |
6528 | | </td> |
6529 | | |
6530 | | |
6531 | | |
6532 | | |
6533 | | |
6534 | | |
6535 | | <td style="vertical-align: top;">R</td> |
6536 | | |
6537 | | |
6538 | | |
6539 | | |
6540 | | |
6541 | | |
6542 | | |
6543 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.5*(dx |
6544 | | or dy)</span></td> |
6545 | | |
6546 | | |
6547 | | |
6548 | | |
6549 | | |
6550 | | |
6551 | | <td style="vertical-align: top;">Maximum |
6552 | | diffusivity used for filtering the velocity field in the vicinity of |
6553 | | the outflow (in m<sup>2</sup>/s).<br> |
6554 | | |
6555 | | |
6556 | | |
6557 | | |
6558 | | |
6559 | | |
6560 | | <br> |
6561 | | |
6562 | | |
6563 | | |
6564 | | |
6565 | | |
6566 | | |
6567 | | |
6568 | | When using non-cyclic lateral boundaries (see <a href="#bc_lr">bc_lr</a> |
6569 | | or <a href="#bc_ns">bc_ns</a>), |
6570 | | a smoothing has to be applied to the |
6571 | | velocity field in the vicinity of the outflow in order to suppress any |
6572 | | reflections of outgoing disturbances. Smoothing is done by increasing |
6573 | | the eddy diffusivity along the horizontal direction which is |
6574 | | perpendicular to the outflow boundary. Only velocity components |
6575 | | parallel to the outflow boundary are filtered (e.g. v and w, if the |
6576 | | outflow is along x). Damping is applied from the bottom to the top of |
6577 | | the domain.<br> |
6578 | | |
6579 | | |
6580 | | |
6581 | | |
6582 | | |
6583 | | |
6584 | | <br> |
6585 | | |
6586 | | |
6587 | | |
6588 | | |
6589 | | |
6590 | | |
6591 | | |
6592 | | The horizontal range of the smoothing is controlled by <a href="#outflow_damping_width">outflow_damping_width</a> |
6593 | | which defines the number of gridpoints (counted from the outflow |
6594 | | boundary) from where on the smoothing is applied. Starting from that |
6595 | | point, the eddy diffusivity is linearly increased (from zero to its |
6596 | | maximum value given by <span style="font-weight: bold;">km_damp_max</span>) |
6597 | | until half of the damping range width, from where it remains constant |
6598 | | up to the outflow boundary. If at a certain grid point the eddy |
6599 | | diffusivity calculated from the flow field is larger than as described |
6600 | | above, it is used instead.<br> |
6601 | | |
6602 | | |
6603 | | |
6604 | | |
6605 | | |
6606 | | |
6607 | | <br> |
6608 | | |
6609 | | |
6610 | | |
6611 | | |
6612 | | |
6613 | | |
6614 | | |
6615 | | The default value of <span style="font-weight: bold;">km_damp_max</span> |
6616 | | has been empirically proven to be sufficient.</td> |
6617 | | |
6618 | | |
6619 | | |
6620 | | |
6621 | | |
6622 | | |
6623 | | </tr> |
6624 | | |
6625 | | |
6626 | | |
6627 | | |
6628 | | |
6629 | | |
6630 | | <tr> |
6631 | | |
6632 | | <td style="vertical-align: top;"><a name="lad_surface"></a><span style="font-weight: bold;">lad_surface</span></td> |
6633 | | |
6634 | | <td style="vertical-align: top;">R</td> |
6635 | | |
6636 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> |
6637 | | |
6638 | | <td style="vertical-align: top;">Surface value of the leaf area density (in m<sup>2</sup>/m<sup>3</sup>).<br> |
6639 | | |
6640 | | <br> |
6641 | | |
6642 | | This |
6643 | | parameter assigns the value of the leaf area density <span style="font-weight: bold;">lad</span> at the surface (k=0)<b>.</b> Starting from this value, |
6644 | | the leaf area density profile is constructed with <a href="#lad_vertical_gradient">lad_vertical_gradient</a> |
6645 | | and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level |
6646 | | </a>.</td> |
6647 | | |
6648 | | </tr> |
6649 | | |
6650 | | <tr> |
6651 | | |
6652 | | <td style="vertical-align: top;"><a name="lad_vertical_gradient"></a><span style="font-weight: bold;">lad_vertical_gradient</span></td> |
6653 | | |
6654 | | <td style="vertical-align: top;">R (10)</td> |
6655 | | |
6656 | | <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td> |
6657 | | |
6658 | | <td style="vertical-align: top;">Gradient(s) of the leaf area density (in m<sup>2</sup>/m<sup>4</sup>).<br> |
6659 | | |
6660 | | <br> |
6661 | | |
6662 | | |
6663 | | <p>This leaf area density gradient |
6664 | | holds starting from the height |
6665 | | level defined by <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a> |
6666 | | (precisely: for all uv levels k where zu(k) > lad_vertical_gradient_level, lad(k) is set: lad(k) = lad(k-1) + dzu(k) * <b>lad_vertical_gradient</b>) |
6667 | | up to the level defined by <a href="#pch_index">pch_index</a>. Above that level lad(k) will automatically set to 0.0. A total of 10 different gradients for 11 height intervals (10 intervals |
6668 | | if <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>(1) |
6669 | | = <i>0.0</i>) can be assigned. The leaf area density at the surface is |
6670 | | assigned via <a href="#lad_surface">lad_surface</a>. |
6671 | | </p> |
6672 | | |
6673 | | </td> |
6674 | | |
6675 | | </tr> |
6676 | | |
6677 | | <tr> |
6678 | | |
6679 | | <td style="vertical-align: top;"><a name="lad_vertical_gradient_level"></a><span style="font-weight: bold;">lad_vertical_gradient_level</span></td> |
6680 | | |
6681 | | <td style="vertical-align: top;">R (10)</td> |
6682 | | |
6683 | | <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td> |
6684 | | |
6685 | | <td style="vertical-align: top;">Height level from which on the gradient |
6686 | | of the leaf area density defined by <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a> |
6687 | | is effective (in m).<br> |
6688 | | |
6689 | | <br> |
6690 | | |
6691 | | The height levels have to be assigned in ascending order. The |
6692 | | default values result in a leaf area density that is constant with height uup to the top of the plant canopy layer defined by <a href="#pch_index">pch_index</a>. For the piecewise construction of temperature profiles see <a href="#lad_vertical_gradient">lad_vertical_gradient</a>.</td> |
6693 | | |
6694 | | </tr> |
6695 | | |
6696 | | <tr> |
6697 | | |
6698 | | <td style="vertical-align: top;"><a name="leaf_surface_concentration"></a><b>leaf_surface_concentration</b></td> |
6699 | | |
6700 | | <td style="vertical-align: top;">R</td> |
6701 | | |
6702 | | <td style="vertical-align: top;"><i>0.0</i></td> |
6703 | | |
6704 | | <td style="vertical-align: top;">Concentration of a passive scalar at the surface of a leaf (in K m/s).<br> |
6705 | | |
6706 | | |
6707 | | <br> |
6708 | | |
6709 | | |
6710 | | This parameter is only of importance in cases in that both, <a href="#plant_canopy">plant_canopy</a> and <a href="#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>. |
6711 | | The value of the concentration of a passive scalar at the surface of a |
6712 | | leaf is required for the parametrisation of the sources and sinks of |
6713 | | scalar concentration due to the canopy.</td> |
6714 | | |
6715 | | </tr> |
6716 | | |
6717 | | <tr> |
6718 | | |
6719 | | |
6720 | | |
6721 | | |
6722 | | |
6723 | | |
6724 | | |
6725 | | <td style="vertical-align: top;"> |
6726 | | |
6727 | | |
6728 | | |
6729 | | |
6730 | | |
6731 | | |
6732 | | <p><a name="long_filter_factor"></a><b>long_filter_factor</b></p> |
6733 | | |
6734 | | |
6735 | | |
6736 | | |
6737 | | |
6738 | | |
6739 | | |
6740 | | </td> |
6741 | | |
6742 | | |
6743 | | |
6744 | | |
6745 | | |
6746 | | |
6747 | | <td style="vertical-align: top;">R</td> |
6748 | | |
6749 | | |
6750 | | |
6751 | | |
6752 | | |
6753 | | |
6754 | | |
6755 | | <td style="vertical-align: top;"><i>0.0</i></td> |
6756 | | |
6757 | | |
6758 | | |
6759 | | |
6760 | | |
6761 | | |
6762 | | |
6763 | | <td style="vertical-align: top;"> |
6764 | | |
6765 | | |
6766 | | |
6767 | | |
6768 | | |
6769 | | |
6770 | | <p>Filter factor |
6771 | | for the so-called Long-filter.<br> |
6772 | | |
6773 | | |
6774 | | |
6775 | | |
6776 | | |
6777 | | |
6778 | | </p> |
6779 | | |
6780 | | |
6781 | | |
6782 | | |
6783 | | |
6784 | | |
6785 | | |
6786 | | |
6787 | | |
6788 | | |
6789 | | |
6790 | | |
6791 | | |
6792 | | <p><br> |
6793 | | |
6794 | | |
6795 | | |
6796 | | |
6797 | | |
6798 | | |
6799 | | |
6800 | | This filter very efficiently |
6801 | | eliminates 2-delta-waves sometimes cauesed by the upstream-spline |
6802 | | scheme (see Mahrer and |
6803 | | Pielke, 1978: Mon. Wea. Rev., 106, 818-830). It works in all three |
6804 | | directions in space. A value of <b>long_filter_factor</b> |
6805 | | = <i>0.01</i> |
6806 | | sufficiently removes the small-scale waves without affecting the |
6807 | | longer waves.<br> |
6808 | | |
6809 | | |
6810 | | |
6811 | | |
6812 | | |
6813 | | |
6814 | | </p> |
6815 | | |
6816 | | |
6817 | | |
6818 | | |
6819 | | |
6820 | | |
6821 | | |
6822 | | |
6823 | | |
6824 | | |
6825 | | |
6826 | | |
6827 | | |
6828 | | <p>By default, the filter is |
6829 | | switched off (= <i>0.0</i>). |
6830 | | It is exclusively applied to the tendencies calculated by the |
6831 | | upstream-spline scheme (see <a href="#momentum_advec">momentum_advec</a> |
6832 | | and <a href="#scalar_advec">scalar_advec</a>), |
6833 | | not to the prognostic variables themselves. At the bottom and top |
6834 | | boundary of the model domain the filter effect for vertical |
6835 | | 2-delta-waves is reduced. There, the amplitude of these waves is only |
6836 | | reduced by approx. 50%, otherwise by nearly 100%. <br> |
6837 | | |
6838 | | |
6839 | | |
6840 | | |
6841 | | |
6842 | | |
6843 | | |
6844 | | Filter factors with values > <i>0.01</i> also |
6845 | | reduce the amplitudes |
6846 | | of waves with wavelengths longer than 2-delta (see the paper by Mahrer |
6847 | | and |
6848 | | Pielke, quoted above). </p> |
6849 | | |
6850 | | |
6851 | | |
6852 | | |
6853 | | |
6854 | | |
6855 | | </td> |
6856 | | |
6857 | | |
6858 | | |
6859 | | |
6860 | | |
6861 | | |
6862 | | </tr> |
6863 | | |
6864 | | |
6865 | | |
6866 | | |
6867 | | |
6868 | | |
6869 | | <tr> |
6870 | | |
6871 | | |
6872 | | |
6873 | | |
6874 | | |
6875 | | |
6876 | | <td style="vertical-align: top;"><a name="loop_optimization"></a><span style="font-weight: bold;">loop_optimization</span></td> |
6877 | | |
6878 | | |
6879 | | |
6880 | | |
6881 | | |
6882 | | |
6883 | | <td style="vertical-align: top;">C*16</td> |
6884 | | |
6885 | | |
6886 | | |
6887 | | |
6888 | | |
6889 | | |
6890 | | <td style="vertical-align: top;"><span style="font-style: italic;">see right</span></td> |
6891 | | |
6892 | | |
6893 | | |
6894 | | |
6895 | | |
6896 | | |
6897 | | <td>Method used to optimize loops for solving the prognostic equations .<br> |
6898 | | |
6899 | | |
6900 | | |
6901 | | |
6902 | | |
6903 | | |
6904 | | <br> |
6905 | | |
6906 | | |
6907 | | |
6908 | | |
6909 | | |
6910 | | |
6911 | | By |
6912 | | default, the optimization method depends on the host on which PALM is |
6913 | | running. On machines with vector-type CPUs, single 3d-loops are used to |
6914 | | calculate each tendency term of each prognostic equation, while on all |
6915 | | other machines, all prognostic equations are solved within one big loop |
6916 | | over the two horizontal indices<span style="font-family: Courier New,Courier,monospace;"> i </span>and<span style="font-family: Courier New,Courier,monospace;"> j </span>(giving a good cache uitilization).<br> |
6917 | | |
6918 | | |
6919 | | |
6920 | | |
6921 | | |
6922 | | |
6923 | | <br> |
6924 | | |
6925 | | |
6926 | | |
6927 | | |
6928 | | |
6929 | | |
6930 | | The default behaviour can be changed by setting either <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'vector'</span> or <span style="font-weight: bold;">loop_optimization</span> = <span style="font-style: italic;">'cache'</span>.</td> |
6931 | | |
6932 | | |
6933 | | |
6934 | | |
6935 | | |
6936 | | |
6937 | | </tr> |
6938 | | |
6939 | | |
6940 | | |
6941 | | |
6942 | | |
6943 | | |
6944 | | <tr> |
6945 | | |
6946 | | |
6947 | | |
6948 | | |
6949 | | |
6950 | | |
6951 | | |
6952 | | <td style="vertical-align: top;"><a name="mixing_length_1d"></a><span style="font-weight: bold;">mixing_length_1d</span><br> |
6953 | | |
6954 | | |
6955 | | |
6956 | | |
6957 | | |
6958 | | |
6959 | | |
6960 | | </td> |
6961 | | |
6962 | | |
6963 | | |
6964 | | |
6965 | | |
6966 | | |
6967 | | <td style="vertical-align: top;">C*20<br> |
6968 | | |
6969 | | |
6970 | | |
6971 | | |
6972 | | |
6973 | | |
6974 | | |
6975 | | </td> |
6976 | | |
6977 | | |
6978 | | |
6979 | | |
6980 | | |
6981 | | |
6982 | | <td style="vertical-align: top;"><span style="font-style: italic;">'as_in_3d_</span><br style="font-style: italic;"> |
6983 | | |
6984 | | |
6985 | | |
6986 | | |
6987 | | |
6988 | | |
6989 | | <span style="font-style: italic;">model'</span><br> |
6990 | | |
6991 | | |
6992 | | |
6993 | | |
6994 | | |
6995 | | |
6996 | | </td> |
6997 | | |
6998 | | |
6999 | | |
7000 | | |
7001 | | |
7002 | | |
7003 | | |
7004 | | <td style="vertical-align: top;">Mixing length used in the |
7005 | | 1d-model.<br> |
7006 | | |
7007 | | |
7008 | | |
7009 | | |
7010 | | |
7011 | | |
7012 | | <br> |
7013 | | |
7014 | | |
7015 | | |
7016 | | |
7017 | | |
7018 | | |
7019 | | |
7020 | | By default the mixing length is calculated as in the 3d-model (i.e. it |
7021 | | depends on the grid spacing).<br> |
7022 | | |
7023 | | |
7024 | | |
7025 | | |
7026 | | |
7027 | | |
7028 | | <br> |
7029 | | |
7030 | | |
7031 | | |
7032 | | |
7033 | | |
7034 | | |
7035 | | |
7036 | | By setting <span style="font-weight: bold;">mixing_length_1d</span> |
7037 | | = <span style="font-style: italic;">'blackadar'</span>, |
7038 | | the so-called Blackadar mixing length is used (l = kappa * z / ( 1 + |
7039 | | kappa * z / lambda ) with the limiting value lambda = 2.7E-4 * u_g / f).<br> |
7040 | | |
7041 | | |
7042 | | |
7043 | | |
7044 | | |
7045 | | |
7046 | | |
7047 | | </td> |
7048 | | |
7049 | | |
7050 | | |
7051 | | |
7052 | | |
7053 | | |
7054 | | </tr> |
7055 | | |
7056 | | |
7057 | | |
7058 | | |
7059 | | |
7060 | | |
7061 | | |
7062 | | |
7063 | | |
7064 | | |
7065 | | |
7066 | | |
7067 | | |
7068 | | |
7069 | | <tr> |
7070 | | |
7071 | | |
7072 | | |
7073 | | |
7074 | | |
7075 | | |
7076 | | <td style="vertical-align: top;"> |
7077 | | |
7078 | | |
7079 | | |
7080 | | |
7081 | | |
7082 | | |
7083 | | <p><a name="momentum_advec"></a><b>momentum_advec</b></p> |
7084 | | |
7085 | | |
7086 | | |
7087 | | |
7088 | | |
7089 | | |
7090 | | |
7091 | | </td> |
7092 | | |
7093 | | |
7094 | | |
7095 | | |
7096 | | |
7097 | | |
7098 | | <td style="vertical-align: top;">C * 10</td> |
7099 | | |
7100 | | |
7101 | | |
7102 | | |
7103 | | |
7104 | | |
7105 | | |
7106 | | <td style="vertical-align: top;"><i>'pw-scheme'</i></td> |
7107 | | |
7108 | | |
7109 | | |
7110 | | |
7111 | | |
7112 | | |
7113 | | |
7114 | | <td style="vertical-align: top;"> |
7115 | | |
7116 | | |
7117 | | |
7118 | | |
7119 | | |
7120 | | |
7121 | | <p>Advection |
7122 | | scheme to be used for the momentum equations.<br> |
7123 | | |
7124 | | |
7125 | | |
7126 | | |
7127 | | |
7128 | | |
7129 | | <br> |
7130 | | |
7131 | | |
7132 | | |
7133 | | |
7134 | | |
7135 | | |
7136 | | |
7137 | | The user can choose between the following schemes:<br> |
7138 | | |
7139 | | |
7140 | | |
7141 | | |
7142 | | |
7143 | | |
7144 | | |
7145 | | <br> |
7146 | | |
7147 | | |
7148 | | |
7149 | | |
7150 | | |
7151 | | |
7152 | | <br> |
7153 | | |
7154 | | |
7155 | | |
7156 | | |
7157 | | |
7158 | | |
7159 | | <span style="font-style: italic;">'pw-scheme'</span><br> |
7160 | | |
7161 | | |
7162 | | |
7163 | | |
7164 | | |
7165 | | |
7166 | | |
7167 | | </p> |
7168 | | |
7169 | | |
7170 | | |
7171 | | |
7172 | | |
7173 | | |
7174 | | |
7175 | | |
7176 | | |
7177 | | |
7178 | | |
7179 | | |
7180 | | |
7181 | | <div style="margin-left: 40px;">The scheme of |
7182 | | Piascek and |
7183 | | Williams (1970, J. Comp. Phys., 6, |
7184 | | 392-405) with central differences in the form C3 is used.<br> |
7185 | | |
7186 | | |
7187 | | |
7188 | | |
7189 | | |
7190 | | |
7191 | | |
7192 | | If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a> |
7193 | | = <span style="font-style: italic;">'leapfrog+euler'</span> |
7194 | | the |
7195 | | advection scheme is - for the Euler-timestep - automatically switched |
7196 | | to an upstream-scheme.<br> |
7197 | | |
7198 | | |
7199 | | |
7200 | | |
7201 | | |
7202 | | |
7203 | | </div> |
7204 | | |
7205 | | |
7206 | | |
7207 | | |
7208 | | |
7209 | | |
7210 | | |
7211 | | |
7212 | | |
7213 | | |
7214 | | |
7215 | | |
7216 | | |
7217 | | <p> </p> |
7218 | | |
7219 | | |
7220 | | |
7221 | | |
7222 | | |
7223 | | |
7224 | | |
7225 | | |
7226 | | |
7227 | | |
7228 | | |
7229 | | |
7230 | | |
7231 | | <p><span style="font-style: italic;">'ups-scheme'</span><br> |
7232 | | |
7233 | | |
7234 | | |
7235 | | |
7236 | | |
7237 | | |
7238 | | |
7239 | | </p> |
7240 | | |
7241 | | |
7242 | | |
7243 | | |
7244 | | |
7245 | | |
7246 | | |
7247 | | |
7248 | | |
7249 | | |
7250 | | |
7251 | | |
7252 | | |
7253 | | <div style="margin-left: 40px;">The |
7254 | | upstream-spline scheme is |
7255 | | used |
7256 | | (see Mahrer and Pielke, |
7257 | | 1978: Mon. Wea. Rev., 106, 818-830). In opposite to the |
7258 | | Piascek-Williams scheme, this is characterized by much better numerical |
7259 | | features (less numerical diffusion, better preservation of flow |
7260 | | structures, e.g. vortices), but computationally it is much more |
7261 | | expensive. In |
7262 | | addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a> |
7263 | | = <span style="font-style: italic;">'</span><i>euler'</i>), |
7264 | | i.e. the |
7265 | | timestep accuracy is only of first order. |
7266 | | For this reason the advection of scalar variables (see <a href="#scalar_advec">scalar_advec</a>) |
7267 | | should then also be carried out with the upstream-spline scheme, |
7268 | | because otherwise the scalar variables would |
7269 | | be subject to large numerical diffusion due to the upstream |
7270 | | scheme. </div> |
7271 | | |
7272 | | |
7273 | | |
7274 | | |
7275 | | |
7276 | | |
7277 | | |
7278 | | |
7279 | | |
7280 | | |
7281 | | |
7282 | | |
7283 | | |
7284 | | <p style="margin-left: 40px;">Since |
7285 | | the cubic splines used tend |
7286 | | to overshoot under |
7287 | | certain circumstances, this effect must be adjusted by suitable |
7288 | | filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>, |
7289 | | <a href="#long_filter_factor">long_filter_factor</a>, |
7290 | | <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>). |
7291 | | This is always neccessary for runs with stable stratification, |
7292 | | even if this stratification appears only in parts of the model domain.<br> |
7293 | | |
7294 | | |
7295 | | |
7296 | | |
7297 | | |
7298 | | |
7299 | | |
7300 | | </p> |
7301 | | |
7302 | | |
7303 | | |
7304 | | |
7305 | | |
7306 | | |
7307 | | |
7308 | | |
7309 | | |
7310 | | |
7311 | | |
7312 | | |
7313 | | |
7314 | | <div style="margin-left: 40px;">With stable |
7315 | | stratification the |
7316 | | upstream-spline scheme also |
7317 | | produces gravity waves with large amplitude, which must be |
7318 | | suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br> |
7319 | | |
7320 | | |
7321 | | |
7322 | | |
7323 | | |
7324 | | |
7325 | | |
7326 | | <br> |
7327 | | |
7328 | | |
7329 | | |
7330 | | |
7331 | | |
7332 | | |
7333 | | <span style="font-weight: bold;">Important: </span>The |
7334 | | upstream-spline scheme is not implemented for humidity and passive |
7335 | | scalars (see <a href="#humidity">humidity</a> |
7336 | | and <a href="#passive_scalar">passive_scalar</a>) |
7337 | | and requires the use of a 2d-domain-decomposition. The last conditions |
7338 | | severely restricts code optimization on several machines leading to |
7339 | | very long execution times! The scheme is also not allowed for |
7340 | | non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a> |
7341 | | and <a href="#bc_ns">bc_ns</a>).</div> |
7342 | | |
7343 | | |
7344 | | |
7345 | | |
7346 | | |
7347 | | |
7348 | | </td> |
7349 | | |
7350 | | |
7351 | | |
7352 | | |
7353 | | |
7354 | | |
7355 | | |
7356 | | </tr> |
7357 | | |
7358 | | |
7359 | | |
7360 | | |
7361 | | |
7362 | | |
7363 | | <tr> |
7364 | | |
7365 | | |
7366 | | |
7367 | | |
7368 | | |
7369 | | |
7370 | | <td style="vertical-align: top;"><a name="netcdf_precision"></a><span style="font-weight: bold;">netcdf_precision</span><br> |
7371 | | |
7372 | | |
7373 | | |
7374 | | |
7375 | | |
7376 | | |
7377 | | |
7378 | | </td> |
7379 | | |
7380 | | |
7381 | | |
7382 | | |
7383 | | |
7384 | | |
7385 | | <td style="vertical-align: top;">C*20<br> |
7386 | | |
7387 | | |
7388 | | |
7389 | | |
7390 | | |
7391 | | |
7392 | | |
7393 | | (10)<br> |
7394 | | |
7395 | | |
7396 | | |
7397 | | |
7398 | | |
7399 | | |
7400 | | </td> |
7401 | | |
7402 | | |
7403 | | |
7404 | | |
7405 | | |
7406 | | |
7407 | | <td style="vertical-align: top;"><span style="font-style: italic;">single preci-</span><br style="font-style: italic;"> |
7408 | | |
7409 | | |
7410 | | |
7411 | | |
7412 | | |
7413 | | |
7414 | | <span style="font-style: italic;">sion for all</span><br style="font-style: italic;"> |
7415 | | |
7416 | | |
7417 | | |
7418 | | |
7419 | | |
7420 | | |
7421 | | <span style="font-style: italic;">output quan-</span><br style="font-style: italic;"> |
7422 | | |
7423 | | |
7424 | | |
7425 | | |
7426 | | |
7427 | | |
7428 | | <span style="font-style: italic;">tities</span><br> |
7429 | | |
7430 | | |
7431 | | |
7432 | | |
7433 | | |
7434 | | |
7435 | | </td> |
7436 | | |
7437 | | |
7438 | | |
7439 | | |
7440 | | |
7441 | | |
7442 | | |
7443 | | <td style="vertical-align: top;">Defines the accuracy of |
7444 | | the NetCDF output.<br> |
7445 | | |
7446 | | |
7447 | | |
7448 | | |
7449 | | |
7450 | | |
7451 | | <br> |
7452 | | |
7453 | | |
7454 | | |
7455 | | |
7456 | | |
7457 | | |
7458 | | |
7459 | | By default, all NetCDF output data (see <a href="chapter_4.2.html#data_output_format">data_output_format</a>) |
7460 | | have single precision (4 byte) accuracy. Double precision (8 |
7461 | | byte) can be choosen alternatively.<br> |
7462 | | |
7463 | | |
7464 | | |
7465 | | |
7466 | | |
7467 | | |
7468 | | |
7469 | | Accuracy for the different output data (cross sections, 3d-volume data, |
7470 | | spectra, etc.) can be set independently.<br> |
7471 | | |
7472 | | |
7473 | | |
7474 | | |
7475 | | |
7476 | | |
7477 | | <span style="font-style: italic;">'<out>_NF90_REAL4'</span> |
7478 | | (single precision) or <span style="font-style: italic;">'<out>_NF90_REAL8'</span> |
7479 | | (double precision) are the two principally allowed values for <span style="font-weight: bold;">netcdf_precision</span>, |
7480 | | where the string <span style="font-style: italic;">'<out>' |
7481 | | </span>can be chosen out of the following list:<br> |
7482 | | |
7483 | | |
7484 | | |
7485 | | |
7486 | | |
7487 | | |
7488 | | <br> |
7489 | | |
7490 | | |
7491 | | |
7492 | | |
7493 | | |
7494 | | |
7495 | | |
7496 | | |
7497 | | |
7498 | | |
7499 | | |
7500 | | |
7501 | | |
7502 | | <table style="text-align: left; width: 284px; height: 234px;" border="1" cellpadding="2" cellspacing="2"> |
7503 | | |
7504 | | |
7505 | | |
7506 | | |
7507 | | |
7508 | | |
7509 | | <tbody> |
7510 | | |
7511 | | |
7512 | | |
7513 | | |
7514 | | |
7515 | | |
7516 | | |
7517 | | <tr> |
7518 | | |
7519 | | |
7520 | | |
7521 | | |
7522 | | |
7523 | | |
7524 | | <td style="vertical-align: top;"><span style="font-style: italic;">'xy'</span><br> |
7525 | | |
7526 | | |
7527 | | |
7528 | | |
7529 | | |
7530 | | |
7531 | | </td> |
7532 | | |
7533 | | |
7534 | | |
7535 | | |
7536 | | |
7537 | | |
7538 | | |
7539 | | <td style="vertical-align: top;">horizontal cross section<br> |
7540 | | |
7541 | | |
7542 | | |
7543 | | |
7544 | | |
7545 | | |
7546 | | |
7547 | | </td> |
7548 | | |
7549 | | |
7550 | | |
7551 | | |
7552 | | |
7553 | | |
7554 | | </tr> |
7555 | | |
7556 | | |
7557 | | |
7558 | | |
7559 | | |
7560 | | |
7561 | | <tr> |
7562 | | |
7563 | | |
7564 | | |
7565 | | |
7566 | | |
7567 | | |
7568 | | <td style="vertical-align: top;"><span style="font-style: italic;">'xz'</span><br> |
7569 | | |
7570 | | |
7571 | | |
7572 | | |
7573 | | |
7574 | | |
7575 | | </td> |
7576 | | |
7577 | | |
7578 | | |
7579 | | |
7580 | | |
7581 | | |
7582 | | |
7583 | | <td style="vertical-align: top;">vertical (xz) cross |
7584 | | section<br> |
7585 | | |
7586 | | |
7587 | | |
7588 | | |
7589 | | |
7590 | | |
7591 | | </td> |
7592 | | |
7593 | | |
7594 | | |
7595 | | |
7596 | | |
7597 | | |
7598 | | </tr> |
7599 | | |
7600 | | |
7601 | | |
7602 | | |
7603 | | |
7604 | | |
7605 | | <tr> |
7606 | | |
7607 | | |
7608 | | |
7609 | | |
7610 | | |
7611 | | |
7612 | | <td style="vertical-align: top;"><span style="font-style: italic;">'yz'</span><br> |
7613 | | |
7614 | | |
7615 | | |
7616 | | |
7617 | | |
7618 | | |
7619 | | </td> |
7620 | | |
7621 | | |
7622 | | |
7623 | | |
7624 | | |
7625 | | |
7626 | | |
7627 | | <td style="vertical-align: top;">vertical (yz) cross |
7628 | | section<br> |
7629 | | |
7630 | | |
7631 | | |
7632 | | |
7633 | | |
7634 | | |
7635 | | </td> |
7636 | | |
7637 | | |
7638 | | |
7639 | | |
7640 | | |
7641 | | |
7642 | | </tr> |
7643 | | |
7644 | | |
7645 | | |
7646 | | |
7647 | | |
7648 | | |
7649 | | <tr> |
7650 | | |
7651 | | |
7652 | | |
7653 | | |
7654 | | |
7655 | | |
7656 | | <td style="vertical-align: top;"><span style="font-style: italic;">'2d'</span><br> |
7657 | | |
7658 | | |
7659 | | |
7660 | | |
7661 | | |
7662 | | |
7663 | | </td> |
7664 | | |
7665 | | |
7666 | | |
7667 | | |
7668 | | |
7669 | | |
7670 | | |
7671 | | <td style="vertical-align: top;">all cross sections<br> |
7672 | | |
7673 | | |
7674 | | |
7675 | | |
7676 | | |
7677 | | |
7678 | | |
7679 | | </td> |
7680 | | |
7681 | | |
7682 | | |
7683 | | |
7684 | | |
7685 | | |
7686 | | </tr> |
7687 | | |
7688 | | |
7689 | | |
7690 | | |
7691 | | |
7692 | | |
7693 | | <tr> |
7694 | | |
7695 | | |
7696 | | |
7697 | | |
7698 | | |
7699 | | |
7700 | | <td style="vertical-align: top;"><span style="font-style: italic;">'3d'</span><br> |
7701 | | |
7702 | | |
7703 | | |
7704 | | |
7705 | | |
7706 | | |
7707 | | </td> |
7708 | | |
7709 | | |
7710 | | |
7711 | | |
7712 | | |
7713 | | |
7714 | | |
7715 | | <td style="vertical-align: top;">volume data<br> |
7716 | | |
7717 | | |
7718 | | |
7719 | | |
7720 | | |
7721 | | |
7722 | | </td> |
7723 | | |
7724 | | |
7725 | | |
7726 | | |
7727 | | |
7728 | | |
7729 | | |
7730 | | </tr> |
7731 | | |
7732 | | |
7733 | | |
7734 | | |
7735 | | |
7736 | | |
7737 | | <tr> |
7738 | | |
7739 | | |
7740 | | |
7741 | | |
7742 | | |
7743 | | |
7744 | | <td style="vertical-align: top;"><span style="font-style: italic;">'pr'</span><br> |
7745 | | |
7746 | | |
7747 | | |
7748 | | |
7749 | | |
7750 | | |
7751 | | </td> |
7752 | | |
7753 | | |
7754 | | |
7755 | | |
7756 | | |
7757 | | |
7758 | | |
7759 | | <td style="vertical-align: top;">vertical profiles<br> |
7760 | | |
7761 | | |
7762 | | |
7763 | | |
7764 | | |
7765 | | |
7766 | | |
7767 | | </td> |
7768 | | |
7769 | | |
7770 | | |
7771 | | |
7772 | | |
7773 | | |
7774 | | </tr> |
7775 | | |
7776 | | |
7777 | | |
7778 | | |
7779 | | |
7780 | | |
7781 | | <tr> |
7782 | | |
7783 | | |
7784 | | |
7785 | | |
7786 | | |
7787 | | |
7788 | | <td style="vertical-align: top;"><span style="font-style: italic;">'ts'</span><br> |
7789 | | |
7790 | | |
7791 | | |
7792 | | |
7793 | | |
7794 | | |
7795 | | </td> |
7796 | | |
7797 | | |
7798 | | |
7799 | | |
7800 | | |
7801 | | |
7802 | | |
7803 | | <td style="vertical-align: top;">time series, particle |
7804 | | time series<br> |
7805 | | |
7806 | | |
7807 | | |
7808 | | |
7809 | | |
7810 | | |
7811 | | </td> |
7812 | | |
7813 | | |
7814 | | |
7815 | | |
7816 | | |
7817 | | |
7818 | | </tr> |
7819 | | |
7820 | | |
7821 | | |
7822 | | |
7823 | | |
7824 | | |
7825 | | <tr> |
7826 | | |
7827 | | |
7828 | | |
7829 | | |
7830 | | |
7831 | | |
7832 | | <td style="vertical-align: top;"><span style="font-style: italic;">'sp'</span><br> |
7833 | | |
7834 | | |
7835 | | |
7836 | | |
7837 | | |
7838 | | |
7839 | | </td> |
7840 | | |
7841 | | |
7842 | | |
7843 | | |
7844 | | |
7845 | | |
7846 | | |
7847 | | <td style="vertical-align: top;">spectra<br> |
7848 | | |
7849 | | |
7850 | | |
7851 | | |
7852 | | |
7853 | | |
7854 | | </td> |
7855 | | |
7856 | | |
7857 | | |
7858 | | |
7859 | | |
7860 | | |
7861 | | |
7862 | | </tr> |
7863 | | |
7864 | | |
7865 | | |
7866 | | |
7867 | | |
7868 | | |
7869 | | <tr> |
7870 | | |
7871 | | |
7872 | | |
7873 | | |
7874 | | |
7875 | | |
7876 | | <td style="vertical-align: top;"><span style="font-style: italic;">'prt'</span><br> |
7877 | | |
7878 | | |
7879 | | |
7880 | | |
7881 | | |
7882 | | |
7883 | | </td> |
7884 | | |
7885 | | |
7886 | | |
7887 | | |
7888 | | |
7889 | | |
7890 | | |
7891 | | <td style="vertical-align: top;">particles<br> |
7892 | | |
7893 | | |
7894 | | |
7895 | | |
7896 | | |
7897 | | |
7898 | | </td> |
7899 | | |
7900 | | |
7901 | | |
7902 | | |
7903 | | |
7904 | | |
7905 | | |
7906 | | </tr> |
7907 | | |
7908 | | |
7909 | | |
7910 | | |
7911 | | |
7912 | | |
7913 | | <tr> |
7914 | | |
7915 | | |
7916 | | |
7917 | | |
7918 | | |
7919 | | |
7920 | | <td style="vertical-align: top;"><span style="font-style: italic;">'all'</span><br> |
7921 | | |
7922 | | |
7923 | | |
7924 | | |
7925 | | |
7926 | | |
7927 | | </td> |
7928 | | |
7929 | | |
7930 | | |
7931 | | |
7932 | | |
7933 | | |
7934 | | |
7935 | | <td style="vertical-align: top;">all output quantities<br> |
7936 | | |
7937 | | |
7938 | | |
7939 | | |
7940 | | |
7941 | | |
7942 | | |
7943 | | </td> |
7944 | | |
7945 | | |
7946 | | |
7947 | | |
7948 | | |
7949 | | |
7950 | | </tr> |
7951 | | |
7952 | | |
7953 | | |
7954 | | |
7955 | | |
7956 | | |
7957 | | |
7958 | | |
7959 | | |
7960 | | |
7961 | | |
7962 | | |
7963 | | |
7964 | | </tbody> |
7965 | | |
7966 | | |
7967 | | |
7968 | | |
7969 | | |
7970 | | |
7971 | | </table> |
7972 | | |
7973 | | |
7974 | | |
7975 | | |
7976 | | |
7977 | | |
7978 | | <br> |
7979 | | |
7980 | | |
7981 | | |
7982 | | |
7983 | | |
7984 | | |
7985 | | <span style="font-weight: bold;">Example:</span><br> |
7986 | | |
7987 | | |
7988 | | |
7989 | | |
7990 | | |
7991 | | |
7992 | | |
7993 | | If all cross section data and the particle data shall be output in |
7994 | | double precision and all other quantities in single precision, then <span style="font-weight: bold;">netcdf_precision</span> = <span style="font-style: italic;">'2d_NF90_REAL8'</span>, <span style="font-style: italic;">'prt_NF90_REAL8'</span> |
7995 | | has to be assigned.<br> |
7996 | | |
7997 | | |
7998 | | |
7999 | | |
8000 | | |
8001 | | |
8002 | | </td> |
8003 | | |
8004 | | |
8005 | | |
8006 | | |
8007 | | |
8008 | | |
8009 | | </tr> |
8010 | | |
8011 | | |
8012 | | |
8013 | | |
8014 | | |
8015 | | |
8016 | | |
8017 | | |
8018 | | |
8019 | | |
8020 | | |
8021 | | |
8022 | | |
8023 | | |
8024 | | |
8025 | | |
8026 | | |
8027 | | |
8028 | | |
8029 | | |
8030 | | |
8031 | | |
8032 | | <tr> |
8033 | | |
8034 | | |
8035 | | |
8036 | | |
8037 | | |
8038 | | |
8039 | | <td style="vertical-align: top;"> |
8040 | | |
8041 | | |
8042 | | |
8043 | | |
8044 | | |
8045 | | |
8046 | | <p><a name="nsor_ini"></a><b>nsor_ini</b></p> |
8047 | | |
8048 | | |
8049 | | |
8050 | | |
8051 | | |
8052 | | |
8053 | | |
8054 | | </td> |
8055 | | |
8056 | | |
8057 | | |
8058 | | |
8059 | | |
8060 | | |
8061 | | <td style="vertical-align: top;">I</td> |
8062 | | |
8063 | | |
8064 | | |
8065 | | |
8066 | | |
8067 | | |
8068 | | |
8069 | | <td style="vertical-align: top;"><i>100</i></td> |
8070 | | |
8071 | | |
8072 | | |
8073 | | |
8074 | | |
8075 | | |
8076 | | |
8077 | | <td style="vertical-align: top;"> |
8078 | | |
8079 | | |
8080 | | |
8081 | | |
8082 | | |
8083 | | |
8084 | | <p>Initial number |
8085 | | of iterations with the SOR algorithm. </p> |
8086 | | |
8087 | | |
8088 | | |
8089 | | |
8090 | | |
8091 | | |
8092 | | |
8093 | | |
8094 | | |
8095 | | |
8096 | | |
8097 | | |
8098 | | |
8099 | | <p>This |
8100 | | parameter is only effective if the SOR algorithm was |
8101 | | selected as the pressure solver scheme (<a href="chapter_4.2.html#psolver">psolver</a> |
8102 | | = <span style="font-style: italic;">'sor'</span>) |
8103 | | and specifies the |
8104 | | number of initial iterations of the SOR |
8105 | | scheme (at t = 0). The number of subsequent iterations at the following |
8106 | | timesteps is determined |
8107 | | with the parameter <a href="#nsor">nsor</a>. |
8108 | | Usually <b>nsor</b> < <b>nsor_ini</b>, |
8109 | | since in each case |
8110 | | subsequent calls to <a href="chapter_4.2.html#psolver">psolver</a> |
8111 | | use the solution of the previous call as initial value. Suitable |
8112 | | test runs should determine whether sufficient convergence of the |
8113 | | solution is obtained with the default value and if necessary the value |
8114 | | of <b>nsor_ini</b> should be changed.</p> |
8115 | | |
8116 | | |
8117 | | |
8118 | | |
8119 | | |
8120 | | |
8121 | | </td> |
8122 | | |
8123 | | |
8124 | | |
8125 | | |
8126 | | |
8127 | | |
8128 | | |
8129 | | </tr> |
8130 | | |
8131 | | |
8132 | | |
8133 | | |
8134 | | |
8135 | | |
8136 | | <tr> |
8137 | | |
8138 | | |
8139 | | |
8140 | | |
8141 | | |
8142 | | |
8143 | | <td style="vertical-align: top;"> |
8144 | | |
8145 | | |
8146 | | |
8147 | | |
8148 | | |
8149 | | |
8150 | | <p><a name="nx"></a><b>nx</b></p> |
8151 | | |
8152 | | |
8153 | | |
8154 | | |
8155 | | |
8156 | | |
8157 | | |
8158 | | </td> |
8159 | | |
8160 | | |
8161 | | |
8162 | | |
8163 | | |
8164 | | |
8165 | | <td style="vertical-align: top;">I</td> |
8166 | | |
8167 | | |
8168 | | |
8169 | | |
8170 | | |
8171 | | |
8172 | | |
8173 | | <td style="vertical-align: top;"><br> |
8174 | | |
8175 | | |
8176 | | |
8177 | | |
8178 | | |
8179 | | |
8180 | | </td> |
8181 | | |
8182 | | |
8183 | | |
8184 | | |
8185 | | |
8186 | | |
8187 | | <td style="vertical-align: top;"> |
8188 | | |
8189 | | |
8190 | | |
8191 | | |
8192 | | |
8193 | | |
8194 | | <p>Number of grid |
8195 | | points in x-direction. </p> |
8196 | | |
8197 | | |
8198 | | |
8199 | | |
8200 | | |
8201 | | |
8202 | | |
8203 | | |
8204 | | |
8205 | | |
8206 | | |
8207 | | |
8208 | | |
8209 | | <p>A value for this |
8210 | | parameter must be assigned. Since the lower |
8211 | | array bound in PALM |
8212 | | starts with i = 0, the actual number of grid points is equal to <b>nx+1</b>. |
8213 | | In case of cyclic boundary conditions along x, the domain size is (<b>nx+1</b>)* |
8214 | | <a href="#dx">dx</a>.</p> |
8215 | | |
8216 | | |
8217 | | |
8218 | | |
8219 | | |
8220 | | |
8221 | | |
8222 | | |
8223 | | |
8224 | | |
8225 | | |
8226 | | |
8227 | | |
8228 | | <p>For |
8229 | | parallel runs, in case of <a href="#grid_matching">grid_matching</a> |
8230 | | = <span style="font-style: italic;">'strict'</span>, |
8231 | | <b>nx+1</b> must |
8232 | | be an integral multiple |
8233 | | of the processor numbers (see <a href="#npex">npex</a> |
8234 | | and <a href="#npey">npey</a>) |
8235 | | along x- as well as along y-direction (due to data |
8236 | | transposition restrictions).</p> |
8237 | | |
8238 | | |
8239 | | |
8240 | | |
8241 | | |
8242 | | |
8243 | | |
8244 | | |
8245 | | |
8246 | | |
8247 | | |
8248 | | |
8249 | | <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a> |
8250 | | and <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p> |
8251 | | |
8252 | | |
8253 | | |
8254 | | |
8255 | | |
8256 | | |
8257 | | </td> |
8258 | | |
8259 | | |
8260 | | |
8261 | | |
8262 | | |
8263 | | |
8264 | | </tr> |
8265 | | |
8266 | | |
8267 | | |
8268 | | |
8269 | | |
8270 | | |
8271 | | <tr> |
8272 | | |
8273 | | |
8274 | | |
8275 | | |
8276 | | |
8277 | | |
8278 | | |
8279 | | <td style="vertical-align: top;"> |
8280 | | |
8281 | | |
8282 | | |
8283 | | |
8284 | | |
8285 | | |
8286 | | <p><a name="ny"></a><b>ny</b></p> |
8287 | | |
8288 | | |
8289 | | |
8290 | | |
8291 | | |
8292 | | |
8293 | | |
8294 | | </td> |
8295 | | |
8296 | | |
8297 | | |
8298 | | |
8299 | | |
8300 | | |
8301 | | <td style="vertical-align: top;">I</td> |
8302 | | |
8303 | | |
8304 | | |
8305 | | |
8306 | | |
8307 | | |
8308 | | |
8309 | | <td style="vertical-align: top;"><br> |
8310 | | |
8311 | | |
8312 | | |
8313 | | |
8314 | | |
8315 | | |
8316 | | </td> |
8317 | | |
8318 | | |
8319 | | |
8320 | | |
8321 | | |
8322 | | |
8323 | | <td style="vertical-align: top;"> |
8324 | | |
8325 | | |
8326 | | |
8327 | | |
8328 | | |
8329 | | |
8330 | | <p>Number of grid |
8331 | | points in y-direction. </p> |
8332 | | |
8333 | | |
8334 | | |
8335 | | |
8336 | | |
8337 | | |
8338 | | |
8339 | | |
8340 | | |
8341 | | |
8342 | | |
8343 | | |
8344 | | |
8345 | | <p>A value for this |
8346 | | parameter must be assigned. Since the lower |
8347 | | array bound in PALM starts with j = 0, the actual number of grid points |
8348 | | is equal to <b>ny+1</b>. In case of cyclic boundary |
8349 | | conditions along |
8350 | | y, the domain size is (<b>ny+1</b>) * <a href="#dy">dy</a>.</p> |
8351 | | |
8352 | | |
8353 | | |
8354 | | |
8355 | | |
8356 | | |
8357 | | |
8358 | | |
8359 | | |
8360 | | |
8361 | | |
8362 | | |
8363 | | |
8364 | | <p>For parallel runs, in case of <a href="#grid_matching">grid_matching</a> |
8365 | | = <span style="font-style: italic;">'strict'</span>, |
8366 | | <b>ny+1</b> must |
8367 | | be an integral multiple |
8368 | | of the processor numbers (see <a href="#npex">npex</a> |
8369 | | and <a href="#npey">npey</a>) |
8370 | | along y- as well as along x-direction (due to data |
8371 | | transposition restrictions).</p> |
8372 | | |
8373 | | |
8374 | | |
8375 | | |
8376 | | |
8377 | | |
8378 | | |
8379 | | |
8380 | | |
8381 | | |
8382 | | |
8383 | | |
8384 | | <p>For <a href="chapter_3.8.html">coupled runs</a> this parameter must be equal in both parameter files <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2"><span style="font-family: mon;"></span>PARIN</font></a> |
8385 | | and <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a>.</p> |
8386 | | |
8387 | | |
8388 | | |
8389 | | |
8390 | | |
8391 | | |
8392 | | </td> |
8393 | | |
8394 | | |
8395 | | |
8396 | | |
8397 | | |
8398 | | |
8399 | | </tr> |
8400 | | |
8401 | | |
8402 | | |
8403 | | |
8404 | | |
8405 | | |
8406 | | <tr> |
8407 | | |
8408 | | |
8409 | | |
8410 | | |
8411 | | |
8412 | | |
8413 | | |
8414 | | <td style="vertical-align: top;"> |
8415 | | |
8416 | | |
8417 | | |
8418 | | |
8419 | | |
8420 | | |
8421 | | <p><a name="nz"></a><b>nz</b></p> |
8422 | | |
8423 | | |
8424 | | |
8425 | | |
8426 | | |
8427 | | |
8428 | | |
8429 | | </td> |
8430 | | |
8431 | | |
8432 | | |
8433 | | |
8434 | | |
8435 | | |
8436 | | <td style="vertical-align: top;">I</td> |
8437 | | |
8438 | | |
8439 | | |
8440 | | |
8441 | | |
8442 | | |
8443 | | |
8444 | | <td style="vertical-align: top;"><br> |
8445 | | |
8446 | | |
8447 | | |
8448 | | |
8449 | | |
8450 | | |
8451 | | </td> |
8452 | | |
8453 | | |
8454 | | |
8455 | | |
8456 | | |
8457 | | |
8458 | | <td style="vertical-align: top;"> |
8459 | | |
8460 | | |
8461 | | |
8462 | | |
8463 | | |
8464 | | |
8465 | | <p>Number of grid |
8466 | | points in z-direction. </p> |
8467 | | |
8468 | | |
8469 | | |
8470 | | |
8471 | | |
8472 | | |
8473 | | |
8474 | | |
8475 | | |
8476 | | |
8477 | | |
8478 | | |
8479 | | |
8480 | | <p>A value for this |
8481 | | parameter must be assigned. Since the lower |
8482 | | array bound in PALM |
8483 | | starts with k = 0 and since one additional grid point is added at the |
8484 | | top boundary (k = <b>nz+1</b>), the actual number of grid |
8485 | | points is <b>nz+2</b>. |
8486 | | However, the prognostic equations are only solved up to <b>nz</b> |
8487 | | (u, |
8488 | | v) |
8489 | | or up to <b>nz-1</b> (w, scalar quantities). The top |
8490 | | boundary for u |
8491 | | and v is at k = <b>nz+1</b> (u, v) while at k = <b>nz</b> |
8492 | | for all |
8493 | | other quantities. </p> |
8494 | | |
8495 | | |
8496 | | |
8497 | | |
8498 | | |
8499 | | |
8500 | | |
8501 | | |
8502 | | |
8503 | | |
8504 | | |
8505 | | |
8506 | | |
8507 | | <p>For parallel |
8508 | | runs, in case of <a href="#grid_matching">grid_matching</a> |
8509 | | = <span style="font-style: italic;">'strict'</span>, |
8510 | | <b>nz</b> must |
8511 | | be an integral multiple of |
8512 | | the number of processors in x-direction (due to data transposition |
8513 | | restrictions).</p> |
8514 | | |
8515 | | |
8516 | | |
8517 | | |
8518 | | |
8519 | | |
8520 | | </td> |
8521 | | |
8522 | | |
8523 | | |
8524 | | |
8525 | | |
8526 | | |
8527 | | </tr> |
8528 | | |
8529 | | |
8530 | | |
8531 | | |
8532 | | |
8533 | | |
8534 | | <tr> |
8535 | | |
8536 | | |
8537 | | |
8538 | | |
8539 | | |
8540 | | |
8541 | | <td style="vertical-align: top;"><a name="ocean"></a><span style="font-weight: bold;">ocean</span></td> |
8542 | | |
8543 | | |
8544 | | |
8545 | | |
8546 | | |
8547 | | |
8548 | | <td style="vertical-align: top;">L</td> |
8549 | | |
8550 | | |
8551 | | |
8552 | | |
8553 | | |
8554 | | |
8555 | | <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> |
8556 | | |
8557 | | |
8558 | | |
8559 | | |
8560 | | |
8561 | | |
8562 | | <td style="vertical-align: top;">Parameter to switch on ocean runs.<br> |
8563 | | |
8564 | | |
8565 | | |
8566 | | |
8567 | | |
8568 | | |
8569 | | <br> |
8570 | | |
8571 | | |
8572 | | |
8573 | | |
8574 | | |
8575 | | |
8576 | | By default PALM is configured to simulate atmospheric flows. However, starting from version 3.3, <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> allows simulation of ocean turbulent flows. Setting this switch has several effects:<br> |
8577 | | |
8578 | | |
8579 | | |
8580 | | |
8581 | | |
8582 | | |
8583 | | <br> |
8584 | | |
8585 | | |
8586 | | |
8587 | | |
8588 | | |
8589 | | |
8590 | | |
8591 | | |
8592 | | |
8593 | | |
8594 | | |
8595 | | |
8596 | | <ul> |
8597 | | |
8598 | | |
8599 | | |
8600 | | |
8601 | | |
8602 | | |
8603 | | <li>An additional prognostic equation for salinity is solved.</li> |
8604 | | |
8605 | | |
8606 | | |
8607 | | |
8608 | | |
8609 | | |
8610 | | <li>Potential temperature in buoyancy and stability-related terms is replaced by potential density.</li> |
8611 | | |
8612 | | |
8613 | | |
8614 | | |
8615 | | |
8616 | | |
8617 | | <li>Potential |
8618 | | density is calculated from the equation of state for seawater after |
8619 | | each timestep, using the algorithm proposed by Jackett et al. (2006, J. |
8620 | | Atmos. Oceanic Technol., <span style="font-weight: bold;">23</span>, 1709-1728).<br> |
8621 | | |
8622 | | |
8623 | | |
8624 | | |
8625 | | |
8626 | | |
8627 | | So far, only the initial hydrostatic pressure is entered into this equation.</li> |
8628 | | |
8629 | | |
8630 | | |
8631 | | |
8632 | | |
8633 | | |
8634 | | <li>z=0 (sea surface) is assumed at the model top (vertical grid index <span style="font-family: Courier New,Courier,monospace;">k=nzt</span> on the w-grid), with negative values of z indicating the depth.</li> |
8635 | | |
8636 | | |
8637 | | |
8638 | | |
8639 | | |
8640 | | |
8641 | | <li>Initial profiles are constructed (e.g. from <a href="#pt_vertical_gradient">pt_vertical_gradient</a> / <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>) starting from the sea surface, using surface values given by <a href="#pt_surface">pt_surface</a>, <a href="#sa_surface">sa_surface</a>, <a href="#ug_surface">ug_surface</a>, and <a href="#vg_surface">vg_surface</a>.</li> |
8642 | | |
8643 | | |
8644 | | |
8645 | | |
8646 | | |
8647 | | |
8648 | | <li>Zero salinity flux is used as default boundary condition at the bottom of the sea.</li> |
8649 | | |
8650 | | |
8651 | | |
8652 | | |
8653 | | |
8654 | | |
8655 | | <li>If switched on, random perturbations are by default imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3).</li> |
8656 | | |
8657 | | |
8658 | | |
8659 | | |
8660 | | |
8661 | | |
8662 | | |
8663 | | |
8664 | | |
8665 | | |
8666 | | |
8667 | | |
8668 | | </ul> |
8669 | | |
8670 | | |
8671 | | |
8672 | | |
8673 | | |
8674 | | |
8675 | | <br> |
8676 | | |
8677 | | |
8678 | | |
8679 | | |
8680 | | |
8681 | | |
8682 | | Relevant parameters to be exclusively used for steering ocean runs are <a href="#bc_sa_t">bc_sa_t</a>, <a href="#bottom_salinityflux">bottom_salinityflux</a>, <a href="#sa_surface">sa_surface</a>, <a href="#sa_vertical_gradient">sa_vertical_gradient</a>, <a href="#sa_vertical_gradient_level">sa_vertical_gradient_level</a>, and <a href="#top_salinityflux">top_salinityflux</a>.<br> |
8683 | | |
8684 | | |
8685 | | |
8686 | | |
8687 | | |
8688 | | |
8689 | | <br> |
8690 | | |
8691 | | |
8692 | | |
8693 | | |
8694 | | |
8695 | | |
8696 | | Section <a href="chapter_4.2.2.html">4.4.2</a> gives an example for appropriate settings of these and other parameters neccessary for ocean runs.<br> |
8697 | | |
8698 | | |
8699 | | |
8700 | | |
8701 | | |
8702 | | |
8703 | | <br> |
8704 | | |
8705 | | |
8706 | | |
8707 | | |
8708 | | |
8709 | | |
8710 | | <span style="font-weight: bold;">ocean</span> = <span style="font-style: italic;">.T.</span> does not allow settings of <a href="#timestep_scheme">timestep_scheme</a> = <span style="font-style: italic;">'leapfrog'</span> or <span style="font-style: italic;">'leapfrog+euler'</span> as well as <a href="#scalar_advec">scalar_advec</a> = <span style="font-style: italic;">'ups-scheme'</span>.<span style="font-weight: bold;"></span><br> |
8711 | | |
8712 | | |
8713 | | |
8714 | | </td> |
8715 | | |
8716 | | |
8717 | | |
8718 | | |
8719 | | |
8720 | | |
8721 | | </tr> |
8722 | | |
8723 | | |
8724 | | |
8725 | | |
8726 | | |
8727 | | |
8728 | | <tr> |
8729 | | |
8730 | | |
8731 | | |
8732 | | |
8733 | | |
8734 | | |
8735 | | <td style="vertical-align: top;"> |
8736 | | |
8737 | | |
8738 | | |
8739 | | |
8740 | | |
8741 | | |
8742 | | <p><a name="omega"></a><b>omega</b></p> |
8743 | | |
8744 | | |
8745 | | |
8746 | | |
8747 | | |
8748 | | |
8749 | | |
8750 | | </td> |
8751 | | |
8752 | | |
8753 | | |
8754 | | |
8755 | | |
8756 | | |
8757 | | <td style="vertical-align: top;">R</td> |
8758 | | |
8759 | | |
8760 | | |
8761 | | |
8762 | | |
8763 | | |
8764 | | |
8765 | | <td style="vertical-align: top;"><i>7.29212E-5</i></td> |
8766 | | |
8767 | | |
8768 | | |
8769 | | |
8770 | | |
8771 | | |
8772 | | |
8773 | | <td style="vertical-align: top;"> |
8774 | | |
8775 | | |
8776 | | |
8777 | | |
8778 | | |
8779 | | |
8780 | | <p>Angular |
8781 | | velocity of the rotating system (in rad s<sup>-1</sup>). |
8782 | | </p> |
8783 | | |
8784 | | |
8785 | | |
8786 | | |
8787 | | |
8788 | | |
8789 | | |
8790 | | |
8791 | | |
8792 | | |
8793 | | |
8794 | | |
8795 | | |
8796 | | <p>The angular velocity of the earth is set by |
8797 | | default. The |
8798 | | values |
8799 | | of the Coriolis parameters are calculated as: </p> |
8800 | | |
8801 | | |
8802 | | |
8803 | | |
8804 | | |
8805 | | |
8806 | | |
8807 | | |
8808 | | |
8809 | | |
8810 | | |
8811 | | |
8812 | | |
8813 | | <ul> |
8814 | | |
8815 | | |
8816 | | |
8817 | | |
8818 | | |
8819 | | |
8820 | | |
8821 | | |
8822 | | |
8823 | | |
8824 | | |
8825 | | |
8826 | | |
8827 | | <p>f = 2.0 * <b>omega</b> * sin(<a href="#phi">phi</a>) |
8828 | | <br> |
8829 | | |
8830 | | |
8831 | | |
8832 | | |
8833 | | |
8834 | | |
8835 | | f* = 2.0 * <b>omega</b> * cos(<a href="#phi">phi</a>)</p> |
8836 | | |
8837 | | |
8838 | | |
8839 | | |
8840 | | |
8841 | | |
8842 | | |
8843 | | |
8844 | | |
8845 | | |
8846 | | |
8847 | | |
8848 | | |
8849 | | </ul> |
8850 | | |
8851 | | |
8852 | | |
8853 | | |
8854 | | |
8855 | | |
8856 | | </td> |
8857 | | |
8858 | | |
8859 | | |
8860 | | |
8861 | | |
8862 | | |
8863 | | </tr> |
8864 | | |
8865 | | |
8866 | | |
8867 | | |
8868 | | |
8869 | | |
8870 | | <tr> |
8871 | | |
8872 | | |
8873 | | |
8874 | | |
8875 | | |
8876 | | |
8877 | | <td style="vertical-align: top;"> |
8878 | | |
8879 | | |
8880 | | |
8881 | | |
8882 | | |
8883 | | |
8884 | | <p><a name="outflow_damping_width"></a><b>outflow_damping_width</b></p> |
8885 | | |
8886 | | |
8887 | | |
8888 | | |
8889 | | |
8890 | | |
8891 | | |
8892 | | </td> |
8893 | | |
8894 | | |
8895 | | |
8896 | | |
8897 | | |
8898 | | |
8899 | | <td style="vertical-align: top;">I</td> |
8900 | | |
8901 | | |
8902 | | |
8903 | | |
8904 | | |
8905 | | |
8906 | | |
8907 | | <td style="vertical-align: top;"><span style="font-style: italic;">MIN(20, |
8908 | | nx/2</span> or <span style="font-style: italic;">ny/2)</span></td> |
8909 | | |
8910 | | |
8911 | | |
8912 | | |
8913 | | |
8914 | | |
8915 | | |
8916 | | <td style="vertical-align: top;">Width of |
8917 | | the damping range in the vicinity of the outflow (gridpoints).<br> |
8918 | | |
8919 | | |
8920 | | |
8921 | | |
8922 | | |
8923 | | |
8924 | | |
8925 | | <br> |
8926 | | |
8927 | | |
8928 | | |
8929 | | |
8930 | | |
8931 | | |
8932 | | |
8933 | | When using non-cyclic lateral boundaries (see <a href="chapter_4.1.html#bc_lr">bc_lr</a> |
8934 | | or <a href="chapter_4.1.html#bc_ns">bc_ns</a>), |
8935 | | a smoothing has to be applied to the |
8936 | | velocity field in the vicinity of the outflow in order to suppress any |
8937 | | reflections of outgoing disturbances. This parameter controlls the |
8938 | | horizontal range to which the smoothing is applied. The range is given |
8939 | | in gridpoints counted from the respective outflow boundary. For further |
8940 | | details about the smoothing see parameter <a href="chapter_4.1.html#km_damp_max">km_damp_max</a>, |
8941 | | which defines the magnitude of the damping.</td> |
8942 | | |
8943 | | |
8944 | | |
8945 | | |
8946 | | |
8947 | | |
8948 | | </tr> |
8949 | | |
8950 | | |
8951 | | |
8952 | | |
8953 | | |
8954 | | |
8955 | | |
8956 | | <tr> |
8957 | | |
8958 | | |
8959 | | |
8960 | | |
8961 | | |
8962 | | |
8963 | | <td style="vertical-align: top;"> |
8964 | | |
8965 | | |
8966 | | |
8967 | | |
8968 | | |
8969 | | |
8970 | | <p><a name="overshoot_limit_e"></a><b>overshoot_limit_e</b></p> |
8971 | | |
8972 | | |
8973 | | |
8974 | | |
8975 | | |
8976 | | |
8977 | | |
8978 | | </td> |
8979 | | |
8980 | | |
8981 | | |
8982 | | |
8983 | | |
8984 | | |
8985 | | <td style="vertical-align: top;">R</td> |
8986 | | |
8987 | | |
8988 | | |
8989 | | |
8990 | | |
8991 | | |
8992 | | |
8993 | | <td style="vertical-align: top;"><i>0.0</i></td> |
8994 | | |
8995 | | |
8996 | | |
8997 | | |
8998 | | |
8999 | | |
9000 | | |
9001 | | <td style="vertical-align: top;"> |
9002 | | |
9003 | | |
9004 | | |
9005 | | |
9006 | | |
9007 | | |
9008 | | <p>Allowed limit |
9009 | | for the overshooting of subgrid-scale TKE in |
9010 | | case that the upstream-spline scheme is switched on (in m<sup>2</sup>/s<sup>2</sup>). |
9011 | | </p> |
9012 | | |
9013 | | |
9014 | | |
9015 | | |
9016 | | |
9017 | | |
9018 | | |
9019 | | |
9020 | | |
9021 | | |
9022 | | |
9023 | | |
9024 | | |
9025 | | <p>By deafult, if cut-off of overshoots is switched |
9026 | | on for the |
9027 | | upstream-spline scheme (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>), |
9028 | | no overshoots are permitted at all. If <b>overshoot_limit_e</b> |
9029 | | is given a non-zero value, overshoots with the respective |
9030 | | amplitude (both upward and downward) are allowed. </p> |
9031 | | |
9032 | | |
9033 | | |
9034 | | |
9035 | | |
9036 | | |
9037 | | |
9038 | | |
9039 | | |
9040 | | |
9041 | | |
9042 | | |
9043 | | |
9044 | | <p>Only positive values are allowed for <b>overshoot_limit_e</b>.</p> |
9045 | | |
9046 | | |
9047 | | |
9048 | | |
9049 | | |
9050 | | |
9051 | | |
9052 | | </td> |
9053 | | |
9054 | | |
9055 | | |
9056 | | |
9057 | | |
9058 | | |
9059 | | </tr> |
9060 | | |
9061 | | |
9062 | | |
9063 | | |
9064 | | |
9065 | | |
9066 | | <tr> |
9067 | | |
9068 | | |
9069 | | |
9070 | | |
9071 | | |
9072 | | |
9073 | | <td style="vertical-align: top;"> |
9074 | | |
9075 | | |
9076 | | |
9077 | | |
9078 | | |
9079 | | |
9080 | | <p><a name="overshoot_limit_pt"></a><b>overshoot_limit_pt</b></p> |
9081 | | |
9082 | | |
9083 | | |
9084 | | |
9085 | | |
9086 | | |
9087 | | |
9088 | | </td> |
9089 | | |
9090 | | |
9091 | | |
9092 | | |
9093 | | |
9094 | | |
9095 | | <td style="vertical-align: top;">R</td> |
9096 | | |
9097 | | |
9098 | | |
9099 | | |
9100 | | |
9101 | | |
9102 | | |
9103 | | <td style="vertical-align: top;"><i>0.0</i></td> |
9104 | | |
9105 | | |
9106 | | |
9107 | | |
9108 | | |
9109 | | |
9110 | | |
9111 | | <td style="vertical-align: top;"> |
9112 | | |
9113 | | |
9114 | | |
9115 | | |
9116 | | |
9117 | | |
9118 | | <p>Allowed limit |
9119 | | for the overshooting of potential temperature in |
9120 | | case that the upstream-spline scheme is switched on (in K). </p> |
9121 | | |
9122 | | |
9123 | | |
9124 | | |
9125 | | |
9126 | | |
9127 | | |
9128 | | |
9129 | | |
9130 | | |
9131 | | |
9132 | | |
9133 | | |
9134 | | <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. |
9135 | | </p> |
9136 | | |
9137 | | |
9138 | | |
9139 | | |
9140 | | |
9141 | | |
9142 | | |
9143 | | |
9144 | | |
9145 | | |
9146 | | |
9147 | | |
9148 | | |
9149 | | <p>Only positive values are allowed for <b>overshoot_limit_pt</b>.</p> |
9150 | | |
9151 | | |
9152 | | |
9153 | | |
9154 | | |
9155 | | |
9156 | | |
9157 | | </td> |
9158 | | |
9159 | | |
9160 | | |
9161 | | |
9162 | | |
9163 | | |
9164 | | </tr> |
9165 | | |
9166 | | |
9167 | | |
9168 | | |
9169 | | |
9170 | | |
9171 | | <tr> |
9172 | | |
9173 | | |
9174 | | |
9175 | | |
9176 | | |
9177 | | |
9178 | | <td style="vertical-align: top;"> |
9179 | | |
9180 | | |
9181 | | |
9182 | | |
9183 | | |
9184 | | |
9185 | | <p><a name="overshoot_limit_u"></a><b>overshoot_limit_u</b></p> |
9186 | | |
9187 | | |
9188 | | |
9189 | | |
9190 | | |
9191 | | |
9192 | | |
9193 | | </td> |
9194 | | |
9195 | | |
9196 | | |
9197 | | |
9198 | | |
9199 | | |
9200 | | <td style="vertical-align: top;">R</td> |
9201 | | |
9202 | | |
9203 | | |
9204 | | |
9205 | | |
9206 | | |
9207 | | |
9208 | | <td style="vertical-align: top;"><i>0.0</i></td> |
9209 | | |
9210 | | |
9211 | | |
9212 | | |
9213 | | |
9214 | | |
9215 | | |
9216 | | <td style="vertical-align: top;">Allowed limit for the |
9217 | | overshooting of |
9218 | | the u-component of velocity in case that the upstream-spline scheme is |
9219 | | switched on (in m/s). |
9220 | | |
9221 | | |
9222 | | |
9223 | | |
9224 | | |
9225 | | |
9226 | | <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. |
9227 | | </p> |
9228 | | |
9229 | | |
9230 | | |
9231 | | |
9232 | | |
9233 | | |
9234 | | |
9235 | | |
9236 | | |
9237 | | |
9238 | | |
9239 | | |
9240 | | |
9241 | | <p>Only positive values are allowed for <b>overshoot_limit_u</b>.</p> |
9242 | | |
9243 | | |
9244 | | |
9245 | | |
9246 | | |
9247 | | |
9248 | | |
9249 | | </td> |
9250 | | |
9251 | | |
9252 | | |
9253 | | |
9254 | | |
9255 | | |
9256 | | </tr> |
9257 | | |
9258 | | |
9259 | | |
9260 | | |
9261 | | |
9262 | | |
9263 | | <tr> |
9264 | | |
9265 | | |
9266 | | |
9267 | | |
9268 | | |
9269 | | |
9270 | | <td style="vertical-align: top;"> |
9271 | | |
9272 | | |
9273 | | |
9274 | | |
9275 | | |
9276 | | |
9277 | | <p><a name="overshoot_limit_v"></a><b>overshoot_limit_v</b></p> |
9278 | | |
9279 | | |
9280 | | |
9281 | | |
9282 | | |
9283 | | |
9284 | | |
9285 | | </td> |
9286 | | |
9287 | | |
9288 | | |
9289 | | |
9290 | | |
9291 | | |
9292 | | <td style="vertical-align: top;">R</td> |
9293 | | |
9294 | | |
9295 | | |
9296 | | |
9297 | | |
9298 | | |
9299 | | |
9300 | | <td style="vertical-align: top;"><i>0.0</i></td> |
9301 | | |
9302 | | |
9303 | | |
9304 | | |
9305 | | |
9306 | | |
9307 | | |
9308 | | <td style="vertical-align: top;"> |
9309 | | |
9310 | | |
9311 | | |
9312 | | |
9313 | | |
9314 | | |
9315 | | <p>Allowed limit |
9316 | | for the overshooting of the v-component of |
9317 | | velocity in case that the upstream-spline scheme is switched on |
9318 | | (in m/s). </p> |
9319 | | |
9320 | | |
9321 | | |
9322 | | |
9323 | | |
9324 | | |
9325 | | |
9326 | | |
9327 | | |
9328 | | |
9329 | | |
9330 | | |
9331 | | |
9332 | | <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. |
9333 | | </p> |
9334 | | |
9335 | | |
9336 | | |
9337 | | |
9338 | | |
9339 | | |
9340 | | |
9341 | | |
9342 | | |
9343 | | |
9344 | | |
9345 | | |
9346 | | |
9347 | | <p>Only positive values are allowed for <b>overshoot_limit_v</b>.</p> |
9348 | | |
9349 | | |
9350 | | |
9351 | | |
9352 | | |
9353 | | |
9354 | | |
9355 | | </td> |
9356 | | |
9357 | | |
9358 | | |
9359 | | |
9360 | | |
9361 | | |
9362 | | </tr> |
9363 | | |
9364 | | |
9365 | | |
9366 | | |
9367 | | |
9368 | | |
9369 | | <tr> |
9370 | | |
9371 | | |
9372 | | |
9373 | | |
9374 | | |
9375 | | |
9376 | | <td style="vertical-align: top;"> |
9377 | | |
9378 | | |
9379 | | |
9380 | | |
9381 | | |
9382 | | |
9383 | | <p><a name="overshoot_limit_w"></a><b>overshoot_limit_w</b></p> |
9384 | | |
9385 | | |
9386 | | |
9387 | | |
9388 | | |
9389 | | |
9390 | | |
9391 | | </td> |
9392 | | |
9393 | | |
9394 | | |
9395 | | |
9396 | | |
9397 | | |
9398 | | <td style="vertical-align: top;">R</td> |
9399 | | |
9400 | | |
9401 | | |
9402 | | |
9403 | | |
9404 | | |
9405 | | |
9406 | | <td style="vertical-align: top;"><i>0.0</i></td> |
9407 | | |
9408 | | |
9409 | | |
9410 | | |
9411 | | |
9412 | | |
9413 | | |
9414 | | <td style="vertical-align: top;"> |
9415 | | |
9416 | | |
9417 | | |
9418 | | |
9419 | | |
9420 | | |
9421 | | <p>Allowed limit |
9422 | | for the overshooting of the w-component of |
9423 | | velocity in case that the upstream-spline scheme is switched on |
9424 | | (in m/s). </p> |
9425 | | |
9426 | | |
9427 | | |
9428 | | |
9429 | | |
9430 | | |
9431 | | |
9432 | | |
9433 | | |
9434 | | |
9435 | | |
9436 | | |
9437 | | |
9438 | | <p>For further information see <a href="#overshoot_limit_e">overshoot_limit_e</a>. |
9439 | | </p> |
9440 | | |
9441 | | |
9442 | | |
9443 | | |
9444 | | |
9445 | | |
9446 | | |
9447 | | |
9448 | | |
9449 | | |
9450 | | |
9451 | | |
9452 | | |
9453 | | <p>Only positive values are permitted for <b>overshoot_limit_w</b>.</p> |
9454 | | |
9455 | | |
9456 | | |
9457 | | |
9458 | | |
9459 | | |
9460 | | |
9461 | | </td> |
9462 | | |
9463 | | |
9464 | | |
9465 | | |
9466 | | |
9467 | | |
9468 | | </tr> |
9469 | | |
9470 | | |
9471 | | |
9472 | | |
9473 | | |
9474 | | |
9475 | | <tr> |
9476 | | |
9477 | | |
9478 | | |
9479 | | |
9480 | | |
9481 | | |
9482 | | <td style="vertical-align: top;"> |
9483 | | |
9484 | | |
9485 | | |
9486 | | |
9487 | | |
9488 | | |
9489 | | <p><a name="passive_scalar"></a><b>passive_scalar</b></p> |
9490 | | |
9491 | | |
9492 | | |
9493 | | |
9494 | | |
9495 | | |
9496 | | |
9497 | | </td> |
9498 | | |
9499 | | |
9500 | | |
9501 | | |
9502 | | |
9503 | | |
9504 | | <td style="vertical-align: top;">L</td> |
9505 | | |
9506 | | |
9507 | | |
9508 | | |
9509 | | |
9510 | | |
9511 | | |
9512 | | <td style="vertical-align: top;"><i>.F.</i></td> |
9513 | | |
9514 | | |
9515 | | |
9516 | | |
9517 | | |
9518 | | |
9519 | | |
9520 | | <td style="vertical-align: top;"> |
9521 | | |
9522 | | |
9523 | | |
9524 | | |
9525 | | |
9526 | | |
9527 | | <p>Parameter to |
9528 | | switch on the prognostic equation for a passive |
9529 | | scalar. <br> |
9530 | | |
9531 | | |
9532 | | |
9533 | | |
9534 | | |
9535 | | |
9536 | | </p> |
9537 | | |
9538 | | |
9539 | | |
9540 | | |
9541 | | |
9542 | | |
9543 | | |
9544 | | |
9545 | | |
9546 | | |
9547 | | |
9548 | | |
9549 | | |
9550 | | <p>The initial vertical profile |
9551 | | of s can be set via parameters <a href="#s_surface">s_surface</a>, |
9552 | | <a href="#s_vertical_gradient">s_vertical_gradient</a> |
9553 | | and <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>. |
9554 | | Boundary conditions can be set via <a href="#s_surface_initial_change">s_surface_initial_change</a> |
9555 | | and <a href="#surface_scalarflux">surface_scalarflux</a>. |
9556 | | </p> |
9557 | | |
9558 | | |
9559 | | |
9560 | | |
9561 | | |
9562 | | |
9563 | | |
9564 | | |
9565 | | |
9566 | | |
9567 | | |
9568 | | |
9569 | | |
9570 | | <p><b>Note:</b> <br> |
9571 | | |
9572 | | |
9573 | | |
9574 | | |
9575 | | |
9576 | | |
9577 | | |
9578 | | With <span style="font-weight: bold;">passive_scalar</span> |
9579 | | switched |
9580 | | on, the simultaneous use of humidity (see <a href="#humidity">humidity</a>) |
9581 | | is impossible.</p> |
9582 | | |
9583 | | |
9584 | | |
9585 | | |
9586 | | |
9587 | | |
9588 | | </td> |
9589 | | |
9590 | | |
9591 | | |
9592 | | |
9593 | | |
9594 | | |
9595 | | </tr> |
9596 | | |
9597 | | |
9598 | | |
9599 | | |
9600 | | |
9601 | | |
9602 | | <tr> |
9603 | | |
9604 | | <td style="vertical-align: top;"><a name="pch_index"></a><span style="font-weight: bold;">pch_index</span></td> |
9605 | | |
9606 | | <td style="vertical-align: top;">I</td> |
9607 | | |
9608 | | <td style="vertical-align: top;"><span style="font-style: italic;">0</span></td> |
9609 | | |
9610 | | <td style="vertical-align: top;">Grid point index (scalar) of the upper boundary of the plant canopy layer.<br> |
9611 | | |
9612 | | <br> |
9613 | | |
9614 | | Above <span style="font-weight: bold;">pch_index</span> the arrays of leaf area density and drag_coeffient are automatically set to zero in case of <a href="#plant_canopy">plant_canopy</a> = .T.. Up to <span style="font-weight: bold;">pch_index</span> a leaf area density profile can be prescribed by using the parameters <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a> and <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>.</td> |
9615 | | |
9616 | | </tr> |
9617 | | |
9618 | | <tr> |
9619 | | |
9620 | | |
9621 | | |
9622 | | |
9623 | | |
9624 | | |
9625 | | <td style="vertical-align: top;"> |
9626 | | |
9627 | | |
9628 | | |
9629 | | |
9630 | | |
9631 | | |
9632 | | <p><a name="phi"></a><b>phi</b></p> |
9633 | | |
9634 | | |
9635 | | |
9636 | | |
9637 | | |
9638 | | |
9639 | | |
9640 | | </td> |
9641 | | |
9642 | | |
9643 | | |
9644 | | |
9645 | | |
9646 | | |
9647 | | <td style="vertical-align: top;">R</td> |
9648 | | |
9649 | | |
9650 | | |
9651 | | |
9652 | | |
9653 | | |
9654 | | |
9655 | | <td style="vertical-align: top;"><i>55.0</i></td> |
9656 | | |
9657 | | |
9658 | | |
9659 | | |
9660 | | |
9661 | | |
9662 | | |
9663 | | <td style="vertical-align: top;"> |
9664 | | |
9665 | | |
9666 | | |
9667 | | |
9668 | | |
9669 | | |
9670 | | <p>Geographical |
9671 | | latitude (in degrees). </p> |
9672 | | |
9673 | | |
9674 | | |
9675 | | |
9676 | | |
9677 | | |
9678 | | |
9679 | | |
9680 | | |
9681 | | |
9682 | | |
9683 | | |
9684 | | |
9685 | | <p>The value of |
9686 | | this parameter determines the value of the |
9687 | | Coriolis parameters f and f*, provided that the angular velocity (see <a href="#omega">omega</a>) |
9688 | | is non-zero.</p> |
9689 | | |
9690 | | |
9691 | | |
9692 | | |
9693 | | |
9694 | | |
9695 | | </td> |
9696 | | |
9697 | | |
9698 | | |
9699 | | |
9700 | | |
9701 | | |
9702 | | </tr> |
9703 | | |
9704 | | |
9705 | | |
9706 | | |
9707 | | |
9708 | | |
9709 | | <tr> |
9710 | | |
9711 | | <td style="vertical-align: top;"><a name="plant_canopy"></a><span style="font-weight: bold;">plant_canopy</span></td> |
9712 | | |
9713 | | <td style="vertical-align: top;">L</td> |
9714 | | |
9715 | | <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> |
9716 | | |
9717 | | <td style="vertical-align: top;">Switch for the plant_canopy_model.<br> |
9718 | | |
9719 | | <br> |
9720 | | |
9721 | | If <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>, the plant canopy model of Watanabe (2004, BLM 112, 307-341) is used. <br> |
9722 | | |
9723 | | The |
9724 | | impact of a plant canopy on a turbulent flow is considered by an |
9725 | | additional drag term in the momentum equations and an additional sink |
9726 | | term in the prognostic equation for the subgrid-scale TKE. These |
9727 | | additional terms are dependent on the leaf drag coefficient (see <a href="#drag_coefficient">drag_coefficient</a>) and the leaf area density (see <a href="#lad_surface">lad_surface</a>, <a href="#lad_vertical_gradient">lad_vertical_gradient</a>, <a href="#lad_vertical_gradient_level">lad_vertical_gradient_level</a>). The top boundary of the plant canopy is determined by the parameter <a href="#pch_index">pch_index</a>. For all heights equal to or larger than zw(k=<span style="font-weight: bold;">pch_index</span>) the leaf area density is 0 (i.e. there is no canopy at these heights!). <br> |
9728 | | |
9729 | | By default, a horizontally homogeneous plant canopy is prescribed, if <span style="font-weight: bold;">plant_canopy</span> is set <span style="font-style: italic;">.T.</span>. However, the user can define other types of plant canopies (see <a href="#canopy_mode">canopy_mode</a>).<br><br>If <span style="font-weight: bold;">plant_canopy</span> and <span style="font-weight: bold;">passive_scalar</span><span style="font-style: italic;"> </span>are set <span style="font-style: italic;">.T.</span>, |
9730 | | the canopy acts as an additional source or sink, respectively, of |
9731 | | scalar concentration. The source/sink strength is dependent on the |
9732 | | scalar concentration at the leaf surface, which is generally constant |
9733 | | with time in PALM and which can be specified by specifying the |
9734 | | parameter <a href="#leaf_surface_concentration">leaf_surface_concentration</a>. <br><br>Additional heating of the air by the plant canopy is taken into account, when the default value of the parameter <a href="#cthf">cthf</a> is altered in the parameter file. In that case the value of <a href="#surface_heatflux">surface_heatflux</a> |
9735 | | specified in the parameter file is not used in the model. Instead the |
9736 | | near-surface heat flux is derived from an expontial function that is |
9737 | | dependent on the cumulative leaf area index. <br> |
9738 | | |
9739 | | <br> |
9740 | | |
9741 | | <span style="font-weight: bold;">plant_canopy</span> = <span style="font-style: italic;">.T. </span>is only allowed together with a non-zero <a href="#drag_coefficient">drag_coefficient</a>.</td> |
9742 | | |
9743 | | </tr> |
9744 | | |
9745 | | <tr> |
9746 | | |
9747 | | |
9748 | | |
9749 | | |
9750 | | |
9751 | | |
9752 | | <td style="vertical-align: top;"> |
9753 | | |
9754 | | |
9755 | | |
9756 | | |
9757 | | |
9758 | | |
9759 | | <p><a name="prandtl_layer"></a><b>prandtl_layer</b></p> |
9760 | | |
9761 | | |
9762 | | |
9763 | | |
9764 | | |
9765 | | |
9766 | | |
9767 | | </td> |
9768 | | |
9769 | | |
9770 | | |
9771 | | |
9772 | | |
9773 | | |
9774 | | <td style="vertical-align: top;">L</td> |
9775 | | |
9776 | | |
9777 | | |
9778 | | |
9779 | | |
9780 | | |
9781 | | |
9782 | | <td style="vertical-align: top;"><i>.T.</i></td> |
9783 | | |
9784 | | |
9785 | | |
9786 | | |
9787 | | |
9788 | | |
9789 | | |
9790 | | <td style="vertical-align: top;"> |
9791 | | |
9792 | | |
9793 | | |
9794 | | |
9795 | | |
9796 | | |
9797 | | <p>Parameter to |
9798 | | switch on a Prandtl layer. </p> |
9799 | | |
9800 | | |
9801 | | |
9802 | | |
9803 | | |
9804 | | |
9805 | | |
9806 | | |
9807 | | |
9808 | | |
9809 | | |
9810 | | |
9811 | | |
9812 | | <p>By default, |
9813 | | a Prandtl layer is switched on at the bottom |
9814 | | boundary between z = 0 and z = 0.5 * <a href="#dz">dz</a> |
9815 | | (the first computational grid point above ground for u, v and the |
9816 | | scalar quantities). |
9817 | | In this case, at the bottom boundary, free-slip conditions for u and v |
9818 | | (see <a href="#bc_uv_b">bc_uv_b</a>) |
9819 | | are not allowed. Likewise, laminar |
9820 | | simulations with constant eddy diffusivities (<a href="#km_constant">km_constant</a>) |
9821 | | are forbidden. </p> |
9822 | | |
9823 | | |
9824 | | |
9825 | | |
9826 | | |
9827 | | |
9828 | | |
9829 | | |
9830 | | |
9831 | | |
9832 | | |
9833 | | |
9834 | | |
9835 | | <p>With Prandtl-layer |
9836 | | switched off, the TKE boundary condition <a href="#bc_e_b">bc_e_b</a> |
9837 | | = '<i>(u*)**2+neumann'</i> must not be used and is |
9838 | | automatically |
9839 | | changed to <i>'neumann'</i> if necessary. Also, |
9840 | | the pressure |
9841 | | boundary condition <a href="#bc_p_b">bc_p_b</a> |
9842 | | = <i>'neumann+inhomo'</i> is not allowed. </p> |
9843 | | |
9844 | | |
9845 | | |
9846 | | |
9847 | | |
9848 | | |
9849 | | |
9850 | | |
9851 | | |
9852 | | |
9853 | | |
9854 | | |
9855 | | |
9856 | | <p>The roughness length is declared via the parameter <a href="#roughness_length">roughness_length</a>.</p> |
9857 | | |
9858 | | |
9859 | | |
9860 | | |
9861 | | |
9862 | | |
9863 | | |
9864 | | </td> |
9865 | | |
9866 | | |
9867 | | |
9868 | | |
9869 | | |
9870 | | |
9871 | | </tr> |
9872 | | |
9873 | | |
9874 | | |
9875 | | |
9876 | | |
9877 | | |
9878 | | <tr> |
9879 | | |
9880 | | |
9881 | | |
9882 | | |
9883 | | |
9884 | | |
9885 | | <td style="vertical-align: top;"> |
9886 | | |
9887 | | |
9888 | | |
9889 | | |
9890 | | |
9891 | | |
9892 | | <p><a name="precipitation"></a><b>precipitation</b></p> |
9893 | | |
9894 | | |
9895 | | |
9896 | | |
9897 | | |
9898 | | |
9899 | | |
9900 | | </td> |
9901 | | |
9902 | | |
9903 | | |
9904 | | |
9905 | | |
9906 | | |
9907 | | <td style="vertical-align: top;">L</td> |
9908 | | |
9909 | | |
9910 | | |
9911 | | |
9912 | | |
9913 | | |
9914 | | |
9915 | | <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> |
9916 | | |
9917 | | |
9918 | | |
9919 | | |
9920 | | |
9921 | | |
9922 | | <td style="vertical-align: top;"> |
9923 | | |
9924 | | |
9925 | | |
9926 | | |
9927 | | |
9928 | | |
9929 | | <p>Parameter to switch |
9930 | | on the precipitation scheme.<br> |
9931 | | |
9932 | | |
9933 | | |
9934 | | |
9935 | | |
9936 | | |
9937 | | </p> |
9938 | | |
9939 | | |
9940 | | |
9941 | | |
9942 | | |
9943 | | |
9944 | | |
9945 | | |
9946 | | |
9947 | | |
9948 | | |
9949 | | |
9950 | | |
9951 | | <p>For |
9952 | | precipitation processes PALM uses a simplified Kessler |
9953 | | scheme. This scheme only considers the |
9954 | | so-called autoconversion, that means the generation of rain water by |
9955 | | coagulation of cloud drops among themselves. Precipitation begins and |
9956 | | is immediately removed from the flow as soon as the liquid water |
9957 | | content exceeds the critical value of 0.5 g/kg.</p> |
9958 | | |
9959 | | |
9960 | | |
9961 | | |
9962 | | |
9963 | | |
9964 | | |
9965 | | |
9966 | | |
9967 | | |
9968 | | |
9969 | | |
9970 | | <p>The precipitation rate and amount can be output by assigning the runtime parameter <a href="chapter_4.2.html#data_output">data_output</a> = <span style="font-style: italic;">'prr*'</span> or <span style="font-style: italic;">'pra*'</span>, respectively. The time interval on which the precipitation amount is defined can be controlled via runtime parameter <a href="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</a>.</p> |
9971 | | |
9972 | | |
9973 | | |
9974 | | |
9975 | | |
9976 | | |
9977 | | </td> |
9978 | | |
9979 | | |
9980 | | |
9981 | | |
9982 | | |
9983 | | |
9984 | | </tr> |
9985 | | |
9986 | | |
9987 | | |
9988 | | |
9989 | | |
9990 | | |
9991 | | |
9992 | | <tr> |
9993 | | |
9994 | | |
9995 | | |
9996 | | |
9997 | | |
9998 | | |
9999 | | <td style="vertical-align: top;"><a name="pt_reference"></a><span style="font-weight: bold;">pt_reference</span></td> |
10000 | | |
10001 | | |
10002 | | |
10003 | | |
10004 | | |
10005 | | |
10006 | | <td style="vertical-align: top;">R</td> |
10007 | | |
10008 | | |
10009 | | |
10010 | | |
10011 | | |
10012 | | |
10013 | | <td style="vertical-align: top;"><span style="font-style: italic;">use horizontal average as |
10014 | | refrence</span></td> |
10015 | | |
10016 | | |
10017 | | |
10018 | | |
10019 | | |
10020 | | |
10021 | | <td style="vertical-align: top;">Reference |
10022 | | temperature to be used in all buoyancy terms (in K).<br> |
10023 | | |
10024 | | |
10025 | | |
10026 | | |
10027 | | |
10028 | | |
10029 | | <br> |
10030 | | |
10031 | | |
10032 | | |
10033 | | |
10034 | | |
10035 | | |
10036 | | By |
10037 | | default, the instantaneous horizontal average over the total model |
10038 | | domain is used.<br> |
10039 | | |
10040 | | |
10041 | | |
10042 | | |
10043 | | |
10044 | | |
10045 | | <br> |
10046 | | |
10047 | | |
10048 | | |
10049 | | |
10050 | | |
10051 | | |
10052 | | <span style="font-weight: bold;">Attention:</span><br> |
10053 | | |
10054 | | |
10055 | | |
10056 | | |
10057 | | |
10058 | | |
10059 | | In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), always a reference temperature is used in the buoyancy terms with a default value of <span style="font-weight: bold;">pt_reference</span> = <a href="#pt_surface">pt_surface</a>.</td> |
10060 | | |
10061 | | |
10062 | | |
10063 | | |
10064 | | |
10065 | | |
10066 | | </tr> |
10067 | | |
10068 | | |
10069 | | |
10070 | | |
10071 | | |
10072 | | |
10073 | | <tr> |
10074 | | |
10075 | | |
10076 | | |
10077 | | |
10078 | | |
10079 | | |
10080 | | <td style="vertical-align: top;"> |
10081 | | |
10082 | | |
10083 | | |
10084 | | |
10085 | | |
10086 | | |
10087 | | <p><a name="pt_surface"></a><b>pt_surface</b></p> |
10088 | | |
10089 | | |
10090 | | |
10091 | | |
10092 | | |
10093 | | |
10094 | | |
10095 | | </td> |
10096 | | |
10097 | | |
10098 | | |
10099 | | |
10100 | | |
10101 | | |
10102 | | <td style="vertical-align: top;">R</td> |
10103 | | |
10104 | | |
10105 | | |
10106 | | |
10107 | | |
10108 | | |
10109 | | |
10110 | | <td style="vertical-align: top;"><i>300.0</i></td> |
10111 | | |
10112 | | |
10113 | | |
10114 | | |
10115 | | |
10116 | | |
10117 | | |
10118 | | <td style="vertical-align: top;"> |
10119 | | |
10120 | | |
10121 | | |
10122 | | |
10123 | | |
10124 | | |
10125 | | <p>Surface |
10126 | | potential temperature (in K). </p> |
10127 | | |
10128 | | |
10129 | | |
10130 | | |
10131 | | |
10132 | | |
10133 | | |
10134 | | |
10135 | | |
10136 | | |
10137 | | |
10138 | | |
10139 | | |
10140 | | <p>This |
10141 | | parameter assigns the value of the potential temperature |
10142 | | <span style="font-weight: bold;">pt</span> at the surface (k=0)<b>.</b> Starting from this value, |
10143 | | the |
10144 | | initial vertical temperature profile is constructed with <a href="#pt_vertical_gradient">pt_vertical_gradient</a> |
10145 | | and <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level |
10146 | | </a>. |
10147 | | This profile is also used for the 1d-model as a stationary profile.</p> |
10148 | | |
10149 | | |
10150 | | |
10151 | | |
10152 | | |
10153 | | |
10154 | | |
10155 | | |
10156 | | |
10157 | | |
10158 | | |
10159 | | |
10160 | | <p><span style="font-weight: bold;">Attention:</span><br> |
10161 | | |
10162 | | |
10163 | | |
10164 | | |
10165 | | |
10166 | | |
10167 | | In case of ocean runs (see <a href="#ocean">ocean</a>), |
10168 | | this parameter gives the temperature value at the sea surface, which is |
10169 | | at k=nzt. The profile is then constructed from the surface down to the |
10170 | | bottom of the model.</p> |
10171 | | |
10172 | | |
10173 | | |
10174 | | |
10175 | | |
10176 | | |
10177 | | |
10178 | | </td> |
10179 | | |
10180 | | |
10181 | | |
10182 | | |
10183 | | |
10184 | | |
10185 | | </tr> |
10186 | | |
10187 | | |
10188 | | |
10189 | | |
10190 | | |
10191 | | |
10192 | | <tr> |
10193 | | |
10194 | | |
10195 | | |
10196 | | |
10197 | | |
10198 | | |
10199 | | <td style="vertical-align: top;"> |
10200 | | |
10201 | | |
10202 | | |
10203 | | |
10204 | | |
10205 | | |
10206 | | <p><a name="pt_surface_initial_change"></a><b>pt_surface_initial</b> |
10207 | | <br> |
10208 | | |
10209 | | |
10210 | | |
10211 | | |
10212 | | |
10213 | | |
10214 | | <b>_change</b></p> |
10215 | | |
10216 | | |
10217 | | |
10218 | | |
10219 | | |
10220 | | |
10221 | | </td> |
10222 | | |
10223 | | |
10224 | | |
10225 | | |
10226 | | |
10227 | | |
10228 | | <td style="vertical-align: top;">R</td> |
10229 | | |
10230 | | |
10231 | | |
10232 | | |
10233 | | |
10234 | | |
10235 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> |
10236 | | |
10237 | | |
10238 | | |
10239 | | |
10240 | | |
10241 | | |
10242 | | </td> |
10243 | | |
10244 | | |
10245 | | |
10246 | | |
10247 | | |
10248 | | |
10249 | | |
10250 | | <td style="vertical-align: top;"> |
10251 | | |
10252 | | |
10253 | | |
10254 | | |
10255 | | |
10256 | | |
10257 | | <p>Change in |
10258 | | surface temperature to be made at the beginning of |
10259 | | the 3d run |
10260 | | (in K). </p> |
10261 | | |
10262 | | |
10263 | | |
10264 | | |
10265 | | |
10266 | | |
10267 | | |
10268 | | |
10269 | | |
10270 | | |
10271 | | |
10272 | | |
10273 | | |
10274 | | <p>If <b>pt_surface_initial_change</b> |
10275 | | is set to a non-zero |
10276 | | value, the near surface sensible heat flux is not allowed to be given |
10277 | | simultaneously (see <a href="#surface_heatflux">surface_heatflux</a>).</p> |
10278 | | |
10279 | | |
10280 | | |
10281 | | |
10282 | | |
10283 | | |
10284 | | |
10285 | | </td> |
10286 | | |
10287 | | |
10288 | | |
10289 | | |
10290 | | |
10291 | | |
10292 | | </tr> |
10293 | | |
10294 | | |
10295 | | |
10296 | | |
10297 | | |
10298 | | |
10299 | | <tr> |
10300 | | |
10301 | | |
10302 | | |
10303 | | |
10304 | | |
10305 | | |
10306 | | <td style="vertical-align: top;"> |
10307 | | |
10308 | | |
10309 | | |
10310 | | |
10311 | | |
10312 | | |
10313 | | <p><a name="pt_vertical_gradient"></a><b>pt_vertical_gradient</b></p> |
10314 | | |
10315 | | |
10316 | | |
10317 | | |
10318 | | |
10319 | | |
10320 | | |
10321 | | </td> |
10322 | | |
10323 | | |
10324 | | |
10325 | | |
10326 | | |
10327 | | |
10328 | | <td style="vertical-align: top;">R (10)</td> |
10329 | | |
10330 | | |
10331 | | |
10332 | | |
10333 | | |
10334 | | |
10335 | | |
10336 | | <td style="vertical-align: top;"><i>10 * 0.0</i></td> |
10337 | | |
10338 | | |
10339 | | |
10340 | | |
10341 | | |
10342 | | |
10343 | | |
10344 | | <td style="vertical-align: top;"> |
10345 | | |
10346 | | |
10347 | | |
10348 | | |
10349 | | |
10350 | | |
10351 | | <p>Temperature |
10352 | | gradient(s) of the initial temperature profile (in |
10353 | | K |
10354 | | / 100 m). </p> |
10355 | | |
10356 | | |
10357 | | |
10358 | | |
10359 | | |
10360 | | |
10361 | | |
10362 | | |
10363 | | |
10364 | | |
10365 | | |
10366 | | |
10367 | | |
10368 | | <p>This temperature gradient |
10369 | | holds starting from the height |
10370 | | level defined by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a> |
10371 | | (precisely: for all uv levels k where zu(k) > |
10372 | | pt_vertical_gradient_level, |
10373 | | pt_init(k) is set: pt_init(k) = pt_init(k-1) + dzu(k) * <b>pt_vertical_gradient</b>) |
10374 | | up to the top boundary or up to the next height level defined |
10375 | | by <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>. |
10376 | | A total of 10 different gradients for 11 height intervals (10 intervals |
10377 | | if <a href="#pt_vertical_gradient_level">pt_vertical_gradient_level</a>(1) |
10378 | | = <i>0.0</i>) can be assigned. The surface temperature is |
10379 | | assigned via <a href="#pt_surface">pt_surface</a>. |
10380 | | </p> |
10381 | | |
10382 | | |
10383 | | |
10384 | | |
10385 | | |
10386 | | |
10387 | | |
10388 | | |
10389 | | |
10390 | | |
10391 | | |
10392 | | |
10393 | | |
10394 | | <p>Example: </p> |
10395 | | |
10396 | | |
10397 | | |
10398 | | |
10399 | | |
10400 | | |
10401 | | |
10402 | | |
10403 | | |
10404 | | |
10405 | | |
10406 | | |
10407 | | |
10408 | | <ul> |
10409 | | |
10410 | | |
10411 | | |
10412 | | |
10413 | | |
10414 | | |
10415 | | |
10416 | | |
10417 | | |
10418 | | |
10419 | | |
10420 | | |
10421 | | |
10422 | | <p><b>pt_vertical_gradient</b> |
10423 | | = <i>1.0</i>, <i>0.5</i>, <br> |
10424 | | |
10425 | | |
10426 | | |
10427 | | |
10428 | | |
10429 | | |
10430 | | |
10431 | | <b>pt_vertical_gradient_level</b> = <i>500.0</i>, |
10432 | | <i>1000.0</i>,</p> |
10433 | | |
10434 | | |
10435 | | |
10436 | | |
10437 | | |
10438 | | |
10439 | | |
10440 | | |
10441 | | |
10442 | | |
10443 | | |
10444 | | |
10445 | | |
10446 | | </ul> |
10447 | | |
10448 | | |
10449 | | |
10450 | | |
10451 | | |
10452 | | |
10453 | | |
10454 | | |
10455 | | |
10456 | | |
10457 | | |
10458 | | |
10459 | | |
10460 | | <p>That |
10461 | | defines the temperature profile to be neutrally |
10462 | | stratified |
10463 | | up to z = 500.0 m with a temperature given by <a href="#pt_surface">pt_surface</a>. |
10464 | | For 500.0 m < z <= 1000.0 m the temperature gradient is |
10465 | | 1.0 K / |
10466 | | 100 m and for z > 1000.0 m up to the top boundary it is |
10467 | | 0.5 K / 100 m (it is assumed that the assigned height levels correspond |
10468 | | with uv levels).</p> |
10469 | | |
10470 | | |
10471 | | |
10472 | | |
10473 | | |
10474 | | |
10475 | | |
10476 | | |
10477 | | |
10478 | | |
10479 | | |
10480 | | |
10481 | | <p><span style="font-weight: bold;">Attention:</span><br> |
10482 | | |
10483 | | |
10484 | | |
10485 | | |
10486 | | |
10487 | | |
10488 | | In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), |
10489 | | the profile is constructed like described above, but starting from the |
10490 | | sea surface (k=nzt) down to the bottom boundary of the model. Height |
10491 | | levels have then to be given as negative values, e.g. <span style="font-weight: bold;">pt_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</p> |
10492 | | |
10493 | | |
10494 | | |
10495 | | |
10496 | | |
10497 | | |
10498 | | </td> |
10499 | | |
10500 | | |
10501 | | |
10502 | | |
10503 | | |
10504 | | |
10505 | | </tr> |
10506 | | |
10507 | | |
10508 | | |
10509 | | |
10510 | | |
10511 | | |
10512 | | <tr> |
10513 | | |
10514 | | |
10515 | | |
10516 | | |
10517 | | |
10518 | | |
10519 | | <td style="vertical-align: top;"> |
10520 | | |
10521 | | |
10522 | | |
10523 | | |
10524 | | |
10525 | | |
10526 | | <p><a name="pt_vertical_gradient_level"></a><b>pt_vertical_gradient</b> |
10527 | | <br> |
10528 | | |
10529 | | |
10530 | | |
10531 | | |
10532 | | |
10533 | | |
10534 | | <b>_level</b></p> |
10535 | | |
10536 | | |
10537 | | |
10538 | | |
10539 | | |
10540 | | |
10541 | | </td> |
10542 | | |
10543 | | |
10544 | | |
10545 | | |
10546 | | |
10547 | | |
10548 | | <td style="vertical-align: top;">R (10)</td> |
10549 | | |
10550 | | |
10551 | | |
10552 | | |
10553 | | |
10554 | | |
10555 | | <td style="vertical-align: top;"> |
10556 | | |
10557 | | |
10558 | | |
10559 | | |
10560 | | |
10561 | | |
10562 | | <p><i>10 *</i> |
10563 | | <span style="font-style: italic;">0.0</span><br> |
10564 | | |
10565 | | |
10566 | | |
10567 | | |
10568 | | |
10569 | | |
10570 | | |
10571 | | </p> |
10572 | | |
10573 | | |
10574 | | |
10575 | | |
10576 | | |
10577 | | |
10578 | | </td> |
10579 | | |
10580 | | |
10581 | | |
10582 | | |
10583 | | |
10584 | | |
10585 | | <td style="vertical-align: top;"> |
10586 | | |
10587 | | |
10588 | | |
10589 | | |
10590 | | |
10591 | | |
10592 | | <p>Height level from which on the temperature gradient defined by |
10593 | | <a href="#pt_vertical_gradient">pt_vertical_gradient</a> |
10594 | | is effective (in m). </p> |
10595 | | |
10596 | | |
10597 | | |
10598 | | |
10599 | | |
10600 | | |
10601 | | |
10602 | | |
10603 | | |
10604 | | |
10605 | | |
10606 | | |
10607 | | |
10608 | | <p>The height levels have to be assigned in ascending order. The |
10609 | | default values result in a neutral stratification regardless of the |
10610 | | values of <a href="#pt_vertical_gradient">pt_vertical_gradient</a> |
10611 | | (unless the top boundary of the model is higher than 100000.0 m). |
10612 | | For the piecewise construction of temperature profiles see <a href="#pt_vertical_gradient">pt_vertical_gradient</a>.</p> |
10613 | | |
10614 | | |
10615 | | |
10616 | | |
10617 | | |
10618 | | |
10619 | | <span style="font-weight: bold;">Attention:</span><br> |
10620 | | |
10621 | | |
10622 | | |
10623 | | |
10624 | | |
10625 | | |
10626 | | In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order. |
10627 | | </td> |
10628 | | |
10629 | | |
10630 | | |
10631 | | |
10632 | | |
10633 | | |
10634 | | </tr> |
10635 | | |
10636 | | |
10637 | | |
10638 | | |
10639 | | |
10640 | | |
10641 | | <tr> |
10642 | | |
10643 | | |
10644 | | |
10645 | | |
10646 | | |
10647 | | |
10648 | | <td style="vertical-align: top;"> |
10649 | | |
10650 | | |
10651 | | |
10652 | | |
10653 | | |
10654 | | |
10655 | | <p><a name="q_surface"></a><b>q_surface</b></p> |
10656 | | |
10657 | | |
10658 | | |
10659 | | |
10660 | | |
10661 | | |
10662 | | |
10663 | | </td> |
10664 | | |
10665 | | |
10666 | | |
10667 | | |
10668 | | |
10669 | | |
10670 | | <td style="vertical-align: top;">R</td> |
10671 | | |
10672 | | |
10673 | | |
10674 | | |
10675 | | |
10676 | | |
10677 | | |
10678 | | <td style="vertical-align: top;"><i>0.0</i></td> |
10679 | | |
10680 | | |
10681 | | |
10682 | | |
10683 | | |
10684 | | |
10685 | | |
10686 | | <td style="vertical-align: top;"> |
10687 | | |
10688 | | |
10689 | | |
10690 | | |
10691 | | |
10692 | | |
10693 | | <p>Surface |
10694 | | specific humidity / total water content (kg/kg). </p> |
10695 | | |
10696 | | |
10697 | | |
10698 | | |
10699 | | |
10700 | | |
10701 | | |
10702 | | |
10703 | | |
10704 | | |
10705 | | |
10706 | | |
10707 | | |
10708 | | <p>This |
10709 | | parameter assigns the value of the specific humidity q at |
10710 | | the surface (k=0). Starting from this value, the initial |
10711 | | humidity |
10712 | | profile is constructed with <a href="#q_vertical_gradient">q_vertical_gradient</a> |
10713 | | and <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>. |
10714 | | This profile is also used for the 1d-model as a stationary profile.</p> |
10715 | | |
10716 | | |
10717 | | |
10718 | | |
10719 | | |
10720 | | |
10721 | | |
10722 | | </td> |
10723 | | |
10724 | | |
10725 | | |
10726 | | |
10727 | | |
10728 | | |
10729 | | </tr> |
10730 | | |
10731 | | |
10732 | | |
10733 | | |
10734 | | |
10735 | | |
10736 | | <tr> |
10737 | | |
10738 | | |
10739 | | |
10740 | | |
10741 | | |
10742 | | |
10743 | | <td style="vertical-align: top;"> |
10744 | | |
10745 | | |
10746 | | |
10747 | | |
10748 | | |
10749 | | |
10750 | | <p><a name="q_surface_initial_change"></a><b>q_surface_initial</b> |
10751 | | <br> |
10752 | | |
10753 | | |
10754 | | |
10755 | | |
10756 | | |
10757 | | |
10758 | | <b>_change</b></p> |
10759 | | |
10760 | | |
10761 | | |
10762 | | |
10763 | | |
10764 | | |
10765 | | </td> |
10766 | | |
10767 | | |
10768 | | |
10769 | | |
10770 | | |
10771 | | |
10772 | | <td style="vertical-align: top;">R<br> |
10773 | | |
10774 | | |
10775 | | |
10776 | | |
10777 | | |
10778 | | |
10779 | | </td> |
10780 | | |
10781 | | |
10782 | | |
10783 | | |
10784 | | |
10785 | | |
10786 | | <td style="vertical-align: top;"><i>0.0</i></td> |
10787 | | |
10788 | | |
10789 | | |
10790 | | |
10791 | | |
10792 | | |
10793 | | |
10794 | | <td style="vertical-align: top;"> |
10795 | | |
10796 | | |
10797 | | |
10798 | | |
10799 | | |
10800 | | |
10801 | | <p>Change in |
10802 | | surface specific humidity / total water content to |
10803 | | be made at the beginning |
10804 | | of the 3d run (kg/kg). </p> |
10805 | | |
10806 | | |
10807 | | |
10808 | | |
10809 | | |
10810 | | |
10811 | | |
10812 | | |
10813 | | |
10814 | | |
10815 | | |
10816 | | |
10817 | | |
10818 | | <p>If <b>q_surface_initial_change</b><i> |
10819 | | </i>is set to a |
10820 | | non-zero value the |
10821 | | near surface latent heat flux (water flux) is not allowed to be given |
10822 | | simultaneously (see <a href="#surface_waterflux">surface_waterflux</a>).</p> |
10823 | | |
10824 | | |
10825 | | |
10826 | | |
10827 | | |
10828 | | |
10829 | | |
10830 | | </td> |
10831 | | |
10832 | | |
10833 | | |
10834 | | |
10835 | | |
10836 | | |
10837 | | </tr> |
10838 | | |
10839 | | |
10840 | | |
10841 | | |
10842 | | |
10843 | | |
10844 | | <tr> |
10845 | | |
10846 | | |
10847 | | |
10848 | | |
10849 | | |
10850 | | |
10851 | | <td style="vertical-align: top;"> |
10852 | | |
10853 | | |
10854 | | |
10855 | | |
10856 | | |
10857 | | |
10858 | | <p><a name="q_vertical_gradient"></a><b>q_vertical_gradient</b></p> |
10859 | | |
10860 | | |
10861 | | |
10862 | | |
10863 | | |
10864 | | |
10865 | | |
10866 | | </td> |
10867 | | |
10868 | | |
10869 | | |
10870 | | |
10871 | | |
10872 | | |
10873 | | <td style="vertical-align: top;">R (10)</td> |
10874 | | |
10875 | | |
10876 | | |
10877 | | |
10878 | | |
10879 | | |
10880 | | |
10881 | | <td style="vertical-align: top;"><i>10 * 0.0</i></td> |
10882 | | |
10883 | | |
10884 | | |
10885 | | |
10886 | | |
10887 | | |
10888 | | |
10889 | | <td style="vertical-align: top;"> |
10890 | | |
10891 | | |
10892 | | |
10893 | | |
10894 | | |
10895 | | |
10896 | | <p>Humidity |
10897 | | gradient(s) of the initial humidity profile |
10898 | | (in 1/100 m). </p> |
10899 | | |
10900 | | |
10901 | | |
10902 | | |
10903 | | |
10904 | | |
10905 | | |
10906 | | |
10907 | | |
10908 | | |
10909 | | |
10910 | | |
10911 | | |
10912 | | <p>This humidity gradient |
10913 | | holds starting from the height |
10914 | | level defined by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a> |
10915 | | (precisely: for all uv levels k, where zu(k) > |
10916 | | q_vertical_gradient_level, |
10917 | | q_init(k) is set: q_init(k) = q_init(k-1) + dzu(k) * <b>q_vertical_gradient</b>) |
10918 | | up to the top boundary or up to the next height level defined |
10919 | | by <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>. |
10920 | | A total of 10 different gradients for 11 height intervals (10 intervals |
10921 | | if <a href="#q_vertical_gradient_level">q_vertical_gradient_level</a>(1) |
10922 | | = <i>0.0</i>) can be asigned. The surface humidity is |
10923 | | assigned |
10924 | | via <a href="#q_surface">q_surface</a>. </p> |
10925 | | |
10926 | | |
10927 | | |
10928 | | |
10929 | | |
10930 | | |
10931 | | |
10932 | | |
10933 | | |
10934 | | |
10935 | | |
10936 | | |
10937 | | |
10938 | | <p>Example: </p> |
10939 | | |
10940 | | |
10941 | | |
10942 | | |
10943 | | |
10944 | | |
10945 | | |
10946 | | |
10947 | | |
10948 | | |
10949 | | |
10950 | | |
10951 | | |
10952 | | <ul> |
10953 | | |
10954 | | |
10955 | | |
10956 | | |
10957 | | |
10958 | | |
10959 | | |
10960 | | |
10961 | | |
10962 | | |
10963 | | |
10964 | | |
10965 | | |
10966 | | <p><b>q_vertical_gradient</b> |
10967 | | = <i>0.001</i>, <i>0.0005</i>, <br> |
10968 | | |
10969 | | |
10970 | | |
10971 | | |
10972 | | |
10973 | | |
10974 | | |
10975 | | <b>q_vertical_gradient_level</b> = <i>500.0</i>, |
10976 | | <i>1000.0</i>,</p> |
10977 | | |
10978 | | |
10979 | | |
10980 | | |
10981 | | |
10982 | | |
10983 | | |
10984 | | |
10985 | | |
10986 | | |
10987 | | |
10988 | | |
10989 | | |
10990 | | </ul> |
10991 | | |
10992 | | |
10993 | | |
10994 | | |
10995 | | |
10996 | | |
10997 | | |
10998 | | That defines the humidity to be constant with height up to z = |
10999 | | 500.0 |
11000 | | m with a |
11001 | | value given by <a href="#q_surface">q_surface</a>. |
11002 | | For 500.0 m < z <= 1000.0 m the humidity gradient is |
11003 | | 0.001 / 100 |
11004 | | m and for z > 1000.0 m up to the top boundary it is |
11005 | | 0.0005 / 100 m (it is assumed that the assigned height levels |
11006 | | correspond with uv |
11007 | | levels). </td> |
11008 | | |
11009 | | |
11010 | | |
11011 | | |
11012 | | |
11013 | | |
11014 | | </tr> |
11015 | | |
11016 | | |
11017 | | |
11018 | | |
11019 | | |
11020 | | |
11021 | | <tr> |
11022 | | |
11023 | | |
11024 | | |
11025 | | |
11026 | | |
11027 | | |
11028 | | <td style="vertical-align: top;"> |
11029 | | |
11030 | | |
11031 | | |
11032 | | |
11033 | | |
11034 | | |
11035 | | <p><a name="q_vertical_gradient_level"></a><b>q_vertical_gradient</b> |
11036 | | <br> |
11037 | | |
11038 | | |
11039 | | |
11040 | | |
11041 | | |
11042 | | |
11043 | | <b>_level</b></p> |
11044 | | |
11045 | | |
11046 | | |
11047 | | |
11048 | | |
11049 | | |
11050 | | </td> |
11051 | | |
11052 | | |
11053 | | |
11054 | | |
11055 | | |
11056 | | |
11057 | | <td style="vertical-align: top;">R (10)</td> |
11058 | | |
11059 | | |
11060 | | |
11061 | | |
11062 | | |
11063 | | |
11064 | | <td style="vertical-align: top;"> |
11065 | | |
11066 | | |
11067 | | |
11068 | | |
11069 | | |
11070 | | |
11071 | | <p><i>10 *</i> |
11072 | | <i>0.0</i></p> |
11073 | | |
11074 | | |
11075 | | |
11076 | | |
11077 | | |
11078 | | |
11079 | | </td> |
11080 | | |
11081 | | |
11082 | | |
11083 | | |
11084 | | |
11085 | | |
11086 | | <td style="vertical-align: top;"> |
11087 | | |
11088 | | |
11089 | | |
11090 | | |
11091 | | |
11092 | | |
11093 | | <p>Height level from |
11094 | | which on the humidity gradient defined by <a href="#q_vertical_gradient">q_vertical_gradient</a> |
11095 | | is effective (in m). </p> |
11096 | | |
11097 | | |
11098 | | |
11099 | | |
11100 | | |
11101 | | |
11102 | | |
11103 | | |
11104 | | |
11105 | | |
11106 | | |
11107 | | |
11108 | | |
11109 | | <p>The height levels |
11110 | | are to be assigned in ascending order. The |
11111 | | default values result in a humidity constant with height regardless of |
11112 | | the values of <a href="#q_vertical_gradient">q_vertical_gradient</a> |
11113 | | (unless the top boundary of the model is higher than 100000.0 m). For |
11114 | | the piecewise construction of humidity profiles see <a href="#q_vertical_gradient">q_vertical_gradient</a>.</p> |
11115 | | |
11116 | | |
11117 | | |
11118 | | |
11119 | | |
11120 | | |
11121 | | |
11122 | | </td> |
11123 | | |
11124 | | |
11125 | | |
11126 | | |
11127 | | |
11128 | | |
11129 | | </tr> |
11130 | | |
11131 | | |
11132 | | |
11133 | | |
11134 | | |
11135 | | |
11136 | | <tr> |
11137 | | |
11138 | | |
11139 | | |
11140 | | |
11141 | | |
11142 | | |
11143 | | <td style="vertical-align: top;"> |
11144 | | |
11145 | | |
11146 | | |
11147 | | |
11148 | | |
11149 | | |
11150 | | <p><a name="radiation"></a><b>radiation</b></p> |
11151 | | |
11152 | | |
11153 | | |
11154 | | |
11155 | | |
11156 | | |
11157 | | |
11158 | | </td> |
11159 | | |
11160 | | |
11161 | | |
11162 | | |
11163 | | |
11164 | | |
11165 | | <td style="vertical-align: top;">L</td> |
11166 | | |
11167 | | |
11168 | | |
11169 | | |
11170 | | |
11171 | | |
11172 | | |
11173 | | <td style="vertical-align: top;"><i>.F.</i></td> |
11174 | | |
11175 | | |
11176 | | |
11177 | | |
11178 | | |
11179 | | |
11180 | | |
11181 | | <td style="vertical-align: top;"> |
11182 | | |
11183 | | |
11184 | | |
11185 | | |
11186 | | |
11187 | | |
11188 | | <p>Parameter to |
11189 | | switch on longwave radiation cooling at |
11190 | | cloud-tops. </p> |
11191 | | |
11192 | | |
11193 | | |
11194 | | |
11195 | | |
11196 | | |
11197 | | |
11198 | | |
11199 | | |
11200 | | |
11201 | | |
11202 | | |
11203 | | |
11204 | | <p>Long-wave radiation |
11205 | | processes are parameterized by the |
11206 | | effective emissivity, which considers only the absorption and emission |
11207 | | of long-wave radiation at cloud droplets. The radiation scheme can be |
11208 | | used only with <a href="#cloud_physics">cloud_physics</a> |
11209 | | = .TRUE. .</p> |
11210 | | |
11211 | | |
11212 | | |
11213 | | |
11214 | | |
11215 | | |
11216 | | </td> |
11217 | | |
11218 | | |
11219 | | |
11220 | | |
11221 | | |
11222 | | |
11223 | | </tr> |
11224 | | |
11225 | | |
11226 | | |
11227 | | |
11228 | | |
11229 | | |
11230 | | <tr> |
11231 | | |
11232 | | |
11233 | | |
11234 | | |
11235 | | |
11236 | | |
11237 | | <td style="vertical-align: top;"> |
11238 | | |
11239 | | |
11240 | | |
11241 | | |
11242 | | |
11243 | | |
11244 | | <p><a name="random_generator"></a><b>random_generator</b></p> |
11245 | | |
11246 | | |
11247 | | |
11248 | | |
11249 | | |
11250 | | |
11251 | | |
11252 | | </td> |
11253 | | |
11254 | | |
11255 | | |
11256 | | |
11257 | | |
11258 | | |
11259 | | <td style="vertical-align: top;">C * 20</td> |
11260 | | |
11261 | | |
11262 | | |
11263 | | |
11264 | | |
11265 | | |
11266 | | |
11267 | | <td style="vertical-align: top;"> |
11268 | | |
11269 | | |
11270 | | |
11271 | | |
11272 | | |
11273 | | |
11274 | | <p><i>'numerical</i><br> |
11275 | | |
11276 | | |
11277 | | |
11278 | | |
11279 | | |
11280 | | |
11281 | | |
11282 | | <i>recipes'</i></p> |
11283 | | |
11284 | | |
11285 | | |
11286 | | |
11287 | | |
11288 | | |
11289 | | </td> |
11290 | | |
11291 | | |
11292 | | |
11293 | | |
11294 | | |
11295 | | |
11296 | | <td style="vertical-align: top;"> |
11297 | | |
11298 | | |
11299 | | |
11300 | | |
11301 | | |
11302 | | |
11303 | | <p>Random number |
11304 | | generator to be used for creating uniformly |
11305 | | distributed random numbers. <br> |
11306 | | |
11307 | | |
11308 | | |
11309 | | |
11310 | | |
11311 | | |
11312 | | </p> |
11313 | | |
11314 | | |
11315 | | |
11316 | | |
11317 | | |
11318 | | |
11319 | | |
11320 | | |
11321 | | |
11322 | | |
11323 | | |
11324 | | |
11325 | | |
11326 | | <p>It is |
11327 | | used if random perturbations are to be imposed on the |
11328 | | velocity field or on the surface heat flux field (see <a href="chapter_4.2.html#create_disturbances">create_disturbances</a> |
11329 | | and <a href="chapter_4.2.html#random_heatflux">random_heatflux</a>). |
11330 | | By default, the "Numerical Recipes" random number generator is used. |
11331 | | This one provides exactly the same order of random numbers on all |
11332 | | different machines and should be used in particular for comparison runs.<br> |
11333 | | |
11334 | | |
11335 | | |
11336 | | |
11337 | | |
11338 | | |
11339 | | |
11340 | | <br> |
11341 | | |
11342 | | |
11343 | | |
11344 | | |
11345 | | |
11346 | | |
11347 | | |
11348 | | Besides, a system-specific generator is available ( <b>random_generator</b> |
11349 | | = <i>'system-specific')</i> which should particularly be |
11350 | | used for runs |
11351 | | on vector parallel computers (NEC), because the default generator |
11352 | | cannot be vectorized and therefore significantly drops down the code |
11353 | | performance on these machines.<br> |
11354 | | |
11355 | | |
11356 | | |
11357 | | |
11358 | | |
11359 | | |
11360 | | </p> |
11361 | | |
11362 | | |
11363 | | |
11364 | | |
11365 | | |
11366 | | |
11367 | | <span style="font-weight: bold;">Note:</span><br> |
11368 | | |
11369 | | |
11370 | | |
11371 | | |
11372 | | |
11373 | | |
11374 | | |
11375 | | Results from two otherwise identical model runs will not be comparable |
11376 | | one-to-one if they used different random number generators.</td> |
11377 | | |
11378 | | |
11379 | | |
11380 | | |
11381 | | |
11382 | | |
11383 | | </tr> |
11384 | | |
11385 | | |
11386 | | |
11387 | | |
11388 | | |
11389 | | |
11390 | | |
11391 | | <tr> |
11392 | | |
11393 | | |
11394 | | |
11395 | | |
11396 | | |
11397 | | |
11398 | | <td style="vertical-align: top;"> |
11399 | | |
11400 | | |
11401 | | |
11402 | | |
11403 | | |
11404 | | |
11405 | | <p><a name="random_heatflux"></a><b>random_heatflux</b></p> |
11406 | | |
11407 | | |
11408 | | |
11409 | | |
11410 | | |
11411 | | |
11412 | | |
11413 | | </td> |
11414 | | |
11415 | | |
11416 | | |
11417 | | |
11418 | | |
11419 | | |
11420 | | <td style="vertical-align: top;">L</td> |
11421 | | |
11422 | | |
11423 | | |
11424 | | |
11425 | | |
11426 | | |
11427 | | |
11428 | | <td style="vertical-align: top;"><i>.F.</i></td> |
11429 | | |
11430 | | |
11431 | | |
11432 | | |
11433 | | |
11434 | | |
11435 | | |
11436 | | <td style="vertical-align: top;"> |
11437 | | |
11438 | | |
11439 | | |
11440 | | |
11441 | | |
11442 | | |
11443 | | <p>Parameter to |
11444 | | impose random perturbations on the internal two-dimensional near |
11445 | | surface heat flux field <span style="font-style: italic;">shf</span>. |
11446 | | <br> |
11447 | | |
11448 | | |
11449 | | |
11450 | | |
11451 | | |
11452 | | |
11453 | | </p> |
11454 | | |
11455 | | |
11456 | | |
11457 | | |
11458 | | |
11459 | | |
11460 | | If a near surface heat flux is used as bottom |
11461 | | boundary |
11462 | | condition (see <a href="#surface_heatflux">surface_heatflux</a>), |
11463 | | it is by default assumed to be horizontally homogeneous. Random |
11464 | | perturbations can be imposed on the internal |
11465 | | two-dimensional heat flux field <span style="font-style: italic;">shf</span> by assigning <b>random_heatflux</b> |
11466 | | = <i>.T.</i>. The disturbed heat flux field is calculated |
11467 | | by |
11468 | | multiplying the |
11469 | | values at each mesh point with a normally distributed random number |
11470 | | with a mean value and standard deviation of 1. This is repeated after |
11471 | | every timestep.<br> |
11472 | | |
11473 | | |
11474 | | |
11475 | | |
11476 | | |
11477 | | |
11478 | | <br> |
11479 | | |
11480 | | |
11481 | | |
11482 | | |
11483 | | |
11484 | | |
11485 | | |
11486 | | In case of a non-flat <a href="#topography">topography</a>, assigning |
11487 | | <b>random_heatflux</b> |
11488 | | = <i>.T.</i> imposes random perturbations on the |
11489 | | combined heat |
11490 | | flux field <span style="font-style: italic;">shf</span> |
11491 | | composed of <a href="#surface_heatflux">surface_heatflux</a> |
11492 | | at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a> |
11493 | | at the topography top face.</td> |
11494 | | |
11495 | | |
11496 | | |
11497 | | |
11498 | | |
11499 | | |
11500 | | </tr> |
11501 | | |
11502 | | |
11503 | | |
11504 | | |
11505 | | |
11506 | | |
11507 | | <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="recycling_width"></a>recycling_width</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.1 * <a href="chapter_4.1.html#nx">nx</a> * <a href="chapter_4.1.html#dx">dx</a></span></td><td style="vertical-align: top;">Distance of the recycling plane from the inflow boundary (in m).<br><br>This |
11508 | | parameter sets the horizontal extension (along the direction of the |
11509 | | main flow) of the so-called recycling domain which is used to generate |
11510 | | a turbulent inflow (see <a href="chapter_4.1.html#turbulent_inflow">turbulent_inflow</a>). <span style="font-weight: bold;">recycling_width</span> must be larger than the grid spacing (dx) and smaller than the length of the total domain (nx * dx).</td></tr><tr> |
11511 | | |
11512 | | |
11513 | | |
11514 | | |
11515 | | |
11516 | | |
11517 | | <td style="vertical-align: top;"> |
11518 | | |
11519 | | |
11520 | | |
11521 | | |
11522 | | |
11523 | | |
11524 | | <p><a name="rif_max"></a><b>rif_max</b></p> |
11525 | | |
11526 | | |
11527 | | |
11528 | | |
11529 | | |
11530 | | |
11531 | | |
11532 | | </td> |
11533 | | |
11534 | | |
11535 | | |
11536 | | |
11537 | | |
11538 | | |
11539 | | <td style="vertical-align: top;">R</td> |
11540 | | |
11541 | | |
11542 | | |
11543 | | |
11544 | | |
11545 | | |
11546 | | |
11547 | | <td style="vertical-align: top;"><i>1.0</i></td> |
11548 | | |
11549 | | |
11550 | | |
11551 | | |
11552 | | |
11553 | | |
11554 | | |
11555 | | <td style="vertical-align: top;"> |
11556 | | |
11557 | | |
11558 | | |
11559 | | |
11560 | | |
11561 | | |
11562 | | <p>Upper limit of |
11563 | | the flux-Richardson number. </p> |
11564 | | |
11565 | | |
11566 | | |
11567 | | |
11568 | | |
11569 | | |
11570 | | |
11571 | | |
11572 | | |
11573 | | |
11574 | | |
11575 | | |
11576 | | |
11577 | | <p>With the |
11578 | | Prandtl layer switched on (see <a href="#prandtl_layer">prandtl_layer</a>), |
11579 | | flux-Richardson numbers (rif) are calculated for z=z<sub>p</sub> |
11580 | | (k=1) |
11581 | | in the 3d-model (in the 1d model for all heights). Their values in |
11582 | | particular determine the |
11583 | | values of the friction velocity (1d- and 3d-model) and the values of |
11584 | | the eddy diffusivity (1d-model). With small wind velocities at the |
11585 | | Prandtl layer top or small vertical wind shears in the 1d-model, rif |
11586 | | can take up unrealistic large values. They are limited by an upper (<span style="font-weight: bold;">rif_max</span>) and lower |
11587 | | limit (see <a href="#rif_min">rif_min</a>) |
11588 | | for the flux-Richardson number. The condition <b>rif_max</b> |
11589 | | > <b>rif_min</b> |
11590 | | must be met.</p> |
11591 | | |
11592 | | |
11593 | | |
11594 | | |
11595 | | |
11596 | | |
11597 | | </td> |
11598 | | |
11599 | | |
11600 | | |
11601 | | |
11602 | | |
11603 | | |
11604 | | </tr> |
11605 | | |
11606 | | |
11607 | | |
11608 | | |
11609 | | |
11610 | | |
11611 | | <tr> |
11612 | | |
11613 | | |
11614 | | |
11615 | | |
11616 | | |
11617 | | |
11618 | | <td style="vertical-align: top;"> |
11619 | | |
11620 | | |
11621 | | |
11622 | | |
11623 | | |
11624 | | |
11625 | | <p><a name="rif_min"></a><b>rif_min</b></p> |
11626 | | |
11627 | | |
11628 | | |
11629 | | |
11630 | | |
11631 | | |
11632 | | |
11633 | | </td> |
11634 | | |
11635 | | |
11636 | | |
11637 | | |
11638 | | |
11639 | | |
11640 | | <td style="vertical-align: top;">R</td> |
11641 | | |
11642 | | |
11643 | | |
11644 | | |
11645 | | |
11646 | | |
11647 | | |
11648 | | <td style="vertical-align: top;"><i>- 5.0</i></td> |
11649 | | |
11650 | | |
11651 | | |
11652 | | |
11653 | | |
11654 | | |
11655 | | |
11656 | | <td style="vertical-align: top;"> |
11657 | | |
11658 | | |
11659 | | |
11660 | | |
11661 | | |
11662 | | |
11663 | | <p>Lower limit of |
11664 | | the flux-Richardson number. </p> |
11665 | | |
11666 | | |
11667 | | |
11668 | | |
11669 | | |
11670 | | |
11671 | | |
11672 | | |
11673 | | |
11674 | | |
11675 | | |
11676 | | |
11677 | | |
11678 | | <p>For further |
11679 | | explanations see <a href="#rif_max">rif_max</a>. |
11680 | | The condition <b>rif_max</b> > <b>rif_min </b>must |
11681 | | be met.</p> |
11682 | | |
11683 | | |
11684 | | |
11685 | | |
11686 | | |
11687 | | |
11688 | | </td> |
11689 | | |
11690 | | |
11691 | | |
11692 | | |
11693 | | |
11694 | | |
11695 | | </tr> |
11696 | | |
11697 | | |
11698 | | |
11699 | | |
11700 | | |
11701 | | |
11702 | | <tr> |
11703 | | |
11704 | | |
11705 | | |
11706 | | |
11707 | | |
11708 | | |
11709 | | <td style="vertical-align: top;"> |
11710 | | |
11711 | | |
11712 | | |
11713 | | |
11714 | | |
11715 | | |
11716 | | <p><a name="roughness_length"></a><b>roughness_length</b></p> |
11717 | | |
11718 | | |
11719 | | |
11720 | | |
11721 | | |
11722 | | |
11723 | | |
11724 | | </td> |
11725 | | |
11726 | | |
11727 | | |
11728 | | |
11729 | | |
11730 | | |
11731 | | <td style="vertical-align: top;">R</td> |
11732 | | |
11733 | | |
11734 | | |
11735 | | |
11736 | | |
11737 | | |
11738 | | |
11739 | | <td style="vertical-align: top;"><i>0.1</i></td> |
11740 | | |
11741 | | |
11742 | | |
11743 | | |
11744 | | |
11745 | | |
11746 | | |
11747 | | <td style="vertical-align: top;"> |
11748 | | |
11749 | | |
11750 | | |
11751 | | |
11752 | | |
11753 | | |
11754 | | <p>Roughness |
11755 | | length (in m). </p> |
11756 | | |
11757 | | |
11758 | | |
11759 | | |
11760 | | |
11761 | | |
11762 | | |
11763 | | |
11764 | | |
11765 | | |
11766 | | |
11767 | | |
11768 | | |
11769 | | <p>This parameter is |
11770 | | effective only in case that a Prandtl layer |
11771 | | is switched |
11772 | | on (see <a href="#prandtl_layer">prandtl_layer</a>).</p> |
11773 | | |
11774 | | |
11775 | | |
11776 | | |
11777 | | |
11778 | | |
11779 | | |
11780 | | </td> |
11781 | | |
11782 | | |
11783 | | |
11784 | | |
11785 | | |
11786 | | |
11787 | | </tr> |
11788 | | |
11789 | | |
11790 | | |
11791 | | |
11792 | | |
11793 | | |
11794 | | <tr> |
11795 | | |
11796 | | |
11797 | | |
11798 | | |
11799 | | |
11800 | | |
11801 | | <td style="vertical-align: top;"><a name="sa_surface"></a><span style="font-weight: bold;">sa_surface</span></td> |
11802 | | |
11803 | | |
11804 | | |
11805 | | |
11806 | | |
11807 | | |
11808 | | <td style="vertical-align: top;">R</td> |
11809 | | |
11810 | | |
11811 | | |
11812 | | |
11813 | | |
11814 | | |
11815 | | <td style="vertical-align: top;"><span style="font-style: italic;">35.0</span></td> |
11816 | | |
11817 | | |
11818 | | |
11819 | | |
11820 | | |
11821 | | |
11822 | | <td style="vertical-align: top;"> |
11823 | | |
11824 | | |
11825 | | |
11826 | | |
11827 | | |
11828 | | |
11829 | | <p>Surface salinity (in psu). </p> |
11830 | | |
11831 | | |
11832 | | |
11833 | | |
11834 | | |
11835 | | |
11836 | | This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>). |
11837 | | |
11838 | | |
11839 | | |
11840 | | |
11841 | | |
11842 | | |
11843 | | <p>This |
11844 | | parameter assigns the value of the salinity <span style="font-weight: bold;">sa</span> at the sea surface (k=nzt)<b>.</b> Starting from this value, |
11845 | | the |
11846 | | initial vertical salinity profile is constructed from the surface down to the bottom of the model (k=0) by using <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a> |
11847 | | and <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level |
11848 | | </a>.</p> |
11849 | | |
11850 | | |
11851 | | |
11852 | | |
11853 | | |
11854 | | |
11855 | | </td> |
11856 | | |
11857 | | |
11858 | | |
11859 | | |
11860 | | |
11861 | | |
11862 | | </tr> |
11863 | | |
11864 | | |
11865 | | |
11866 | | |
11867 | | |
11868 | | |
11869 | | <tr> |
11870 | | |
11871 | | |
11872 | | |
11873 | | |
11874 | | |
11875 | | |
11876 | | <td style="vertical-align: top;"><a name="sa_vertical_gradient"></a><span style="font-weight: bold;">sa_vertical_gradient</span></td> |
11877 | | |
11878 | | |
11879 | | |
11880 | | |
11881 | | |
11882 | | |
11883 | | <td style="vertical-align: top;">R(10)</td> |
11884 | | |
11885 | | |
11886 | | |
11887 | | |
11888 | | |
11889 | | |
11890 | | <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td> |
11891 | | |
11892 | | |
11893 | | |
11894 | | |
11895 | | |
11896 | | |
11897 | | <td style="vertical-align: top;"> |
11898 | | |
11899 | | |
11900 | | |
11901 | | |
11902 | | |
11903 | | |
11904 | | <p>Salinity gradient(s) of the initial salinity profile (in psu |
11905 | | / 100 m). </p> |
11906 | | |
11907 | | |
11908 | | |
11909 | | |
11910 | | |
11911 | | |
11912 | | |
11913 | | |
11914 | | |
11915 | | |
11916 | | |
11917 | | |
11918 | | |
11919 | | <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p> |
11920 | | |
11921 | | |
11922 | | |
11923 | | |
11924 | | |
11925 | | |
11926 | | |
11927 | | |
11928 | | |
11929 | | |
11930 | | |
11931 | | |
11932 | | <p>This salinity gradient |
11933 | | holds starting from the height |
11934 | | level defined by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a> |
11935 | | (precisely: for all uv levels k where zu(k) < |
11936 | | sa_vertical_gradient_level, sa_init(k) is set: sa_init(k) = |
11937 | | sa_init(k+1) - dzu(k+1) * <b>sa_vertical_gradient</b>) down to the bottom boundary or down to the next height level defined |
11938 | | by <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>. |
11939 | | A total of 10 different gradients for 11 height intervals (10 intervals |
11940 | | if <a href="chapter_4.1.html#sa_vertical_gradient_level">sa_vertical_gradient_level</a>(1) |
11941 | | = <i>0.0</i>) can be assigned. The surface salinity at k=nzt is |
11942 | | assigned via <a href="chapter_4.1.html#sa_surface">sa_surface</a>. |
11943 | | </p> |
11944 | | |
11945 | | |
11946 | | |
11947 | | |
11948 | | |
11949 | | |
11950 | | |
11951 | | |
11952 | | |
11953 | | |
11954 | | |
11955 | | |
11956 | | |
11957 | | <p>Example: </p> |
11958 | | |
11959 | | |
11960 | | |
11961 | | |
11962 | | |
11963 | | |
11964 | | |
11965 | | |
11966 | | |
11967 | | |
11968 | | |
11969 | | |
11970 | | |
11971 | | <ul> |
11972 | | |
11973 | | |
11974 | | |
11975 | | |
11976 | | |
11977 | | |
11978 | | |
11979 | | |
11980 | | |
11981 | | |
11982 | | |
11983 | | |
11984 | | <p><b>sa_vertical_gradient</b> |
11985 | | = <i>1.0</i>, <i>0.5</i>, <br> |
11986 | | |
11987 | | |
11988 | | |
11989 | | |
11990 | | |
11991 | | |
11992 | | |
11993 | | <b>sa_vertical_gradient_level</b> = <i>-500.0</i>, |
11994 | | -<i>1000.0</i>,</p> |
11995 | | |
11996 | | |
11997 | | |
11998 | | |
11999 | | |
12000 | | |
12001 | | |
12002 | | |
12003 | | |
12004 | | |
12005 | | |
12006 | | |
12007 | | </ul> |
12008 | | |
12009 | | |
12010 | | |
12011 | | |
12012 | | |
12013 | | |
12014 | | |
12015 | | |
12016 | | |
12017 | | |
12018 | | |
12019 | | |
12020 | | |
12021 | | <p>That |
12022 | | defines the salinity to be constant down to z = -500.0 m with a salinity given by <a href="chapter_4.1.html#sa_surface">sa_surface</a>. |
12023 | | For -500.0 m < z <= -1000.0 m the salinity gradient is |
12024 | | 1.0 psu / |
12025 | | 100 m and for z < -1000.0 m down to the bottom boundary it is |
12026 | | 0.5 psu / 100 m (it is assumed that the assigned height levels correspond |
12027 | | with uv levels).</p> |
12028 | | |
12029 | | |
12030 | | |
12031 | | |
12032 | | |
12033 | | |
12034 | | </td> |
12035 | | |
12036 | | |
12037 | | |
12038 | | |
12039 | | |
12040 | | |
12041 | | </tr> |
12042 | | |
12043 | | |
12044 | | |
12045 | | |
12046 | | |
12047 | | |
12048 | | <tr> |
12049 | | |
12050 | | |
12051 | | |
12052 | | |
12053 | | |
12054 | | |
12055 | | <td style="vertical-align: top;"><a name="sa_vertical_gradient_level"></a><span style="font-weight: bold;">sa_vertical_gradient_level</span></td> |
12056 | | |
12057 | | |
12058 | | |
12059 | | |
12060 | | |
12061 | | |
12062 | | <td style="vertical-align: top;">R(10)</td> |
12063 | | |
12064 | | |
12065 | | |
12066 | | |
12067 | | |
12068 | | |
12069 | | <td style="vertical-align: top;"><span style="font-style: italic;">10 * 0.0</span></td> |
12070 | | |
12071 | | |
12072 | | |
12073 | | |
12074 | | |
12075 | | |
12076 | | <td style="vertical-align: top;"> |
12077 | | |
12078 | | |
12079 | | |
12080 | | |
12081 | | |
12082 | | |
12083 | | <p>Height level from which on the salinity gradient defined by <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a> |
12084 | | is effective (in m). </p> |
12085 | | |
12086 | | |
12087 | | |
12088 | | |
12089 | | |
12090 | | |
12091 | | |
12092 | | |
12093 | | |
12094 | | |
12095 | | |
12096 | | |
12097 | | |
12098 | | <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p> |
12099 | | |
12100 | | |
12101 | | |
12102 | | |
12103 | | |
12104 | | |
12105 | | |
12106 | | |
12107 | | |
12108 | | |
12109 | | |
12110 | | |
12111 | | <p>The height levels have to be assigned in descending order. The |
12112 | | default values result in a constant salinity profile regardless of the |
12113 | | values of <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a> |
12114 | | (unless the bottom boundary of the model is lower than -100000.0 m). |
12115 | | For the piecewise construction of salinity profiles see <a href="chapter_4.1.html#sa_vertical_gradient">sa_vertical_gradient</a>.</p> |
12116 | | |
12117 | | |
12118 | | |
12119 | | |
12120 | | |
12121 | | |
12122 | | </td> |
12123 | | |
12124 | | |
12125 | | |
12126 | | |
12127 | | |
12128 | | |
12129 | | </tr> |
12130 | | |
12131 | | |
12132 | | |
12133 | | |
12134 | | |
12135 | | |
12136 | | <tr> |
12137 | | |
12138 | | |
12139 | | |
12140 | | |
12141 | | |
12142 | | |
12143 | | <td style="vertical-align: top;"> |
12144 | | |
12145 | | |
12146 | | |
12147 | | |
12148 | | |
12149 | | |
12150 | | <p><a name="scalar_advec"></a><b>scalar_advec</b></p> |
12151 | | |
12152 | | |
12153 | | |
12154 | | |
12155 | | |
12156 | | |
12157 | | |
12158 | | </td> |
12159 | | |
12160 | | |
12161 | | |
12162 | | |
12163 | | |
12164 | | |
12165 | | <td style="vertical-align: top;">C * 10</td> |
12166 | | |
12167 | | |
12168 | | |
12169 | | |
12170 | | |
12171 | | |
12172 | | |
12173 | | <td style="vertical-align: top;"><i>'pw-scheme'</i></td> |
12174 | | |
12175 | | |
12176 | | |
12177 | | |
12178 | | |
12179 | | |
12180 | | |
12181 | | <td style="vertical-align: top;"> |
12182 | | |
12183 | | |
12184 | | |
12185 | | |
12186 | | |
12187 | | |
12188 | | <p>Advection |
12189 | | scheme to be used for the scalar quantities. </p> |
12190 | | |
12191 | | |
12192 | | |
12193 | | |
12194 | | |
12195 | | |
12196 | | |
12197 | | |
12198 | | |
12199 | | |
12200 | | |
12201 | | |
12202 | | |
12203 | | <p>The |
12204 | | user can choose between the following schemes:<br> |
12205 | | |
12206 | | |
12207 | | |
12208 | | |
12209 | | |
12210 | | |
12211 | | </p> |
12212 | | |
12213 | | |
12214 | | |
12215 | | |
12216 | | |
12217 | | |
12218 | | |
12219 | | |
12220 | | |
12221 | | |
12222 | | |
12223 | | |
12224 | | |
12225 | | <p><span style="font-style: italic;">'pw-scheme'</span><br> |
12226 | | |
12227 | | |
12228 | | |
12229 | | |
12230 | | |
12231 | | |
12232 | | |
12233 | | </p> |
12234 | | |
12235 | | |
12236 | | |
12237 | | |
12238 | | |
12239 | | |
12240 | | |
12241 | | |
12242 | | |
12243 | | |
12244 | | |
12245 | | |
12246 | | |
12247 | | <div style="margin-left: 40px;">The scheme of |
12248 | | Piascek and |
12249 | | Williams (1970, J. Comp. Phys., 6, |
12250 | | 392-405) with central differences in the form C3 is used.<br> |
12251 | | |
12252 | | |
12253 | | |
12254 | | |
12255 | | |
12256 | | |
12257 | | |
12258 | | If intermediate Euler-timesteps are carried out in case of <a href="#timestep_scheme">timestep_scheme</a> |
12259 | | = <span style="font-style: italic;">'leapfrog+euler'</span> |
12260 | | the |
12261 | | advection scheme is - for the Euler-timestep - automatically switched |
12262 | | to an upstream-scheme. <br> |
12263 | | |
12264 | | |
12265 | | |
12266 | | |
12267 | | |
12268 | | |
12269 | | </div> |
12270 | | |
12271 | | |
12272 | | |
12273 | | |
12274 | | |
12275 | | |
12276 | | <br> |
12277 | | |
12278 | | |
12279 | | |
12280 | | |
12281 | | |
12282 | | |
12283 | | |
12284 | | |
12285 | | |
12286 | | |
12287 | | |
12288 | | |
12289 | | |
12290 | | <p><span style="font-style: italic;">'bc-scheme'</span><br> |
12291 | | |
12292 | | |
12293 | | |
12294 | | |
12295 | | |
12296 | | |
12297 | | |
12298 | | </p> |
12299 | | |
12300 | | |
12301 | | |
12302 | | |
12303 | | |
12304 | | |
12305 | | |
12306 | | |
12307 | | |
12308 | | |
12309 | | |
12310 | | |
12311 | | |
12312 | | <div style="margin-left: 40px;">The Bott |
12313 | | scheme modified by |
12314 | | Chlond (1994, Mon. |
12315 | | Wea. Rev., 122, 111-125). This is a conservative monotonous scheme with |
12316 | | very small numerical diffusion and therefore very good conservation of |
12317 | | scalar flow features. The scheme however, is computationally very |
12318 | | expensive both because it is expensive itself and because it does (so |
12319 | | far) not allow specific code optimizations (e.g. cache optimization). |
12320 | | Choice of this |
12321 | | scheme forces the Euler timestep scheme to be used for the scalar |
12322 | | quantities. For output of horizontally averaged |
12323 | | profiles of the resolved / total heat flux, <a href="chapter_4.2.html#data_output_pr">data_output_pr</a> |
12324 | | = <i>'w*pt*BC'</i> / <i>'wptBC' </i>should |
12325 | | be used, instead of the |
12326 | | standard profiles (<span style="font-style: italic;">'w*pt*'</span> |
12327 | | and <span style="font-style: italic;">'wpt'</span>) |
12328 | | because these are |
12329 | | too inaccurate with this scheme. However, for subdomain analysis (see <a href="#statistic_regions">statistic_regions</a>) |
12330 | | exactly the reverse holds: here <i>'w*pt*BC'</i> and <i>'wptBC'</i> |
12331 | | show very large errors and should not be used.<br> |
12332 | | |
12333 | | |
12334 | | |
12335 | | |
12336 | | |
12337 | | |
12338 | | <br> |
12339 | | |
12340 | | |
12341 | | |
12342 | | |
12343 | | |
12344 | | |
12345 | | |
12346 | | This scheme is not allowed for non-cyclic lateral boundary conditions |
12347 | | (see <a href="#bc_lr">bc_lr</a> |
12348 | | and <a href="#bc_ns">bc_ns</a>).<br> |
12349 | | |
12350 | | |
12351 | | |
12352 | | |
12353 | | |
12354 | | |
12355 | | <br> |
12356 | | |
12357 | | |
12358 | | |
12359 | | |
12360 | | |
12361 | | |
12362 | | |
12363 | | </div> |
12364 | | |
12365 | | |
12366 | | |
12367 | | |
12368 | | |
12369 | | |
12370 | | <span style="font-style: italic;">'ups-scheme'</span><br> |
12371 | | |
12372 | | |
12373 | | |
12374 | | |
12375 | | |
12376 | | |
12377 | | |
12378 | | |
12379 | | |
12380 | | |
12381 | | |
12382 | | |
12383 | | |
12384 | | <p style="margin-left: 40px;">The upstream-spline-scheme |
12385 | | is used |
12386 | | (see Mahrer and Pielke, |
12387 | | 1978: Mon. Wea. Rev., 106, 818-830). In opposite to the Piascek |
12388 | | Williams scheme, this is characterized by much better numerical |
12389 | | features (less numerical diffusion, better preservation of flux |
12390 | | structures, e.g. vortices), but computationally it is much more |
12391 | | expensive. In |
12392 | | addition, the use of the Euler-timestep scheme is mandatory (<a href="#timestep_scheme">timestep_scheme</a> |
12393 | | = <span style="font-style: italic;">'</span><i>euler'</i>), |
12394 | | i.e. the |
12395 | | timestep accuracy is only first order. For this reason the advection of |
12396 | | momentum (see <a href="#momentum_advec">momentum_advec</a>) |
12397 | | should then also be carried out with the upstream-spline scheme, |
12398 | | because otherwise the momentum would |
12399 | | be subject to large numerical diffusion due to the upstream |
12400 | | scheme. </p> |
12401 | | |
12402 | | |
12403 | | |
12404 | | |
12405 | | |
12406 | | |
12407 | | |
12408 | | |
12409 | | |
12410 | | |
12411 | | |
12412 | | |
12413 | | |
12414 | | <p style="margin-left: 40px;">Since |
12415 | | the cubic splines used tend |
12416 | | to overshoot under |
12417 | | certain circumstances, this effect must be adjusted by suitable |
12418 | | filtering and smoothing (see <a href="#cut_spline_overshoot">cut_spline_overshoot</a>, |
12419 | | <a href="#long_filter_factor">long_filter_factor</a>, |
12420 | | <a href="#ups_limit_pt">ups_limit_pt</a>, <a href="#ups_limit_u">ups_limit_u</a>, <a href="#ups_limit_v">ups_limit_v</a>, <a href="#ups_limit_w">ups_limit_w</a>). |
12421 | | This is always neccesssary for runs with stable stratification, |
12422 | | even if this stratification appears only in parts of the model |
12423 | | domain. </p> |
12424 | | |
12425 | | |
12426 | | |
12427 | | |
12428 | | |
12429 | | |
12430 | | |
12431 | | |
12432 | | |
12433 | | |
12434 | | |
12435 | | |
12436 | | |
12437 | | <p style="margin-left: 40px;">With |
12438 | | stable stratification the |
12439 | | upstream-upline scheme also produces gravity waves with large |
12440 | | amplitude, which must be |
12441 | | suitably damped (see <a href="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</a>).<br> |
12442 | | |
12443 | | |
12444 | | |
12445 | | |
12446 | | |
12447 | | |
12448 | | |
12449 | | </p> |
12450 | | |
12451 | | |
12452 | | |
12453 | | |
12454 | | |
12455 | | |
12456 | | |
12457 | | |
12458 | | |
12459 | | |
12460 | | |
12461 | | |
12462 | | |
12463 | | <p style="margin-left: 40px;"><span style="font-weight: bold;">Important: </span>The |
12464 | | upstream-spline scheme is not implemented for humidity and passive |
12465 | | scalars (see <a href="#humidity">humidity</a> |
12466 | | and <a href="#passive_scalar">passive_scalar</a>) |
12467 | | and requires the use of a 2d-domain-decomposition. The last conditions |
12468 | | severely restricts code optimization on several machines leading to |
12469 | | very long execution times! This scheme is also not allowed for |
12470 | | non-cyclic lateral boundary conditions (see <a href="#bc_lr">bc_lr</a> |
12471 | | and <a href="#bc_ns">bc_ns</a>).</p> |
12472 | | |
12473 | | |
12474 | | |
12475 | | |
12476 | | |
12477 | | |
12478 | | <br> |
12479 | | |
12480 | | |
12481 | | |
12482 | | |
12483 | | |
12484 | | |
12485 | | A |
12486 | | differing advection scheme can be choosed for the subgrid-scale TKE |
12487 | | using parameter <a href="chapter_4.1.html#use_upstream_for_tke">use_upstream_for_tke</a>.</td> |
12488 | | |
12489 | | |
12490 | | |
12491 | | |
12492 | | |
12493 | | |
12494 | | |
12495 | | </tr> |
12496 | | |
12497 | | |
12498 | | |
12499 | | |
12500 | | |
12501 | | |
12502 | | <tr> |
12503 | | |
12504 | | <td style="vertical-align: top;"><a name="scalar_exchange_coefficient"></a><b>scalar_exchange_coefficient</b></td> |
12505 | | |
12506 | | <td style="vertical-align: top;">R</td> |
12507 | | |
12508 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td> |
12509 | | |
12510 | | <td style="vertical-align: top;">Scalar exchange coefficient for a leaf (dimensionless).<br> |
12511 | | |
12512 | | |
12513 | | <br> |
12514 | | |
12515 | | |
12516 | | This parameter is only of importance in cases in that both, <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</a> and <a href="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#passive_scalar">passive_scalar</a>, are set <span style="font-style: italic;">.T.</span>. |
12517 | | The value of the scalar exchange coefficient is required for the parametrisation of the sources and sinks of |
12518 | | scalar concentration due to the canopy.</td> |
12519 | | |
12520 | | </tr> |
12521 | | |
12522 | | <tr> |
12523 | | |
12524 | | |
12525 | | |
12526 | | |
12527 | | |
12528 | | |
12529 | | <td style="vertical-align: top;"> |
12530 | | |
12531 | | |
12532 | | |
12533 | | |
12534 | | |
12535 | | |
12536 | | <p><a name="statistic_regions"></a><b>statistic_regions</b></p> |
12537 | | |
12538 | | |
12539 | | |
12540 | | |
12541 | | |
12542 | | |
12543 | | |
12544 | | </td> |
12545 | | |
12546 | | |
12547 | | |
12548 | | |
12549 | | |
12550 | | |
12551 | | <td style="vertical-align: top;">I</td> |
12552 | | |
12553 | | |
12554 | | |
12555 | | |
12556 | | |
12557 | | |
12558 | | |
12559 | | <td style="vertical-align: top;"><i>0</i></td> |
12560 | | |
12561 | | |
12562 | | |
12563 | | |
12564 | | |
12565 | | |
12566 | | |
12567 | | <td style="vertical-align: top;"> |
12568 | | |
12569 | | |
12570 | | |
12571 | | |
12572 | | |
12573 | | |
12574 | | <p>Number of |
12575 | | additional user-defined subdomains for which |
12576 | | statistical analysis |
12577 | | and corresponding output (profiles, time series) shall be |
12578 | | made. </p> |
12579 | | |
12580 | | |
12581 | | |
12582 | | |
12583 | | |
12584 | | |
12585 | | |
12586 | | |
12587 | | |
12588 | | |
12589 | | |
12590 | | |
12591 | | |
12592 | | <p>By default, vertical profiles and |
12593 | | other statistical quantities |
12594 | | are calculated as horizontal and/or volume average of the total model |
12595 | | domain. Beyond that, these calculations can also be carried out for |
12596 | | subdomains which can be defined using the field <a href="chapter_3.5.3.html">rmask </a>within the |
12597 | | user-defined software |
12598 | | (see <a href="chapter_3.5.3.html">chapter |
12599 | | 3.5.3</a>). The number of these subdomains is determined with the |
12600 | | parameter <b>statistic_regions</b>. Maximum 9 additional |
12601 | | subdomains |
12602 | | are allowed. The parameter <a href="chapter_4.3.html#region">region</a> |
12603 | | can be used to assigned names (identifier) to these subdomains which |
12604 | | are then used in the headers |
12605 | | of the output files and plots.</p> |
12606 | | |
12607 | | |
12608 | | |
12609 | | |
12610 | | |
12611 | | |
12612 | | |
12613 | | |
12614 | | |
12615 | | |
12616 | | |
12617 | | |
12618 | | <p>If the default NetCDF |
12619 | | output format is selected (see parameter <a href="chapter_4.2.html#data_output_format">data_output_format</a>), |
12620 | | data for the total domain and all defined subdomains are output to the |
12621 | | same file(s) (<a href="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</a>, |
12622 | | <a href="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</a>). |
12623 | | In case of <span style="font-weight: bold;">statistic_regions</span> |
12624 | | > <span style="font-style: italic;">0</span>, |
12625 | | data on the file for the different domains can be distinguished by a |
12626 | | suffix which is appended to the quantity names. Suffix 0 means data for |
12627 | | the total domain, suffix 1 means data for subdomain 1, etc.</p> |
12628 | | |
12629 | | |
12630 | | |
12631 | | |
12632 | | |
12633 | | |
12634 | | |
12635 | | |
12636 | | |
12637 | | |
12638 | | |
12639 | | |
12640 | | <p>In |
12641 | | case of <span style="font-weight: bold;">data_output_format</span> |
12642 | | = <span style="font-style: italic;">'profil'</span>, |
12643 | | individual local files for profiles (<a href="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</a>) are |
12644 | | created for each subdomain. The individual subdomain files differ by |
12645 | | their name (the |
12646 | | number of the respective subdomain is attached, e.g. |
12647 | | PLOT1D_DATA_1). In this case the name of the file with the data of |
12648 | | the total domain is PLOT1D_DATA_0. If no subdomains |
12649 | | are declared (<b>statistic_regions</b> = <i>0</i>), |
12650 | | the name |
12651 | | PLOT1D_DATA is used (this must be considered in the |
12652 | | respective file connection statements of the <span style="font-weight: bold;">mrun</span> configuration |
12653 | | file).</p> |
12654 | | |
12655 | | |
12656 | | |
12657 | | |
12658 | | |
12659 | | |
12660 | | </td> |
12661 | | |
12662 | | |
12663 | | |
12664 | | |
12665 | | |
12666 | | |
12667 | | </tr> |
12668 | | |
12669 | | |
12670 | | |
12671 | | |
12672 | | |
12673 | | |
12674 | | <tr> |
12675 | | |
12676 | | |
12677 | | |
12678 | | |
12679 | | |
12680 | | |
12681 | | <td style="vertical-align: top;"> |
12682 | | |
12683 | | |
12684 | | |
12685 | | |
12686 | | |
12687 | | |
12688 | | <p><a name="surface_heatflux"></a><b>surface_heatflux</b></p> |
12689 | | |
12690 | | |
12691 | | |
12692 | | |
12693 | | |
12694 | | |
12695 | | |
12696 | | </td> |
12697 | | |
12698 | | |
12699 | | |
12700 | | |
12701 | | |
12702 | | |
12703 | | <td style="vertical-align: top;">R</td> |
12704 | | |
12705 | | |
12706 | | |
12707 | | |
12708 | | |
12709 | | |
12710 | | |
12711 | | <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br> |
12712 | | |
12713 | | |
12714 | | |
12715 | | |
12716 | | |
12717 | | |
12718 | | |
12719 | | heatflux<br> |
12720 | | |
12721 | | |
12722 | | |
12723 | | |
12724 | | |
12725 | | |
12726 | | </span></td> |
12727 | | |
12728 | | |
12729 | | |
12730 | | |
12731 | | |
12732 | | |
12733 | | <td style="vertical-align: top;"> |
12734 | | |
12735 | | |
12736 | | |
12737 | | |
12738 | | |
12739 | | |
12740 | | <p>Kinematic sensible |
12741 | | heat flux at the bottom surface (in K m/s). </p> |
12742 | | |
12743 | | |
12744 | | |
12745 | | |
12746 | | |
12747 | | |
12748 | | |
12749 | | |
12750 | | |
12751 | | |
12752 | | |
12753 | | |
12754 | | |
12755 | | <p>If |
12756 | | a value is assigned to this parameter, the internal two-dimensional |
12757 | | surface heat flux field <span style="font-style: italic;">shf</span> |
12758 | | is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span> as |
12759 | | bottom (horizontally homogeneous) boundary condition for the |
12760 | | temperature equation. This additionally requires that a Neumann |
12761 | | condition must be used for the potential temperature (see <a href="#bc_pt_b">bc_pt_b</a>), |
12762 | | because otherwise the resolved scale may contribute to |
12763 | | the surface flux so that a constant value cannot be guaranteed. Also, |
12764 | | changes of the |
12765 | | surface temperature (see <a href="#pt_surface_initial_change">pt_surface_initial_change</a>) |
12766 | | are not allowed. The parameter <a href="#random_heatflux">random_heatflux</a> |
12767 | | can be used to impose random perturbations on the (homogeneous) surface |
12768 | | heat |
12769 | | flux field <span style="font-style: italic;">shf</span>. </p> |
12770 | | |
12771 | | |
12772 | | |
12773 | | |
12774 | | |
12775 | | |
12776 | | |
12777 | | |
12778 | | |
12779 | | |
12780 | | |
12781 | | |
12782 | | |
12783 | | <p> |
12784 | | In case of a non-flat <a href="#topography">topography</a>, the |
12785 | | internal two-dimensional surface heat |
12786 | | flux field <span style="font-style: italic;">shf</span> |
12787 | | is initialized with the value of <span style="font-weight: bold;">surface_heatflux</span> |
12788 | | at the bottom surface and <a href="#wall_heatflux">wall_heatflux(0)</a> |
12789 | | at the topography top face. The parameter<a href="#random_heatflux"> random_heatflux</a> |
12790 | | can be used to impose random perturbations on this combined surface |
12791 | | heat |
12792 | | flux field <span style="font-style: italic;">shf</span>. |
12793 | | </p> |
12794 | | |
12795 | | |
12796 | | |
12797 | | |
12798 | | |
12799 | | |
12800 | | |
12801 | | |
12802 | | |
12803 | | |
12804 | | |
12805 | | |
12806 | | |
12807 | | <p>If no surface heat flux is assigned, <span style="font-style: italic;">shf</span> is calculated |
12808 | | at each timestep by u<sub>*</sub> * theta<sub>*</sub> |
12809 | | (of course only with <a href="#prandtl_layer">prandtl_layer</a> |
12810 | | switched on). Here, u<sub>*</sub> |
12811 | | and theta<sub>*</sub> are calculated from the Prandtl law |
12812 | | assuming |
12813 | | logarithmic wind and temperature |
12814 | | profiles between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_pt_b">bc_pt_b</a>) |
12815 | | must be used as bottom boundary condition for the potential temperature.</p> |
12816 | | |
12817 | | |
12818 | | |
12819 | | |
12820 | | |
12821 | | |
12822 | | |
12823 | | |
12824 | | |
12825 | | |
12826 | | |
12827 | | |
12828 | | <p>See |
12829 | | also <a href="#top_heatflux">top_heatflux</a>.</p> |
12830 | | |
12831 | | |
12832 | | |
12833 | | |
12834 | | |
12835 | | |
12836 | | |
12837 | | </td> |
12838 | | |
12839 | | |
12840 | | |
12841 | | |
12842 | | |
12843 | | |
12844 | | </tr> |
12845 | | |
12846 | | |
12847 | | |
12848 | | |
12849 | | |
12850 | | |
12851 | | <tr> |
12852 | | |
12853 | | |
12854 | | |
12855 | | |
12856 | | |
12857 | | |
12858 | | <td style="vertical-align: top;"> |
12859 | | |
12860 | | |
12861 | | |
12862 | | |
12863 | | |
12864 | | |
12865 | | <p><a name="surface_pressure"></a><b>surface_pressure</b></p> |
12866 | | |
12867 | | |
12868 | | |
12869 | | |
12870 | | |
12871 | | |
12872 | | |
12873 | | </td> |
12874 | | |
12875 | | |
12876 | | |
12877 | | |
12878 | | |
12879 | | |
12880 | | <td style="vertical-align: top;">R</td> |
12881 | | |
12882 | | |
12883 | | |
12884 | | |
12885 | | |
12886 | | |
12887 | | |
12888 | | <td style="vertical-align: top;"><i>1013.25</i></td> |
12889 | | |
12890 | | |
12891 | | |
12892 | | |
12893 | | |
12894 | | |
12895 | | |
12896 | | <td style="vertical-align: top;"> |
12897 | | |
12898 | | |
12899 | | |
12900 | | |
12901 | | |
12902 | | |
12903 | | <p>Atmospheric |
12904 | | pressure at the surface (in hPa). </p> |
12905 | | |
12906 | | |
12907 | | |
12908 | | |
12909 | | |
12910 | | |
12911 | | |
12912 | | Starting from this surface value, the vertical pressure |
12913 | | profile is calculated once at the beginning of the run assuming a |
12914 | | neutrally stratified |
12915 | | atmosphere. This is needed for |
12916 | | converting between the liquid water potential temperature and the |
12917 | | potential temperature (see <a href="#cloud_physics">cloud_physics</a><span style="text-decoration: underline;"></span>).</td> |
12918 | | |
12919 | | |
12920 | | |
12921 | | |
12922 | | |
12923 | | |
12924 | | |
12925 | | </tr> |
12926 | | |
12927 | | |
12928 | | |
12929 | | |
12930 | | |
12931 | | |
12932 | | <tr> |
12933 | | |
12934 | | |
12935 | | |
12936 | | |
12937 | | |
12938 | | |
12939 | | <td style="vertical-align: top;"> |
12940 | | |
12941 | | |
12942 | | |
12943 | | |
12944 | | |
12945 | | |
12946 | | <p><a name="surface_scalarflux"></a><b>surface_scalarflux</b></p> |
12947 | | |
12948 | | |
12949 | | |
12950 | | |
12951 | | |
12952 | | |
12953 | | |
12954 | | </td> |
12955 | | |
12956 | | |
12957 | | |
12958 | | |
12959 | | |
12960 | | |
12961 | | <td style="vertical-align: top;">R</td> |
12962 | | |
12963 | | |
12964 | | |
12965 | | |
12966 | | |
12967 | | |
12968 | | |
12969 | | <td style="vertical-align: top;"><i>0.0</i></td> |
12970 | | |
12971 | | |
12972 | | |
12973 | | |
12974 | | |
12975 | | |
12976 | | |
12977 | | <td style="vertical-align: top;"> |
12978 | | |
12979 | | |
12980 | | |
12981 | | |
12982 | | |
12983 | | |
12984 | | <p>Scalar flux at |
12985 | | the surface (in kg/(m<sup>2</sup> s)). </p> |
12986 | | |
12987 | | |
12988 | | |
12989 | | |
12990 | | |
12991 | | |
12992 | | |
12993 | | |
12994 | | |
12995 | | |
12996 | | |
12997 | | |
12998 | | |
12999 | | <p>If a non-zero value is assigned to this parameter, the |
13000 | | respective scalar flux value is used |
13001 | | as bottom (horizontally homogeneous) boundary condition for the scalar |
13002 | | concentration equation. This additionally requires that a |
13003 | | Neumann |
13004 | | condition must be used for the scalar concentration (see <a href="#bc_s_b">bc_s_b</a>), |
13005 | | because otherwise the resolved scale may contribute to |
13006 | | the surface flux so that a constant value cannot be guaranteed. Also, |
13007 | | changes of the |
13008 | | surface scalar concentration (see <a href="#s_surface_initial_change">s_surface_initial_change</a>) |
13009 | | are not allowed. <br> |
13010 | | |
13011 | | |
13012 | | |
13013 | | |
13014 | | |
13015 | | |
13016 | | </p> |
13017 | | |
13018 | | |
13019 | | |
13020 | | |
13021 | | |
13022 | | |
13023 | | |
13024 | | |
13025 | | |
13026 | | |
13027 | | |
13028 | | |
13029 | | |
13030 | | <p>If no surface scalar |
13031 | | flux is assigned (<b>surface_scalarflux</b> |
13032 | | = <i>0.0</i>), |
13033 | | it is calculated at each timestep by u<sub>*</sub> * s<sub>*</sub> |
13034 | | (of course only with Prandtl layer switched on). Here, s<sub>*</sub> |
13035 | | is calculated from the Prandtl law assuming a logarithmic scalar |
13036 | | concentration |
13037 | | profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_s_b">bc_s_b</a>) |
13038 | | must be used as bottom boundary condition for the scalar concentration.</p> |
13039 | | |
13040 | | |
13041 | | |
13042 | | |
13043 | | |
13044 | | |
13045 | | |
13046 | | </td> |
13047 | | |
13048 | | |
13049 | | |
13050 | | |
13051 | | |
13052 | | |
13053 | | </tr> |
13054 | | |
13055 | | |
13056 | | |
13057 | | |
13058 | | |
13059 | | |
13060 | | <tr> |
13061 | | |
13062 | | |
13063 | | |
13064 | | |
13065 | | |
13066 | | |
13067 | | <td style="vertical-align: top;"> |
13068 | | |
13069 | | |
13070 | | |
13071 | | |
13072 | | |
13073 | | |
13074 | | <p><a name="surface_waterflux"></a><b>surface_waterflux</b></p> |
13075 | | |
13076 | | |
13077 | | |
13078 | | |
13079 | | |
13080 | | |
13081 | | |
13082 | | </td> |
13083 | | |
13084 | | |
13085 | | |
13086 | | |
13087 | | |
13088 | | |
13089 | | <td style="vertical-align: top;">R</td> |
13090 | | |
13091 | | |
13092 | | |
13093 | | |
13094 | | |
13095 | | |
13096 | | |
13097 | | <td style="vertical-align: top;"><i>0.0</i></td> |
13098 | | |
13099 | | |
13100 | | |
13101 | | |
13102 | | |
13103 | | |
13104 | | |
13105 | | <td style="vertical-align: top;"> |
13106 | | |
13107 | | |
13108 | | |
13109 | | |
13110 | | |
13111 | | |
13112 | | <p>Kinematic |
13113 | | water flux near the surface (in m/s). </p> |
13114 | | |
13115 | | |
13116 | | |
13117 | | |
13118 | | |
13119 | | |
13120 | | |
13121 | | |
13122 | | |
13123 | | |
13124 | | |
13125 | | |
13126 | | |
13127 | | <p>If |
13128 | | a non-zero value is assigned to this parameter, the |
13129 | | respective water flux value is used |
13130 | | as bottom (horizontally homogeneous) boundary condition for the |
13131 | | humidity equation. This additionally requires that a Neumann |
13132 | | condition must be used for the specific humidity / total water content |
13133 | | (see <a href="#bc_q_b">bc_q_b</a>), |
13134 | | because otherwise the resolved scale may contribute to |
13135 | | the surface flux so that a constant value cannot be guaranteed. Also, |
13136 | | changes of the |
13137 | | surface humidity (see <a href="#q_surface_initial_change">q_surface_initial_change</a>) |
13138 | | are not allowed.<br> |
13139 | | |
13140 | | |
13141 | | |
13142 | | |
13143 | | |
13144 | | |
13145 | | </p> |
13146 | | |
13147 | | |
13148 | | |
13149 | | |
13150 | | |
13151 | | |
13152 | | |
13153 | | |
13154 | | |
13155 | | |
13156 | | |
13157 | | |
13158 | | |
13159 | | <p>If no surface water |
13160 | | flux is assigned (<b>surface_waterflux</b> |
13161 | | = <i>0.0</i>), |
13162 | | it is calculated at each timestep by u<sub>*</sub> * q<sub>*</sub> |
13163 | | (of course only with Prandtl layer switched on). Here, q<sub>*</sub> |
13164 | | is calculated from the Prandtl law assuming a logarithmic temperature |
13165 | | profile between k=0 and k=1. In this case a Dirichlet condition (see <a href="#bc_q_b">bc_q_b</a>) |
13166 | | must be used as the bottom boundary condition for the humidity.</p> |
13167 | | |
13168 | | |
13169 | | |
13170 | | |
13171 | | |
13172 | | |
13173 | | |
13174 | | </td> |
13175 | | |
13176 | | |
13177 | | |
13178 | | |
13179 | | |
13180 | | |
13181 | | </tr> |
13182 | | |
13183 | | |
13184 | | |
13185 | | |
13186 | | |
13187 | | |
13188 | | <tr> |
13189 | | |
13190 | | |
13191 | | |
13192 | | |
13193 | | |
13194 | | |
13195 | | <td style="vertical-align: top;"> |
13196 | | |
13197 | | |
13198 | | |
13199 | | |
13200 | | |
13201 | | |
13202 | | <p><a name="s_surface"></a><b>s_surface</b></p> |
13203 | | |
13204 | | |
13205 | | |
13206 | | |
13207 | | |
13208 | | |
13209 | | |
13210 | | </td> |
13211 | | |
13212 | | |
13213 | | |
13214 | | |
13215 | | |
13216 | | |
13217 | | <td style="vertical-align: top;">R</td> |
13218 | | |
13219 | | |
13220 | | |
13221 | | |
13222 | | |
13223 | | |
13224 | | |
13225 | | <td style="vertical-align: top;"><i>0.0</i></td> |
13226 | | |
13227 | | |
13228 | | |
13229 | | |
13230 | | |
13231 | | |
13232 | | |
13233 | | <td style="vertical-align: top;"> |
13234 | | |
13235 | | |
13236 | | |
13237 | | |
13238 | | |
13239 | | |
13240 | | <p>Surface value |
13241 | | of the passive scalar (in kg/m<sup>3</sup>). <br> |
13242 | | |
13243 | | |
13244 | | |
13245 | | |
13246 | | |
13247 | | |
13248 | | |
13249 | | </p> |
13250 | | |
13251 | | |
13252 | | |
13253 | | |
13254 | | |
13255 | | |
13256 | | |
13257 | | This parameter assigns the value of the passive scalar s at |
13258 | | the surface (k=0)<b>.</b> Starting from this value, the |
13259 | | initial vertical scalar concentration profile is constructed with<a href="#s_vertical_gradient"> |
13260 | | s_vertical_gradient</a> and <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>.</td> |
13261 | | |
13262 | | |
13263 | | |
13264 | | |
13265 | | |
13266 | | |
13267 | | |
13268 | | </tr> |
13269 | | |
13270 | | |
13271 | | |
13272 | | |
13273 | | |
13274 | | |
13275 | | <tr> |
13276 | | |
13277 | | |
13278 | | |
13279 | | |
13280 | | |
13281 | | |
13282 | | <td style="vertical-align: top;"> |
13283 | | |
13284 | | |
13285 | | |
13286 | | |
13287 | | |
13288 | | |
13289 | | <p><a name="s_surface_initial_change"></a><b>s_surface_initial</b> |
13290 | | <br> |
13291 | | |
13292 | | |
13293 | | |
13294 | | |
13295 | | |
13296 | | |
13297 | | <b>_change</b></p> |
13298 | | |
13299 | | |
13300 | | |
13301 | | |
13302 | | |
13303 | | |
13304 | | </td> |
13305 | | |
13306 | | |
13307 | | |
13308 | | |
13309 | | |
13310 | | |
13311 | | <td style="vertical-align: top;">R</td> |
13312 | | |
13313 | | |
13314 | | |
13315 | | |
13316 | | |
13317 | | |
13318 | | <td style="vertical-align: top;"><i>0.0</i></td> |
13319 | | |
13320 | | |
13321 | | |
13322 | | |
13323 | | |
13324 | | |
13325 | | |
13326 | | <td style="vertical-align: top;"> |
13327 | | |
13328 | | |
13329 | | |
13330 | | |
13331 | | |
13332 | | |
13333 | | <p>Change in |
13334 | | surface scalar concentration to be made at the |
13335 | | beginning of the 3d run (in kg/m<sup>3</sup>). </p> |
13336 | | |
13337 | | |
13338 | | |
13339 | | |
13340 | | |
13341 | | |
13342 | | |
13343 | | |
13344 | | |
13345 | | |
13346 | | |
13347 | | |
13348 | | |
13349 | | <p>If <b>s_surface_initial_change</b><i> </i>is |
13350 | | set to a |
13351 | | non-zero |
13352 | | value, the near surface scalar flux is not allowed to be given |
13353 | | simultaneously (see <a href="#surface_scalarflux">surface_scalarflux</a>).</p> |
13354 | | |
13355 | | |
13356 | | |
13357 | | |
13358 | | |
13359 | | |
13360 | | |
13361 | | </td> |
13362 | | |
13363 | | |
13364 | | |
13365 | | |
13366 | | |
13367 | | |
13368 | | </tr> |
13369 | | |
13370 | | |
13371 | | |
13372 | | |
13373 | | |
13374 | | |
13375 | | <tr> |
13376 | | |
13377 | | |
13378 | | |
13379 | | |
13380 | | |
13381 | | |
13382 | | <td style="vertical-align: top;"> |
13383 | | |
13384 | | |
13385 | | |
13386 | | |
13387 | | |
13388 | | |
13389 | | <p><a name="s_vertical_gradient"></a><b>s_vertical_gradient</b></p> |
13390 | | |
13391 | | |
13392 | | |
13393 | | |
13394 | | |
13395 | | |
13396 | | |
13397 | | </td> |
13398 | | |
13399 | | |
13400 | | |
13401 | | |
13402 | | |
13403 | | |
13404 | | <td style="vertical-align: top;">R (10)</td> |
13405 | | |
13406 | | |
13407 | | |
13408 | | |
13409 | | |
13410 | | |
13411 | | |
13412 | | <td style="vertical-align: top;"><i>10 * 0</i><i>.0</i></td> |
13413 | | |
13414 | | |
13415 | | |
13416 | | |
13417 | | |
13418 | | |
13419 | | |
13420 | | <td style="vertical-align: top;"> |
13421 | | |
13422 | | |
13423 | | |
13424 | | |
13425 | | |
13426 | | |
13427 | | <p>Scalar |
13428 | | concentration gradient(s) of the initial scalar |
13429 | | concentration profile (in kg/m<sup>3 </sup>/ |
13430 | | 100 m). </p> |
13431 | | |
13432 | | |
13433 | | |
13434 | | |
13435 | | |
13436 | | |
13437 | | |
13438 | | |
13439 | | |
13440 | | |
13441 | | |
13442 | | |
13443 | | |
13444 | | <p>The scalar gradient holds |
13445 | | starting from the height level |
13446 | | defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level |
13447 | | </a>(precisely: for all uv levels k, where zu(k) > |
13448 | | s_vertical_gradient_level, s_init(k) is set: s_init(k) = s_init(k-1) + |
13449 | | dzu(k) * <b>s_vertical_gradient</b>) up to the top |
13450 | | boundary or up to |
13451 | | the next height level defined by <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>. |
13452 | | A total of 10 different gradients for 11 height intervals (10 intervals |
13453 | | if <a href="#s_vertical_gradient_level">s_vertical_gradient_level</a>(1) |
13454 | | = <i>0.0</i>) can be assigned. The surface scalar value is |
13455 | | assigned |
13456 | | via <a href="#s_surface">s_surface</a>.<br> |
13457 | | |
13458 | | |
13459 | | |
13460 | | |
13461 | | |
13462 | | |
13463 | | </p> |
13464 | | |
13465 | | |
13466 | | |
13467 | | |
13468 | | |
13469 | | |
13470 | | |
13471 | | |
13472 | | |
13473 | | |
13474 | | |
13475 | | |
13476 | | |
13477 | | <p>Example: </p> |
13478 | | |
13479 | | |
13480 | | |
13481 | | |
13482 | | |
13483 | | |
13484 | | |
13485 | | |
13486 | | |
13487 | | |
13488 | | |
13489 | | |
13490 | | |
13491 | | <ul> |
13492 | | |
13493 | | |
13494 | | |
13495 | | |
13496 | | |
13497 | | |
13498 | | |
13499 | | |
13500 | | |
13501 | | |
13502 | | |
13503 | | |
13504 | | |
13505 | | <p><b>s_vertical_gradient</b> |
13506 | | = <i>0.1</i>, <i>0.05</i>, <br> |
13507 | | |
13508 | | |
13509 | | |
13510 | | |
13511 | | |
13512 | | |
13513 | | |
13514 | | <b>s_vertical_gradient_level</b> = <i>500.0</i>, |
13515 | | <i>1000.0</i>,</p> |
13516 | | |
13517 | | |
13518 | | |
13519 | | |
13520 | | |
13521 | | |
13522 | | |
13523 | | |
13524 | | |
13525 | | |
13526 | | |
13527 | | |
13528 | | |
13529 | | </ul> |
13530 | | |
13531 | | |
13532 | | |
13533 | | |
13534 | | |
13535 | | |
13536 | | |
13537 | | |
13538 | | |
13539 | | |
13540 | | |
13541 | | |
13542 | | |
13543 | | <p>That |
13544 | | defines the scalar concentration to be constant with |
13545 | | height up to z = 500.0 m with a value given by <a href="#s_surface">s_surface</a>. |
13546 | | For 500.0 m < z <= 1000.0 m the scalar gradient is 0.1 |
13547 | | kg/m<sup>3 </sup>/ 100 m and for z > 1000.0 m up to |
13548 | | the top |
13549 | | boundary it is 0.05 kg/m<sup>3 </sup>/ 100 m (it is |
13550 | | assumed that the |
13551 | | assigned height levels |
13552 | | correspond with uv |
13553 | | levels).</p> |
13554 | | |
13555 | | |
13556 | | |
13557 | | |
13558 | | |
13559 | | |
13560 | | </td> |
13561 | | |
13562 | | |
13563 | | |
13564 | | |
13565 | | |
13566 | | |
13567 | | </tr> |
13568 | | |
13569 | | |
13570 | | |
13571 | | |
13572 | | |
13573 | | |
13574 | | <tr> |
13575 | | |
13576 | | |
13577 | | |
13578 | | |
13579 | | |
13580 | | |
13581 | | <td style="vertical-align: top;"> |
13582 | | |
13583 | | |
13584 | | |
13585 | | |
13586 | | |
13587 | | |
13588 | | <p><a name="s_vertical_gradient_level"></a><b>s_vertical_gradient_</b> |
13589 | | <br> |
13590 | | |
13591 | | |
13592 | | |
13593 | | |
13594 | | |
13595 | | |
13596 | | <b>level</b></p> |
13597 | | |
13598 | | |
13599 | | |
13600 | | |
13601 | | |
13602 | | |
13603 | | </td> |
13604 | | |
13605 | | |
13606 | | |
13607 | | |
13608 | | |
13609 | | |
13610 | | <td style="vertical-align: top;">R (10)</td> |
13611 | | |
13612 | | |
13613 | | |
13614 | | |
13615 | | |
13616 | | |
13617 | | <td style="vertical-align: top;"> |
13618 | | |
13619 | | |
13620 | | |
13621 | | |
13622 | | |
13623 | | |
13624 | | <p><i>10 *</i> |
13625 | | <i>0.0</i></p> |
13626 | | |
13627 | | |
13628 | | |
13629 | | |
13630 | | |
13631 | | |
13632 | | </td> |
13633 | | |
13634 | | |
13635 | | |
13636 | | |
13637 | | |
13638 | | |
13639 | | <td style="vertical-align: top;"> |
13640 | | |
13641 | | |
13642 | | |
13643 | | |
13644 | | |
13645 | | |
13646 | | <p>Height level from |
13647 | | which on the scalar gradient defined by <a href="#s_vertical_gradient">s_vertical_gradient</a> |
13648 | | is effective (in m). </p> |
13649 | | |
13650 | | |
13651 | | |
13652 | | |
13653 | | |
13654 | | |
13655 | | |
13656 | | |
13657 | | |
13658 | | |
13659 | | |
13660 | | |
13661 | | |
13662 | | <p>The height levels |
13663 | | are to be assigned in ascending order. The |
13664 | | default values result in a scalar concentration constant with height |
13665 | | regardless of the values of <a href="#s_vertical_gradient">s_vertical_gradient</a> |
13666 | | (unless the top boundary of the model is higher than 100000.0 m). For |
13667 | | the |
13668 | | piecewise construction of scalar concentration profiles see <a href="#s_vertical_gradient">s_vertical_gradient</a>.</p> |
13669 | | |
13670 | | |
13671 | | |
13672 | | |
13673 | | |
13674 | | |
13675 | | |
13676 | | </td> |
13677 | | |
13678 | | |
13679 | | |
13680 | | |
13681 | | |
13682 | | |
13683 | | </tr> |
13684 | | |
13685 | | |
13686 | | |
13687 | | |
13688 | | |
13689 | | |
13690 | | <tr> |
13691 | | |
13692 | | |
13693 | | |
13694 | | |
13695 | | |
13696 | | |
13697 | | <td style="vertical-align: top;"> |
13698 | | |
13699 | | |
13700 | | |
13701 | | |
13702 | | |
13703 | | |
13704 | | <p><a name="timestep_scheme"></a><b>timestep_scheme</b></p> |
13705 | | |
13706 | | |
13707 | | |
13708 | | |
13709 | | |
13710 | | |
13711 | | |
13712 | | </td> |
13713 | | |
13714 | | |
13715 | | |
13716 | | |
13717 | | |
13718 | | |
13719 | | <td style="vertical-align: top;">C * 20</td> |
13720 | | |
13721 | | |
13722 | | |
13723 | | |
13724 | | |
13725 | | |
13726 | | |
13727 | | <td style="vertical-align: top;"> |
13728 | | |
13729 | | |
13730 | | |
13731 | | |
13732 | | |
13733 | | |
13734 | | <p><i>'runge</i><br> |
13735 | | |
13736 | | |
13737 | | |
13738 | | |
13739 | | |
13740 | | |
13741 | | |
13742 | | <i>kutta-3'</i></p> |
13743 | | |
13744 | | |
13745 | | |
13746 | | |
13747 | | |
13748 | | |
13749 | | </td> |
13750 | | |
13751 | | |
13752 | | |
13753 | | |
13754 | | |
13755 | | |
13756 | | <td style="vertical-align: top;"> |
13757 | | |
13758 | | |
13759 | | |
13760 | | |
13761 | | |
13762 | | |
13763 | | <p>Time step scheme to |
13764 | | be used for the integration of the prognostic |
13765 | | variables. </p> |
13766 | | |
13767 | | |
13768 | | |
13769 | | |
13770 | | |
13771 | | |
13772 | | |
13773 | | |
13774 | | |
13775 | | |
13776 | | |
13777 | | |
13778 | | |
13779 | | <p>The user can choose between |
13780 | | the following schemes:<br> |
13781 | | |
13782 | | |
13783 | | |
13784 | | |
13785 | | |
13786 | | |
13787 | | </p> |
13788 | | |
13789 | | |
13790 | | |
13791 | | |
13792 | | |
13793 | | |
13794 | | |
13795 | | |
13796 | | |
13797 | | |
13798 | | |
13799 | | |
13800 | | |
13801 | | <p><span style="font-style: italic;">'runge-kutta-3'</span><br> |
13802 | | |
13803 | | |
13804 | | |
13805 | | |
13806 | | |
13807 | | |
13808 | | |
13809 | | </p> |
13810 | | |
13811 | | |
13812 | | |
13813 | | |
13814 | | |
13815 | | |
13816 | | |
13817 | | |
13818 | | |
13819 | | |
13820 | | |
13821 | | |
13822 | | |
13823 | | <div style="margin-left: 40px;">Third order |
13824 | | Runge-Kutta scheme.<br> |
13825 | | |
13826 | | |
13827 | | |
13828 | | |
13829 | | |
13830 | | |
13831 | | |
13832 | | This scheme requires the use of <a href="#momentum_advec">momentum_advec</a> |
13833 | | = <a href="#scalar_advec">scalar_advec</a> |
13834 | | = '<i>pw-scheme'</i>. Please refer to the <a href="../tec/numerik.heiko/zeitschrittverfahren.pdf">documentation |
13835 | | on PALM's time integration schemes (28p., in German)</a> |
13836 | | fur further details.<br> |
13837 | | |
13838 | | |
13839 | | |
13840 | | |
13841 | | |
13842 | | |
13843 | | </div> |
13844 | | |
13845 | | |
13846 | | |
13847 | | |
13848 | | |
13849 | | |
13850 | | |
13851 | | |
13852 | | |
13853 | | |
13854 | | |
13855 | | |
13856 | | |
13857 | | <p><span style="font-style: italic;">'runge-kutta-2'</span><br> |
13858 | | |
13859 | | |
13860 | | |
13861 | | |
13862 | | |
13863 | | |
13864 | | |
13865 | | </p> |
13866 | | |
13867 | | |
13868 | | |
13869 | | |
13870 | | |
13871 | | |
13872 | | |
13873 | | |
13874 | | |
13875 | | |
13876 | | |
13877 | | |
13878 | | |
13879 | | <div style="margin-left: 40px;">Second order |
13880 | | Runge-Kutta scheme.<br> |
13881 | | |
13882 | | |
13883 | | |
13884 | | |
13885 | | |
13886 | | |
13887 | | |
13888 | | For special features see <b>timestep_scheme</b> = '<i>runge-kutta-3'</i>.<br> |
13889 | | |
13890 | | |
13891 | | |
13892 | | |
13893 | | |
13894 | | |
13895 | | |
13896 | | </div> |
13897 | | |
13898 | | |
13899 | | |
13900 | | |
13901 | | |
13902 | | |
13903 | | <br> |
13904 | | |
13905 | | |
13906 | | |
13907 | | |
13908 | | |
13909 | | |
13910 | | <span style="font-style: italic;"><span style="font-style: italic;">'leapfrog'</span><br> |
13911 | | |
13912 | | |
13913 | | |
13914 | | |
13915 | | |
13916 | | |
13917 | | |
13918 | | <br> |
13919 | | |
13920 | | |
13921 | | |
13922 | | |
13923 | | |
13924 | | |
13925 | | </span> |
13926 | | |
13927 | | |
13928 | | |
13929 | | |
13930 | | |
13931 | | |
13932 | | <div style="margin-left: 40px;">Second |
13933 | | order leapfrog scheme.<br> |
13934 | | |
13935 | | |
13936 | | |
13937 | | |
13938 | | |
13939 | | |
13940 | | |
13941 | | Although this scheme requires a constant timestep (because it is |
13942 | | centered in time), is even applied in case of changes in |
13943 | | timestep. Therefore, only small |
13944 | | changes of the timestep are allowed (see <a href="#dt">dt</a>). |
13945 | | However, an Euler timestep is always used as the first timestep of an |
13946 | | initiali run. When using the Bott-Chlond scheme for scalar advection |
13947 | | (see <a href="#scalar_advec">scalar_advec</a>), |
13948 | | the prognostic equation for potential temperature will be calculated |
13949 | | with the Euler scheme, although the leapfrog scheme is switched |
13950 | | on. <br> |
13951 | | |
13952 | | |
13953 | | |
13954 | | |
13955 | | |
13956 | | |
13957 | | |
13958 | | The leapfrog scheme must not be used together with the upstream-spline |
13959 | | scheme for calculating the advection (see <a href="#scalar_advec">scalar_advec</a> |
13960 | | = '<i>ups-scheme'</i> and <a href="#momentum_advec">momentum_advec</a> |
13961 | | = '<i>ups-scheme'</i>).<br> |
13962 | | |
13963 | | |
13964 | | |
13965 | | |
13966 | | |
13967 | | |
13968 | | </div> |
13969 | | |
13970 | | |
13971 | | |
13972 | | |
13973 | | |
13974 | | |
13975 | | <br> |
13976 | | |
13977 | | |
13978 | | |
13979 | | |
13980 | | |
13981 | | |
13982 | | |
13983 | | <span style="font-style: italic;">'</span><span style="font-style: italic;"><span style="font-style: italic;">leapfrog+euler'</span><br> |
13984 | | |
13985 | | |
13986 | | |
13987 | | |
13988 | | |
13989 | | |
13990 | | |
13991 | | <br> |
13992 | | |
13993 | | |
13994 | | |
13995 | | |
13996 | | |
13997 | | |
13998 | | </span> |
13999 | | |
14000 | | |
14001 | | |
14002 | | |
14003 | | |
14004 | | |
14005 | | <div style="margin-left: 40px;">The |
14006 | | leapfrog scheme is used, but |
14007 | | after each change of a timestep an Euler timestep is carried out. |
14008 | | Although this method is theoretically correct (because the pure |
14009 | | leapfrog method does not allow timestep changes), the divergence of the |
14010 | | velocity field (after applying the pressure solver) may be |
14011 | | significantly larger than with <span style="font-style: italic;">'leapfrog'</span>.<br> |
14012 | | |
14013 | | |
14014 | | |
14015 | | |
14016 | | |
14017 | | |
14018 | | |
14019 | | </div> |
14020 | | |
14021 | | |
14022 | | |
14023 | | |
14024 | | |
14025 | | |
14026 | | <br> |
14027 | | |
14028 | | |
14029 | | |
14030 | | |
14031 | | |
14032 | | |
14033 | | <span style="font-style: italic;">'euler'</span><br> |
14034 | | |
14035 | | |
14036 | | |
14037 | | |
14038 | | |
14039 | | |
14040 | | |
14041 | | <br> |
14042 | | |
14043 | | |
14044 | | |
14045 | | |
14046 | | |
14047 | | |
14048 | | |
14049 | | |
14050 | | |
14051 | | |
14052 | | |
14053 | | |
14054 | | |
14055 | | <div style="margin-left: 40px;">First order |
14056 | | Euler scheme. <br> |
14057 | | |
14058 | | |
14059 | | |
14060 | | |
14061 | | |
14062 | | |
14063 | | |
14064 | | The Euler scheme must be used when treating the advection terms with |
14065 | | the upstream-spline scheme (see <a href="#scalar_advec">scalar_advec</a> |
14066 | | = <span style="font-style: italic;">'ups-scheme'</span> |
14067 | | and <a href="#momentum_advec">momentum_advec</a> |
14068 | | = <span style="font-style: italic;">'ups-scheme'</span>).</div> |
14069 | | |
14070 | | |
14071 | | |
14072 | | |
14073 | | |
14074 | | |
14075 | | |
14076 | | <br> |
14077 | | |
14078 | | |
14079 | | |
14080 | | |
14081 | | |
14082 | | |
14083 | | <br> |
14084 | | |
14085 | | |
14086 | | |
14087 | | |
14088 | | |
14089 | | |
14090 | | A differing timestep scheme can be choosed for the |
14091 | | subgrid-scale TKE using parameter <a href="#use_upstream_for_tke">use_upstream_for_tke</a>.<br> |
14092 | | |
14093 | | |
14094 | | |
14095 | | |
14096 | | |
14097 | | |
14098 | | |
14099 | | </td> |
14100 | | |
14101 | | |
14102 | | |
14103 | | |
14104 | | |
14105 | | |
14106 | | </tr> |
14107 | | |
14108 | | |
14109 | | |
14110 | | |
14111 | | |
14112 | | |
14113 | | <tr> |
14114 | | |
14115 | | |
14116 | | |
14117 | | |
14118 | | |
14119 | | |
14120 | | <td style="text-align: left; vertical-align: top;"><span style="font-weight: bold;"><a name="topography"></a></span><span style="font-weight: bold;">topography</span></td> |
14121 | | |
14122 | | |
14123 | | |
14124 | | |
14125 | | |
14126 | | |
14127 | | |
14128 | | <td style="vertical-align: top;">C * 40</td> |
14129 | | |
14130 | | |
14131 | | |
14132 | | |
14133 | | |
14134 | | |
14135 | | <td style="vertical-align: top;"><span style="font-style: italic;">'flat'</span></td> |
14136 | | |
14137 | | |
14138 | | |
14139 | | |
14140 | | |
14141 | | |
14142 | | <td> |
14143 | | |
14144 | | |
14145 | | |
14146 | | |
14147 | | |
14148 | | |
14149 | | <p>Topography mode. </p> |
14150 | | |
14151 | | |
14152 | | |
14153 | | |
14154 | | |
14155 | | |
14156 | | |
14157 | | |
14158 | | |
14159 | | |
14160 | | |
14161 | | |
14162 | | |
14163 | | <p>The user can |
14164 | | choose between the following modes:<br> |
14165 | | |
14166 | | |
14167 | | |
14168 | | |
14169 | | |
14170 | | |
14171 | | </p> |
14172 | | |
14173 | | |
14174 | | |
14175 | | |
14176 | | |
14177 | | |
14178 | | |
14179 | | |
14180 | | |
14181 | | |
14182 | | |
14183 | | |
14184 | | |
14185 | | <p><span style="font-style: italic;">'flat'</span><br> |
14186 | | |
14187 | | |
14188 | | |
14189 | | |
14190 | | |
14191 | | |
14192 | | </p> |
14193 | | |
14194 | | |
14195 | | |
14196 | | |
14197 | | |
14198 | | |
14199 | | |
14200 | | |
14201 | | |
14202 | | |
14203 | | |
14204 | | |
14205 | | |
14206 | | <div style="margin-left: 40px;">Flat surface.</div> |
14207 | | |
14208 | | |
14209 | | |
14210 | | |
14211 | | |
14212 | | |
14213 | | |
14214 | | |
14215 | | |
14216 | | |
14217 | | |
14218 | | |
14219 | | |
14220 | | <p><span style="font-style: italic;">'single_building'</span><br> |
14221 | | |
14222 | | |
14223 | | |
14224 | | |
14225 | | |
14226 | | |
14227 | | |
14228 | | </p> |
14229 | | |
14230 | | |
14231 | | |
14232 | | |
14233 | | |
14234 | | |
14235 | | |
14236 | | |
14237 | | |
14238 | | |
14239 | | |
14240 | | |
14241 | | |
14242 | | <div style="margin-left: 40px;">Flow |
14243 | | around a single rectangular building mounted on a flat surface.<br> |
14244 | | |
14245 | | |
14246 | | |
14247 | | |
14248 | | |
14249 | | |
14250 | | |
14251 | | The building size and location can be specified by the parameters <a href="#building_height">building_height</a>, <a href="#building_length_x">building_length_x</a>, <a href="#building_length_y">building_length_y</a>, <a href="#building_wall_left">building_wall_left</a> and <a href="#building_wall_south">building_wall_south</a>.<font color="#000000"><br></font></div> |
14252 | | |
14253 | | |
14254 | | |
14255 | | |
14256 | | |
14257 | | |
14258 | | |
14259 | | <span style="font-style: italic;"></span> |
14260 | | |
14261 | | |
14262 | | |
14263 | | |
14264 | | |
14265 | | |
14266 | | <p><span style="font-style: italic;">'single_street_canyon'</span><br> |
14267 | | |
14268 | | |
14269 | | |
14270 | | |
14271 | | |
14272 | | |
14273 | | |
14274 | | </p> |
14275 | | |
14276 | | |
14277 | | |
14278 | | |
14279 | | |
14280 | | |
14281 | | |
14282 | | |
14283 | | |
14284 | | |
14285 | | |
14286 | | |
14287 | | |
14288 | | <div style="margin-left: 40px;">Flow |
14289 | | over a single, quasi-2D street canyon of infinite length oriented either in x- or in y-direction.<br> |
14290 | | |
14291 | | |
14292 | | |
14293 | | |
14294 | | |
14295 | | |
14296 | | |
14297 | | The canyon size, orientation and location can be specified by the parameters <a href="chapter_4.1.html#canyon_height">canyon_height</a> plus <span style="font-weight: bold;">either</span> <a href="chapter_4.1.html#canyon_width_x">canyon_width_x</a> and <a href="chapter_4.1.html#canyon_wall_left">canyon_wall_left</a> <span style="font-weight: bold;">or</span> <a href="chapter_4.1.html#canyon_width_y">canyon_width_y</a> and <a href="chapter_4.1.html#canyon_wall_south">canyon_wall_south</a>.<font color="#000000"><br></font></div> |
14298 | | |
14299 | | |
14300 | | |
14301 | | |
14302 | | |
14303 | | |
14304 | | |
14305 | | <span style="font-style: italic;"></span> <span style="font-style: italic;"></span><p><span style="font-style: italic;">'read_from_file'</span><br> |
14306 | | |
14307 | | |
14308 | | |
14309 | | |
14310 | | |
14311 | | |
14312 | | |
14313 | | </p> |
14314 | | |
14315 | | |
14316 | | |
14317 | | |
14318 | | |
14319 | | |
14320 | | |
14321 | | |
14322 | | |
14323 | | |
14324 | | |
14325 | | |
14326 | | |
14327 | | <div style="margin-left: 40px;">Flow around |
14328 | | arbitrary topography.<br> |
14329 | | |
14330 | | |
14331 | | |
14332 | | |
14333 | | |
14334 | | |
14335 | | |
14336 | | This mode requires the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">. This file contains </font><font color="#000000"><font color="#000000">the </font></font><font color="#000000">arbitrary topography </font><font color="#000000"><font color="#000000">height |
14337 | | information</font></font><font color="#000000"> |
14338 | | in m. These data <span style="font-style: italic;"></span>must |
14339 | | exactly match the horizontal grid.<br></font> </div> |
14340 | | |
14341 | | |
14342 | | |
14343 | | |
14344 | | |
14345 | | |
14346 | | <span style="font-style: italic;"><br> |
14347 | | |
14348 | | |
14349 | | |
14350 | | |
14351 | | |
14352 | | |
14353 | | </span><font color="#000000"> |
14354 | | Alternatively, the user may add code to the user interface subroutine <a href="chapter_3.5.1.html#user_init_grid">user_init_grid</a> |
14355 | | to allow further topography modes. </font>These require to explicitly set the<span style="font-weight: bold;"> </span><a href="#topography_grid_convention">topography_grid_convention</a> to either <span style="font-style: italic;">'cell_edge'</span> or <span style="font-style: italic;">'cell_center'</span>.<br> |
14356 | | |
14357 | | <font color="#000000"> |
14358 | | |
14359 | | |
14360 | | |
14361 | | |
14362 | | <br> |
14363 | | |
14364 | | |
14365 | | |
14366 | | |
14367 | | |
14368 | | |
14369 | | |
14370 | | Non-flat <span style="font-weight: bold;">topography</span> |
14371 | | modes may assign a</font> |
14372 | | kinematic sensible<font color="#000000"> <a href="chapter_4.1.html#wall_heatflux">wall_heatflux</a> at the five topography faces.</font><br> |
14373 | | |
14374 | | <font color="#000000"> |
14375 | | |
14376 | | |
14377 | | |
14378 | | |
14379 | | <br> |
14380 | | |
14381 | | |
14382 | | |
14383 | | |
14384 | | |
14385 | | |
14386 | | |
14387 | | All non-flat <span style="font-weight: bold;">topography</span> |
14388 | | modes </font>require the use of <a href="#momentum_advec">momentum_advec</a> |
14389 | | = <a href="#scalar_advec">scalar_advec</a> |
14390 | | = '<i>pw-scheme'</i>, <a href="chapter_4.2.html#psolver">psolver</a> |
14391 | | /= <i>'sor</i><i>'</i>, |
14392 | | <i> </i><a href="#alpha_surface">alpha_surface</a> |
14393 | | = 0.0,<span style="font-style: italic;"></span> <a style="" href="#galilei_transformation">galilei_transformation</a> |
14394 | | = <span style="font-style: italic;">.F.</span>, <a href="#cloud_physics">cloud_physics </a> = <span style="font-style: italic;">.F.</span>, <a href="#cloud_droplets">cloud_droplets</a> = <span style="font-style: italic;">.F.</span>, <a href="#humidity">humidity</a> = <span style="font-style: italic;">.F.</span>, and <a href="#prandtl_layer">prandtl_layer</a> = .T..<br> |
14395 | | |
14396 | | |
14397 | | |
14398 | | |
14399 | | |
14400 | | |
14401 | | |
14402 | | <font color="#000000"><br> |
14403 | | |
14404 | | |
14405 | | |
14406 | | |
14407 | | |
14408 | | |
14409 | | |
14410 | | Note that an inclined model domain requires the use of <span style="font-weight: bold;">topography</span> = <span style="font-style: italic;">'flat'</span> and a |
14411 | | nonzero </font><a href="#alpha_surface">alpha_surface</a>.</td> |
14412 | | |
14413 | | |
14414 | | |
14415 | | |
14416 | | |
14417 | | |
14418 | | |
14419 | | </tr> |
14420 | | |
14421 | | |
14422 | | |
14423 | | |
14424 | | |
14425 | | |
14426 | | <tr><td style="vertical-align: top;"><a name="topography_grid_convention"></a><span style="font-weight: bold;">topography_grid_</span><br style="font-weight: bold;"><span style="font-weight: bold;">convention</span></td><td style="vertical-align: top;">C*11</td><td style="vertical-align: top;"><span style="font-style: italic;">default depends on value of <a href="chapter_4.1.html#topography">topography</a>; see text for details</span></td><td>Convention for defining the topography grid.<br><br>Possible values are<br><ul><li><span style="font-style: italic;">'cell_edge': </span>the distance between cell edges defines the extent of topography. This setting is normally for <span style="font-style: italic;">generic topographies</span>, i.e. topographies that are constructed using length parameters. For example, <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'single_building'</span> is constructed using <a href="chapter_4.1.html#building_length_x">building_length_x</a> and <a href="chapter_4.1.html#building_length_y">building_length_y</a>. |
14427 | | The advantage of this setting is that the actual size of generic |
14428 | | topography is independent of the grid size, provided that the length |
14429 | | parameters are an integer multiple of the grid lengths <a href="chapter_4.1.html#dx">dx</a> and <a href="chapter_4.1.html#dy">dy</a>. This is convenient for resolution parameter studies.</li><li><span style="font-style: italic;">'cell_center'</span><span style="font-style: italic;">: </span>the number of topography cells define the extent of topography. This setting is normally for <span style="font-style: italic;">rastered real topographies</span> derived from digital elevation models. For example, <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'read_from_file'</span> is constructed using the input file <a href="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</a><font color="#000000">. </font>The |
14430 | | advantage of this setting is that the rastered topography cells of |
14431 | | the input file are directly mapped to topography grid boxes in PALM. <span style="font-style: italic;"></span></li></ul>The example files <big><code>example_topo_file</code></big> and <big><code>example_building</code></big> in <big><code>trunk/EXAMPLES/</code></big> |
14432 | | illustrate the difference between |
14433 | | both approaches. Both examples simulate a single building and yield the |
14434 | | same results. The former uses a rastered topography input file with <span style="font-style: italic;">'cell_center'</span> convention, the latter applies a generic topography with <span style="font-style: italic;">'cell_edge'</span> convention.<br><br>The default value is<br><ul><li><span style="font-style: italic;">'cell_edge' </span>if <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'single_building'</span> or <span style="font-style: italic;">'single_street_canyon'</span>,</li><li><span style="font-style: italic;">'cell_center'</span><span style="font-style: italic;"></span> if <a href="chapter_4.1.html#topography">topography</a> = <span style="font-style: italic;">'read_from_file'</span>,</li><li><span style="font-style: italic;">none (' '</span> ) otherwise, leading to an abort if <span style="font-weight: bold;">topography_grid_convention</span> is not set.</li></ul>This means that <br><ul><li>For PALM simulations using a <span style="font-style: italic;">user-defined topography</span>, the<span style="font-weight: bold;"> topography_grid_convention</span> must be explicitly set to either <span style="font-style: italic;">'cell_edge'</span> or <span style="font-style: italic;">'cell_center'</span>.</li><li>For PALM simulations using a <span style="font-style: italic;">standard topography</span> <span style="font-style: italic;">('single_building'</span>, <span style="font-style: italic;">'single_street_canyon'</span> or <span style="font-style: italic;">'read_from_file')</span>, it is possible but not required to set the <span style="font-weight: bold;">topography_grid_convention</span> because appropriate default values apply.</li></ul></td></tr><tr> |
14435 | | |
14436 | | |
14437 | | |
14438 | | |
14439 | | |
14440 | | |
14441 | | <td style="vertical-align: top;"><a name="top_heatflux"></a><span style="font-weight: bold;">top_heatflux</span></td> |
14442 | | |
14443 | | |
14444 | | |
14445 | | |
14446 | | |
14447 | | |
14448 | | <td style="vertical-align: top;">R</td> |
14449 | | |
14450 | | |
14451 | | |
14452 | | |
14453 | | |
14454 | | |
14455 | | <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br> |
14456 | | |
14457 | | |
14458 | | |
14459 | | |
14460 | | |
14461 | | |
14462 | | |
14463 | | heatflux</span></td> |
14464 | | |
14465 | | |
14466 | | |
14467 | | |
14468 | | |
14469 | | |
14470 | | <td style="vertical-align: top;"> |
14471 | | |
14472 | | |
14473 | | |
14474 | | |
14475 | | |
14476 | | |
14477 | | <p>Kinematic |
14478 | | sensible heat flux at the top boundary (in K m/s). </p> |
14479 | | |
14480 | | |
14481 | | |
14482 | | |
14483 | | |
14484 | | |
14485 | | |
14486 | | |
14487 | | |
14488 | | |
14489 | | |
14490 | | |
14491 | | |
14492 | | <p>If a value is assigned to this parameter, the internal |
14493 | | two-dimensional surface heat flux field <span style="font-family: monospace;">tswst</span> is |
14494 | | initialized with the value of <span style="font-weight: bold;">top_heatflux</span> as |
14495 | | top (horizontally homogeneous) boundary condition for the |
14496 | | temperature equation. This additionally requires that a Neumann |
14497 | | condition must be used for the potential temperature (see <a href="chapter_4.1.html#bc_pt_t">bc_pt_t</a>), |
14498 | | because otherwise the resolved scale may contribute to |
14499 | | the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span> </p> |
14500 | | |
14501 | | |
14502 | | |
14503 | | |
14504 | | |
14505 | | |
14506 | | |
14507 | | |
14508 | | |
14509 | | |
14510 | | |
14511 | | |
14512 | | |
14513 | | <p><span style="font-weight: bold;">Note:</span><br> |
14514 | | |
14515 | | |
14516 | | |
14517 | | |
14518 | | |
14519 | | |
14520 | | The |
14521 | | application of a top heat flux additionally requires the setting of |
14522 | | initial parameter <a href="#use_top_fluxes">use_top_fluxes</a> |
14523 | | = .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p> |
14524 | | |
14525 | | |
14526 | | |
14527 | | |
14528 | | |
14529 | | |
14530 | | |
14531 | | |
14532 | | |
14533 | | |
14534 | | |
14535 | | |
14536 | | <p>No |
14537 | | Prandtl-layer is available at the top boundary so far.</p> |
14538 | | |
14539 | | |
14540 | | |
14541 | | |
14542 | | |
14543 | | |
14544 | | |
14545 | | |
14546 | | |
14547 | | |
14548 | | |
14549 | | |
14550 | | <p>See |
14551 | | also <a href="#surface_heatflux">surface_heatflux</a>.</p> |
14552 | | |
14553 | | |
14554 | | |
14555 | | |
14556 | | |
14557 | | |
14558 | | |
14559 | | </td> |
14560 | | |
14561 | | |
14562 | | |
14563 | | |
14564 | | |
14565 | | |
14566 | | </tr> |
14567 | | |
14568 | | |
14569 | | |
14570 | | |
14571 | | |
14572 | | |
14573 | | <tr> |
14574 | | |
14575 | | |
14576 | | |
14577 | | |
14578 | | |
14579 | | |
14580 | | <td style="vertical-align: top;"><a name="top_momentumflux_u"></a><span style="font-weight: bold;">top_momentumflux_u</span></td> |
14581 | | |
14582 | | |
14583 | | |
14584 | | |
14585 | | |
14586 | | |
14587 | | <td style="vertical-align: top;">R</td> |
14588 | | |
14589 | | |
14590 | | |
14591 | | |
14592 | | |
14593 | | |
14594 | | <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td> |
14595 | | |
14596 | | |
14597 | | |
14598 | | |
14599 | | |
14600 | | |
14601 | | <td style="vertical-align: top;">Momentum flux along x at the top boundary (in m2/s2).<br> |
14602 | | |
14603 | | |
14604 | | |
14605 | | |
14606 | | |
14607 | | |
14608 | | |
14609 | | |
14610 | | |
14611 | | |
14612 | | |
14613 | | |
14614 | | <p>If a value is assigned to this parameter, the internal |
14615 | | two-dimensional u-momentum flux field <span style="font-family: monospace;">uswst</span> is |
14616 | | initialized with the value of <span style="font-weight: bold;">top_momentumflux_u</span> as |
14617 | | top (horizontally homogeneous) boundary condition for the u-momentum equation.</p> |
14618 | | |
14619 | | |
14620 | | |
14621 | | |
14622 | | |
14623 | | |
14624 | | |
14625 | | |
14626 | | |
14627 | | |
14628 | | |
14629 | | |
14630 | | <p><span style="font-weight: bold;">Notes:</span><br> |
14631 | | |
14632 | | |
14633 | | |
14634 | | |
14635 | | |
14636 | | |
14637 | | The |
14638 | | application of a top momentum flux additionally requires the setting of |
14639 | | initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a> |
14640 | | = .T.. Setting of <span style="font-weight: bold;">top_momentumflux_u</span> requires setting of <a href="#top_momentumflux_v">top_momentumflux_v</a> also.</p> |
14641 | | |
14642 | | |
14643 | | |
14644 | | |
14645 | | |
14646 | | |
14647 | | |
14648 | | |
14649 | | |
14650 | | |
14651 | | |
14652 | | |
14653 | | <p>A Neumann |
14654 | | condition should be used for the u velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>), |
14655 | | because otherwise the resolved scale may contribute to |
14656 | | the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span> </p> |
14657 | | |
14658 | | |
14659 | | |
14660 | | |
14661 | | |
14662 | | |
14663 | | |
14664 | | <span style="font-weight: bold;"></span> |
14665 | | |
14666 | | |
14667 | | |
14668 | | |
14669 | | |
14670 | | |
14671 | | <p>No |
14672 | | Prandtl-layer is available at the top boundary so far.</p> |
14673 | | |
14674 | | |
14675 | | |
14676 | | |
14677 | | |
14678 | | |
14679 | | |
14680 | | |
14681 | | |
14682 | | |
14683 | | |
14684 | | |
14685 | | <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and <a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g. top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p> |
14686 | | |
14687 | | |
14688 | | |
14689 | | |
14690 | | |
14691 | | |
14692 | | </td> |
14693 | | |
14694 | | |
14695 | | |
14696 | | |
14697 | | |
14698 | | |
14699 | | </tr> |
14700 | | |
14701 | | |
14702 | | |
14703 | | |
14704 | | |
14705 | | |
14706 | | <tr> |
14707 | | |
14708 | | |
14709 | | |
14710 | | |
14711 | | |
14712 | | |
14713 | | <td style="vertical-align: top;"><a name="top_momentumflux_v"></a><span style="font-weight: bold;">top_momentumflux_v</span></td> |
14714 | | |
14715 | | |
14716 | | |
14717 | | |
14718 | | |
14719 | | |
14720 | | <td style="vertical-align: top;">R</td> |
14721 | | |
14722 | | |
14723 | | |
14724 | | |
14725 | | |
14726 | | |
14727 | | <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed momentumflux</span></td> |
14728 | | |
14729 | | |
14730 | | |
14731 | | |
14732 | | |
14733 | | |
14734 | | <td style="vertical-align: top;">Momentum flux along y at the top boundary (in m2/s2).<br> |
14735 | | |
14736 | | |
14737 | | |
14738 | | |
14739 | | |
14740 | | |
14741 | | |
14742 | | |
14743 | | |
14744 | | |
14745 | | |
14746 | | |
14747 | | <p>If a value is assigned to this parameter, the internal |
14748 | | two-dimensional v-momentum flux field <span style="font-family: monospace;">vswst</span> is |
14749 | | initialized with the value of <span style="font-weight: bold;">top_momentumflux_v</span> as |
14750 | | top (horizontally homogeneous) boundary condition for the v-momentum equation.</p> |
14751 | | |
14752 | | |
14753 | | |
14754 | | |
14755 | | |
14756 | | |
14757 | | |
14758 | | |
14759 | | |
14760 | | |
14761 | | |
14762 | | |
14763 | | <p><span style="font-weight: bold;">Notes:</span><br> |
14764 | | |
14765 | | |
14766 | | |
14767 | | |
14768 | | |
14769 | | |
14770 | | The |
14771 | | application of a top momentum flux additionally requires the setting of |
14772 | | initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a> |
14773 | | = .T.. Setting of <span style="font-weight: bold;">top_momentumflux_v</span> requires setting of <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> also.</p> |
14774 | | |
14775 | | |
14776 | | |
14777 | | |
14778 | | |
14779 | | |
14780 | | |
14781 | | |
14782 | | |
14783 | | |
14784 | | |
14785 | | |
14786 | | <p>A Neumann |
14787 | | condition should be used for the v velocity component (see <a href="chapter_4.1.html#bc_uv_t">bc_uv_t</a>), |
14788 | | because otherwise the resolved scale may contribute to |
14789 | | the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span> </p> |
14790 | | |
14791 | | |
14792 | | |
14793 | | |
14794 | | |
14795 | | |
14796 | | |
14797 | | <span style="font-weight: bold;"></span> |
14798 | | |
14799 | | |
14800 | | |
14801 | | |
14802 | | |
14803 | | |
14804 | | <p>No |
14805 | | Prandtl-layer is available at the top boundary so far.</p> |
14806 | | |
14807 | | |
14808 | | |
14809 | | |
14810 | | |
14811 | | |
14812 | | |
14813 | | |
14814 | | |
14815 | | |
14816 | | |
14817 | | |
14818 | | <p> The <a href="chapter_3.8.html">coupled</a> ocean parameter file <a href="chapter_3.4.html#PARIN"><font style="font-size: 10pt;" size="2">PARIN_O</font></a> should include dummy REAL value assignments to both <a href="chapter_4.1.html#top_momentumflux_u">top_momentumflux_u</a> and <a href="chapter_4.1.html#top_momentumflux_v">top_momentumflux_v</a> (e.g. top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to enable the momentum flux coupling.</p> |
14819 | | |
14820 | | |
14821 | | |
14822 | | |
14823 | | |
14824 | | |
14825 | | </td> |
14826 | | |
14827 | | |
14828 | | |
14829 | | |
14830 | | |
14831 | | |
14832 | | </tr> |
14833 | | |
14834 | | |
14835 | | |
14836 | | |
14837 | | |
14838 | | |
14839 | | <tr> |
14840 | | |
14841 | | |
14842 | | |
14843 | | |
14844 | | |
14845 | | |
14846 | | <td style="vertical-align: top;"><a name="top_salinityflux"></a><span style="font-weight: bold;">top_salinityflux</span></td> |
14847 | | |
14848 | | |
14849 | | |
14850 | | |
14851 | | |
14852 | | |
14853 | | <td style="vertical-align: top;">R</td> |
14854 | | |
14855 | | |
14856 | | |
14857 | | |
14858 | | |
14859 | | |
14860 | | <td style="vertical-align: top;"><span style="font-style: italic;">no prescribed<br> |
14861 | | |
14862 | | |
14863 | | |
14864 | | |
14865 | | |
14866 | | |
14867 | | |
14868 | | salinityflux</span></td> |
14869 | | |
14870 | | |
14871 | | |
14872 | | |
14873 | | |
14874 | | |
14875 | | <td style="vertical-align: top;"> |
14876 | | |
14877 | | |
14878 | | |
14879 | | |
14880 | | |
14881 | | |
14882 | | <p>Kinematic |
14883 | | salinity flux at the top boundary, i.e. the sea surface (in psu m/s). </p> |
14884 | | |
14885 | | |
14886 | | |
14887 | | |
14888 | | |
14889 | | |
14890 | | |
14891 | | |
14892 | | |
14893 | | |
14894 | | |
14895 | | |
14896 | | |
14897 | | <p>This parameter only comes into effect for ocean runs (see parameter <a href="chapter_4.1.html#ocean">ocean</a>).</p> |
14898 | | |
14899 | | |
14900 | | |
14901 | | |
14902 | | |
14903 | | |
14904 | | |
14905 | | |
14906 | | |
14907 | | |
14908 | | |
14909 | | |
14910 | | <p>If a value is assigned to this parameter, the internal |
14911 | | two-dimensional surface heat flux field <span style="font-family: monospace;">saswst</span> is |
14912 | | initialized with the value of <span style="font-weight: bold;">top_salinityflux</span> as |
14913 | | top (horizontally homogeneous) boundary condition for the salinity equation. This additionally requires that a Neumann |
14914 | | condition must be used for the salinity (see <a href="chapter_4.1.html#bc_sa_t">bc_sa_t</a>), |
14915 | | because otherwise the resolved scale may contribute to |
14916 | | the top flux so that a constant flux value cannot be guaranteed.<span style="font-style: italic;"></span> </p> |
14917 | | |
14918 | | |
14919 | | |
14920 | | |
14921 | | |
14922 | | |
14923 | | |
14924 | | |
14925 | | |
14926 | | |
14927 | | |
14928 | | |
14929 | | |
14930 | | <p><span style="font-weight: bold;">Note:</span><br> |
14931 | | |
14932 | | |
14933 | | |
14934 | | |
14935 | | |
14936 | | |
14937 | | The |
14938 | | application of a salinity flux at the model top additionally requires the setting of |
14939 | | initial parameter <a href="chapter_4.1.html#use_top_fluxes">use_top_fluxes</a> |
14940 | | = .T..<span style="font-style: italic;"></span><span style="font-weight: bold;"></span> </p> |
14941 | | |
14942 | | |
14943 | | |
14944 | | |
14945 | | |
14946 | | |
14947 | | |
14948 | | |
14949 | | |
14950 | | |
14951 | | |
14952 | | |
14953 | | <p>See |
14954 | | also <a href="chapter_4.1.html#bottom_salinityflux">bottom_salinityflux</a>.</p> |
14955 | | |
14956 | | |
14957 | | |
14958 | | |
14959 | | |
14960 | | |
14961 | | </td> |
14962 | | |
14963 | | |
14964 | | |
14965 | | |
14966 | | |
14967 | | |
14968 | | </tr> |
14969 | | |
14970 | | |
14971 | | |
14972 | | |
14973 | | |
14974 | | |
14975 | | <tr><td style="vertical-align: top;"><a name="turbulent_inflow"></a><span style="font-weight: bold;">turbulent_inflow</span></td><td style="vertical-align: top;">L</td><td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td><td style="vertical-align: top;">Generates a turbulent inflow at side boundaries using a turbulence recycling method.<br><br>Turbulent inflow is realized using the turbulence recycling method from Lund et al. (1998, J. Comp. Phys., <span style="font-weight: bold;">140</span>, 233-258) modified by Kataoka and Mizuno (2002, Wind and Structures, <span style="font-weight: bold;">5</span>, 379-392).<br><br>A turbulent inflow requires Dirichlet conditions at the respective inflow boundary. <span style="font-weight: bold;">So far, a turbulent inflow is realized from the left (west) side only, i.e. </span><a style="font-weight: bold;" href="chapter_4.1.html#bc_lr">bc_lr</a><span style="font-weight: bold;"> =</span><span style="font-style: italic; font-weight: bold;"> 'dirichlet/radiation'</span><span style="font-weight: bold;"> is required!</span><br><br>The initial (quasi-stationary) turbulence field should be generated by a precursor run and used by setting <a href="chapter_4.1.html#initializing_actions">initializing_actions</a> =<span style="font-style: italic;"> 'cyclic_fill'</span>.<br><br>The distance of the recycling plane from the inflow boundary can be set with parameter <a href="chapter_4.1.html#recycling_width">recycling_width</a>. |
14976 | | The heigth above ground above which the turbulence signal is not used |
14977 | | for recycling and the width of the layer within the magnitude of |
14978 | | the turbulence signal is damped from 100% to 0% can be set with |
14979 | | parameters <a href="chapter_4.1.html#inflow_damping_height">inflow_damping_height</a> and <a href="chapter_4.1.html#inflow_damping_width">inflow_damping_width</a>.<br><br>The detailed setup for a turbulent inflow is described in <a href="chapter_3.9.html">chapter 3.9</a>.</td></tr><tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="u_bulk"></a>u_bulk</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td>u-component of the predefined bulk velocity (in m/s).<br><br>This parameter comes into effect if <a href="#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T.</span> and <a href="#conserve_volume_flow_mode">conserve_volume_flow_mode</a> = <span style="font-style: italic;">'bulk_velocity'</span>.</td></tr><tr> |
14980 | | |
14981 | | |
14982 | | |
14983 | | |
14984 | | |
14985 | | |
14986 | | <td style="vertical-align: top;"> |
14987 | | |
14988 | | |
14989 | | |
14990 | | |
14991 | | |
14992 | | |
14993 | | <p><a name="ug_surface"></a><span style="font-weight: bold;">ug_surface</span></p> |
14994 | | |
14995 | | |
14996 | | |
14997 | | |
14998 | | |
14999 | | |
15000 | | |
15001 | | </td> |
15002 | | |
15003 | | |
15004 | | |
15005 | | |
15006 | | |
15007 | | |
15008 | | <td style="vertical-align: top;">R<br> |
15009 | | |
15010 | | |
15011 | | |
15012 | | |
15013 | | |
15014 | | |
15015 | | </td> |
15016 | | |
15017 | | |
15018 | | |
15019 | | |
15020 | | |
15021 | | |
15022 | | |
15023 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> |
15024 | | |
15025 | | |
15026 | | |
15027 | | |
15028 | | |
15029 | | |
15030 | | </td> |
15031 | | |
15032 | | |
15033 | | |
15034 | | |
15035 | | |
15036 | | |
15037 | | |
15038 | | <td style="vertical-align: top;">u-component of the |
15039 | | geostrophic |
15040 | | wind at the surface (in m/s).<br> |
15041 | | |
15042 | | |
15043 | | |
15044 | | |
15045 | | |
15046 | | |
15047 | | <br> |
15048 | | |
15049 | | |
15050 | | |
15051 | | |
15052 | | |
15053 | | |
15054 | | |
15055 | | This parameter assigns the value of the u-component of the geostrophic |
15056 | | wind (ug) at the surface (k=0). Starting from this value, the initial |
15057 | | vertical profile of the <br> |
15058 | | |
15059 | | |
15060 | | |
15061 | | |
15062 | | |
15063 | | |
15064 | | |
15065 | | u-component of the geostrophic wind is constructed with <a href="#ug_vertical_gradient">ug_vertical_gradient</a> |
15066 | | and <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>. |
15067 | | The |
15068 | | profile constructed in that way is used for creating the initial |
15069 | | vertical velocity profile of the 3d-model. Either it is applied, as it |
15070 | | has been specified by the user (<a href="#initializing_actions">initializing_actions</a> |
15071 | | = 'set_constant_profiles') or it is used for calculating a stationary |
15072 | | boundary layer wind profile (<a href="#initializing_actions">initializing_actions</a> |
15073 | | = 'set_1d-model_profiles'). If ug is constant with height (i.e. ug(k)=<span style="font-weight: bold;">ug_surface</span>) |
15074 | | and has a large |
15075 | | value, it is recommended to use a Galilei-transformation of the |
15076 | | coordinate system, if possible (see <a href="#galilei_transformation">galilei_transformation</a>), |
15077 | | in order to obtain larger time steps.<br> |
15078 | | |
15079 | | |
15080 | | |
15081 | | |
15082 | | |
15083 | | |
15084 | | <br> |
15085 | | |
15086 | | |
15087 | | |
15088 | | |
15089 | | |
15090 | | |
15091 | | <span style="font-weight: bold;">Attention:</span><br> |
15092 | | |
15093 | | |
15094 | | |
15095 | | |
15096 | | |
15097 | | |
15098 | | In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), |
15099 | | this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is |
15100 | | at k=nzt. The profile is then constructed from the surface down to the |
15101 | | bottom of the model.<br> |
15102 | | |
15103 | | |
15104 | | |
15105 | | |
15106 | | |
15107 | | |
15108 | | </td> |
15109 | | |
15110 | | |
15111 | | |
15112 | | |
15113 | | |
15114 | | |
15115 | | </tr> |
15116 | | |
15117 | | |
15118 | | |
15119 | | |
15120 | | |
15121 | | |
15122 | | |
15123 | | <tr> |
15124 | | |
15125 | | |
15126 | | |
15127 | | |
15128 | | |
15129 | | |
15130 | | <td style="vertical-align: top;"> |
15131 | | |
15132 | | |
15133 | | |
15134 | | |
15135 | | |
15136 | | |
15137 | | <p><a name="ug_vertical_gradient"></a><span style="font-weight: bold;">ug_vertical_gradient</span></p> |
15138 | | |
15139 | | |
15140 | | |
15141 | | |
15142 | | |
15143 | | |
15144 | | |
15145 | | </td> |
15146 | | |
15147 | | |
15148 | | |
15149 | | |
15150 | | |
15151 | | |
15152 | | <td style="vertical-align: top;">R(10)<br> |
15153 | | |
15154 | | |
15155 | | |
15156 | | |
15157 | | |
15158 | | |
15159 | | |
15160 | | </td> |
15161 | | |
15162 | | |
15163 | | |
15164 | | |
15165 | | |
15166 | | |
15167 | | <td style="vertical-align: top;"><span style="font-style: italic;">10 |
15168 | | * 0.0</span><br> |
15169 | | |
15170 | | |
15171 | | |
15172 | | |
15173 | | |
15174 | | |
15175 | | </td> |
15176 | | |
15177 | | |
15178 | | |
15179 | | |
15180 | | |
15181 | | |
15182 | | <td style="vertical-align: top;">Gradient(s) of the initial |
15183 | | profile of the u-component of the geostrophic wind (in |
15184 | | 1/100s).<br> |
15185 | | |
15186 | | |
15187 | | |
15188 | | |
15189 | | |
15190 | | |
15191 | | <br> |
15192 | | |
15193 | | |
15194 | | |
15195 | | |
15196 | | |
15197 | | |
15198 | | |
15199 | | The gradient holds starting from the height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a> |
15200 | | (precisely: for all uv levels k where zu(k) > <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>, |
15201 | | ug(k) is set: ug(k) = ug(k-1) + dzu(k) * <span style="font-weight: bold;">ug_vertical_gradient</span>) |
15202 | | up to the top |
15203 | | boundary or up to the next height level defined by <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>. |
15204 | | A |
15205 | | total of 10 different gradients for 11 height intervals (10 |
15206 | | intervals if <a href="#ug_vertical_gradient_level">ug_vertical_gradient_level</a>(1) |
15207 | | = 0.0) can be assigned. The surface geostrophic wind is assigned by <a href="#ug_surface">ug_surface</a>.<br> |
15208 | | |
15209 | | |
15210 | | |
15211 | | |
15212 | | |
15213 | | |
15214 | | <br> |
15215 | | |
15216 | | |
15217 | | |
15218 | | |
15219 | | |
15220 | | |
15221 | | <span style="font-weight: bold;">Attention:</span><br> |
15222 | | |
15223 | | |
15224 | | |
15225 | | |
15226 | | |
15227 | | |
15228 | | In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), |
15229 | | the profile is constructed like described above, but starting from the |
15230 | | sea surface (k=nzt) down to the bottom boundary of the model. Height |
15231 | | levels have then to be given as negative values, e.g. <span style="font-weight: bold;">ug_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.<br> |
15232 | | |
15233 | | |
15234 | | |
15235 | | |
15236 | | |
15237 | | |
15238 | | </td> |
15239 | | |
15240 | | |
15241 | | |
15242 | | |
15243 | | |
15244 | | |
15245 | | |
15246 | | </tr> |
15247 | | |
15248 | | |
15249 | | |
15250 | | |
15251 | | |
15252 | | |
15253 | | <tr> |
15254 | | |
15255 | | |
15256 | | |
15257 | | |
15258 | | |
15259 | | |
15260 | | <td style="vertical-align: top;"> |
15261 | | |
15262 | | |
15263 | | |
15264 | | |
15265 | | |
15266 | | |
15267 | | <p><a name="ug_vertical_gradient_level"></a><span style="font-weight: bold;">ug_vertical_gradient_level</span></p> |
15268 | | |
15269 | | |
15270 | | |
15271 | | |
15272 | | |
15273 | | |
15274 | | |
15275 | | </td> |
15276 | | |
15277 | | |
15278 | | |
15279 | | |
15280 | | |
15281 | | |
15282 | | <td style="vertical-align: top;">R(10)<br> |
15283 | | |
15284 | | |
15285 | | |
15286 | | |
15287 | | |
15288 | | |
15289 | | |
15290 | | </td> |
15291 | | |
15292 | | |
15293 | | |
15294 | | |
15295 | | |
15296 | | |
15297 | | <td style="vertical-align: top;"><span style="font-style: italic;">10 |
15298 | | * 0.0</span><br> |
15299 | | |
15300 | | |
15301 | | |
15302 | | |
15303 | | |
15304 | | |
15305 | | </td> |
15306 | | |
15307 | | |
15308 | | |
15309 | | |
15310 | | |
15311 | | |
15312 | | <td style="vertical-align: top;">Height level from which on the |
15313 | | gradient defined by <a href="#ug_vertical_gradient">ug_vertical_gradient</a> |
15314 | | is effective (in m).<br> |
15315 | | |
15316 | | |
15317 | | |
15318 | | |
15319 | | |
15320 | | |
15321 | | <br> |
15322 | | |
15323 | | |
15324 | | |
15325 | | |
15326 | | |
15327 | | |
15328 | | |
15329 | | The height levels have to be assigned in ascending order. For the |
15330 | | piecewise construction of a profile of the u-component of the |
15331 | | geostrophic wind component (ug) see <a href="#ug_vertical_gradient">ug_vertical_gradient</a>.<br> |
15332 | | |
15333 | | |
15334 | | |
15335 | | |
15336 | | |
15337 | | |
15338 | | <br> |
15339 | | |
15340 | | |
15341 | | |
15342 | | |
15343 | | |
15344 | | |
15345 | | <span style="font-weight: bold;">Attention:</span><br> |
15346 | | |
15347 | | |
15348 | | |
15349 | | |
15350 | | |
15351 | | |
15352 | | In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td> |
15353 | | |
15354 | | |
15355 | | |
15356 | | |
15357 | | |
15358 | | |
15359 | | </tr> |
15360 | | |
15361 | | |
15362 | | |
15363 | | |
15364 | | |
15365 | | |
15366 | | <tr> |
15367 | | |
15368 | | |
15369 | | |
15370 | | |
15371 | | |
15372 | | |
15373 | | <td style="vertical-align: top;"> |
15374 | | |
15375 | | |
15376 | | |
15377 | | |
15378 | | |
15379 | | |
15380 | | <p><a name="ups_limit_e"></a><b>ups_limit_e</b></p> |
15381 | | |
15382 | | |
15383 | | |
15384 | | |
15385 | | |
15386 | | |
15387 | | |
15388 | | </td> |
15389 | | |
15390 | | |
15391 | | |
15392 | | |
15393 | | |
15394 | | |
15395 | | <td style="vertical-align: top;">R</td> |
15396 | | |
15397 | | |
15398 | | |
15399 | | |
15400 | | |
15401 | | |
15402 | | |
15403 | | <td style="vertical-align: top;"><i>0.0</i></td> |
15404 | | |
15405 | | |
15406 | | |
15407 | | |
15408 | | |
15409 | | |
15410 | | |
15411 | | <td style="vertical-align: top;"> |
15412 | | |
15413 | | |
15414 | | |
15415 | | |
15416 | | |
15417 | | |
15418 | | <p>Subgrid-scale |
15419 | | turbulent kinetic energy difference used as |
15420 | | criterion for applying the upstream scheme when upstream-spline |
15421 | | advection is switched on (in m<sup>2</sup>/s<sup>2</sup>). |
15422 | | </p> |
15423 | | |
15424 | | |
15425 | | |
15426 | | |
15427 | | |
15428 | | |
15429 | | |
15430 | | |
15431 | | |
15432 | | |
15433 | | |
15434 | | |
15435 | | |
15436 | | <p>This variable steers the appropriate |
15437 | | treatment of the |
15438 | | advection of the subgrid-scale turbulent kinetic energy in case that |
15439 | | the uptream-spline scheme is used . For further information see <a href="#ups_limit_pt">ups_limit_pt</a>. </p> |
15440 | | |
15441 | | |
15442 | | |
15443 | | |
15444 | | |
15445 | | |
15446 | | |
15447 | | |
15448 | | |
15449 | | |
15450 | | |
15451 | | |
15452 | | |
15453 | | <p>Only positive values are allowed for <b>ups_limit_e</b>. |
15454 | | </p> |
15455 | | |
15456 | | |
15457 | | |
15458 | | |
15459 | | |
15460 | | |
15461 | | </td> |
15462 | | |
15463 | | |
15464 | | |
15465 | | |
15466 | | |
15467 | | |
15468 | | </tr> |
15469 | | |
15470 | | |
15471 | | |
15472 | | |
15473 | | |
15474 | | |
15475 | | <tr> |
15476 | | |
15477 | | |
15478 | | |
15479 | | |
15480 | | |
15481 | | |
15482 | | <td style="vertical-align: top;"> |
15483 | | |
15484 | | |
15485 | | |
15486 | | |
15487 | | |
15488 | | |
15489 | | <p><a name="ups_limit_pt"></a><b>ups_limit_pt</b></p> |
15490 | | |
15491 | | |
15492 | | |
15493 | | |
15494 | | |
15495 | | |
15496 | | |
15497 | | </td> |
15498 | | |
15499 | | |
15500 | | |
15501 | | |
15502 | | |
15503 | | |
15504 | | <td style="vertical-align: top;">R</td> |
15505 | | |
15506 | | |
15507 | | |
15508 | | |
15509 | | |
15510 | | |
15511 | | |
15512 | | <td style="vertical-align: top;"><i>0.0</i></td> |
15513 | | |
15514 | | |
15515 | | |
15516 | | |
15517 | | |
15518 | | |
15519 | | |
15520 | | <td style="vertical-align: top;"> |
15521 | | |
15522 | | |
15523 | | |
15524 | | |
15525 | | |
15526 | | |
15527 | | <p>Temperature |
15528 | | difference used as criterion for applying |
15529 | | the upstream scheme when upstream-spline advection is |
15530 | | switched on |
15531 | | (in K). </p> |
15532 | | |
15533 | | |
15534 | | |
15535 | | |
15536 | | |
15537 | | |
15538 | | |
15539 | | |
15540 | | |
15541 | | |
15542 | | |
15543 | | |
15544 | | |
15545 | | <p>This criterion is used if the |
15546 | | upstream-spline scheme is |
15547 | | switched on (see <a href="#scalar_advec">scalar_advec</a>).<br> |
15548 | | |
15549 | | |
15550 | | |
15551 | | |
15552 | | |
15553 | | |
15554 | | |
15555 | | If, for a given gridpoint, the absolute temperature difference with |
15556 | | respect to the upstream |
15557 | | grid point is smaller than the value given for <b>ups_limit_pt</b>, |
15558 | | the upstream scheme is used for this gridpoint (by default, the |
15559 | | upstream-spline scheme is always used). Reason: in case of a very small |
15560 | | upstream gradient, the advection should cause only a very small |
15561 | | tendency. However, in such situations the upstream-spline scheme may |
15562 | | give wrong tendencies at a |
15563 | | grid point due to spline overshooting, if simultaneously the downstream |
15564 | | gradient is very large. In such cases it may be more reasonable to use |
15565 | | the upstream scheme. The numerical diffusion caused by the upstream |
15566 | | schme remains small as long as the upstream gradients are small.<br> |
15567 | | |
15568 | | |
15569 | | |
15570 | | |
15571 | | |
15572 | | |
15573 | | |
15574 | | </p> |
15575 | | |
15576 | | |
15577 | | |
15578 | | |
15579 | | |
15580 | | |
15581 | | |
15582 | | |
15583 | | |
15584 | | |
15585 | | |
15586 | | |
15587 | | |
15588 | | <p>The percentage of grid points for which the |
15589 | | upstream |
15590 | | scheme is actually used, can be output as a time series with respect to |
15591 | | the |
15592 | | three directions in space with run parameter (see <a href="chapter_4.2.html#dt_dots">dt_dots</a>, the |
15593 | | timeseries names in the NetCDF file are <i>'splptx'</i>, <i>'splpty'</i>, |
15594 | | <i>'splptz'</i>). The percentage |
15595 | | of gridpoints should stay below a certain limit, however, it |
15596 | | is |
15597 | | not possible to give |
15598 | | a general limit, since it depends on the respective flow. </p> |
15599 | | |
15600 | | |
15601 | | |
15602 | | |
15603 | | |
15604 | | |
15605 | | |
15606 | | |
15607 | | |
15608 | | |
15609 | | |
15610 | | |
15611 | | |
15612 | | <p>Only positive values are permitted for <b>ups_limit_pt</b>.<br> |
15613 | | |
15614 | | |
15615 | | |
15616 | | |
15617 | | |
15618 | | |
15619 | | |
15620 | | </p> |
15621 | | |
15622 | | |
15623 | | |
15624 | | |
15625 | | |
15626 | | |
15627 | | |
15628 | | A more effective control of |
15629 | | the “overshoots” can be achieved with parameter <a href="#cut_spline_overshoot">cut_spline_overshoot</a>. |
15630 | | </td> |
15631 | | |
15632 | | |
15633 | | |
15634 | | |
15635 | | |
15636 | | |
15637 | | </tr> |
15638 | | |
15639 | | |
15640 | | |
15641 | | |
15642 | | |
15643 | | |
15644 | | <tr> |
15645 | | |
15646 | | |
15647 | | |
15648 | | |
15649 | | |
15650 | | |
15651 | | <td style="vertical-align: top;"> |
15652 | | |
15653 | | |
15654 | | |
15655 | | |
15656 | | |
15657 | | |
15658 | | <p><a name="ups_limit_u"></a><b>ups_limit_u</b></p> |
15659 | | |
15660 | | |
15661 | | |
15662 | | |
15663 | | |
15664 | | |
15665 | | |
15666 | | </td> |
15667 | | |
15668 | | |
15669 | | |
15670 | | |
15671 | | |
15672 | | |
15673 | | <td style="vertical-align: top;">R</td> |
15674 | | |
15675 | | |
15676 | | |
15677 | | |
15678 | | |
15679 | | |
15680 | | |
15681 | | <td style="vertical-align: top;"><i>0.0</i></td> |
15682 | | |
15683 | | |
15684 | | |
15685 | | |
15686 | | |
15687 | | |
15688 | | |
15689 | | <td style="vertical-align: top;"> |
15690 | | |
15691 | | |
15692 | | |
15693 | | |
15694 | | |
15695 | | |
15696 | | <p>Velocity |
15697 | | difference (u-component) used as criterion for |
15698 | | applying the upstream scheme |
15699 | | when upstream-spline advection is switched on (in m/s). </p> |
15700 | | |
15701 | | |
15702 | | |
15703 | | |
15704 | | |
15705 | | |
15706 | | |
15707 | | |
15708 | | |
15709 | | |
15710 | | |
15711 | | |
15712 | | |
15713 | | <p>This variable steers the appropriate treatment of the |
15714 | | advection of the u-velocity-component in case that the upstream-spline |
15715 | | scheme is used. For further |
15716 | | information see <a href="#ups_limit_pt">ups_limit_pt</a>. |
15717 | | </p> |
15718 | | |
15719 | | |
15720 | | |
15721 | | |
15722 | | |
15723 | | |
15724 | | |
15725 | | |
15726 | | |
15727 | | |
15728 | | |
15729 | | |
15730 | | |
15731 | | <p>Only positive values are permitted for <b>ups_limit_u</b>.</p> |
15732 | | |
15733 | | |
15734 | | |
15735 | | |
15736 | | |
15737 | | |
15738 | | |
15739 | | </td> |
15740 | | |
15741 | | |
15742 | | |
15743 | | |
15744 | | |
15745 | | |
15746 | | </tr> |
15747 | | |
15748 | | |
15749 | | |
15750 | | |
15751 | | |
15752 | | |
15753 | | <tr> |
15754 | | |
15755 | | |
15756 | | |
15757 | | |
15758 | | |
15759 | | |
15760 | | <td style="vertical-align: top;"> |
15761 | | |
15762 | | |
15763 | | |
15764 | | |
15765 | | |
15766 | | |
15767 | | <p><a name="ups_limit_v"></a><b>ups_limit_v</b></p> |
15768 | | |
15769 | | |
15770 | | |
15771 | | |
15772 | | |
15773 | | |
15774 | | |
15775 | | </td> |
15776 | | |
15777 | | |
15778 | | |
15779 | | |
15780 | | |
15781 | | |
15782 | | <td style="vertical-align: top;">R</td> |
15783 | | |
15784 | | |
15785 | | |
15786 | | |
15787 | | |
15788 | | |
15789 | | |
15790 | | <td style="vertical-align: top;"><i>0.0</i></td> |
15791 | | |
15792 | | |
15793 | | |
15794 | | |
15795 | | |
15796 | | |
15797 | | |
15798 | | <td style="vertical-align: top;"> |
15799 | | |
15800 | | |
15801 | | |
15802 | | |
15803 | | |
15804 | | |
15805 | | <p>Velocity |
15806 | | difference (v-component) used as criterion for |
15807 | | applying the upstream scheme |
15808 | | when upstream-spline advection is switched on (in m/s). </p> |
15809 | | |
15810 | | |
15811 | | |
15812 | | |
15813 | | |
15814 | | |
15815 | | |
15816 | | |
15817 | | |
15818 | | |
15819 | | |
15820 | | |
15821 | | |
15822 | | <p>This variable steers the appropriate treatment of the |
15823 | | advection of the v-velocity-component in case that the upstream-spline |
15824 | | scheme is used. For further |
15825 | | information see <a href="#ups_limit_pt">ups_limit_pt</a>. |
15826 | | </p> |
15827 | | |
15828 | | |
15829 | | |
15830 | | |
15831 | | |
15832 | | |
15833 | | |
15834 | | |
15835 | | |
15836 | | |
15837 | | |
15838 | | |
15839 | | |
15840 | | <p>Only positive values are permitted for <b>ups_limit_v</b>.</p> |
15841 | | |
15842 | | |
15843 | | |
15844 | | |
15845 | | |
15846 | | |
15847 | | |
15848 | | </td> |
15849 | | |
15850 | | |
15851 | | |
15852 | | |
15853 | | |
15854 | | |
15855 | | </tr> |
15856 | | |
15857 | | |
15858 | | |
15859 | | |
15860 | | |
15861 | | |
15862 | | <tr> |
15863 | | |
15864 | | |
15865 | | |
15866 | | |
15867 | | |
15868 | | |
15869 | | <td style="vertical-align: top;"> |
15870 | | |
15871 | | |
15872 | | |
15873 | | |
15874 | | |
15875 | | |
15876 | | <p><a name="ups_limit_w"></a><b>ups_limit_w</b></p> |
15877 | | |
15878 | | |
15879 | | |
15880 | | |
15881 | | |
15882 | | |
15883 | | |
15884 | | </td> |
15885 | | |
15886 | | |
15887 | | |
15888 | | |
15889 | | |
15890 | | |
15891 | | <td style="vertical-align: top;">R</td> |
15892 | | |
15893 | | |
15894 | | |
15895 | | |
15896 | | |
15897 | | |
15898 | | |
15899 | | <td style="vertical-align: top;"><i>0.0</i></td> |
15900 | | |
15901 | | |
15902 | | |
15903 | | |
15904 | | |
15905 | | |
15906 | | |
15907 | | <td style="vertical-align: top;"> |
15908 | | |
15909 | | |
15910 | | |
15911 | | |
15912 | | |
15913 | | |
15914 | | <p>Velocity |
15915 | | difference (w-component) used as criterion for |
15916 | | applying the upstream scheme |
15917 | | when upstream-spline advection is switched on (in m/s). </p> |
15918 | | |
15919 | | |
15920 | | |
15921 | | |
15922 | | |
15923 | | |
15924 | | |
15925 | | |
15926 | | |
15927 | | |
15928 | | |
15929 | | |
15930 | | |
15931 | | <p>This variable steers the appropriate treatment of the |
15932 | | advection of the w-velocity-component in case that the upstream-spline |
15933 | | scheme is used. For further |
15934 | | information see <a href="#ups_limit_pt">ups_limit_pt</a>. |
15935 | | </p> |
15936 | | |
15937 | | |
15938 | | |
15939 | | |
15940 | | |
15941 | | |
15942 | | |
15943 | | |
15944 | | |
15945 | | |
15946 | | |
15947 | | |
15948 | | |
15949 | | <p>Only positive values are permitted for <b>ups_limit_w</b>.</p> |
15950 | | |
15951 | | |
15952 | | |
15953 | | |
15954 | | |
15955 | | |
15956 | | |
15957 | | </td> |
15958 | | |
15959 | | |
15960 | | |
15961 | | |
15962 | | |
15963 | | |
15964 | | </tr> |
15965 | | |
15966 | | |
15967 | | |
15968 | | |
15969 | | |
15970 | | |
15971 | | <tr> |
15972 | | |
15973 | | |
15974 | | |
15975 | | |
15976 | | |
15977 | | |
15978 | | <td style="vertical-align: top;"> |
15979 | | |
15980 | | |
15981 | | |
15982 | | |
15983 | | |
15984 | | |
15985 | | <p><a name="use_surface_fluxes"></a><b>use_surface_fluxes</b></p> |
15986 | | |
15987 | | |
15988 | | |
15989 | | |
15990 | | |
15991 | | |
15992 | | |
15993 | | </td> |
15994 | | |
15995 | | |
15996 | | |
15997 | | |
15998 | | |
15999 | | |
16000 | | <td style="vertical-align: top;">L</td> |
16001 | | |
16002 | | |
16003 | | |
16004 | | |
16005 | | |
16006 | | |
16007 | | |
16008 | | <td style="vertical-align: top;"><i>.F.</i></td> |
16009 | | |
16010 | | |
16011 | | |
16012 | | |
16013 | | |
16014 | | |
16015 | | |
16016 | | <td style="vertical-align: top;"> |
16017 | | |
16018 | | |
16019 | | |
16020 | | |
16021 | | |
16022 | | |
16023 | | <p>Parameter to |
16024 | | steer the treatment of the subgrid-scale vertical |
16025 | | fluxes within the diffusion terms at k=1 (bottom boundary).<br> |
16026 | | |
16027 | | |
16028 | | |
16029 | | |
16030 | | |
16031 | | |
16032 | | </p> |
16033 | | |
16034 | | |
16035 | | |
16036 | | |
16037 | | |
16038 | | |
16039 | | |
16040 | | |
16041 | | |
16042 | | |
16043 | | |
16044 | | |
16045 | | |
16046 | | <p>By default, the near-surface subgrid-scale fluxes are |
16047 | | parameterized (like in the remaining model domain) using the gradient |
16048 | | approach. If <b>use_surface_fluxes</b> |
16049 | | = <i>.TRUE.</i>, the user-assigned surface fluxes are used |
16050 | | instead |
16051 | | (see <a href="#surface_heatflux">surface_heatflux</a>, |
16052 | | <a href="#surface_waterflux">surface_waterflux</a> |
16053 | | and <a href="#surface_scalarflux">surface_scalarflux</a>) |
16054 | | <span style="font-weight: bold;">or</span> the |
16055 | | surface fluxes are |
16056 | | calculated via the Prandtl layer relation (depends on the bottom |
16057 | | boundary conditions, see <a href="#bc_pt_b">bc_pt_b</a>, |
16058 | | <a href="#bc_q_b">bc_q_b</a> |
16059 | | and <a href="#bc_s_b">bc_s_b</a>).<br> |
16060 | | |
16061 | | |
16062 | | |
16063 | | |
16064 | | |
16065 | | |
16066 | | </p> |
16067 | | |
16068 | | |
16069 | | |
16070 | | |
16071 | | |
16072 | | |
16073 | | |
16074 | | |
16075 | | |
16076 | | |
16077 | | |
16078 | | |
16079 | | |
16080 | | <p><b>use_surface_fluxes</b> |
16081 | | is automatically set <i>.TRUE.</i>, if a Prandtl layer is |
16082 | | used (see <a href="#prandtl_layer">prandtl_layer</a>). |
16083 | | </p> |
16084 | | |
16085 | | |
16086 | | |
16087 | | |
16088 | | |
16089 | | |
16090 | | |
16091 | | |
16092 | | |
16093 | | |
16094 | | |
16095 | | |
16096 | | |
16097 | | <p>The user may prescribe the surface fluxes at the |
16098 | | bottom |
16099 | | boundary without using a Prandtl layer by setting <span style="font-weight: bold;">use_surface_fluxes</span> = |
16100 | | <span style="font-style: italic;">.T.</span> and <span style="font-weight: bold;">prandtl_layer</span> = <span style="font-style: italic;">.F.</span>. If , in this |
16101 | | case, the |
16102 | | momentum flux (u<sub>*</sub><sup>2</sup>) |
16103 | | should also be prescribed, |
16104 | | the user must assign an appropriate value within the user-defined code.</p> |
16105 | | |
16106 | | |
16107 | | |
16108 | | |
16109 | | |
16110 | | |
16111 | | |
16112 | | </td> |
16113 | | |
16114 | | |
16115 | | |
16116 | | |
16117 | | |
16118 | | |
16119 | | </tr> |
16120 | | |
16121 | | |
16122 | | |
16123 | | |
16124 | | |
16125 | | |
16126 | | <tr> |
16127 | | |
16128 | | |
16129 | | |
16130 | | |
16131 | | |
16132 | | |
16133 | | <td style="vertical-align: top;"><a name="use_top_fluxes"></a><span style="font-weight: bold;">use_top_fluxes</span></td> |
16134 | | |
16135 | | |
16136 | | |
16137 | | |
16138 | | |
16139 | | |
16140 | | <td style="vertical-align: top;">L</td> |
16141 | | |
16142 | | |
16143 | | |
16144 | | |
16145 | | |
16146 | | |
16147 | | <td style="vertical-align: top;"><span style="font-style: italic;">.F.</span></td> |
16148 | | |
16149 | | |
16150 | | |
16151 | | |
16152 | | |
16153 | | |
16154 | | <td style="vertical-align: top;"> |
16155 | | |
16156 | | |
16157 | | |
16158 | | |
16159 | | |
16160 | | |
16161 | | <p>Parameter to steer |
16162 | | the treatment of the subgrid-scale vertical |
16163 | | fluxes within the diffusion terms at k=nz (top boundary).</p> |
16164 | | |
16165 | | |
16166 | | |
16167 | | |
16168 | | |
16169 | | |
16170 | | |
16171 | | |
16172 | | |
16173 | | |
16174 | | |
16175 | | |
16176 | | <p>By |
16177 | | default, the fluxes at nz are calculated using the gradient approach. |
16178 | | If <b>use_top_fluxes</b> |
16179 | | = <i>.TRUE.</i>, the user-assigned top fluxes are used |
16180 | | instead |
16181 | | (see <a href="chapter_4.1.html#top_heatflux">top_heatflux</a>, <a href="#top_momentumflux_u">top_momentumflux_u</a>, <a href="#top_momentumflux_v">top_momentumflux_v</a>, <a href="#top_salinityflux">top_salinityflux</a>).</p> |
16182 | | |
16183 | | |
16184 | | |
16185 | | |
16186 | | |
16187 | | |
16188 | | |
16189 | | |
16190 | | |
16191 | | |
16192 | | |
16193 | | |
16194 | | <p>Currently, no value for the latent heatflux can be assigned. In case of <span style="font-weight: bold;">use_top_fluxes</span> = <span style="font-style: italic;">.TRUE.</span>, the latent |
16195 | | heat flux at the top will be automatically set to zero.</p> |
16196 | | |
16197 | | |
16198 | | |
16199 | | |
16200 | | |
16201 | | |
16202 | | </td> |
16203 | | |
16204 | | |
16205 | | |
16206 | | |
16207 | | |
16208 | | |
16209 | | </tr> |
16210 | | |
16211 | | |
16212 | | |
16213 | | |
16214 | | |
16215 | | |
16216 | | <tr> |
16217 | | |
16218 | | |
16219 | | |
16220 | | |
16221 | | |
16222 | | |
16223 | | |
16224 | | <td style="vertical-align: top;"> |
16225 | | |
16226 | | |
16227 | | |
16228 | | |
16229 | | |
16230 | | |
16231 | | <p><a name="use_ug_for_galilei_tr"></a><b>use_ug_for_galilei_tr</b></p> |
16232 | | |
16233 | | |
16234 | | |
16235 | | |
16236 | | |
16237 | | |
16238 | | |
16239 | | </td> |
16240 | | |
16241 | | |
16242 | | |
16243 | | |
16244 | | |
16245 | | |
16246 | | <td style="vertical-align: top;">L</td> |
16247 | | |
16248 | | |
16249 | | |
16250 | | |
16251 | | |
16252 | | |
16253 | | |
16254 | | <td style="vertical-align: top;"><i>.T.</i></td> |
16255 | | |
16256 | | |
16257 | | |
16258 | | |
16259 | | |
16260 | | |
16261 | | |
16262 | | <td style="vertical-align: top;"> |
16263 | | |
16264 | | |
16265 | | |
16266 | | |
16267 | | |
16268 | | |
16269 | | <p>Switch to |
16270 | | determine the translation velocity in case that a |
16271 | | Galilean transformation is used.<br> |
16272 | | |
16273 | | |
16274 | | |
16275 | | |
16276 | | |
16277 | | |
16278 | | </p> |
16279 | | |
16280 | | |
16281 | | |
16282 | | |
16283 | | |
16284 | | |
16285 | | |
16286 | | |
16287 | | |
16288 | | |
16289 | | |
16290 | | |
16291 | | |
16292 | | <p>In |
16293 | | case of a Galilean transformation (see <a href="#galilei_transformation">galilei_transformation</a>), |
16294 | | <b>use_ug_for_galilei_tr</b> |
16295 | | = <i>.T.</i> ensures |
16296 | | that the coordinate system is translated with the geostrophic windspeed.<br> |
16297 | | |
16298 | | |
16299 | | |
16300 | | |
16301 | | |
16302 | | |
16303 | | |
16304 | | </p> |
16305 | | |
16306 | | |
16307 | | |
16308 | | |
16309 | | |
16310 | | |
16311 | | |
16312 | | |
16313 | | |
16314 | | |
16315 | | |
16316 | | |
16317 | | |
16318 | | <p>Alternatively, with <b>use_ug_for_galilei_tr</b> |
16319 | | = <i>.F</i>., |
16320 | | the |
16321 | | geostrophic wind can be replaced as translation speed by the (volume) |
16322 | | averaged velocity. However, in this case the user must be aware of fast |
16323 | | growing gravity waves, so this |
16324 | | choice is usually not recommended!</p> |
16325 | | |
16326 | | |
16327 | | |
16328 | | |
16329 | | |
16330 | | |
16331 | | </td> |
16332 | | |
16333 | | |
16334 | | |
16335 | | |
16336 | | |
16337 | | |
16338 | | </tr> |
16339 | | |
16340 | | |
16341 | | |
16342 | | |
16343 | | |
16344 | | |
16345 | | <tr> |
16346 | | |
16347 | | |
16348 | | |
16349 | | |
16350 | | |
16351 | | |
16352 | | <td align="left" valign="top"><a name="use_upstream_for_tke"></a><span style="font-weight: bold;">use_upstream_for_tke</span></td> |
16353 | | |
16354 | | |
16355 | | |
16356 | | |
16357 | | |
16358 | | |
16359 | | <td align="left" valign="top">L</td> |
16360 | | |
16361 | | |
16362 | | |
16363 | | |
16364 | | |
16365 | | |
16366 | | <td align="left" valign="top"><span style="font-style: italic;">.F.</span></td> |
16367 | | |
16368 | | |
16369 | | |
16370 | | |
16371 | | |
16372 | | |
16373 | | <td align="left" valign="top">Parameter to choose the |
16374 | | advection/timestep scheme to be used for the subgrid-scale TKE.<br> |
16375 | | |
16376 | | |
16377 | | |
16378 | | |
16379 | | |
16380 | | |
16381 | | <br> |
16382 | | |
16383 | | |
16384 | | |
16385 | | |
16386 | | |
16387 | | |
16388 | | By |
16389 | | default, the advection scheme and the timestep scheme to be used for |
16390 | | the subgrid-scale TKE are set by the initialization parameters <a href="#scalar_advec">scalar_advec</a> and <a href="#timestep_scheme">timestep_scheme</a>, |
16391 | | respectively. <span style="font-weight: bold;">use_upstream_for_tke</span> |
16392 | | = <span style="font-style: italic;">.T.</span> |
16393 | | forces the Euler-scheme and the upstream-scheme to be used as timestep |
16394 | | scheme and advection scheme, respectively. By these methods, the strong |
16395 | | (artificial) near-surface vertical gradients of the subgrid-scale TKE |
16396 | | are significantly reduced. This is required when subgrid-scale |
16397 | | velocities are used for advection of particles (see particle package |
16398 | | parameter <a href="chapter_4.2.html#use_sgs_for_particles">use_sgs_for_particles</a>).</td> |
16399 | | |
16400 | | |
16401 | | |
16402 | | |
16403 | | |
16404 | | |
16405 | | </tr> |
16406 | | |
16407 | | |
16408 | | |
16409 | | |
16410 | | |
16411 | | |
16412 | | <tr><td style="vertical-align: top;"><span style="font-weight: bold;"><a name="v_bulk"></a>v_bulk</span></td><td style="vertical-align: top;">R</td><td style="vertical-align: top;"><span style="font-style: italic;">0.0</span></td><td>v-component of the predefined bulk velocity (in m/s).<br><br>This parameter comes into effect if <a href="chapter_4.1.html#conserve_volume_flow">conserve_volume_flow</a> = <span style="font-style: italic;">.T.</span> and <a href="chapter_4.1.html#conserve_volume_flow_mode">conserve_volume_flow_mode</a> = <span style="font-style: italic;">'bulk_velocity'</span>.</td></tr><tr> |
16413 | | |
16414 | | |
16415 | | |
16416 | | |
16417 | | |
16418 | | |
16419 | | |
16420 | | <td style="vertical-align: top;"> |
16421 | | |
16422 | | |
16423 | | |
16424 | | |
16425 | | |
16426 | | |
16427 | | <p><a name="vg_surface"></a><span style="font-weight: bold;">vg_surface</span></p> |
16428 | | |
16429 | | |
16430 | | |
16431 | | |
16432 | | |
16433 | | |
16434 | | |
16435 | | </td> |
16436 | | |
16437 | | |
16438 | | |
16439 | | |
16440 | | |
16441 | | |
16442 | | <td style="vertical-align: top;">R<br> |
16443 | | |
16444 | | |
16445 | | |
16446 | | |
16447 | | |
16448 | | |
16449 | | </td> |
16450 | | |
16451 | | |
16452 | | |
16453 | | |
16454 | | |
16455 | | |
16456 | | |
16457 | | <td style="vertical-align: top;"><span style="font-style: italic;">0.0</span><br> |
16458 | | |
16459 | | |
16460 | | |
16461 | | |
16462 | | |
16463 | | |
16464 | | </td> |
16465 | | |
16466 | | |
16467 | | |
16468 | | |
16469 | | |
16470 | | |
16471 | | |
16472 | | <td style="vertical-align: top;">v-component of the |
16473 | | geostrophic |
16474 | | wind at the surface (in m/s).<br> |
16475 | | |
16476 | | |
16477 | | |
16478 | | |
16479 | | |
16480 | | |
16481 | | <br> |
16482 | | |
16483 | | |
16484 | | |
16485 | | |
16486 | | |
16487 | | |
16488 | | |
16489 | | This parameter assigns the value of the v-component of the geostrophic |
16490 | | wind (vg) at the surface (k=0). Starting from this value, the initial |
16491 | | vertical profile of the <br> |
16492 | | |
16493 | | |
16494 | | |
16495 | | |
16496 | | |
16497 | | |
16498 | | |
16499 | | v-component of the geostrophic wind is constructed with <a href="#vg_vertical_gradient">vg_vertical_gradient</a> |
16500 | | and <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>. |
16501 | | The |
16502 | | profile |
16503 | | constructed in that way is used for creating the initial vertical |
16504 | | velocity profile of the 3d-model. Either it is applied, as it has been |
16505 | | specified by the user (<a href="#initializing_actions">initializing_actions</a> |
16506 | | = 'set_constant_profiles') |
16507 | | or it is used for calculating a stationary boundary layer wind profile |
16508 | | (<a href="#initializing_actions">initializing_actions</a> |
16509 | | = |
16510 | | 'set_1d-model_profiles'). If vg is constant |
16511 | | with height (i.e. vg(k)=<span style="font-weight: bold;">vg_surface</span>) |
16512 | | and has a large value, it is |
16513 | | recommended to use a Galilei-transformation of the coordinate system, |
16514 | | if possible (see <a href="#galilei_transformation">galilei_transformation</a>), |
16515 | | in order to obtain larger |
16516 | | time steps.<br> |
16517 | | |
16518 | | |
16519 | | |
16520 | | |
16521 | | |
16522 | | |
16523 | | <br> |
16524 | | |
16525 | | |
16526 | | |
16527 | | |
16528 | | |
16529 | | |
16530 | | <span style="font-weight: bold;">Attention:</span><br> |
16531 | | |
16532 | | |
16533 | | |
16534 | | |
16535 | | |
16536 | | |
16537 | | In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), |
16538 | | this parameter gives the geostrophic velocity value (i.e. the pressure gradient) at the sea surface, which is |
16539 | | at k=nzt. The profile is then constructed from the surface down to the |
16540 | | bottom of the model.</td> |
16541 | | |
16542 | | |
16543 | | |
16544 | | |
16545 | | |
16546 | | |
16547 | | </tr> |
16548 | | |
16549 | | |
16550 | | |
16551 | | |
16552 | | |
16553 | | |
16554 | | <tr> |
16555 | | |
16556 | | |
16557 | | |
16558 | | |
16559 | | |
16560 | | |
16561 | | <td style="vertical-align: top;"> |
16562 | | |
16563 | | |
16564 | | |
16565 | | |
16566 | | |
16567 | | |
16568 | | <p><a name="vg_vertical_gradient"></a><span style="font-weight: bold;">vg_vertical_gradient</span></p> |
16569 | | |
16570 | | |
16571 | | |
16572 | | |
16573 | | |
16574 | | |
16575 | | |
16576 | | </td> |
16577 | | |
16578 | | |
16579 | | |
16580 | | |
16581 | | |
16582 | | |
16583 | | <td style="vertical-align: top;">R(10)<br> |
16584 | | |
16585 | | |
16586 | | |
16587 | | |
16588 | | |
16589 | | |
16590 | | |
16591 | | </td> |
16592 | | |
16593 | | |
16594 | | |
16595 | | |
16596 | | |
16597 | | |
16598 | | <td style="vertical-align: top;"><span style="font-style: italic;">10 |
16599 | | * 0.0</span><br> |
16600 | | |
16601 | | |
16602 | | |
16603 | | |
16604 | | |
16605 | | |
16606 | | </td> |
16607 | | |
16608 | | |
16609 | | |
16610 | | |
16611 | | |
16612 | | |
16613 | | <td style="vertical-align: top;">Gradient(s) of the initial |
16614 | | profile of the v-component of the geostrophic wind (in |
16615 | | 1/100s).<br> |
16616 | | |
16617 | | |
16618 | | |
16619 | | |
16620 | | |
16621 | | |
16622 | | <br> |
16623 | | |
16624 | | |
16625 | | |
16626 | | |
16627 | | |
16628 | | |
16629 | | |
16630 | | The gradient holds starting from the height level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a> |
16631 | | (precisely: for all uv levels k where zu(k) |
16632 | | > <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>, |
16633 | | vg(k) is set: vg(k) = vg(k-1) + dzu(k) |
16634 | | * <span style="font-weight: bold;">vg_vertical_gradient</span>) |
16635 | | up to |
16636 | | the top boundary or up to the next height |
16637 | | level defined by <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>. |
16638 | | A total of 10 different |
16639 | | gradients for 11 height intervals (10 intervals if <a href="#vg_vertical_gradient_level">vg_vertical_gradient_level</a>(1) |
16640 | | = |
16641 | | 0.0) can be assigned. The surface |
16642 | | geostrophic wind is assigned by <a href="#vg_surface">vg_surface</a>.<br> |
16643 | | |
16644 | | |
16645 | | |
16646 | | |
16647 | | |
16648 | | |
16649 | | <br> |
16650 | | |
16651 | | |
16652 | | |
16653 | | |
16654 | | |
16655 | | |
16656 | | <span style="font-weight: bold;">Attention:</span><br> |
16657 | | |
16658 | | |
16659 | | |
16660 | | |
16661 | | |
16662 | | |
16663 | | In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), |
16664 | | the profile is constructed like described above, but starting from the |
16665 | | sea surface (k=nzt) down to the bottom boundary of the model. Height |
16666 | | levels have then to be given as negative values, e.g. <span style="font-weight: bold;">vg_vertical_gradient_level</span> = <span style="font-style: italic;">-500.0</span>, <span style="font-style: italic;">-1000.0</span>.</td> |
16667 | | |
16668 | | |
16669 | | |
16670 | | |
16671 | | |
16672 | | |
16673 | | |
16674 | | </tr> |
16675 | | |
16676 | | |
16677 | | |
16678 | | |
16679 | | |
16680 | | |
16681 | | <tr> |
16682 | | |
16683 | | |
16684 | | |
16685 | | |
16686 | | |
16687 | | |
16688 | | <td style="vertical-align: top;"> |
16689 | | |
16690 | | |
16691 | | |
16692 | | |
16693 | | |
16694 | | |
16695 | | <p><a name="vg_vertical_gradient_level"></a><span style="font-weight: bold;">vg_vertical_gradient_level</span></p> |
16696 | | |
16697 | | |
16698 | | |
16699 | | |
16700 | | |
16701 | | |
16702 | | |
16703 | | </td> |
16704 | | |
16705 | | |
16706 | | |
16707 | | |
16708 | | |
16709 | | |
16710 | | <td style="vertical-align: top;">R(10)<br> |
16711 | | |
16712 | | |
16713 | | |
16714 | | |
16715 | | |
16716 | | |
16717 | | |
16718 | | </td> |
16719 | | |
16720 | | |
16721 | | |
16722 | | |
16723 | | |
16724 | | |
16725 | | <td style="vertical-align: top;"><span style="font-style: italic;">10 |
16726 | | * 0.0</span><br> |
16727 | | |
16728 | | |
16729 | | |
16730 | | |
16731 | | |
16732 | | |
16733 | | </td> |
16734 | | |
16735 | | |
16736 | | |
16737 | | |
16738 | | |
16739 | | |
16740 | | <td style="vertical-align: top;">Height level from which on the |
16741 | | gradient defined by <a href="#vg_vertical_gradient">vg_vertical_gradient</a> |
16742 | | is effective (in m).<br> |
16743 | | |
16744 | | |
16745 | | |
16746 | | |
16747 | | |
16748 | | |
16749 | | <br> |
16750 | | |
16751 | | |
16752 | | |
16753 | | |
16754 | | |
16755 | | |
16756 | | |
16757 | | The height levels have to be assigned in ascending order. For the |
16758 | | piecewise construction of a profile of the v-component of the |
16759 | | geostrophic wind component (vg) see <a href="#vg_vertical_gradient">vg_vertical_gradient</a>.<br> |
16760 | | |
16761 | | |
16762 | | |
16763 | | |
16764 | | |
16765 | | |
16766 | | <br> |
16767 | | |
16768 | | |
16769 | | |
16770 | | |
16771 | | |
16772 | | |
16773 | | <span style="font-weight: bold;">Attention:</span><br> |
16774 | | |
16775 | | |
16776 | | |
16777 | | |
16778 | | |
16779 | | |
16780 | | In case of ocean runs (see <a href="chapter_4.1.html#ocean">ocean</a>), the (negative) height levels have to be assigned in descending order.</td> |
16781 | | |
16782 | | |
16783 | | |
16784 | | |
16785 | | |
16786 | | |
16787 | | |
16788 | | </tr> |
16789 | | |
16790 | | |
16791 | | |
16792 | | |
16793 | | |
16794 | | |
16795 | | <tr> |
16796 | | |
16797 | | |
16798 | | |
16799 | | |
16800 | | |
16801 | | |
16802 | | <td style="vertical-align: top;"> |
16803 | | |
16804 | | |
16805 | | |
16806 | | |
16807 | | |
16808 | | |
16809 | | <p><a name="wall_adjustment"></a><b>wall_adjustment</b></p> |
16810 | | |
16811 | | |
16812 | | |
16813 | | |
16814 | | |
16815 | | |
16816 | | |
16817 | | </td> |
16818 | | |
16819 | | |
16820 | | |
16821 | | |
16822 | | |
16823 | | |
16824 | | <td style="vertical-align: top;">L</td> |
16825 | | |
16826 | | |
16827 | | |
16828 | | |
16829 | | |
16830 | | |
16831 | | |
16832 | | <td style="vertical-align: top;"><i>.T.</i></td> |
16833 | | |
16834 | | |
16835 | | |
16836 | | |
16837 | | |
16838 | | |
16839 | | |
16840 | | <td style="vertical-align: top;"> |
16841 | | |
16842 | | |
16843 | | |
16844 | | |
16845 | | |
16846 | | |
16847 | | <p>Parameter to |
16848 | | restrict the mixing length in the vicinity of the |
16849 | | bottom |
16850 | | boundary (and near vertical walls of a non-flat <a href="chapter_4.1.html#topography">topography</a>). </p> |
16851 | | |
16852 | | |
16853 | | |
16854 | | |
16855 | | |
16856 | | |
16857 | | |
16858 | | |
16859 | | |
16860 | | |
16861 | | |
16862 | | |
16863 | | |
16864 | | <p>With <b>wall_adjustment</b> |
16865 | | = <i>.TRUE., </i>the mixing |
16866 | | length is limited to a maximum of 1.8 * z. This condition |
16867 | | typically affects only the |
16868 | | first grid points above the bottom boundary.</p> |
16869 | | |
16870 | | |
16871 | | |
16872 | | |
16873 | | <p>In case of a non-flat <a href="chapter_4.1.html#topography">topography</a> the respective horizontal distance from vertical walls is used.</p> |
16874 | | |
16875 | | |
16876 | | |
16877 | | |
16878 | | |
16879 | | |
16880 | | </td> |
16881 | | |
16882 | | |
16883 | | |
16884 | | |
16885 | | |
16886 | | |
16887 | | </tr> |
16888 | | |
16889 | | |
16890 | | |
16891 | | |
16892 | | |
16893 | | |
16894 | | |
16895 | | <tr> |
16896 | | |
16897 | | |
16898 | | |
16899 | | |
16900 | | |
16901 | | |
16902 | | <td style="vertical-align: top;"><span style="font-weight: bold;"><a name="wall_heatflux"></a>wall_heatflux</span></td> |
16903 | | |
16904 | | |
16905 | | |
16906 | | |
16907 | | |
16908 | | |
16909 | | |
16910 | | <td style="vertical-align: top;">R(5)</td> |
16911 | | |
16912 | | |
16913 | | |
16914 | | |
16915 | | |
16916 | | |
16917 | | <td style="vertical-align: top;"><span style="font-style: italic;">5 * 0.0</span></td> |
16918 | | |
16919 | | |
16920 | | |
16921 | | |
16922 | | |
16923 | | |
16924 | | <td>Prescribed |
16925 | | kinematic sensible heat flux in K m/s |
16926 | | at the five topography faces:<br> |
16927 | | |
16928 | | |
16929 | | |
16930 | | |
16931 | | |
16932 | | |
16933 | | <br> |
16934 | | |
16935 | | |
16936 | | |
16937 | | |
16938 | | |
16939 | | |
16940 | | |
16941 | | |
16942 | | |
16943 | | |
16944 | | |
16945 | | |
16946 | | |
16947 | | <div style="margin-left: 40px;"><span style="font-weight: bold;">wall_heatflux(0) |
16948 | | </span>top face<br> |
16949 | | |
16950 | | |
16951 | | |
16952 | | |
16953 | | |
16954 | | |
16955 | | <span style="font-weight: bold;">wall_heatflux(1) |
16956 | | </span>left face<br> |
16957 | | |
16958 | | |
16959 | | |
16960 | | |
16961 | | |
16962 | | |
16963 | | <span style="font-weight: bold;">wall_heatflux(2) |
16964 | | </span>right face<br> |
16965 | | |
16966 | | |
16967 | | |
16968 | | |
16969 | | |
16970 | | |
16971 | | <span style="font-weight: bold;">wall_heatflux(3) |
16972 | | </span>south face<br> |
16973 | | |
16974 | | |
16975 | | |
16976 | | |
16977 | | |
16978 | | |
16979 | | <span style="font-weight: bold;">wall_heatflux(4) |
16980 | | </span>north face</div> |
16981 | | |
16982 | | |
16983 | | |
16984 | | |
16985 | | |
16986 | | |
16987 | | <br> |
16988 | | |
16989 | | |
16990 | | |
16991 | | |
16992 | | |
16993 | | |
16994 | | |
16995 | | This parameter applies only in case of a non-flat <a href="#topography">topography</a>. The |
16996 | | parameter <a href="#random_heatflux">random_heatflux</a> |
16997 | | can be used to impose random perturbations on the internal |
16998 | | two-dimensional surface heat |
16999 | | flux field <span style="font-style: italic;">shf</span> |
17000 | | that is composed of <a href="#surface_heatflux">surface_heatflux</a> |
17001 | | at the bottom surface and <span style="font-weight: bold;">wall_heatflux(0)</span> |
17002 | | at the topography top face. </td> |
17003 | | |
17004 | | |
17005 | | |
17006 | | |
17007 | | |
17008 | | |
17009 | | </tr> |
17010 | | |
17011 | | |
17012 | | |
17013 | | |
17014 | | |
17015 | | |
17016 | | |
17017 | | |
17018 | | |
17019 | | |
17020 | | |
17021 | | |
17022 | | |
17023 | | </tbody> |
17024 | | </table> |
17025 | | |
17026 | | |
17027 | | |
17028 | | |
17029 | | |
17030 | | |
17031 | | <br> |
17032 | | |
17033 | | |
17034 | | |
17035 | | |
17036 | | |
17037 | | |
17038 | | |
17039 | | <p style="line-height: 100%;"><br> |
17040 | | |
17041 | | |
17042 | | |
17043 | | |
17044 | | |
17045 | | |
17046 | | <font color="#000080"><font color="#000080"><a href="chapter_4.0.html"><font color="#000080"><img name="Grafik1" src="left.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="index.html"><font color="#000080"><img name="Grafik2" src="up.gif" align="bottom" border="2" height="32" width="32"></font></a><a href="chapter_4.2.html"><font color="#000080"><img name="Grafik3" src="right.gif" align="bottom" border="2" height="32" width="32"></font></a></font></font></p> |
17047 | | |
17048 | | |
17049 | | |
17050 | | |
17051 | | |
17052 | | |
17053 | | |
17054 | | <p style="line-height: 100%;"><i>Last |
17055 | | change: </i> $Id$ </p> |
17056 | | |
17057 | | |
17058 | | |
17059 | | |
17060 | | |
17061 | | |
17062 | | |
17063 | | <br> |
17064 | | |
17065 | | |
17066 | | |
17067 | | |
17068 | | |
17069 | | |
17070 | | <br> |
17071 | | |
17072 | | |
17073 | | |
17074 | | |
17075 | | |
17076 | | |
17077 | | |
17078 | | </body></html> |
| 1 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> |
| 2 | <HTML> |
| 3 | <HEAD> |
| 4 | <META HTTP-EQUIV="CONTENT-TYPE" CONTENT="text/html; charset=utf-8"> |
| 5 | <TITLE>PALM chapter 4.1</TITLE> |
| 6 | <META NAME="GENERATOR" CONTENT="OpenOffice.org 3.0 (Unix)"> |
| 7 | <META NAME="CREATED" CONTENT="0;0"> |
| 8 | <META NAME="CHANGED" CONTENT="20090624;16094200"> |
| 9 | </HEAD> |
| 10 | <BODY LANG="en-US" DIR="LTR"> |
| 11 | <H3><A NAME="chapter4.1"></A>4.1 Initialization parameters</H3> |
| 12 | <P STYLE="margin-bottom: 0in"><BR> |
| 13 | </P> |
| 14 | <TABLE WIDTH=1643 BORDER=1 CELLPADDING=2 CELLSPACING=3> |
| 15 | <COL WIDTH=126> |
| 16 | <COL WIDTH=45> |
| 17 | <COL WIDTH=159> |
| 18 | <COL WIDTH=1280> |
| 19 | <TR> |
| 20 | <TD WIDTH=126> |
| 21 | <P><FONT SIZE=4><B>Parameter name</B></FONT></P> |
| 22 | </TD> |
| 23 | <TD WIDTH=45> |
| 24 | <P><FONT SIZE=4><B>Type</B></FONT></P> |
| 25 | </TD> |
| 26 | <TD WIDTH=159> |
| 27 | <P><FONT SIZE=4><B>Default</B></FONT> <BR><FONT SIZE=4><B>value</B></FONT></P> |
| 28 | </TD> |
| 29 | <TD WIDTH=1280> |
| 30 | <P><FONT SIZE=4><B>Explanation</B></FONT></P> |
| 31 | </TD> |
| 32 | </TR> |
| 33 | <TR> |
| 34 | <TD WIDTH=126> |
| 35 | <P><A NAME="adjust_mixing_length"></A><B>adjust_mixing_length</B></P> |
| 36 | </TD> |
| 37 | <TD WIDTH=45> |
| 38 | <P>L</P> |
| 39 | </TD> |
| 40 | <TD WIDTH=159> |
| 41 | <P><I>.F.</I></P> |
| 42 | </TD> |
| 43 | <TD WIDTH=1280> |
| 44 | <P STYLE="font-style: normal">Near-surface adjustment of the |
| 45 | mixing length to the Prandtl-layer law. |
| 46 | </P> |
| 47 | <P>Usually the mixing length in LES models l<SUB>LES</SUB> depends |
| 48 | (as in PALM) on the grid size and is possibly restricted further |
| 49 | in case of stable stratification and near the lower wall (see |
| 50 | parameter <A HREF="#wall_adjustment">wall_adjustment</A>). With |
| 51 | <B>adjust_mixing_length</B> = <I>.T.</I> the Prandtl' mixing |
| 52 | length l<SUB>PR</SUB> = kappa * z/phi is calculated and the mixing |
| 53 | length actually used in the model is set l = MIN (l<SUB>LES</SUB>, |
| 54 | l<SUB>PR</SUB>). This usually gives a decrease of the mixing |
| 55 | length at the bottom boundary and considers the fact that eddy |
| 56 | sizes decrease in the vicinity of the wall. |
| 57 | </P> |
| 58 | <P STYLE="font-style: normal"><B>Warning:</B> So far, there is no |
| 59 | good experience with <B>adjust_mixing_length</B> = <I>.T.</I> ! |
| 60 | </P> |
| 61 | <P>With <B>adjust_mixing_length</B> = <I>.T.</I> and the |
| 62 | Prandtl-layer being switched on (see <A HREF="#prandtl_layer">prandtl_layer</A>) |
| 63 | <I>'(u*)** 2+neumann'</I> should always be set as the lower |
| 64 | boundary condition for the TKE (see <A HREF="#bc_e_b">bc_e_b</A>), |
| 65 | otherwise the near-surface value of the TKE is not in agreement |
| 66 | with the Prandtl-layer law (Prandtl-layer law and |
| 67 | Prandtl-Kolmogorov-Ansatz should provide the same value for K<SUB>m</SUB>). |
| 68 | A warning is given, if this is not the case.</P> |
| 69 | </TD> |
| 70 | </TR> |
| 71 | <TR> |
| 72 | <TD WIDTH=126> |
| 73 | <P><A NAME="alpha_surface"></A><B>alpha_surface</B></P> |
| 74 | </TD> |
| 75 | <TD WIDTH=45> |
| 76 | <P>R</P> |
| 77 | </TD> |
| 78 | <TD WIDTH=159> |
| 79 | <P><I>0.0</I></P> |
| 80 | </TD> |
| 81 | <TD WIDTH=1280> |
| 82 | <P STYLE="font-style: normal">Inclination of the model domain with |
| 83 | respect to the horizontal (in degrees). |
| 84 | </P> |
| 85 | <P STYLE="font-style: normal">By means of <B>alpha_surface</B> the |
| 86 | model domain can be inclined in x-direction with respect to the |
| 87 | horizontal. In this way flows over inclined surfaces (e.g. |
| 88 | drainage flows, gravity flows) can be simulated. In case of |
| 89 | <B>alpha_surface </B>/= <I>0</I> the buoyancy term appears both in |
| 90 | the equation of motion of the u-component and of the w-component.</P> |
| 91 | <P><SPAN STYLE="font-style: normal">An inclination is only |
| 92 | possible in case of cyclic horizontal boundary conditions along x |
| 93 | AND y (see <A HREF="#bc_lr">bc_lr</A> and <A HREF="#bc_ns">bc_ns</A>) |
| 94 | and <A HREF="#topography">topography</A> = </SPAN><I>'flat'</I><SPAN STYLE="font-style: normal">. |
| 95 | </SPAN> |
| 96 | </P> |
| 97 | <P>Runs with inclined surface still require additional |
| 98 | user-defined code as well as modifications to the default code. |
| 99 | Please ask the <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/PALM_group.html#0">PALM |
| 100 | developer group</A>.</P> |
| 101 | </TD> |
| 102 | </TR> |
| 103 | <TR> |
| 104 | <TD WIDTH=126> |
| 105 | <P><A NAME="bc_e_b"></A><B>bc_e_b</B></P> |
| 106 | </TD> |
| 107 | <TD WIDTH=45> |
| 108 | <P>C * 20</P> |
| 109 | </TD> |
| 110 | <TD WIDTH=159> |
| 111 | <P><I>'neumann'</I></P> |
| 112 | </TD> |
| 113 | <TD WIDTH=1280> |
| 114 | <P STYLE="font-style: normal">Bottom boundary condition of the |
| 115 | TKE. |
| 116 | </P> |
| 117 | <P><B>bc_e_b</B> may be set to <I>'neumann'</I> or <I>'(u*) |
| 118 | ** 2+neumann'</I>. <B>bc_e_b</B> = <I>'neumann'</I> yields to |
| 119 | e(k=0)=e(k=1) (Neumann boundary condition), where e(k=1) is |
| 120 | calculated via the prognostic TKE equation. Choice of |
| 121 | <I>'(u*)**2+neumann'</I> also yields to e(k=0)=e(k=1), but the TKE |
| 122 | at the Prandtl-layer top (k=1) is calculated diagnostically by |
| 123 | e(k=1)=(us/0.1)**2. However, this is only allowed if a |
| 124 | Prandtl-layer is used (<A HREF="#prandtl_layer">prandtl_layer</A>). |
| 125 | If this is not the case, a warning is given and <B>bc_e_b</B> is |
| 126 | reset to <I>'neumann'</I>. |
| 127 | </P> |
| 128 | <P STYLE="font-style: normal">At the top boundary a Neumann |
| 129 | boundary condition is generally used: (e(nz+1) = e(nz)).</P> |
| 130 | </TD> |
| 131 | </TR> |
| 132 | <TR> |
| 133 | <TD WIDTH=126> |
| 134 | <P><A NAME="bc_lr"></A><B>bc_lr</B></P> |
| 135 | </TD> |
| 136 | <TD WIDTH=45> |
| 137 | <P>C * 20</P> |
| 138 | </TD> |
| 139 | <TD WIDTH=159> |
| 140 | <P><I>'cyclic'</I></P> |
| 141 | </TD> |
| 142 | <TD WIDTH=1280> |
| 143 | <P>Boundary condition along x (for all quantities).<BR><BR>By |
| 144 | default, a cyclic boundary condition is used along x.<BR><BR><B>bc_lr</B> |
| 145 | may also be assigned the values <I>'dirichlet/radiation'</I> |
| 146 | (inflow from left, outflow to the right) or <I>'radiation/dirichlet'</I> |
| 147 | (inflow from right, outflow to the left). This requires the |
| 148 | multi-grid method to be used for solving the Poisson equation for |
| 149 | perturbation pressure (see <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</A>) |
| 150 | and it also requires cyclic boundary conditions along y |
| 151 | (see <A HREF="#bc_ns">bc_ns</A>).<BR><BR>In case of these |
| 152 | non-cyclic lateral boundaries, a Dirichlet condition is used at |
| 153 | the inflow for all quantities (initial vertical profiles - see |
| 154 | <A HREF="#initializing_actions">initializing_actions</A> - are |
| 155 | fixed during the run) except u, to which a Neumann (zero gradient) |
| 156 | condition is applied. At the outflow, a radiation condition is |
| 157 | used for all velocity components, while a Neumann (zero gradient) |
| 158 | condition is used for the scalars. For perturbation pressure |
| 159 | Neumann (zero gradient) conditions are assumed both at the inflow |
| 160 | and at the outflow.<BR><BR>When using non-cyclic lateral |
| 161 | boundaries, a filter is applied to the velocity field in the |
| 162 | vicinity of the outflow in order to suppress any reflections of |
| 163 | outgoing disturbances (see <A HREF="#km_damp_max">km_damp_max</A> |
| 164 | and <A HREF="#outflow_damping_width">outflow_damping_width</A>).<BR><BR>In |
| 165 | order to maintain a turbulent state of the flow, it may be |
| 166 | neccessary to continuously impose perturbations on the horizontal |
| 167 | velocity field in the vicinity of the inflow throughout the whole |
| 168 | run. This can be switched on using <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#create_disturbances">create_disturbances</A>. |
| 169 | The horizontal range to which these perturbations are applied is |
| 170 | controlled by the parameters <A HREF="#inflow_disturbance_begin">inflow_disturbance_begin</A> |
| 171 | and <A HREF="#inflow_disturbance_end">inflow_disturbance_end</A>. |
| 172 | The vertical range and the perturbation amplitude are given by |
| 173 | <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_b</A>, |
| 174 | <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_level_t</A>, |
| 175 | and <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">disturbance_amplitude</A>. |
| 176 | The time interval at which perturbations are to be imposed is set |
| 177 | by <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#dt_disturb">dt_disturb</A>.<BR><BR>In |
| 178 | case of non-cyclic horizontal boundaries <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#call_psolver_at_all_substeps">call_psolver |
| 179 | at_all_substeps</A> = .T. should be used.<BR><BR><B>Note:</B><BR>Using |
| 180 | non-cyclic lateral boundaries requires very sensitive adjustments |
| 181 | of the inflow (vertical profiles) and the bottom boundary |
| 182 | conditions, e.g. a surface heating should not be applied near the |
| 183 | inflow boundary because this may significantly disturb the inflow. |
| 184 | Please check the model results very carefully.</P> |
| 185 | </TD> |
| 186 | </TR> |
| 187 | <TR> |
| 188 | <TD WIDTH=126> |
| 189 | <P><A NAME="bc_ns"></A><B>bc_ns</B></P> |
| 190 | </TD> |
| 191 | <TD WIDTH=45> |
| 192 | <P>C * 20</P> |
| 193 | </TD> |
| 194 | <TD WIDTH=159> |
| 195 | <P><I>'cyclic'</I></P> |
| 196 | </TD> |
| 197 | <TD WIDTH=1280> |
| 198 | <P>Boundary condition along y (for all quantities).<BR><BR>By |
| 199 | default, a cyclic boundary condition is used along y.<BR><BR><B>bc_ns</B> |
| 200 | may also be assigned the values <I>'dirichlet/radiation'</I> |
| 201 | (inflow from rear ("north"), outflow to the front |
| 202 | ("south")) or <I>'radiation/dirichlet'</I> (inflow from |
| 203 | front ("south"), outflow to the rear ("north")). |
| 204 | This requires the multi-grid method to be used for solving the |
| 205 | Poisson equation for perturbation pressure (see <A HREF="chapter_4.2.html#psolver">psolver</A>) |
| 206 | and it also requires cyclic boundary conditions along x |
| 207 | (see<BR><A HREF="#bc_lr">bc_lr</A>).<BR><BR>In case of these |
| 208 | non-cyclic lateral boundaries, a Dirichlet condition is used at |
| 209 | the inflow for all quantities (initial vertical profiles - see |
| 210 | <A HREF="#initializing_actions">initializing_actions</A> - are |
| 211 | fixed during the run) except u, to which a Neumann (zero gradient) |
| 212 | condition is applied. At the outflow, a radiation condition is |
| 213 | used for all velocity components, while a Neumann (zero gradient) |
| 214 | condition is used for the scalars. For perturbation pressure |
| 215 | Neumann (zero gradient) conditions are assumed both at the inflow |
| 216 | and at the outflow.<BR><BR>For further details regarding |
| 217 | non-cyclic lateral boundary conditions see <A HREF="#bc_lr">bc_lr</A>.</P> |
| 218 | </TD> |
| 219 | </TR> |
| 220 | <TR> |
| 221 | <TD WIDTH=126> |
| 222 | <P><A NAME="bc_p_b"></A><B>bc_p_b</B></P> |
| 223 | </TD> |
| 224 | <TD WIDTH=45> |
| 225 | <P>C * 20</P> |
| 226 | </TD> |
| 227 | <TD WIDTH=159> |
| 228 | <P><I>'neumann'</I></P> |
| 229 | </TD> |
| 230 | <TD WIDTH=1280> |
| 231 | <P STYLE="font-style: normal">Bottom boundary condition of the |
| 232 | perturbation pressure. |
| 233 | </P> |
| 234 | <P>Allowed values are <I>'dirichlet'</I>, <I>'neumann'</I> and |
| 235 | <I>'neumann+inhomo'</I>. <I>'dirichlet'</I> sets |
| 236 | p(k=0)=0.0, <I>'neumann'</I> sets p(k=0)=p(k=1). |
| 237 | <I>'neumann+inhomo'</I> corresponds to an extended Neumann |
| 238 | boundary condition where heat flux or temperature inhomogeneities |
| 239 | near the surface (pt(k=1)) are additionally regarded (see |
| 240 | Shen and LeClerc (1995, Q.J.R. Meteorol. Soc., 1209)). This |
| 241 | condition is only permitted with the Prandtl-layer switched on |
| 242 | (<A HREF="#prandtl_layer">prandtl_layer</A>), otherwise the run is |
| 243 | terminated. |
| 244 | </P> |
| 245 | <P>Since at the bottom boundary of the model the vertical velocity |
| 246 | disappears (w(k=0) = 0.0), the consistent Neumann condition |
| 247 | (<I>'neumann'</I> or <I>'neumann+inhomo'</I>) dp/dz = 0 should be |
| 248 | used, which leaves the vertical component w unchanged when the |
| 249 | pressure solver is applied. Simultaneous use of the Neumann |
| 250 | boundary conditions both at the bottom and at the top boundary |
| 251 | (<A HREF="#bc_p_t">bc_p_t</A>) usually yields no consistent |
| 252 | solution for the perturbation pressure and should be avoided.</P> |
| 253 | </TD> |
| 254 | </TR> |
| 255 | <TR> |
| 256 | <TD WIDTH=126> |
| 257 | <P><A NAME="bc_p_t"></A><B>bc_p_t</B></P> |
| 258 | </TD> |
| 259 | <TD WIDTH=45> |
| 260 | <P>C * 20</P> |
| 261 | </TD> |
| 262 | <TD WIDTH=159> |
| 263 | <P><I>'dirichlet'</I></P> |
| 264 | </TD> |
| 265 | <TD WIDTH=1280> |
| 266 | <P STYLE="font-style: normal">Top boundary condition of the |
| 267 | perturbation pressure. |
| 268 | </P> |
| 269 | <P STYLE="font-style: normal">Allowed values are <I>'dirichlet'</I> |
| 270 | (p(k=nz+1)= 0.0) or <I>'neumann'</I> (p(k=nz+1)=p(k=nz)). |
| 271 | </P> |
| 272 | <P>Simultaneous use of Neumann boundary conditions both at the top |
| 273 | and bottom boundary (<A HREF="#bc_p_b">bc_p_b</A>) usually yields |
| 274 | no consistent solution for the perturbation pressure and should be |
| 275 | avoided. Since at the bottom boundary the Neumann condition |
| 276 | is a good choice (see <A HREF="#bc_p_b">bc_p_b</A>), a Dirichlet |
| 277 | condition should be set at the top boundary.</P> |
| 278 | </TD> |
| 279 | </TR> |
| 280 | <TR> |
| 281 | <TD WIDTH=126> |
| 282 | <P><A NAME="bc_pt_b"></A><B>bc_pt_b</B></P> |
| 283 | </TD> |
| 284 | <TD WIDTH=45> |
| 285 | <P>C*20</P> |
| 286 | </TD> |
| 287 | <TD WIDTH=159> |
| 288 | <P><I>'dirichlet'</I></P> |
| 289 | </TD> |
| 290 | <TD WIDTH=1280> |
| 291 | <P STYLE="font-style: normal">Bottom boundary condition of the |
| 292 | potential temperature. |
| 293 | </P> |
| 294 | <P>Allowed values are <I>'dirichlet'</I> (pt(k=0) = const. = |
| 295 | <A HREF="#pt_surface">pt_surface</A> + <A HREF="#pt_surface_initial_change">pt_surface_initial_change</A>; |
| 296 | the user may change this value during the run using user-defined |
| 297 | code) and <I>'neumann'</I> (pt(k=0)=pt(k=1)). <BR>When a |
| 298 | constant surface sensible heat flux is used (<A HREF="#surface_heatflux">surface_heatflux</A>), |
| 299 | <B>bc_pt_b</B> = <I>'neumann'</I> must be used, because otherwise |
| 300 | the resolved scale may contribute to the surface flux so that a |
| 301 | constant value cannot be guaranteed.</P> |
| 302 | <P>In the <A HREF="chapter_3.8.html">coupled</A> atmosphere |
| 303 | executable, <A HREF="chapter_4.2.html#bc_pt_b">bc_pt_b</A> is |
| 304 | internally set and does not need to be prescribed.</P> |
| 305 | </TD> |
| 306 | </TR> |
| 307 | <TR> |
| 308 | <TD WIDTH=126> |
| 309 | <P><A NAME="pc_pt_t"></A><B>bc_pt_t</B></P> |
| 310 | </TD> |
| 311 | <TD WIDTH=45> |
| 312 | <P>C * 20</P> |
| 313 | </TD> |
| 314 | <TD WIDTH=159> |
| 315 | <P><I>'initial_ gradient'</I></P> |
| 316 | </TD> |
| 317 | <TD WIDTH=1280> |
| 318 | <P STYLE="font-style: normal">Top boundary condition of the |
| 319 | potential temperature. |
| 320 | </P> |
| 321 | <P>Allowed are the values <I>'dirichlet' </I>(pt(k=nz+1) does not |
| 322 | change during the run), <I>'neumann'</I> (pt(k=nz+1)=pt(k=nz)), |
| 323 | and <I>'initial_gradient'</I>. With the |
| 324 | 'initial_gradient'-condition the value of the temperature gradient |
| 325 | at the top is calculated from the initial temperature profile (see |
| 326 | <A HREF="#pt_surface">pt_surface</A>, <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A>) |
| 327 | by bc_pt_t_val = (pt_init(k=nz+1) - pt_init(k=nz)) / |
| 328 | dzu(nz+1).<BR>Using this value (assumed constant during the run) |
| 329 | the temperature boundary values are calculated as |
| 330 | </P> |
| 331 | <UL> |
| 332 | <P STYLE="font-style: normal">pt(k=nz+1) = pt(k=nz) + bc_pt_t_val |
| 333 | * dzu(nz+1)</P> |
| 334 | </UL> |
| 335 | <P><SPAN STYLE="font-style: normal">(up to k=nz the prognostic |
| 336 | equation for the temperature is solved).<BR>When a constant |
| 337 | sensible heat flux is used at the top boundary (<A HREF="#top_heatflux">top_heatflux</A>), |
| 338 | </SPAN><SPAN STYLE="font-style: normal"><B>bc_pt_t</B></SPAN> <SPAN STYLE="font-style: normal">= |
| 339 | </SPAN><I>'neumann'</I> <SPAN STYLE="font-style: normal">must be |
| 340 | used, because otherwise the resolved scale may contribute to the |
| 341 | top flux so that a constant value cannot be guaranteed.</SPAN></P> |
| 342 | </TD> |
| 343 | </TR> |
| 344 | <TR> |
| 345 | <TD WIDTH=126> |
| 346 | <P><A NAME="bc_q_b"></A><B>bc_q_b</B></P> |
| 347 | </TD> |
| 348 | <TD WIDTH=45> |
| 349 | <P>C * 20</P> |
| 350 | </TD> |
| 351 | <TD WIDTH=159> |
| 352 | <P><I>'dirichlet'</I></P> |
| 353 | </TD> |
| 354 | <TD WIDTH=1280> |
| 355 | <P STYLE="font-style: normal">Bottom boundary condition of the |
| 356 | specific humidity / total water content. |
| 357 | </P> |
| 358 | <P>Allowed values are <I>'dirichlet'</I> (q(k=0) = const. = |
| 359 | <A HREF="#q_surface">q_surface</A> + <A HREF="#q_surface_initial_change">q_surface_initial_change</A>; |
| 360 | the user may change this value during the run using user-defined |
| 361 | code) and <I>'neumann'</I> (q(k=0)=q(k=1)). <BR>When a |
| 362 | constant surface latent heat flux is used (<A HREF="#surface_waterflux">surface_waterflux</A>), |
| 363 | <B>bc_q_b</B> = <I>'neumann'</I> must be used, because otherwise |
| 364 | the resolved scale may contribute to the surface flux so that a |
| 365 | constant value cannot be guaranteed.</P> |
| 366 | </TD> |
| 367 | </TR> |
| 368 | <TR> |
| 369 | <TD WIDTH=126> |
| 370 | <P><A NAME="bc_q_t"></A><B>bc_q_t</B></P> |
| 371 | </TD> |
| 372 | <TD WIDTH=45> |
| 373 | <P><I>C * 20</I></P> |
| 374 | </TD> |
| 375 | <TD WIDTH=159> |
| 376 | <P><I>'neumann'</I></P> |
| 377 | </TD> |
| 378 | <TD WIDTH=1280> |
| 379 | <P STYLE="font-style: normal">Top boundary condition of the |
| 380 | specific humidity / total water content. |
| 381 | </P> |
| 382 | <P>Allowed are the values <I>'dirichlet'</I> (q(k=nz) and |
| 383 | q(k=nz+1) do not change during the run) and <I>'neumann'</I>. With |
| 384 | the Neumann boundary condition the value of the humidity gradient |
| 385 | at the top is calculated from the initial humidity profile (see |
| 386 | <A HREF="#q_surface">q_surface</A>, <A HREF="#q_vertical_gradient">q_vertical_gradient</A>) |
| 387 | by: bc_q_t_val = ( q_init(k=nz) - q_init(k=nz-1)) / dzu(nz).<BR>Using |
| 388 | this value (assumed constant during the run) the humidity boundary |
| 389 | values are calculated as |
| 390 | </P> |
| 391 | <UL> |
| 392 | <P STYLE="font-style: normal">q(k=nz+1) =q(k=nz) + bc_q_t_val * |
| 393 | dzu(nz+1)</P> |
| 394 | </UL> |
| 395 | <P STYLE="font-style: normal">(up tp k=nz the prognostic equation |
| 396 | for q is solved). |
| 397 | </P> |
| 398 | </TD> |
| 399 | </TR> |
| 400 | <TR> |
| 401 | <TD WIDTH=126> |
| 402 | <P><A NAME="bc_s_b"></A><B>bc_s_b</B></P> |
| 403 | </TD> |
| 404 | <TD WIDTH=45> |
| 405 | <P>C * 20</P> |
| 406 | </TD> |
| 407 | <TD WIDTH=159> |
| 408 | <P><I>'dirichlet'</I></P> |
| 409 | </TD> |
| 410 | <TD WIDTH=1280> |
| 411 | <P STYLE="font-style: normal">Bottom boundary condition of the |
| 412 | scalar concentration. |
| 413 | </P> |
| 414 | <P>Allowed values are <I>'dirichlet'</I> (s(k=0) = const. = |
| 415 | <A HREF="#s_surface">s_surface</A> + <A HREF="#s_surface_initial_change">s_surface_initial_change</A>; |
| 416 | the user may change this value during the run using user-defined |
| 417 | code) and <I>'neumann'</I> (s(k=0) = s(k=1)). <BR>When a |
| 418 | constant surface concentration flux is used (<A HREF="#surface_scalarflux">surface_scalarflux</A>), |
| 419 | <B>bc_s_b</B> = <I>'neumann'</I> must be used, because otherwise |
| 420 | the resolved scale may contribute to the surface flux so that a |
| 421 | constant value cannot be guaranteed.</P> |
| 422 | </TD> |
| 423 | </TR> |
| 424 | <TR> |
| 425 | <TD WIDTH=126> |
| 426 | <P><A NAME="bc_s_t"></A><B>bc_s_t</B></P> |
| 427 | </TD> |
| 428 | <TD WIDTH=45> |
| 429 | <P>C * 20</P> |
| 430 | </TD> |
| 431 | <TD WIDTH=159> |
| 432 | <P><I>'neumann'</I></P> |
| 433 | </TD> |
| 434 | <TD WIDTH=1280> |
| 435 | <P STYLE="font-style: normal">Top boundary condition of the scalar |
| 436 | concentration. |
| 437 | </P> |
| 438 | <P>Allowed are the values <I>'dirichlet'</I> (s(k=nz) and |
| 439 | s(k=nz+1) do not change during the run) and <I>'neumann'</I>. With |
| 440 | the Neumann boundary condition the value of the scalar |
| 441 | concentration gradient at the top is calculated from the initial |
| 442 | scalar concentration profile (see <A HREF="#s_surface">s_surface</A>, |
| 443 | <A HREF="#s_vertical_gradient">s_vertical_gradient</A>) by: |
| 444 | bc_s_t_val = (s_init(k=nz) - s_init(k=nz-1)) / dzu(nz).<BR>Using |
| 445 | this value (assumed constant during the run) the concentration |
| 446 | boundary values are calculated as |
| 447 | </P> |
| 448 | <UL> |
| 449 | <P STYLE="font-style: normal">s(k=nz+1) = s(k=nz) + bc_s_t_val * |
| 450 | dzu(nz+1)</P> |
| 451 | </UL> |
| 452 | <P STYLE="font-style: normal">(up to k=nz the prognostic equation |
| 453 | for the scalar concentration is solved).</P> |
| 454 | </TD> |
| 455 | </TR> |
| 456 | <TR> |
| 457 | <TD WIDTH=126> |
| 458 | <P><A NAME="bc_sa_t"></A><B>bc_sa_t</B></P> |
| 459 | </TD> |
| 460 | <TD WIDTH=45> |
| 461 | <P>C * 20</P> |
| 462 | </TD> |
| 463 | <TD WIDTH=159> |
| 464 | <P><I>'neumann'</I></P> |
| 465 | </TD> |
| 466 | <TD WIDTH=1280> |
| 467 | <P STYLE="font-style: normal">Top boundary condition of the |
| 468 | salinity. |
| 469 | </P> |
| 470 | <P>This parameter only comes into effect for ocean runs (see |
| 471 | parameter <A HREF="#ocean">ocean</A>).</P> |
| 472 | <P><SPAN STYLE="font-style: normal">Allowed are the values |
| 473 | </SPAN><I>'dirichlet' </I><SPAN STYLE="font-style: normal">(sa(k=nz+1) |
| 474 | does not change during the run) and </SPAN><I>'neumann'</I> |
| 475 | <SPAN STYLE="font-style: normal">(sa(k=nz+1)=sa(k=nz)). <BR><BR>When |
| 476 | a constant salinity flux is used at the top boundary |
| 477 | (<A HREF="#top_salinityflux">top_salinityflux</A>), </SPAN><SPAN STYLE="font-style: normal"><B>bc_sa_t</B></SPAN> |
| 478 | <SPAN STYLE="font-style: normal">= </SPAN><I>'neumann'</I> <SPAN STYLE="font-style: normal">must |
| 479 | be used, because otherwise the resolved scale may contribute to |
| 480 | the top flux so that a constant value cannot be guaranteed.</SPAN></P> |
| 481 | </TD> |
| 482 | </TR> |
| 483 | <TR> |
| 484 | <TD WIDTH=126> |
| 485 | <P><A NAME="bc_uv_b"></A><B>bc_uv_b</B></P> |
| 486 | </TD> |
| 487 | <TD WIDTH=45> |
| 488 | <P>C * 20</P> |
| 489 | </TD> |
| 490 | <TD WIDTH=159> |
| 491 | <P><I>'dirichlet'</I></P> |
| 492 | </TD> |
| 493 | <TD WIDTH=1280> |
| 494 | <P STYLE="font-style: normal">Bottom boundary condition of the |
| 495 | horizontal velocity components u and v. |
| 496 | </P> |
| 497 | <P>Allowed values are <I>'dirichlet' </I>and <I>'neumann'</I>. |
| 498 | <B>bc_uv_b</B> = <I>'dirichlet'</I> yields the no-slip condition |
| 499 | with u=v=0 at the bottom. Due to the staggered grid u(k=0) and |
| 500 | v(k=0) are located at z = - 0,5 * <A HREF="#dz">dz</A> (below the |
| 501 | bottom), while u(k=1) and v(k=1) are located at z = +0,5 * dz. |
| 502 | u=v=0 at the bottom is guaranteed using mirror boundary |
| 503 | condition: |
| 504 | </P> |
| 505 | <UL> |
| 506 | <P STYLE="font-style: normal">u(k=0) = - u(k=1) and v(k=0) = - |
| 507 | v(k=1)</P> |
| 508 | </UL> |
| 509 | <P><SPAN STYLE="font-style: normal">The Neumann boundary condition |
| 510 | yields the free-slip condition with u(k=0) = u(k=1) and v(k=0) = |
| 511 | v(k=1). With Prandtl - layer switched on (see <A HREF="#prandtl_layer">prandtl_layer</A>), |
| 512 | the free-slip condition is not allowed (otherwise the run will be |
| 513 | terminated)</SPAN><FONT COLOR="#000000"><SPAN STYLE="font-style: normal">.</SPAN></FONT></P> |
| 514 | </TD> |
| 515 | </TR> |
| 516 | <TR> |
| 517 | <TD WIDTH=126> |
| 518 | <P><A NAME="bc_uv_t"></A><B>bc_uv_t</B></P> |
| 519 | </TD> |
| 520 | <TD WIDTH=45> |
| 521 | <P>C * 20</P> |
| 522 | </TD> |
| 523 | <TD WIDTH=159> |
| 524 | <P><I>'dirichlet'</I></P> |
| 525 | </TD> |
| 526 | <TD WIDTH=1280> |
| 527 | <P STYLE="font-style: normal">Top boundary condition of the |
| 528 | horizontal velocity components u and v. |
| 529 | </P> |
| 530 | <P>Allowed values are <I>'dirichlet'</I>, <I>'dirichlet_0'</I> and |
| 531 | <I>'neumann'</I>. The Dirichlet condition yields u(k=nz+1) = |
| 532 | ug(nz+1) and v(k=nz+1) = vg(nz+1), Neumann condition yields the |
| 533 | free-slip condition with u(k=nz+1) = u(k=nz) and v(k=nz+1) = |
| 534 | v(k=nz) (up to k=nz the prognostic equations for the velocities |
| 535 | are solved). The special condition <I>'dirichlet_0'</I> can |
| 536 | be used for channel flow, it yields the no-slip condition |
| 537 | u(k=nz+1) = ug(nz+1) = 0 and v(k=nz+1) = vg(nz+1) = 0.</P> |
| 538 | <P>In the <A HREF="chapter_3.8.html">coupled</A> ocean executable, |
| 539 | <A HREF="chapter_4.2.html#bc_uv_t">bc_uv_t</A> is internally |
| 540 | set ('neumann') and does not need to be prescribed.</P> |
| 541 | </TD> |
| 542 | </TR> |
| 543 | <TR> |
| 544 | <TD WIDTH=126> |
| 545 | <P><A NAME="bottom_salinityflux"></A><B>bottom_salinityflux</B></P> |
| 546 | </TD> |
| 547 | <TD WIDTH=45> |
| 548 | <P>R</P> |
| 549 | </TD> |
| 550 | <TD WIDTH=159> |
| 551 | <P><I>0.0</I></P> |
| 552 | </TD> |
| 553 | <TD WIDTH=1280> |
| 554 | <P>Kinematic salinity flux near the surface (in psu m/s). </P> |
| 555 | <P>This parameter only comes into effect for ocean runs (see |
| 556 | parameter <A HREF="#ocean">ocean</A>). |
| 557 | </P> |
| 558 | <P>The respective salinity flux value is used as bottom |
| 559 | (horizontally homogeneous) boundary condition for the salinity |
| 560 | equation. This additionally requires that a Neumann condition must |
| 561 | be used for the salinity, which is currently the only available |
| 562 | condition.</P> |
| 563 | </TD> |
| 564 | </TR> |
| 565 | <TR> |
| 566 | <TD WIDTH=126> |
| 567 | <P><A NAME="building_height"></A><B>building_height</B></P> |
| 568 | </TD> |
| 569 | <TD WIDTH=45> |
| 570 | <P>R</P> |
| 571 | </TD> |
| 572 | <TD WIDTH=159> |
| 573 | <P><I>50.0</I></P> |
| 574 | </TD> |
| 575 | <TD WIDTH=1280> |
| 576 | <P>Height of a single building in m.<BR><BR><B>building_height</B> |
| 577 | must be less than the height of the model domain. This parameter |
| 578 | requires the use of <A HREF="#topography">topography</A> = |
| 579 | <I>'single_building'</I>.</P> |
| 580 | </TD> |
| 581 | </TR> |
| 582 | <TR> |
| 583 | <TD WIDTH=126> |
| 584 | <P><A NAME="building_length_x"></A><B>building_length_x</B></P> |
| 585 | </TD> |
| 586 | <TD WIDTH=45> |
| 587 | <P>R</P> |
| 588 | </TD> |
| 589 | <TD WIDTH=159> |
| 590 | <P><I>50.0</I></P> |
| 591 | </TD> |
| 592 | <TD WIDTH=1280> |
| 593 | <P>Width of a single building in m.<BR><BR>Currently, |
| 594 | <B>building_length_x</B> must be at least <I>3 * <A HREF="#dx">dx</A></I> |
| 595 | and no more than <I>( <A HREF="#nx">nx</A></I> <I>- 1 ) * <A HREF="#dx">dx</A> |
| 596 | - <A HREF="#building_wall_left">building_wall_left</A></I>. This |
| 597 | parameter requires the use of <A HREF="#topography">topography</A> |
| 598 | = <I>'single_building'</I>.</P> |
| 599 | </TD> |
| 600 | </TR> |
| 601 | <TR> |
| 602 | <TD WIDTH=126> |
| 603 | <P><A NAME="building_length_y"></A><B>building_length_y</B></P> |
| 604 | </TD> |
| 605 | <TD WIDTH=45> |
| 606 | <P>R</P> |
| 607 | </TD> |
| 608 | <TD WIDTH=159> |
| 609 | <P><I>50.0</I></P> |
| 610 | </TD> |
| 611 | <TD WIDTH=1280> |
| 612 | <P>Depth of a single building in m.<BR><BR>Currently, |
| 613 | <B>building_length_y</B> must be at least <I>3 * <A HREF="#dy">dy</A></I> |
| 614 | and no more than <I>( <A HREF="#ny">ny</A></I> <I>- 1 ) </I> |
| 615 | <I>* <A HREF="#dy">dy</A></I> <I>- <A HREF="#building_wall_south">building_wall_south</A></I>. |
| 616 | This parameter requires the use of <A HREF="#topography">topography</A> |
| 617 | = <I>'single_building'</I>.</P> |
| 618 | </TD> |
| 619 | </TR> |
| 620 | <TR> |
| 621 | <TD WIDTH=126> |
| 622 | <P><A NAME="building_wall_left"></A><B>building_wall_left</B></P> |
| 623 | </TD> |
| 624 | <TD WIDTH=45> |
| 625 | <P>R</P> |
| 626 | </TD> |
| 627 | <TD WIDTH=159> |
| 628 | <P><I>building centered in x-direction</I></P> |
| 629 | </TD> |
| 630 | <TD WIDTH=1280> |
| 631 | <P>x-coordinate of the left building wall (distance between the |
| 632 | left building wall and the left border of the model domain) in |
| 633 | m.<BR><BR>Currently, <B>building_wall_left</B> must be at least <I>1 |
| 634 | * <A HREF="#dx">dx</A></I> and less than <I>( <A HREF="#nx">nx</A> |
| 635 | - 1 ) * <A HREF="#dx">dx</A> - <A HREF="#building_length_x">building_length_x</A></I>. |
| 636 | This parameter requires the use of <A HREF="#topography">topography</A> |
| 637 | = <I>'single_building'</I>.<BR><BR>The default |
| 638 | value <B>building_wall_left</B> = <I>( ( <A HREF="#nx">nx</A> + |
| 639 | 1 ) * <A HREF="#dx">dx</A> - <A HREF="#building_length_x">building_length_x</A> |
| 640 | ) / 2</I> centers the building in x-direction. <FONT COLOR="#000000">Due |
| 641 | to the staggered grid the building will be displaced by -0.5 <A HREF="#dx">dx</A> |
| 642 | in x-direction and -0.5 <A HREF="#dy">dy</A> in y-direction.</FONT> |
| 643 | </P> |
| 644 | </TD> |
| 645 | </TR> |
| 646 | <TR> |
| 647 | <TD WIDTH=126> |
| 648 | <P><A NAME="building_wall_south"></A><B>building_wall_south</B></P> |
| 649 | </TD> |
| 650 | <TD WIDTH=45> |
| 651 | <P>R</P> |
| 652 | </TD> |
| 653 | <TD WIDTH=159> |
| 654 | <P><I>building centered in y-direction</I></P> |
| 655 | </TD> |
| 656 | <TD WIDTH=1280> |
| 657 | <P>y-coordinate of the South building wall (distance between the |
| 658 | South building wall and the South border of the model domain) in |
| 659 | m.<BR><BR>Currently, <B>building_wall_south</B> must be at least <I>1 |
| 660 | * <A HREF="#dy">dy</A></I> and less than <I>( <A HREF="#ny">ny</A> |
| 661 | - 1 ) * <A HREF="#dy">dy</A> - <A HREF="#building_length_y">building_length_y</A></I>. |
| 662 | This parameter requires the use of <A HREF="#topography">topography</A> |
| 663 | = <I>'single_building'</I>.<BR><BR>The default |
| 664 | value <B>building_wall_south</B> = <I>( ( <A HREF="#ny">ny</A> + |
| 665 | 1 ) * <A HREF="#dy">dy</A> - <A HREF="#building_length_y">building_length_y</A> |
| 666 | ) / 2</I> centers the building in y-direction. <FONT COLOR="#000000">Due |
| 667 | to the staggered grid the building will be displaced by -0.5 <A HREF="#dx">dx</A> |
| 668 | in x-direction and -0.5 <A HREF="#dy">dy</A> in y-direction.</FONT> |
| 669 | </P> |
| 670 | </TD> |
| 671 | </TR> |
| 672 | <TR> |
| 673 | <TD WIDTH=126> |
| 674 | <P><A NAME="canopy_mode"></A><B>canopy_mode</B></P> |
| 675 | </TD> |
| 676 | <TD WIDTH=45> |
| 677 | <P>C * 20</P> |
| 678 | </TD> |
| 679 | <TD WIDTH=159> |
| 680 | <P><I>'block'</I></P> |
| 681 | </TD> |
| 682 | <TD WIDTH=1280> |
| 683 | <P>Canopy mode.<BR><BR><FONT COLOR="#000000">Besides using the |
| 684 | default value, that will create a horizontally homogeneous plant |
| 685 | canopy that extends over the total horizontal extension of the |
| 686 | model domain, the user may add code to the user interface |
| 687 | subroutine <A HREF="chapter_3.5.1.html#user_init_plant_canopy">user_init_plant_canopy</A> |
| 688 | to allow further canopy modes. <BR><BR>The setting of |
| 689 | <A HREF="#canopy_mode">canopy_mode</A> becomes only active, |
| 690 | if <A HREF="#plant_canopy">plant_canopy</A> has been set </FONT><FONT COLOR="#000000"><I>.T.</I></FONT><FONT COLOR="#000000"> |
| 691 | and a non-zero <A HREF="#drag_coefficient">drag_coefficient</A> |
| 692 | has been defined.</FONT></P> |
| 693 | </TD> |
| 694 | </TR> |
| 695 | <TR> |
| 696 | <TD WIDTH=126> |
| 697 | <P><A NAME="canyon_height"></A><B>canyon_height</B></P> |
| 698 | </TD> |
| 699 | <TD WIDTH=45> |
| 700 | <P>R</P> |
| 701 | </TD> |
| 702 | <TD WIDTH=159> |
| 703 | <P><I>50.0</I></P> |
| 704 | </TD> |
| 705 | <TD WIDTH=1280> |
| 706 | <P>Street canyon height in m.<BR><BR><B>canyon_height</B> must be |
| 707 | less than the height of the model domain. This parameter |
| 708 | requires <A HREF="#topography">topography</A> = |
| 709 | <I>'single_street_canyon'</I>.</P> |
| 710 | </TD> |
| 711 | </TR> |
| 712 | <TR> |
| 713 | <TD WIDTH=126> |
| 714 | <P><A NAME="canyon_width_x"></A><B>canyon_width_x</B></P> |
| 715 | </TD> |
| 716 | <TD WIDTH=45> |
| 717 | <P>R</P> |
| 718 | </TD> |
| 719 | <TD WIDTH=159> |
| 720 | <P><I>9999999.9</I></P> |
| 721 | </TD> |
| 722 | <TD WIDTH=1280> |
| 723 | <P>Street canyon width in x-direction in m.<BR><BR>Currently, |
| 724 | <B>canyon_width_x</B> must be at least <I>3 * <A HREF="#dx">dx</A></I> |
| 725 | and no more than <I>( <A HREF="#nx">nx</A></I> <I>- 1 ) * <A HREF="#dx">dx</A> |
| 726 | - <A HREF="#canyon_wall_left">canyon_wall_left</A></I>. This |
| 727 | parameter requires <A HREF="#topography">topography</A> = |
| 728 | <I>'single_street_canyon'</I>. A non-default value implies a |
| 729 | canyon orientation in y-direction.</P> |
| 730 | </TD> |
| 731 | </TR> |
| 732 | <TR> |
| 733 | <TD WIDTH=126> |
| 734 | <P><A NAME="canyon_width_y"></A><B>canyon_width_y</B></P> |
| 735 | </TD> |
| 736 | <TD WIDTH=45> |
| 737 | <P>R</P> |
| 738 | </TD> |
| 739 | <TD WIDTH=159> |
| 740 | <P><I>9999999.9</I></P> |
| 741 | </TD> |
| 742 | <TD WIDTH=1280> |
| 743 | <P>Street canyon width in y-direction in m.<BR><BR>Currently, |
| 744 | <B>canyon_width_y</B> must be at least <I>3 * <A HREF="#dy">dy</A></I> |
| 745 | and no more than <I>( <A HREF="#ny">ny</A></I> <I>- 1 ) </I> |
| 746 | <I>* <A HREF="#dy">dy</A></I> <I>- <A HREF="#canyon_wall_south">canyon_wall_south</A></I>. |
| 747 | This parameter requires <A HREF="#topography">topography</A> |
| 748 | = <I>'single_street_canyon</I>. A non-default value implies a |
| 749 | canyon orientation in x-direction.</P> |
| 750 | </TD> |
| 751 | </TR> |
| 752 | <TR> |
| 753 | <TD WIDTH=126> |
| 754 | <P><A NAME="canyon_wall_left"></A><B>canyon_wall_left</B></P> |
| 755 | </TD> |
| 756 | <TD WIDTH=45> |
| 757 | <P>R</P> |
| 758 | </TD> |
| 759 | <TD WIDTH=159> |
| 760 | <P><I>canyon centered in x-direction</I></P> |
| 761 | </TD> |
| 762 | <TD WIDTH=1280> |
| 763 | <P>x-coordinate of the left canyon wall (distance between the left |
| 764 | canyon wall and the left border of the model domain) in |
| 765 | m.<BR><BR>Currently, <B>canyon_wall_left</B> must be at least <I>1 |
| 766 | * <A HREF="#dx">dx</A></I> and less than <I>( <A HREF="#nx">nx</A> |
| 767 | - 1 ) * <A HREF="#dx">dx</A> - <A HREF="#canyon_width_x">canyon_width_x</A></I>. |
| 768 | This parameter requires <A HREF="#topography">topography</A> |
| 769 | = <I>'single_street_canyon'</I>.<BR><BR>The default value |
| 770 | <B>canyon_wall_left</B> = <I>( ( <A HREF="#nx">nx</A> + 1 ) * |
| 771 | <A HREF="#dx">dx</A> - <A HREF="#canyon_width_x">canyon_width_x</A> |
| 772 | ) / 2</I> centers the canyon in x-direction.</P> |
| 773 | </TD> |
| 774 | </TR> |
| 775 | <TR> |
| 776 | <TD WIDTH=126> |
| 777 | <P><A NAME="canyon_wall_south"></A><B>canyon_wall_south</B></P> |
| 778 | </TD> |
| 779 | <TD WIDTH=45> |
| 780 | <P>R</P> |
| 781 | </TD> |
| 782 | <TD WIDTH=159> |
| 783 | <P><I>canyon centered in y-direction</I></P> |
| 784 | </TD> |
| 785 | <TD WIDTH=1280> |
| 786 | <P>y-coordinate of the South canyon wall (distance between the |
| 787 | South canyon wall and the South border of the model domain) in |
| 788 | m.<BR><BR>Currently, <B>canyon_wall_south</B> must be at least <I>1 |
| 789 | * <A HREF="#dy">dy</A></I> and less than <I>( <A HREF="#ny">ny</A> |
| 790 | - 1 ) * <A HREF="#dy">dy</A> - <A HREF="#canyon_width_y">canyon_width_y</A></I>. |
| 791 | This parameter requires <A HREF="#topography">topography</A> |
| 792 | = <I>'single_street_canyon'</I>.<BR><BR>The default value |
| 793 | <B>canyon_wall_south</B> = <I>( ( <A HREF="#ny">ny</A> + 1 ) |
| 794 | * <A HREF="#dy">dy</A> - <A HREF="#canyon_width_y">canyon_wid</A><A HREF="#canyon_width_y">th_y</A> |
| 795 | ) / 2</I> centers the canyon in y-direction.</P> |
| 796 | </TD> |
| 797 | </TR> |
| 798 | <TR> |
| 799 | <TD WIDTH=126> |
| 800 | <P><A NAME="cloud_droplets"></A><B>cloud_droplets</B></P> |
| 801 | </TD> |
| 802 | <TD WIDTH=45> |
| 803 | <P>L</P> |
| 804 | </TD> |
| 805 | <TD WIDTH=159> |
| 806 | <P><I>.F.</I></P> |
| 807 | </TD> |
| 808 | <TD WIDTH=1280> |
| 809 | <P>Parameter to switch on usage of cloud droplets.<BR><BR>Cloud |
| 810 | droplets require to use particles (i.e. the NAMELIST group |
| 811 | <FONT FACE="Courier New, Courier, monospace">particles_par</FONT> |
| 812 | has to be included in the parameter file). Then each particle is a |
| 813 | representative for a certain number of droplets. The droplet |
| 814 | features (number of droplets, initial radius, etc.) can be steered |
| 815 | with the respective particle parameters (see e.g. <A HREF="#chapter_4.2.html#radius">radius</A>). |
| 816 | The real number of initial droplets in a grid cell is equal to the |
| 817 | initial number of droplets (defined by the particle source |
| 818 | parameters <FONT FACE="Thorndale, serif"><SPAN LANG="en-GB"><A HREF="chapter_4.2.html#pst">pst</A>, |
| 819 | <A HREF="chapter_4.2.html#psl">psl</A>, <A HREF="chapter_4.2.html#psr">psr</A>, |
| 820 | <A HREF="chapter_4.2.html#pss">pss</A>, <A HREF="chapter_4.2.html#psn">psn</A>, |
| 821 | <A HREF="chapter_4.2.html#psb">psb</A>, <A HREF="chapter_4.2.html#pdx">pdx</A>, |
| 822 | <A HREF="chapter_4.2.html#pdy">pdy</A></SPAN></FONT> <FONT FACE="Thorndale, serif"><SPAN LANG="en-GB">and |
| 823 | <A HREF="chapter_4.2.html#pdz">pdz</A></SPAN></FONT>) times the |
| 824 | <A HREF="#initial_weighting_factor">initial_weighting_factor</A>.<BR><BR>In |
| 825 | case of using cloud droplets, the default condensation scheme in |
| 826 | PALM cannot be used, i.e. <A HREF="#cloud_physics">cloud_physics</A> |
| 827 | must be set <I>.F.</I>.</P> |
| 828 | </TD> |
| 829 | </TR> |
| 830 | <TR> |
| 831 | <TD WIDTH=126> |
| 832 | <P><A NAME="cloud_physics"></A><B>cloud_physics</B></P> |
| 833 | </TD> |
| 834 | <TD WIDTH=45> |
| 835 | <P>L</P> |
| 836 | </TD> |
| 837 | <TD WIDTH=159> |
| 838 | <P><I>.F.</I></P> |
| 839 | </TD> |
| 840 | <TD WIDTH=1280> |
| 841 | <P>Parameter to switch on the condensation scheme. |
| 842 | </P> |
| 843 | <P>For <B>cloud_physics =</B> <I>.TRUE.</I>, equations for the |
| 844 | liquid water content and the liquid water potential |
| 845 | temperature are solved instead of those for specific humidity and |
| 846 | potential temperature. Note that a grid volume is assumed to be |
| 847 | either completely saturated or completely unsaturated |
| 848 | (0%-or-100%-scheme). A simple precipitation scheme can |
| 849 | additionally be switched on with parameter <A HREF="#precipitation">precipitation</A>. |
| 850 | Also cloud-top cooling by longwave radiation can be utilized (see |
| 851 | <A HREF="#radiation">radiation</A>)<BR><B><BR>cloud_physics =</B> |
| 852 | <I>.TRUE. </I>requires <A HREF="#humidity">humidity</A> = |
| 853 | <I>.TRUE.</I> .<BR>Detailed information about the condensation |
| 854 | scheme is given in the description of the <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM-1/Dokumentationen/Cloud_physics/wolken.pdf">cloud |
| 855 | physics module</A> (pdf-file, only in German).<BR><BR>This |
| 856 | condensation scheme is not allowed if cloud droplets are simulated |
| 857 | explicitly (see <A HREF="#cloud_droplets">cloud_droplets</A>).</P> |
| 858 | </TD> |
| 859 | </TR> |
| 860 | <TR> |
| 861 | <TD WIDTH=126> |
| 862 | <P><A NAME="conserve_volume_flow"></A><B>conserve_volume_flow</B></P> |
| 863 | </TD> |
| 864 | <TD WIDTH=45> |
| 865 | <P>L</P> |
| 866 | </TD> |
| 867 | <TD WIDTH=159> |
| 868 | <P><I>.F.</I></P> |
| 869 | </TD> |
| 870 | <TD WIDTH=1280> |
| 871 | <P>Conservation of volume flow in x- and |
| 872 | y-direction.<BR><BR><B>conserve_volume_flow</B> = <I>.T.</I> |
| 873 | guarantees that the volume flow through the xz- and |
| 874 | yz-cross-sections of the total model domain remains constant |
| 875 | throughout the run depending on the chosen |
| 876 | <A HREF="#conserve_volume_flow_mode">conserve_volume_flow_mode</A>.<BR><BR>Note |
| 877 | that <B>conserve_volume_flow</B> = <I>.T.</I> requires |
| 878 | <A HREF="#dp_external">dp_external</A> = <I>.F.</I> .</P> |
| 879 | </TD> |
| 880 | </TR> |
| 881 | <TR> |
| 882 | <TD WIDTH=126> |
| 883 | <P><A NAME="conserve_volume_flow_mode"></A><B>conserve_volume_flow_mode</B></P> |
| 884 | </TD> |
| 885 | <TD WIDTH=45> |
| 886 | <P>C * 16</P> |
| 887 | </TD> |
| 888 | <TD WIDTH=159> |
| 889 | <P><I>'default'</I></P> |
| 890 | </TD> |
| 891 | <TD WIDTH=1280> |
| 892 | <P>Modus of volume flow conservation.<BR><BR>The following values |
| 893 | are allowed:</P> |
| 894 | <P STYLE="font-style: normal"><I>'default'</I> |
| 895 | </P> |
| 896 | <UL> |
| 897 | <P>Per default, PALM uses <I>'initial_profiles'</I> for |
| 898 | cyclic lateral boundary conditions (<A HREF="#bc_lr">bc_lr</A> = |
| 899 | <I>'cyclic'</I> and <A HREF="#bc_ns">bc_ns</A> = <I>'cyclic'</I>) |
| 900 | and <I>'inflow_profile'</I> for non-cyclic lateral boundary |
| 901 | conditions (<A HREF="#bc_lr">bc_lr</A> /= <I>'cyclic'</I> or |
| 902 | <A HREF="#bc_ns">bc_ns</A> /= <I>'cyclic'</I>).</P> |
| 903 | </UL> |
| 904 | <P><I>'initial_profiles' </I> |
| 905 | </P> |
| 906 | <UL> |
| 907 | <P>The target volume flow is calculated at t=0 from the |
| 908 | initial profiles of u and v. This setting is only allowed |
| 909 | for cyclic lateral boundary conditions (<A HREF="#bc_lr">bc_lr</A> |
| 910 | = <I>'cyclic'</I> and <A HREF="#bc_ns">bc_ns</A> = <I>'cyclic'</I>).</P> |
| 911 | </UL> |
| 912 | <P STYLE="font-style: normal"><I>'inflow_profile'</I> |
| 913 | </P> |
| 914 | <UL> |
| 915 | <P>The target volume flow is calculated at every |
| 916 | timestep from the inflow profile of u or v, respectively. |
| 917 | This setting is only allowed for non-cyclic lateral |
| 918 | boundary conditions (<A HREF="#bc_lr">bc_lr</A> /= <I>'cyclic'</I> |
| 919 | or <A HREF="#bc_ns">bc_ns</A> /= <I>'cyclic'</I>).</P> |
| 920 | </UL> |
| 921 | <P><I>'bulk_velocity' </I> |
| 922 | </P> |
| 923 | <UL> |
| 924 | <P>The target volume flow is calculated from a predefined bulk |
| 925 | velocity (see <A HREF="#u_bulk">u_bulk</A> and <A HREF="#v_bulk">v_bulk</A>). |
| 926 | This setting is only allowed for cyclic lateral boundary |
| 927 | conditions (<A HREF="#bc_lr">bc_lr</A> = <I>'cyclic'</I> and |
| 928 | <A HREF="#bc_ns">bc_ns</A> = <I>'cyclic'</I>).</P> |
| 929 | </UL> |
| 930 | <P>Note that <B>conserve_volume_flow_mode</B> only comes into |
| 931 | effect if <A HREF="#conserve_volume_flow">conserve_volume_flow</A> |
| 932 | = <I>.T. .</I> |
| 933 | </P> |
| 934 | </TD> |
| 935 | </TR> |
| 936 | <TR> |
| 937 | <TD WIDTH=126> |
| 938 | <P><A NAME="coupling_start_time"></A><B>coupling_start_time</B></P> |
| 939 | </TD> |
| 940 | <TD WIDTH=45> |
| 941 | <P>R</P> |
| 942 | </TD> |
| 943 | <TD WIDTH=159> |
| 944 | <P><I>0.0</I></P> |
| 945 | </TD> |
| 946 | <TD WIDTH=1280> |
| 947 | <P>Simulation time of precursor run.</P> |
| 948 | <P>Sets the time period a precursor run shall run uncoupled. This |
| 949 | parameter is used to set up the precursor run control for |
| 950 | atmosphere-ocean-<A HREF="chapter_3.8.html">coupled runs</A>. It |
| 951 | has to be set individually to the atmospheric / oceanic precursor |
| 952 | run. The time in the data output will show negative values during |
| 953 | the precursor run. See <A HREF="../misc/precursor_run_control.pdf">documentation</A> |
| 954 | for further information.</P> |
| 955 | </TD> |
| 956 | </TR> |
| 957 | <TR> |
| 958 | <TD WIDTH=126> |
| 959 | <P><A NAME="cthf"></A><B>cthf</B></P> |
| 960 | </TD> |
| 961 | <TD WIDTH=45> |
| 962 | <P>R</P> |
| 963 | </TD> |
| 964 | <TD WIDTH=159> |
| 965 | <P><I>0.0</I></P> |
| 966 | </TD> |
| 967 | <TD WIDTH=1280> |
| 968 | <P>Average heat flux that is prescribed at the top of the plant |
| 969 | canopy.<BR><BR>If <A HREF="#plant_canopy">plant_canopy</A> is set |
| 970 | <I>.T.</I>, the user can prescribe a heat flux at the top of the |
| 971 | plant canopy.<BR>It is assumed that solar radiation penetrates the |
| 972 | canopy and warms the foliage which, in turn, warms the air in |
| 973 | contact with it. <BR>Note: Instead of using the value prescribed |
| 974 | by <A HREF="#surface_heatflux">surface_heatflux</A>, the near |
| 975 | surface heat flux is determined from an exponential function that |
| 976 | is dependent on the cumulative leaf_area_index (Shaw and Schumann |
| 977 | (1992, Boundary Layer Meteorol., 61, 47-64)).</P> |
| 978 | </TD> |
| 979 | </TR> |
| 980 | <TR> |
| 981 | <TD WIDTH=126> |
| 982 | <P><A NAME="cut_spline_overshoot"></A><B>cut_spline_overshoot</B></P> |
| 983 | </TD> |
| 984 | <TD WIDTH=45> |
| 985 | <P>L</P> |
| 986 | </TD> |
| 987 | <TD WIDTH=159> |
| 988 | <P><I>.T.</I></P> |
| 989 | </TD> |
| 990 | <TD WIDTH=1280> |
| 991 | <P>Cuts off of so-called overshoots, which can occur with the |
| 992 | upstream-spline scheme. |
| 993 | </P> |
| 994 | <P><FONT COLOR="#000000">The cubic splines tend to overshoot in |
| 995 | case of discontinuous changes of variables between neighbouring |
| 996 | grid points.</FONT><FONT COLOR="#ff0000"> </FONT><FONT COLOR="#000000">This |
| 997 | may lead to errors in calculating the advection tendency.</FONT> |
| 998 | Choice of <B>cut_spline_overshoot</B> = <I>.TRUE.</I> (switched on |
| 999 | by default) allows variable values not to exceed an interval |
| 1000 | defined by the respective adjacent grid points. This interval can |
| 1001 | be adjusted seperately for every prognostic variable (see |
| 1002 | initialization parameters <A HREF="#overshoot_limit_e">overshoot_limit_e</A>, |
| 1003 | <A HREF="#overshoot_limit_pt">overshoot_limit_pt</A>, |
| 1004 | <A HREF="#overshoot_limit_u">overshoot_limit_u</A>, etc.). This |
| 1005 | might be necessary in case that the default interval has a |
| 1006 | non-tolerable effect on the model results. |
| 1007 | </P> |
| 1008 | <P>Overshoots may also be removed using the parameters |
| 1009 | <A HREF="#ups_limit_e">ups_limit_e</A>, <A HREF="#ups_limit_pt">ups_limit_pt</A>, |
| 1010 | etc. as well as by applying a long-filter (see |
| 1011 | <A HREF="#long_filter_factor">long_filter_factor</A>).</P> |
| 1012 | </TD> |
| 1013 | </TR> |
| 1014 | <TR> |
| 1015 | <TD WIDTH=126> |
| 1016 | <P><A NAME="damp_level_1d"></A><B>damp_level_1d</B></P> |
| 1017 | </TD> |
| 1018 | <TD WIDTH=45> |
| 1019 | <P>R</P> |
| 1020 | </TD> |
| 1021 | <TD WIDTH=159> |
| 1022 | <P><I>zu(nz+1)</I></P> |
| 1023 | </TD> |
| 1024 | <TD WIDTH=1280> |
| 1025 | <P>Height where the damping layer begins in the 1d-model (in m). |
| 1026 | </P> |
| 1027 | <P>This parameter is used to switch on a damping layer for the |
| 1028 | 1d-model, which is generally needed for the damping of inertia |
| 1029 | oscillations. Damping is done by gradually increasing the value of |
| 1030 | the eddy diffusivities about 10% per vertical grid level (starting |
| 1031 | with the value at the height given by <B>damp_level_1d</B>, or |
| 1032 | possibly from the next grid pint above), i.e. K<SUB>m</SUB>(k+1) = |
| 1033 | 1.1 * K<SUB>m</SUB>(k). The values of K<SUB>m</SUB> are limited to |
| 1034 | 10 m**2/s at maximum. <BR>This parameter only comes into |
| 1035 | effect if the 1d-model is switched on for the initialization of |
| 1036 | the 3d-model using <A HREF="#initializing_actions">initializing_actions</A> |
| 1037 | = <I>'set_1d-model_profiles'</I>. |
| 1038 | </P> |
| 1039 | </TD> |
| 1040 | </TR> |
| 1041 | <TR> |
| 1042 | <TD WIDTH=126> |
| 1043 | <P><A NAME="dissipation_1d"></A><B>dissipation_1d</B></P> |
| 1044 | </TD> |
| 1045 | <TD WIDTH=45> |
| 1046 | <P>C*20</P> |
| 1047 | </TD> |
| 1048 | <TD WIDTH=159> |
| 1049 | <P><I>'as_in_3d_</I><BR><I>model'</I></P> |
| 1050 | </TD> |
| 1051 | <TD WIDTH=1280> |
| 1052 | <P>Calculation method for the energy dissipation term in the TKE |
| 1053 | equation of the 1d-model.<BR><BR>By default the dissipation is |
| 1054 | calculated as in the 3d-model using diss = (0.19 + 0.74 * l / |
| 1055 | l_grid) * e**1.5 / l.<BR><BR>Setting <B>dissipation_1d</B> = |
| 1056 | <I>'detering'</I> forces the dissipation to be calculated as diss |
| 1057 | = 0.064 * e**1.5 / l.</P> |
| 1058 | </TD> |
| 1059 | </TR> |
| 1060 | <TR> |
| 1061 | <TD WIDTH=126> |
| 1062 | <P><A NAME="dp_external"></A><B>dp_external</B></P> |
| 1063 | </TD> |
| 1064 | <TD WIDTH=45> |
| 1065 | <P>L</P> |
| 1066 | </TD> |
| 1067 | <TD WIDTH=159> |
| 1068 | <P><I>.F.</I></P> |
| 1069 | </TD> |
| 1070 | <TD WIDTH=1280> |
| 1071 | <P>External pressure gradient switch.<BR><BR>This parameter is |
| 1072 | used to switch on/off an external pressure gradient as driving |
| 1073 | force. The external pressure gradient is controlled by the |
| 1074 | parameters <A HREF="#dp_smooth">dp_smooth</A>, <A HREF="#dp_level_b">dp_level_b</A> |
| 1075 | and <A HREF="#dpdxy">dpdxy</A>.<BR><BR>Note that <B>dp_external</B> |
| 1076 | = <I>.T.</I> requires <A HREF="#conserve_volume_flow">conserve_volume_flow</A> |
| 1077 | = <I>.F. </I>It is normally recommended to disable the Coriolis |
| 1078 | force by setting <A HREF="l#omega">omega</A> = 0.0.</P> |
| 1079 | </TD> |
| 1080 | </TR> |
| 1081 | <TR> |
| 1082 | <TD WIDTH=126> |
| 1083 | <P><A NAME="dp_smooth"></A><B>dp_smooth</B></P> |
| 1084 | </TD> |
| 1085 | <TD WIDTH=45> |
| 1086 | <P>L</P> |
| 1087 | </TD> |
| 1088 | <TD WIDTH=159> |
| 1089 | <P><I>.F.</I></P> |
| 1090 | </TD> |
| 1091 | <TD WIDTH=1280> |
| 1092 | <P>Vertically smooth the external pressure gradient using a |
| 1093 | sinusoidal smoothing function.<BR><BR>This parameter only applies |
| 1094 | if <A HREF="#dp_external">dp_external</A> = <I>.T. </I>. It is |
| 1095 | useful in combination with <A HREF="#dp_level_b">dp_level_b</A> |
| 1096 | >> 0 to generate a non-accelerated boundary layer well |
| 1097 | below <A HREF="#dp_level_b">dp_level_b</A>.</P> |
| 1098 | </TD> |
| 1099 | </TR> |
| 1100 | <TR> |
| 1101 | <TD WIDTH=126> |
| 1102 | <P><A NAME="dp_level_b"></A><B>dp_level_b</B></P> |
| 1103 | </TD> |
| 1104 | <TD WIDTH=45> |
| 1105 | <P>R</P> |
| 1106 | </TD> |
| 1107 | <TD WIDTH=159> |
| 1108 | <P><I>0.0</I></P> |
| 1109 | </TD> |
| 1110 | <TD WIDTH=1280> |
| 1111 | <P><FONT SIZE=3>Lower limit of the vertical range for which the |
| 1112 | external pressure gradient is applied (</FONT>in <FONT SIZE=3>m).</FONT><BR><BR>This |
| 1113 | parameter only applies if <A HREF="#dp_external">dp_external</A> = |
| 1114 | <I>.T. </I><SPAN LANG="en-GB">It must hold the condition zu(0) <= |
| 1115 | </SPAN><SPAN LANG="en-GB"><B>dp_level_b</B></SPAN> <SPAN LANG="en-GB"><= |
| 1116 | zu(<A HREF="#nz">nz</A>). </SPAN>It can be used in |
| 1117 | combination with <A HREF="#dp_smooth">dp_smooth</A> = <I>.T.</I> |
| 1118 | to generate a non-accelerated boundary layer well below <B>dp_level_b</B> |
| 1119 | if <B>dp_level_b</B> >> 0.<BR><BR>Note that there is no |
| 1120 | upper limit of the vertical range because the external pressure |
| 1121 | gradient is always applied up to the top of the model domain.</P> |
| 1122 | </TD> |
| 1123 | </TR> |
| 1124 | <TR> |
| 1125 | <TD WIDTH=126> |
| 1126 | <P><A NAME="dpdxy"></A><B>dpdxy</B></P> |
| 1127 | </TD> |
| 1128 | <TD WIDTH=45> |
| 1129 | <P>R(2)</P> |
| 1130 | </TD> |
| 1131 | <TD WIDTH=159> |
| 1132 | <P><I>2 * 0.0</I></P> |
| 1133 | </TD> |
| 1134 | <TD WIDTH=1280> |
| 1135 | <P>Values of the external pressure gradient applied in x- and |
| 1136 | y-direction, respectively (in Pa/m).<BR><BR>This parameter only |
| 1137 | applies if <A HREF="#dp_external">dp_external</A> = <I>.T. </I>It |
| 1138 | sets the pressure gradient values. Negative values mean an |
| 1139 | acceleration, positive values mean deceleration. For example, |
| 1140 | <B>dpdxy</B> = -0.0002, 0.0, drives the flow in positive |
| 1141 | x-direction, |
| 1142 | </P> |
| 1143 | </TD> |
| 1144 | </TR> |
| 1145 | <TR> |
| 1146 | <TD WIDTH=126> |
| 1147 | <P><A NAME="drag_coefficient"></A><B>drag_coefficient</B></P> |
| 1148 | </TD> |
| 1149 | <TD WIDTH=45> |
| 1150 | <P>R</P> |
| 1151 | </TD> |
| 1152 | <TD WIDTH=159> |
| 1153 | <P><I>0.0</I></P> |
| 1154 | </TD> |
| 1155 | <TD WIDTH=1280> |
| 1156 | <P>Drag coefficient used in the plant canopy model.<BR><BR>This |
| 1157 | parameter has to be non-zero, if the parameter <A HREF="#plant_canopy">plant_canopy</A> |
| 1158 | is set <I>.T.</I>.</P> |
| 1159 | </TD> |
| 1160 | </TR> |
| 1161 | <TR> |
| 1162 | <TD WIDTH=126> |
| 1163 | <P><A NAME="dt"></A><B>dt</B></P> |
| 1164 | </TD> |
| 1165 | <TD WIDTH=45> |
| 1166 | <P>R</P> |
| 1167 | </TD> |
| 1168 | <TD WIDTH=159> |
| 1169 | <P><I>variable</I></P> |
| 1170 | </TD> |
| 1171 | <TD WIDTH=1280> |
| 1172 | <P>Time step for the 3d-model (in s). |
| 1173 | </P> |
| 1174 | <P>By default, (i.e. if a Runge-Kutta scheme is used, see |
| 1175 | <A HREF="#timestep_scheme">timestep_scheme</A>) the value of the |
| 1176 | time step is calculating after each time step (following the time |
| 1177 | step criteria) and used for the next step.</P> |
| 1178 | <P>If the user assigns <B>dt</B> a value, then the time step is |
| 1179 | fixed to this value throughout the whole run (whether it fulfills |
| 1180 | the time step criteria or not). However, changes are allowed for |
| 1181 | restart runs, because <B>dt</B> can also be used as a <A HREF="chapter_4.2.html#dt_laufparameter">run |
| 1182 | parameter</A>. |
| 1183 | </P> |
| 1184 | <P>In case that the calculated time step meets the condition</P> |
| 1185 | <UL> |
| 1186 | <P><B>dt</B> < 0.00001 * <A HREF="chapter_4.2.html#dt_max">dt_max</A> |
| 1187 | (with dt_max = 20.0)</P> |
| 1188 | </UL> |
| 1189 | <P>the simulation will be aborted. Such situations usually arise |
| 1190 | in case of any numerical problem / instability which causes a |
| 1191 | non-realistic increase of the wind speed. |
| 1192 | </P> |
| 1193 | <P>A small time step due to a large mean horizontal windspeed |
| 1194 | speed may be enlarged by using a coordinate transformation (see |
| 1195 | <A HREF="#galilei_transformation">galilei_transformation</A>), in |
| 1196 | order to spare CPU time.</P> |
| 1197 | <P>If the leapfrog timestep scheme is used (see <A HREF="#timestep_scheme">timestep_scheme</A>) |
| 1198 | a temporary time step value dt_new is calculated first, with |
| 1199 | dt_new = <A HREF="chapter_4.2.html#fcl_factor">cfl_factor</A> * |
| 1200 | dt_crit where dt_crit is the maximum timestep allowed by the CFL |
| 1201 | and diffusion condition. Next it is examined whether dt_new |
| 1202 | exceeds or falls below the value of the previous timestep by at |
| 1203 | least +5 % / -2%. If it is smaller, <B>dt</B> = dt_new is |
| 1204 | immediately used for the next timestep. If it is larger, then <B>dt |
| 1205 | </B>= 1.02 * dt_prev (previous timestep) is used as the new |
| 1206 | timestep, however the time step is only increased if the last |
| 1207 | change of the time step is dated back at least 30 iterations. If |
| 1208 | dt_new is located in the interval mentioned above, then dt does |
| 1209 | not change at all. By doing so, permanent time step changes as |
| 1210 | well as large sudden changes (increases) in the time step are |
| 1211 | avoided.</P> |
| 1212 | </TD> |
| 1213 | </TR> |
| 1214 | <TR> |
| 1215 | <TD WIDTH=126> |
| 1216 | <P><A NAME="dt_pr_1d"></A><B>dt_pr_1d</B></P> |
| 1217 | </TD> |
| 1218 | <TD WIDTH=45> |
| 1219 | <P>R</P> |
| 1220 | </TD> |
| 1221 | <TD WIDTH=159> |
| 1222 | <P><I>9999999.9</I></P> |
| 1223 | </TD> |
| 1224 | <TD WIDTH=1280> |
| 1225 | <P>Temporal interval of vertical profile output of the 1D-model |
| 1226 | (in s). |
| 1227 | </P> |
| 1228 | <P>Data are written in ASCII format to file <A HREF="chapter_3.4.html#LIST_PROFIL_1D">LIST_PROFIL_1D</A>. |
| 1229 | This parameter is only in effect if the 1d-model has been switched |
| 1230 | on for the initialization of the 3d-model with |
| 1231 | <A HREF="#initializing_actions">initializing_actions</A> = |
| 1232 | <I>'set_1d-model_profiles'</I>.</P> |
| 1233 | </TD> |
| 1234 | </TR> |
| 1235 | <TR> |
| 1236 | <TD WIDTH=126> |
| 1237 | <P><A NAME="dt_run_control_1d"></A><B>dt_run_control_1d</B></P> |
| 1238 | </TD> |
| 1239 | <TD WIDTH=45> |
| 1240 | <P>R</P> |
| 1241 | </TD> |
| 1242 | <TD WIDTH=159> |
| 1243 | <P><I>60.0</I></P> |
| 1244 | </TD> |
| 1245 | <TD WIDTH=1280> |
| 1246 | <P>Temporal interval of runtime control output of the 1d-model (in |
| 1247 | s). |
| 1248 | </P> |
| 1249 | <P>Data are written in ASCII format to file <A HREF="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</A>. |
| 1250 | This parameter is only in effect if the 1d-model is switched on |
| 1251 | for the initialization of the 3d-model with <A HREF="#initializing_actions">initializing_actions</A> |
| 1252 | = <I>'set_1d-model_profiles'</I>.</P> |
| 1253 | </TD> |
| 1254 | </TR> |
| 1255 | <TR> |
| 1256 | <TD WIDTH=126> |
| 1257 | <P><A NAME="dx"></A><B>dx</B></P> |
| 1258 | </TD> |
| 1259 | <TD WIDTH=45> |
| 1260 | <P>R</P> |
| 1261 | </TD> |
| 1262 | <TD WIDTH=159> |
| 1263 | <P><I>1.0</I></P> |
| 1264 | </TD> |
| 1265 | <TD WIDTH=1280> |
| 1266 | <P>Horizontal grid spacing along the x-direction (in m). |
| 1267 | </P> |
| 1268 | <P>Along x-direction only a constant grid spacing is allowed.</P> |
| 1269 | <P>For <A HREF="chapter_3.8.html">coupled runs</A> this parameter |
| 1270 | must be equal in both parameter files <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN</FONT></A> |
| 1271 | and <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A>.</P> |
| 1272 | </TD> |
| 1273 | </TR> |
| 1274 | <TR> |
| 1275 | <TD WIDTH=126> |
| 1276 | <P><A NAME="dy"></A><B>dy</B></P> |
| 1277 | </TD> |
| 1278 | <TD WIDTH=45> |
| 1279 | <P>R</P> |
| 1280 | </TD> |
| 1281 | <TD WIDTH=159> |
| 1282 | <P><I>1.0</I></P> |
| 1283 | </TD> |
| 1284 | <TD WIDTH=1280> |
| 1285 | <P>Horizontal grid spacing along the y-direction (in m). |
| 1286 | </P> |
| 1287 | <P>Along y-direction only a constant grid spacing is allowed.</P> |
| 1288 | <P>For <A HREF="chapter_3.8.html">coupled runs</A> this parameter |
| 1289 | must be equal in both parameter files <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN</FONT></A> |
| 1290 | and <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A>.</P> |
| 1291 | </TD> |
| 1292 | </TR> |
| 1293 | <TR> |
| 1294 | <TD WIDTH=126> |
| 1295 | <P><A NAME="dz"></A><B>dz</B></P> |
| 1296 | </TD> |
| 1297 | <TD WIDTH=45> |
| 1298 | <P>R</P> |
| 1299 | </TD> |
| 1300 | <TD WIDTH=159> |
| 1301 | <P><BR> |
| 1302 | </P> |
| 1303 | </TD> |
| 1304 | <TD WIDTH=1280> |
| 1305 | <P>Vertical grid spacing (in m). |
| 1306 | </P> |
| 1307 | <P>This parameter must be assigned by the user, because no default |
| 1308 | value is given.</P> |
| 1309 | <P>By default, the model uses constant grid spacing along |
| 1310 | z-direction, but it can be stretched using the parameters |
| 1311 | <A HREF="#dz_stretch_level">dz_stretch_level</A> and |
| 1312 | <A HREF="#dz_stretch_factor">dz_stretch_factor</A>. In case of |
| 1313 | stretching, a maximum allowed grid spacing can be given by <A HREF="#dz_max">dz_max</A>.</P> |
| 1314 | <P>Assuming a constant <B>dz</B>, the scalar levels (zu) are |
| 1315 | calculated directly by: |
| 1316 | </P> |
| 1317 | <UL> |
| 1318 | <P>zu(0) = - dz * 0.5 <BR>zu(1) = dz * 0.5</P> |
| 1319 | </UL> |
| 1320 | <P>The w-levels lie half between them: |
| 1321 | </P> |
| 1322 | <UL> |
| 1323 | <P>zw(k) = ( zu(k) + zu(k+1) ) * 0.5</P> |
| 1324 | </UL> |
| 1325 | </TD> |
| 1326 | </TR> |
| 1327 | <TR> |
| 1328 | <TD WIDTH=126> |
| 1329 | <P><A NAME="dz_max"></A><B>dz_max</B></P> |
| 1330 | </TD> |
| 1331 | <TD WIDTH=45> |
| 1332 | <P>R</P> |
| 1333 | </TD> |
| 1334 | <TD WIDTH=159> |
| 1335 | <P><I>9999999.9</I></P> |
| 1336 | </TD> |
| 1337 | <TD WIDTH=1280> |
| 1338 | <P>Allowed maximum vertical grid spacing (in m).<BR><BR>If the |
| 1339 | vertical grid is stretched (see <A HREF="#dz_stretch_factor">dz_stretch_factor</A> |
| 1340 | and <A HREF="#dz_stretch_level">dz_stretch_level</A>), <B>dz_max</B> |
| 1341 | can be used to limit the vertical grid spacing.</P> |
| 1342 | </TD> |
| 1343 | </TR> |
| 1344 | <TR> |
| 1345 | <TD WIDTH=126> |
| 1346 | <P><A NAME="dz_stretch_factor"></A><B>dz_stretch_factor</B></P> |
| 1347 | </TD> |
| 1348 | <TD WIDTH=45> |
| 1349 | <P>R</P> |
| 1350 | </TD> |
| 1351 | <TD WIDTH=159> |
| 1352 | <P><I>1.08</I></P> |
| 1353 | </TD> |
| 1354 | <TD WIDTH=1280> |
| 1355 | <P>Stretch factor for a vertically stretched grid (see |
| 1356 | <A HREF="#dz_stretch_level">dz_stretch_level</A>). |
| 1357 | </P> |
| 1358 | <P>The stretch factor should not exceed a value of approx. 1.10 - |
| 1359 | 1.12, otherwise the discretization errors due to the stretched |
| 1360 | grid not negligible any more. (refer Kalnay de Rivas)</P> |
| 1361 | </TD> |
| 1362 | </TR> |
| 1363 | <TR> |
| 1364 | <TD WIDTH=126> |
| 1365 | <P><A NAME="dz_stretch_level"></A><B>dz_stretch_level</B></P> |
| 1366 | </TD> |
| 1367 | <TD WIDTH=45> |
| 1368 | <P>R</P> |
| 1369 | </TD> |
| 1370 | <TD WIDTH=159> |
| 1371 | <P><I>100000.0</I></P> |
| 1372 | </TD> |
| 1373 | <TD WIDTH=1280> |
| 1374 | <P>Height level above/below which the grid is to be stretched |
| 1375 | vertically (in m). |
| 1376 | </P> |
| 1377 | <P>For <A HREF="#ocean">ocean</A> = .F., <B>dz_stretch_level </B>is |
| 1378 | the height level (in m) <B>above </B>which the grid is to be |
| 1379 | stretched vertically. The vertical grid spacings <A HREF="#dz">dz</A> |
| 1380 | above this level are calculated as |
| 1381 | </P> |
| 1382 | <UL> |
| 1383 | <P><B>dz</B>(k+1) = <B>dz</B>(k) * <A HREF="#dz_stretch_factor">dz_stretch_factor</A></P> |
| 1384 | </UL> |
| 1385 | <P>and used as spacings for the scalar levels (zu). The w-levels |
| 1386 | are then defined as: |
| 1387 | </P> |
| 1388 | <UL> |
| 1389 | <P>zw(k) = ( zu(k) + zu(k+1) ) * 0.5. |
| 1390 | </P> |
| 1391 | </UL> |
| 1392 | <P>For <A HREF="#ocean">ocean</A> = .T., <B>dz_stretch_level </B>is |
| 1393 | the height level (in m, negative) <B>below</B> which the grid is |
| 1394 | to be stretched vertically. The vertical grid spacings <A HREF="#dz">dz</A> |
| 1395 | below this level are calculated correspondingly as |
| 1396 | </P> |
| 1397 | <UL> |
| 1398 | <P><B>dz</B>(k-1) = <B>dz</B>(k) * <A HREF="#dz_stretch_factor">dz_stretch_factor</A>.</P> |
| 1399 | </UL> |
| 1400 | </TD> |
| 1401 | </TR> |
| 1402 | <TR> |
| 1403 | <TD WIDTH=126> |
| 1404 | <P><A NAME="e_init"></A><B>e_init</B></P> |
| 1405 | </TD> |
| 1406 | <TD WIDTH=45> |
| 1407 | <P>R</P> |
| 1408 | </TD> |
| 1409 | <TD WIDTH=159> |
| 1410 | <P><I>0.0</I></P> |
| 1411 | </TD> |
| 1412 | <TD WIDTH=1280> |
| 1413 | <P>Initial subgrid-scale TKE in m<SUP>2</SUP>s<SUP>-2</SUP>.<BR><BR>This |
| 1414 | option prescribes an initial subgrid-scale TKE from which the |
| 1415 | initial diffusion coefficients K<SUB>m</SUB> and K<SUB>h</SUB> |
| 1416 | will be calculated if <B>e_init</B> is positive. This option only |
| 1417 | has an effect if <A HREF="#km_constant">km_constant</A> is |
| 1418 | not set.</P> |
| 1419 | </TD> |
| 1420 | </TR> |
| 1421 | <TR> |
| 1422 | <TD WIDTH=126> |
| 1423 | <P><A NAME="e_min"></A><B>e_min</B></P> |
| 1424 | </TD> |
| 1425 | <TD WIDTH=45> |
| 1426 | <P>R</P> |
| 1427 | </TD> |
| 1428 | <TD WIDTH=159> |
| 1429 | <P><I>0.0</I></P> |
| 1430 | </TD> |
| 1431 | <TD WIDTH=1280> |
| 1432 | <P>Minimum subgrid-scale TKE in m<SUP>2</SUP>s<SUP>-2</SUP>.<BR><BR>This |
| 1433 | option adds artificial viscosity to the flow by ensuring that |
| 1434 | the subgrid-scale TKE does not fall below the minimum threshold |
| 1435 | <B>e_min</B>.</P> |
| 1436 | </TD> |
| 1437 | </TR> |
| 1438 | <TR> |
| 1439 | <TD WIDTH=126> |
| 1440 | <P><A NAME="end_time_1d"></A><B>end_time_1d</B></P> |
| 1441 | </TD> |
| 1442 | <TD WIDTH=45> |
| 1443 | <P>R</P> |
| 1444 | </TD> |
| 1445 | <TD WIDTH=159> |
| 1446 | <P><I>864000.0</I></P> |
| 1447 | </TD> |
| 1448 | <TD WIDTH=1280> |
| 1449 | <P>Time to be simulated for the 1d-model (in s). |
| 1450 | </P> |
| 1451 | <P>The default value corresponds to a simulated time of 10 days. |
| 1452 | Usually, after such a period the inertia oscillations have |
| 1453 | completely decayed and the solution of the 1d-model can be |
| 1454 | regarded as stationary (see <A HREF="#damp_level_1d">damp_level_1d</A>). |
| 1455 | This parameter is only in effect if the 1d-model is switched on |
| 1456 | for the initialization of the 3d-model with <A HREF="#initializing_actions">initializing_actions</A> |
| 1457 | = <I>'set_1d-model_profiles'</I>.</P> |
| 1458 | </TD> |
| 1459 | </TR> |
| 1460 | <TR> |
| 1461 | <TD WIDTH=126> |
| 1462 | <P><A NAME="fft_method"></A><B>fft_method</B></P> |
| 1463 | </TD> |
| 1464 | <TD WIDTH=45> |
| 1465 | <P>C * 20</P> |
| 1466 | </TD> |
| 1467 | <TD WIDTH=159> |
| 1468 | <P><I>'system-</I><BR><I>specific'</I></P> |
| 1469 | </TD> |
| 1470 | <TD WIDTH=1280> |
| 1471 | <P>FFT-method to be used.</P> |
| 1472 | <P><BR>The fast fourier transformation (FFT) is used for solving |
| 1473 | the perturbation pressure equation with a direct method (see |
| 1474 | <A HREF="chapter_4.2.html#psolver">psolver</A>) and for |
| 1475 | calculating power spectra (see optional software packages, section |
| 1476 | <A HREF="chapter_4.2.html#spectra_package">4.2</A>).</P> |
| 1477 | <P><BR>By default, system-specific, optimized routines from |
| 1478 | external vendor libraries are used. However, these are available |
| 1479 | only on certain computers and there are more or less severe |
| 1480 | restrictions concerning the number of gridpoints to be used with |
| 1481 | them.</P> |
| 1482 | <P>There are two other PALM internal methods available on every |
| 1483 | machine (their respective source code is part of the PALM source |
| 1484 | code):</P> |
| 1485 | <P>1.: The <B>Temperton</B>-method from Clive Temperton (ECWMF) |
| 1486 | which is computationally very fast and switched on with <B>fft_method</B> |
| 1487 | = <I>'temperton-algorithm'</I>. The number of horizontal |
| 1488 | gridpoints (nx+1, ny+1) to be used with this method must be |
| 1489 | composed of prime factors 2, 3 and 5.</P> |
| 1490 | <P>2.: The <B>Singleton</B>-method which is very slow but has no |
| 1491 | restrictions concerning the number of gridpoints to be used with, |
| 1492 | switched on with <B>fft_method</B> = <I>'singleton-algorithm'</I>. |
| 1493 | </P> |
| 1494 | </TD> |
| 1495 | </TR> |
| 1496 | <TR> |
| 1497 | <TD WIDTH=126> |
| 1498 | <P><A NAME="galilei_transformation"></A><B>galilei_transformation</B></P> |
| 1499 | </TD> |
| 1500 | <TD WIDTH=45> |
| 1501 | <P>L</P> |
| 1502 | </TD> |
| 1503 | <TD WIDTH=159> |
| 1504 | <P><I>.F.</I></P> |
| 1505 | </TD> |
| 1506 | <TD WIDTH=1280> |
| 1507 | <P>Application of a Galilei-transformation to the coordinate |
| 1508 | system of the model.</P> |
| 1509 | <P>With <B>galilei_transformation</B> = <I>.T.,</I> a so-called |
| 1510 | Galilei-transformation is switched on which ensures that the |
| 1511 | coordinate system of the model is moved along with the |
| 1512 | geostrophical wind. Alternatively, the model domain can be moved |
| 1513 | along with the averaged horizontal wind (see |
| 1514 | <A HREF="#use_ug_for_galilei_tr">use_ug_for_galilei_tr</A>, this |
| 1515 | can and will naturally change in time). With this method, |
| 1516 | numerical inaccuracies of the Piascek - Williams - scheme |
| 1517 | (concerns in particular the momentum advection) are minimized. |
| 1518 | Beyond that, in the majority of cases the lower relative |
| 1519 | velocities in the moved system permit a larger time step (<A HREF="#dt">dt</A>). |
| 1520 | Switching the transformation on is only worthwhile if the |
| 1521 | geostrophical wind (ug, vg) and the averaged horizontal wind |
| 1522 | clearly deviate from the value 0. In each case, the distance the |
| 1523 | coordinate system has been moved is written to the file |
| 1524 | <A HREF="chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</A>. |
| 1525 | </P> |
| 1526 | <P>Non-cyclic lateral boundary conditions (see <A HREF="#bc_lr">bc_lr</A> |
| 1527 | and <A HREF="#bc_ns">bc_ns</A>), the specification of a gestrophic |
| 1528 | wind that is not constant with height as well as e.g. stationary |
| 1529 | inhomogeneities at the bottom boundary do not allow the use of |
| 1530 | this transformation.</P> |
| 1531 | </TD> |
| 1532 | </TR> |
| 1533 | <TR> |
| 1534 | <TD WIDTH=126> |
| 1535 | <P><A NAME="grid_matching"></A><B>grid_matching</B></P> |
| 1536 | </TD> |
| 1537 | <TD WIDTH=45> |
| 1538 | <P>C * 6</P> |
| 1539 | </TD> |
| 1540 | <TD WIDTH=159> |
| 1541 | <P><I>'strict'</I></P> |
| 1542 | </TD> |
| 1543 | <TD WIDTH=1280> |
| 1544 | <P>Variable to adjust the subdomain sizes in parallel runs.<BR><BR>For |
| 1545 | <B>grid_matching</B> = <I>'strict'</I>, the subdomains are forced |
| 1546 | to have an identical size on all processors. In this case the |
| 1547 | processor numbers in the respective directions of the virtual |
| 1548 | processor net must fulfill certain divisor conditions concerning |
| 1549 | the grid point numbers in the three directions (see <A HREF="#nx">nx</A>, |
| 1550 | <A HREF="#ny">ny</A> and <A HREF="#nz">nz</A>). Advantage of this |
| 1551 | method is that all PEs bear the same computational load.<BR><BR>There |
| 1552 | is no such restriction by default, because then smaller subdomains |
| 1553 | are allowed on those processors which form the right and/or north |
| 1554 | boundary of the virtual processor grid. On all other processors |
| 1555 | the subdomains are of same size. Whether smaller subdomains are |
| 1556 | actually used, depends on the number of processors and the grid |
| 1557 | point numbers used. Information about the respective settings are |
| 1558 | given in file <A HREF="../../../../../../raasch/public_html/PALM_group/home/raasch/public_html/PALM_group/doc/app/chapter_3.4.html#RUN_CONTROL">RUN_CONTROL</A>.<BR><BR>When |
| 1559 | using a multi-grid method for solving the Poisson equation (see |
| 1560 | <A HREF="http://www.muk.uni-hannover.de/%7Eraasch/PALM_group/doc/app/chapter_4.2.html#psolver">psolver</A>) |
| 1561 | only <B>grid_matching</B> = <I>'strict'</I> is allowed.<BR><BR><B>Note:</B><BR>In |
| 1562 | some cases for small processor numbers there may be a very bad |
| 1563 | load balancing among the processors which may reduce the |
| 1564 | performance of the code.</P> |
| 1565 | </TD> |
| 1566 | </TR> |
| 1567 | <TR> |
| 1568 | <TD WIDTH=126> |
| 1569 | <P><A NAME="humidity"></A><B>humidity</B></P> |
| 1570 | </TD> |
| 1571 | <TD WIDTH=45> |
| 1572 | <P>L</P> |
| 1573 | </TD> |
| 1574 | <TD WIDTH=159> |
| 1575 | <P><I>.F.</I></P> |
| 1576 | </TD> |
| 1577 | <TD WIDTH=1280> |
| 1578 | <P>Parameter to switch on the prognostic equation for specific |
| 1579 | humidity q.</P> |
| 1580 | <P>The initial vertical profile of q can be set via parameters |
| 1581 | <A HREF="#q_surface">q_surface</A>, <A HREF="#q_vertical_gradient">q_vertical_gradient</A> |
| 1582 | and <A HREF="#q_vertical_gradient_level">q_vertical_gradient_level</A>. |
| 1583 | Boundary conditions can be set via <A HREF="#q_surface_initial_change">q_surface_initial_change</A> |
| 1584 | and <A HREF="#surface_waterflux">surface_waterflux</A>.</P> |
| 1585 | <P>If the condensation scheme is switched on (<A HREF="#cloud_physics">cloud_physics</A> |
| 1586 | = .TRUE.), q becomes the total liquid water content (sum of |
| 1587 | specific humidity and liquid water content).</P> |
| 1588 | </TD> |
| 1589 | </TR> |
| 1590 | <TR> |
| 1591 | <TD WIDTH=126> |
| 1592 | <P><A NAME="inflow_damping_height"></A><B>inflow_damping_height</B></P> |
| 1593 | </TD> |
| 1594 | <TD WIDTH=45> |
| 1595 | <P>R</P> |
| 1596 | </TD> |
| 1597 | <TD WIDTH=159> |
| 1598 | <P><I>from precursor run</I></P> |
| 1599 | </TD> |
| 1600 | <TD WIDTH=1280> |
| 1601 | <P>Height below which the turbulence signal is used for turbulence |
| 1602 | recycling (in m).<BR><BR>In case of a turbulent inflow (see |
| 1603 | <A HREF="#turbulent_inflow">turbulent_inflow</A>), this parameter |
| 1604 | defines the vertical thickness of the turbulent layer up to which |
| 1605 | the turbulence extracted at the recycling plane (see |
| 1606 | <A HREF="#recycling_width">recycling_width</A>) shall be imposed |
| 1607 | to the inflow. Above this level the turbulence signal is linearly |
| 1608 | damped to zero. The transition range within which the signal falls |
| 1609 | to zero is given by the parameter <A HREF="#inflow_damping_width">inflow_damping_width</A>.<BR><BR>By |
| 1610 | default, this height is set as the height of the convective |
| 1611 | boundary layer as calculated from a precursor run. See <A HREF="chapter_3.9.html">chapter |
| 1612 | 3.9</A> about proper settings for getting this CBL height from a |
| 1613 | precursor run. |
| 1614 | </P> |
| 1615 | </TD> |
| 1616 | </TR> |
| 1617 | <TR> |
| 1618 | <TD WIDTH=126> |
| 1619 | <P><A NAME="inflow_damping_width"></A><B>inflow_damping_width</B></P> |
| 1620 | </TD> |
| 1621 | <TD WIDTH=45> |
| 1622 | <P>R</P> |
| 1623 | </TD> |
| 1624 | <TD WIDTH=159> |
| 1625 | <P><I>0.1 * <A HREF="#inflow_damping_height">inflow_damping</A></I><A HREF="#inflow_damping_height"><BR><I>_height</I></A></P> |
| 1626 | </TD> |
| 1627 | <TD WIDTH=1280> |
| 1628 | <P>Transition range within which the turbulance signal is damped |
| 1629 | to zero (in m).<BR><BR>See <A HREF="#inflow_damping_height">inflow_damping_height</A> |
| 1630 | for explanation.</P> |
| 1631 | </TD> |
| 1632 | </TR> |
| 1633 | <TR> |
| 1634 | <TD WIDTH=126> |
| 1635 | <P><A NAME="inflow_disturbance_begin"></A><B>inflow_disturbance_<BR>begin</B></P> |
| 1636 | </TD> |
| 1637 | <TD WIDTH=45> |
| 1638 | <P>I</P> |
| 1639 | </TD> |
| 1640 | <TD WIDTH=159> |
| 1641 | <P><I>MIN(10,</I><BR><I>nx/2 or ny/2)</I></P> |
| 1642 | </TD> |
| 1643 | <TD WIDTH=1280> |
| 1644 | <P>Lower limit of the horizontal range for which random |
| 1645 | perturbations are to be imposed on the horizontal velocity field |
| 1646 | (gridpoints).<BR><BR>If non-cyclic lateral boundary conditions are |
| 1647 | used (see <A HREF="#bc_lr">bc_lr</A> or <A HREF="#bc_ns">bc_ns</A>), |
| 1648 | this parameter gives the gridpoint number (counted horizontally |
| 1649 | from the inflow) from which on perturbations are imposed on |
| 1650 | the horizontal velocity field. Perturbations must be switched on |
| 1651 | with parameter <A HREF="chapter_4.2.html#create_disturbances">create_disturbances</A>.</P> |
| 1652 | </TD> |
| 1653 | </TR> |
| 1654 | <TR> |
| 1655 | <TD WIDTH=126> |
| 1656 | <P><A NAME="inflow_disturbance_end"></A><B>inflow_disturbance_<BR>end</B></P> |
| 1657 | </TD> |
| 1658 | <TD WIDTH=45> |
| 1659 | <P>I</P> |
| 1660 | </TD> |
| 1661 | <TD WIDTH=159> |
| 1662 | <P><I>MIN(100,</I><BR><I>3/4*nx or</I><BR><I>3/4*ny)</I></P> |
| 1663 | </TD> |
| 1664 | <TD WIDTH=1280> |
| 1665 | <P>Upper limit of the horizontal range for which random |
| 1666 | perturbations are to be imposed on the horizontal velocity field |
| 1667 | (gridpoints).<BR><BR>If non-cyclic lateral boundary conditions are |
| 1668 | used (see <A HREF="#bc_lr">bc_lr</A> or <A HREF="#bc_ns">bc_ns</A>), |
| 1669 | this parameter gives the gridpoint number (counted horizontally |
| 1670 | from the inflow) unto which perturbations are imposed on the |
| 1671 | horizontal velocity field. Perturbations must be switched on with |
| 1672 | parameter <A HREF="chapter_4.2.html#create_disturbances">create_disturbances</A>.</P> |
| 1673 | </TD> |
| 1674 | </TR> |
| 1675 | <TR> |
| 1676 | <TD WIDTH=126> |
| 1677 | <P><A NAME="initializing_actions"></A><B>initializing_actions</B></P> |
| 1678 | </TD> |
| 1679 | <TD WIDTH=45> |
| 1680 | <P>C * 100</P> |
| 1681 | </TD> |
| 1682 | <TD WIDTH=159> |
| 1683 | <P><BR> |
| 1684 | </P> |
| 1685 | </TD> |
| 1686 | <TD WIDTH=1280> |
| 1687 | <P STYLE="font-style: normal">Initialization actions to be carried |
| 1688 | out. |
| 1689 | </P> |
| 1690 | <P STYLE="font-style: normal">This parameter does not have a |
| 1691 | default value and therefore must be assigned with each model run. |
| 1692 | For restart runs <B>initializing_actions</B> = <I>'read_restart_data'</I> |
| 1693 | must be set. For the initial run of a job chain the following |
| 1694 | values are allowed: |
| 1695 | </P> |
| 1696 | <P STYLE="font-style: normal"><I>'set_constant_profiles'</I> |
| 1697 | </P> |
| 1698 | <UL> |
| 1699 | <P>A horizontal wind profile consisting of linear sections (see |
| 1700 | <A HREF="#ug_surface">ug_surface</A>, <A HREF="#ug_vertical_gradient">ug_vertical_gradient</A>, |
| 1701 | <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A> |
| 1702 | and <A HREF="#vg_surface">vg_surface</A>, <A HREF="#vg_vertical_gradient">vg_vertical_gradient</A>, |
| 1703 | <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A>, |
| 1704 | respectively) as well as a vertical temperature (humidity) |
| 1705 | profile consisting of linear sections (see <A HREF="#pt_surface">pt_surface</A>, |
| 1706 | <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A>, |
| 1707 | <A HREF="#q_surface">q_surface</A> and <A HREF="#q_vertical_gradient">q_vertical_gradient</A>) |
| 1708 | are assumed as initial profiles. The subgrid-scale TKE is set to |
| 1709 | 0 but K<SUB>m</SUB> and K<SUB>h</SUB> are set to very small |
| 1710 | values because otherwise no TKE would be generated.</P> |
| 1711 | </UL> |
| 1712 | <P><I>'set_1d-model_profiles' </I> |
| 1713 | </P> |
| 1714 | <UL> |
| 1715 | <P>The arrays of the 3d-model are initialized with the |
| 1716 | (stationary) solution of the 1d-model. These are the variables e, |
| 1717 | kh, km, u, v and with Prandtl layer switched on rif, us, usws, |
| 1718 | vsws. The temperature (humidity) profile consisting of linear |
| 1719 | sections is set as for 'set_constant_profiles' and assumed as |
| 1720 | constant in time within the 1d-model. For steering of the |
| 1721 | 1d-model a set of parameters with suffix "_1d" (e.g. |
| 1722 | <A HREF="#end_time_1d">end_time_1d</A>, <A HREF="#damp_level_1d">damp_level_1d</A>) |
| 1723 | is available.</P> |
| 1724 | </UL> |
| 1725 | <P><I>'by_user'</I></P> |
| 1726 | <P STYLE="margin-left: 0.42in">The initialization of the arrays of |
| 1727 | the 3d-model is under complete control of the user and has to be |
| 1728 | done in routine <A HREF="chapter_3.5.1.html#user_init_3d_model">user_init_3d_model</A> |
| 1729 | of the user-interface.</P> |
| 1730 | <P><I>'initialize_vortex'</I> |
| 1731 | </P> |
| 1732 | <P STYLE="margin-left: 0.42in">The initial velocity field of the |
| 1733 | 3d-model corresponds to a Rankine-vortex with vertical axis. This |
| 1734 | setting may be used to test advection schemes. Free-slip boundary |
| 1735 | conditions for u and v (see <A HREF="#bc_uv_b">bc_uv_b</A>, |
| 1736 | <A HREF="#bc_uv_t">bc_uv_t</A>) are necessary. In order not to |
| 1737 | distort the vortex, an initial horizontal wind profile constant |
| 1738 | with height is necessary (to be set by <B>initializing_actions</B> |
| 1739 | = <I>'set_constant_profiles'</I>) and some other conditions have |
| 1740 | to be met (neutral stratification, diffusion must be switched off, |
| 1741 | see <A HREF="#km_constant">km_constant</A>). The center of the |
| 1742 | vortex is located at jc = (nx+1)/2. It extends from k = 0 to k = |
| 1743 | nz+1. Its radius is 8 * <A HREF="#dx">dx</A> and the exponentially |
| 1744 | decaying part ranges to 32 * <A HREF="#dx">dx</A> (see |
| 1745 | init_rankine.f90). |
| 1746 | </P> |
| 1747 | <P><I>'initialize_ptanom'</I> |
| 1748 | </P> |
| 1749 | <UL> |
| 1750 | <P>A 2d-Gauss-like shape disturbance (x,y) is added to the |
| 1751 | initial temperature field with radius 10.0 * <A HREF="#dx">dx</A> |
| 1752 | and center at jc = (nx+1)/2. This may be used for tests of scalar |
| 1753 | advection schemes (see <A HREF="#scalar_advec">scalar_advec</A>). |
| 1754 | Such tests require a horizontal wind profile constant with hight |
| 1755 | and diffusion switched off (see <I>'initialize_vortex'</I>). |
| 1756 | Additionally, the buoyancy term must be switched of in the |
| 1757 | equation of motion for w (this requires the user to comment |
| 1758 | out the call of <FONT FACE="monospace">buoyancy</FONT> in the |
| 1759 | source code of <FONT FACE="monospace">prognostic_equations.f90</FONT>).</P> |
| 1760 | </UL> |
| 1761 | <P><I>'cyclic_fill'</I></P> |
| 1762 | <P STYLE="margin-left: 0.42in"><SPAN STYLE="font-style: normal">Here, |
| 1763 | 3d-data from a precursor run are read by the initial (main) run. |
| 1764 | The precursor run is allowed to have a smaller domain along x and |
| 1765 | y compared with the main run. Also, different numbers of |
| 1766 | processors can be used for these two runs. Limitations are that |
| 1767 | the precursor run must use cyclic horizontal boundary conditions |
| 1768 | and that the number of vertical grid points, <A HREF="#nz">nz</A>, |
| 1769 | must be same for the precursor run and the main run. If the total |
| 1770 | domain of the main run is larger than that of the precursor run, |
| 1771 | the domain is filled by cyclic repetition of the (cyclic) |
| 1772 | precursor data. This initialization method is recommended if a |
| 1773 | turbulent inflow is used (see <A HREF="#turbulent_inflow">turbulent_inflow</A>). |
| 1774 | 3d-data must be made available to the run by activating an |
| 1775 | appropriate file connection statement for local file BININ. See |
| 1776 | <A HREF="chapter_3.9.html">chapter 3.9</A> for more details, where |
| 1777 | usage of a turbulent inflow is explained. </SPAN> |
| 1778 | </P> |
| 1779 | <P STYLE="font-style: normal">Values may be combined, e.g. |
| 1780 | <B>initializing_actions</B> = <I>'set_constant_profiles |
| 1781 | initialize_vortex'</I>, but the values of <I>'set_constant_profiles'</I>, |
| 1782 | <I>'set_1d-model_profiles'</I> , and <I>'by_user'</I> must not be |
| 1783 | given at the same time.</P> |
| 1784 | </TD> |
| 1785 | </TR> |
| 1786 | <TR> |
| 1787 | <TD WIDTH=126> |
| 1788 | <P><A NAME="km_constant"></A><B>km_constant</B></P> |
| 1789 | </TD> |
| 1790 | <TD WIDTH=45> |
| 1791 | <P>R</P> |
| 1792 | </TD> |
| 1793 | <TD WIDTH=159> |
| 1794 | <P><I>variable<BR>(computed from TKE)</I></P> |
| 1795 | </TD> |
| 1796 | <TD WIDTH=1280> |
| 1797 | <P>Constant eddy diffusivities are used (laminar simulations). |
| 1798 | </P> |
| 1799 | <P>If this parameter is specified, both in the 1d and in the |
| 1800 | 3d-model constant values for the eddy diffusivities are used in |
| 1801 | space and time with K<SUB>m</SUB> = <B>km_constant</B> and K<SUB>h</SUB> |
| 1802 | = K<SUB>m</SUB> / <A HREF="chapter_4.2.html#prandtl_number">prandtl_number</A>. |
| 1803 | The prognostic equation for the subgrid-scale TKE is switched off. |
| 1804 | Constant eddy diffusivities are only allowed with the Prandtl |
| 1805 | layer (<A HREF="#prandtl_layer">prandtl_layer</A>) switched off.</P> |
| 1806 | </TD> |
| 1807 | </TR> |
| 1808 | <TR> |
| 1809 | <TD WIDTH=126> |
| 1810 | <P><A NAME="km_damp_max"></A><B>km_damp_max</B></P> |
| 1811 | </TD> |
| 1812 | <TD WIDTH=45> |
| 1813 | <P>R</P> |
| 1814 | </TD> |
| 1815 | <TD WIDTH=159> |
| 1816 | <P><I>0.5*(dx or dy)</I></P> |
| 1817 | </TD> |
| 1818 | <TD WIDTH=1280> |
| 1819 | <P>Maximum diffusivity used for filtering the velocity field in |
| 1820 | the vicinity of the outflow (in m<SUP>2</SUP>/s).<BR><BR>When |
| 1821 | using non-cyclic lateral boundaries (see <A HREF="#bc_lr">bc_lr</A> |
| 1822 | or <A HREF="#bc_ns">bc_ns</A>), a smoothing has to be applied to |
| 1823 | the velocity field in the vicinity of the outflow in order to |
| 1824 | suppress any reflections of outgoing disturbances. Smoothing is |
| 1825 | done by increasing the eddy diffusivity along the horizontal |
| 1826 | direction which is perpendicular to the outflow boundary. Only |
| 1827 | velocity components parallel to the outflow boundary are filtered |
| 1828 | (e.g. v and w, if the outflow is along x). Damping is applied from |
| 1829 | the bottom to the top of the domain.<BR><BR>The horizontal range |
| 1830 | of the smoothing is controlled by <A HREF="#outflow_damping_width">outflow_damping_width</A> |
| 1831 | which defines the number of gridpoints (counted from the outflow |
| 1832 | boundary) from where on the smoothing is applied. Starting from |
| 1833 | that point, the eddy diffusivity is linearly increased (from zero |
| 1834 | to its maximum value given by <B>km_damp_max</B>) until half of |
| 1835 | the damping range width, from where it remains constant up to the |
| 1836 | outflow boundary. If at a certain grid point the eddy diffusivity |
| 1837 | calculated from the flow field is larger than as described above, |
| 1838 | it is used instead.<BR><BR>The default value of <B>km_damp_max</B> |
| 1839 | has been empirically proven to be sufficient.</P> |
| 1840 | </TD> |
| 1841 | </TR> |
| 1842 | <TR> |
| 1843 | <TD WIDTH=126> |
| 1844 | <P><A NAME="lad_surface"></A><B>lad_surface</B></P> |
| 1845 | </TD> |
| 1846 | <TD WIDTH=45> |
| 1847 | <P>R</P> |
| 1848 | </TD> |
| 1849 | <TD WIDTH=159> |
| 1850 | <P><I>0.0</I></P> |
| 1851 | </TD> |
| 1852 | <TD WIDTH=1280> |
| 1853 | <P>Surface value of the leaf area density (in m<SUP>2</SUP>/m<SUP>3</SUP>).<BR><BR>This |
| 1854 | parameter assigns the value of the leaf area density <B>lad</B> at |
| 1855 | the surface (k=0)<B>.</B> Starting from this value, the leaf area |
| 1856 | density profile is constructed with <A HREF="#lad_vertical_gradient">lad_vertical_gradient</A> |
| 1857 | and <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level |
| 1858 | </A>.</P> |
| 1859 | </TD> |
| 1860 | </TR> |
| 1861 | <TR> |
| 1862 | <TD WIDTH=126> |
| 1863 | <P><A NAME="lad_vertical_gradient"></A><B>lad_vertical_gradient</B></P> |
| 1864 | </TD> |
| 1865 | <TD WIDTH=45> |
| 1866 | <P>R (10)</P> |
| 1867 | </TD> |
| 1868 | <TD WIDTH=159> |
| 1869 | <P><I>10 * 0.0</I></P> |
| 1870 | </TD> |
| 1871 | <TD WIDTH=1280> |
| 1872 | <P>Gradient(s) of the leaf area density (in m<SUP>2</SUP>/m<SUP>4</SUP>).</P> |
| 1873 | <P>This leaf area density gradient holds starting from the height |
| 1874 | level defined by <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level</A> |
| 1875 | (precisely: for all uv levels k where zu(k) > |
| 1876 | lad_vertical_gradient_level, lad(k) is set: lad(k) = lad(k-1) + |
| 1877 | dzu(k) * <B>lad_vertical_gradient</B>) up to the level defined by |
| 1878 | <A HREF="#pch_index">pch_index</A>. Above that level lad(k) will |
| 1879 | automatically set to 0.0. A total of 10 different gradients for 11 |
| 1880 | height intervals (10 intervals if <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level</A>(1) |
| 1881 | = <I>0.0</I>) can be assigned. The leaf area density at the |
| 1882 | surface is assigned via <A HREF="#lad_surface">lad_surface</A>. |
| 1883 | </P> |
| 1884 | </TD> |
| 1885 | </TR> |
| 1886 | <TR> |
| 1887 | <TD WIDTH=126> |
| 1888 | <P><A NAME="lad_vertical_gradient_level"></A><B>lad_vertical_gradient_level</B></P> |
| 1889 | </TD> |
| 1890 | <TD WIDTH=45> |
| 1891 | <P>R (10)</P> |
| 1892 | </TD> |
| 1893 | <TD WIDTH=159> |
| 1894 | <P><I>10 * 0.0</I></P> |
| 1895 | </TD> |
| 1896 | <TD WIDTH=1280> |
| 1897 | <P>Height level from which on the gradient of the leaf area |
| 1898 | density defined by <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level</A> |
| 1899 | is effective (in m).<BR><BR>The height levels have to be assigned |
| 1900 | in ascending order. The default values result in a leaf area |
| 1901 | density that is constant with height uup to the top of the plant |
| 1902 | canopy layer defined by <A HREF="#pch_index">pch_index</A>. For |
| 1903 | the piecewise construction of temperature profiles see |
| 1904 | <A HREF="#lad_vertical_gradient">lad_vertical_gradient</A>.</P> |
| 1905 | </TD> |
| 1906 | </TR> |
| 1907 | <TR> |
| 1908 | <TD WIDTH=126> |
| 1909 | <P><A NAME="leaf_surface_concentration"></A><B>leaf_surface_concentration</B></P> |
| 1910 | </TD> |
| 1911 | <TD WIDTH=45> |
| 1912 | <P>R</P> |
| 1913 | </TD> |
| 1914 | <TD WIDTH=159> |
| 1915 | <P><I>0.0</I></P> |
| 1916 | </TD> |
| 1917 | <TD WIDTH=1280> |
| 1918 | <P>Concentration of a passive scalar at the surface of a leaf (in |
| 1919 | K m/s).<BR><BR>This parameter is only of importance in cases in |
| 1920 | that both, <A HREF="#plant_canopy">plant_canopy</A> and |
| 1921 | <A HREF="#passive_scalar">passive_scalar</A>, are set <I>.T.</I>. |
| 1922 | The value of the concentration of a passive scalar at the surface |
| 1923 | of a leaf is required for the parametrisation of the sources and |
| 1924 | sinks of scalar concentration due to the canopy.</P> |
| 1925 | </TD> |
| 1926 | </TR> |
| 1927 | <TR> |
| 1928 | <TD WIDTH=126> |
| 1929 | <P><A NAME="long_filter_factor"></A><B>long_filter_factor</B></P> |
| 1930 | </TD> |
| 1931 | <TD WIDTH=45> |
| 1932 | <P>R</P> |
| 1933 | </TD> |
| 1934 | <TD WIDTH=159> |
| 1935 | <P><I>0.0</I></P> |
| 1936 | </TD> |
| 1937 | <TD WIDTH=1280> |
| 1938 | <P>Filter factor for the so-called Long-filter.</P> |
| 1939 | <P><BR>This filter very efficiently eliminates 2-delta-waves |
| 1940 | sometimes cauesed by the upstream-spline scheme (see Mahrer and |
| 1941 | Pielke, 1978: Mon. Wea. Rev., 106, 818-830). It works in all three |
| 1942 | directions in space. A value of <B>long_filter_factor</B> = <I>0.01</I> |
| 1943 | sufficiently removes the small-scale waves without affecting the |
| 1944 | longer waves.</P> |
| 1945 | <P>By default, the filter is switched off (= <I>0.0</I>). It is |
| 1946 | exclusively applied to the tendencies calculated by the |
| 1947 | upstream-spline scheme (see <A HREF="#momentum_advec">momentum_advec</A> |
| 1948 | and <A HREF="#scalar_advec">scalar_advec</A>), not to the |
| 1949 | prognostic variables themselves. At the bottom and top boundary of |
| 1950 | the model domain the filter effect for vertical 2-delta-waves is |
| 1951 | reduced. There, the amplitude of these waves is only reduced by |
| 1952 | approx. 50%, otherwise by nearly 100%. <BR>Filter factors |
| 1953 | with values > <I>0.01</I> also reduce the amplitudes of waves |
| 1954 | with wavelengths longer than 2-delta (see the paper by Mahrer and |
| 1955 | Pielke, quoted above). |
| 1956 | </P> |
| 1957 | </TD> |
| 1958 | </TR> |
| 1959 | <TR> |
| 1960 | <TD WIDTH=126> |
| 1961 | <P><A NAME="loop_optimization"></A><B>loop_optimization</B></P> |
| 1962 | </TD> |
| 1963 | <TD WIDTH=45> |
| 1964 | <P>C*16</P> |
| 1965 | </TD> |
| 1966 | <TD WIDTH=159> |
| 1967 | <P><I>see right</I></P> |
| 1968 | </TD> |
| 1969 | <TD WIDTH=1280> |
| 1970 | <P>Method used to optimize loops for solving the prognostic |
| 1971 | equations .<BR><BR>By default, the optimization method depends on |
| 1972 | the host on which PALM is running. On machines with vector-type |
| 1973 | CPUs, single 3d-loops are used to calculate each tendency term of |
| 1974 | each prognostic equation, while on all other machines, all |
| 1975 | prognostic equations are solved within one big loop over the two |
| 1976 | horizontal indices <FONT FACE="Courier New, Courier, monospace">i |
| 1977 | </FONT>and <FONT FACE="Courier New, Courier, monospace">j </FONT>(giving |
| 1978 | a good cache uitilization).<BR><BR>The default behaviour can be |
| 1979 | changed by setting either <B>loop_optimization</B> = <I>'vector'</I> |
| 1980 | or <B>loop_optimization</B> = <I>'cache'</I>.</P> |
| 1981 | </TD> |
| 1982 | </TR> |
| 1983 | <TR> |
| 1984 | <TD WIDTH=126> |
| 1985 | <P><A NAME="mixing_length_1d"></A><B>mixing_length_1d</B></P> |
| 1986 | </TD> |
| 1987 | <TD WIDTH=45> |
| 1988 | <P>C*20</P> |
| 1989 | </TD> |
| 1990 | <TD WIDTH=159> |
| 1991 | <P><I>'as_in_3d_</I><BR><I>model'</I></P> |
| 1992 | </TD> |
| 1993 | <TD WIDTH=1280> |
| 1994 | <P>Mixing length used in the 1d-model.<BR><BR>By default the |
| 1995 | mixing length is calculated as in the 3d-model (i.e. it depends on |
| 1996 | the grid spacing).<BR><BR>By setting <B>mixing_length_1d</B> = |
| 1997 | <I>'blackadar'</I>, the so-called Blackadar mixing length is used |
| 1998 | (l = kappa * z / ( 1 + kappa * z / lambda ) with the limiting |
| 1999 | value lambda = 2.7E-4 * u_g / f).</P> |
| 2000 | </TD> |
| 2001 | </TR> |
| 2002 | <TR> |
| 2003 | <TD WIDTH=126> |
| 2004 | <P><A NAME="momentum_advec"></A><B>momentum_advec</B></P> |
| 2005 | </TD> |
| 2006 | <TD WIDTH=45> |
| 2007 | <P>C * 10</P> |
| 2008 | </TD> |
| 2009 | <TD WIDTH=159> |
| 2010 | <P><I>'pw-scheme'</I></P> |
| 2011 | </TD> |
| 2012 | <TD WIDTH=1280> |
| 2013 | <P>Advection scheme to be used for the momentum equations.<BR><BR>The |
| 2014 | user can choose between the following schemes:<BR> <BR><BR><I>'pw-scheme'</I></P> |
| 2015 | <P STYLE="margin-left: 0.42in">The scheme of Piascek and Williams |
| 2016 | (1970, J. Comp. Phys., 6, 392-405) with central differences in the |
| 2017 | form C3 is used.<BR>If intermediate Euler-timesteps are carried |
| 2018 | out in case of <A HREF="#timestep_scheme">timestep_scheme</A> = |
| 2019 | <I>'leapfrog+euler'</I> the advection scheme is - for the |
| 2020 | Euler-timestep - automatically switched to an upstream-scheme.</P> |
| 2021 | <P><I>'ups-scheme'</I></P> |
| 2022 | <P STYLE="margin-left: 0.42in">The upstream-spline scheme is used |
| 2023 | (see Mahrer and Pielke, 1978: Mon. Wea. Rev., 106, 818-830). In |
| 2024 | opposite to the Piascek-Williams scheme, this is characterized by |
| 2025 | much better numerical features (less numerical diffusion, better |
| 2026 | preservation of flow structures, e.g. vortices), but |
| 2027 | computationally it is much more expensive. In addition, the use of |
| 2028 | the Euler-timestep scheme is mandatory (<A HREF="#timestep_scheme">timestep_scheme</A> |
| 2029 | = <I>'euler'</I>), i.e. the timestep accuracy is only of first |
| 2030 | order. For this reason the advection of scalar variables (see |
| 2031 | <A HREF="#scalar_advec">scalar_advec</A>) should then also be |
| 2032 | carried out with the upstream-spline scheme, because otherwise the |
| 2033 | scalar variables would be subject to large numerical diffusion due |
| 2034 | to the upstream scheme. |
| 2035 | </P> |
| 2036 | <P STYLE="margin-left: 0.42in">Since the cubic splines used tend |
| 2037 | to overshoot under certain circumstances, this effect must be |
| 2038 | adjusted by suitable filtering and smoothing (see |
| 2039 | <A HREF="#cut_spline_overshoot">cut_spline_overshoot</A>, |
| 2040 | <A HREF="#long_filter_factor">long_filter_factor</A>, |
| 2041 | <A HREF="#ups_limit_pt">ups_limit_pt</A>, <A HREF="#ups_limit_u">ups_limit_u</A>, |
| 2042 | <A HREF="#ups_limit_v">ups_limit_v</A>, <A HREF="#ups_limit_w">ups_limit_w</A>). |
| 2043 | This is always neccessary for runs with stable stratification, |
| 2044 | even if this stratification appears only in parts of the model |
| 2045 | domain.</P> |
| 2046 | <P STYLE="margin-left: 0.42in">With stable stratification the |
| 2047 | upstream-spline scheme also produces gravity waves with large |
| 2048 | amplitude, which must be suitably damped (see |
| 2049 | <A HREF="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</A>).<BR><BR><B>Important: |
| 2050 | </B>The upstream-spline scheme is not implemented for |
| 2051 | humidity and passive scalars (see <A HREF="#humidity">humidity</A> |
| 2052 | and <A HREF="#passive_scalar">passive_scalar</A>) and requires the |
| 2053 | use of a 2d-domain-decomposition. The last conditions severely |
| 2054 | restricts code optimization on several machines leading to very |
| 2055 | long execution times! The scheme is also not allowed for |
| 2056 | non-cyclic lateral boundary conditions (see <A HREF="#bc_lr">bc_lr</A> |
| 2057 | and <A HREF="#bc_ns">bc_ns</A>).</P> |
| 2058 | </TD> |
| 2059 | </TR> |
| 2060 | <TR> |
| 2061 | <TD WIDTH=126> |
| 2062 | <P><A NAME="netcdf_precision"></A><B>netcdf_precision</B></P> |
| 2063 | </TD> |
| 2064 | <TD WIDTH=45> |
| 2065 | <P>C*20<BR>(10)</P> |
| 2066 | </TD> |
| 2067 | <TD WIDTH=159> |
| 2068 | <P><I>single preci-</I><BR><I>sion for all</I><BR><I>output |
| 2069 | quan-</I><BR><I>tities</I></P> |
| 2070 | </TD> |
| 2071 | <TD WIDTH=1280> |
| 2072 | <P>Defines the accuracy of the NetCDF output.<BR><BR>By default, |
| 2073 | all NetCDF output data (see <A HREF="chapter_4.2.html#data_output_format">data_output_format</A>) |
| 2074 | have single precision (4 byte) accuracy. Double precision (8 |
| 2075 | byte) can be choosen alternatively.<BR>Accuracy for the different |
| 2076 | output data (cross sections, 3d-volume data, spectra, etc.) can be |
| 2077 | set independently.<BR><I>'<out>_NF90_REAL4'</I> (single |
| 2078 | precision) or <I>'<out>_NF90_REAL8'</I> (double precision) |
| 2079 | are the two principally allowed values for <B>netcdf_precision</B>, |
| 2080 | where the string <I>'<out>' </I>can be chosen out of the |
| 2081 | following list:</P> |
| 2082 | <TABLE BORDER=1 CELLPADDING=2 CELLSPACING=2> |
| 2083 | <TR> |
| 2084 | <TD> |
| 2085 | <P><I>'xy'</I></P> |
| 2086 | </TD> |
| 2087 | <TD> |
| 2088 | <P>horizontal cross section</P> |
| 2089 | </TD> |
| 2090 | </TR> |
| 2091 | <TR> |
| 2092 | <TD> |
| 2093 | <P><I>'xz'</I></P> |
| 2094 | </TD> |
| 2095 | <TD> |
| 2096 | <P>vertical (xz) cross section</P> |
| 2097 | </TD> |
| 2098 | </TR> |
| 2099 | <TR> |
| 2100 | <TD> |
| 2101 | <P><I>'yz'</I></P> |
| 2102 | </TD> |
| 2103 | <TD> |
| 2104 | <P>vertical (yz) cross section</P> |
| 2105 | </TD> |
| 2106 | </TR> |
| 2107 | <TR> |
| 2108 | <TD> |
| 2109 | <P><I>'2d'</I></P> |
| 2110 | </TD> |
| 2111 | <TD> |
| 2112 | <P>all cross sections</P> |
| 2113 | </TD> |
| 2114 | </TR> |
| 2115 | <TR> |
| 2116 | <TD> |
| 2117 | <P><I>'3d'</I></P> |
| 2118 | </TD> |
| 2119 | <TD> |
| 2120 | <P>volume data</P> |
| 2121 | </TD> |
| 2122 | </TR> |
| 2123 | <TR> |
| 2124 | <TD> |
| 2125 | <P><I>'pr'</I></P> |
| 2126 | </TD> |
| 2127 | <TD> |
| 2128 | <P>vertical profiles</P> |
| 2129 | </TD> |
| 2130 | </TR> |
| 2131 | <TR> |
| 2132 | <TD> |
| 2133 | <P><I>'ts'</I></P> |
| 2134 | </TD> |
| 2135 | <TD> |
| 2136 | <P>time series, particle time series</P> |
| 2137 | </TD> |
| 2138 | </TR> |
| 2139 | <TR> |
| 2140 | <TD> |
| 2141 | <P><I>'sp'</I></P> |
| 2142 | </TD> |
| 2143 | <TD> |
| 2144 | <P>spectra</P> |
| 2145 | </TD> |
| 2146 | </TR> |
| 2147 | <TR> |
| 2148 | <TD> |
| 2149 | <P><I>'prt'</I></P> |
| 2150 | </TD> |
| 2151 | <TD> |
| 2152 | <P>particles</P> |
| 2153 | </TD> |
| 2154 | </TR> |
| 2155 | <TR> |
| 2156 | <TD> |
| 2157 | <P><I>'all'</I></P> |
| 2158 | </TD> |
| 2159 | <TD> |
| 2160 | <P>all output quantities</P> |
| 2161 | </TD> |
| 2162 | </TR> |
| 2163 | </TABLE> |
| 2164 | <P><BR><B>Example:</B><BR>If all cross section data and the |
| 2165 | particle data shall be output in double precision and all other |
| 2166 | quantities in single precision, then <B>netcdf_precision</B> = |
| 2167 | <I>'2d_NF90_REAL8'</I>, <I>'prt_NF90_REAL8'</I> has to be |
| 2168 | assigned.</P> |
| 2169 | </TD> |
| 2170 | </TR> |
| 2171 | <TR> |
| 2172 | <TD WIDTH=126> |
| 2173 | <P><A NAME="nsor_ini"></A><B>nsor_ini</B></P> |
| 2174 | </TD> |
| 2175 | <TD WIDTH=45> |
| 2176 | <P>I</P> |
| 2177 | </TD> |
| 2178 | <TD WIDTH=159> |
| 2179 | <P><I>100</I></P> |
| 2180 | </TD> |
| 2181 | <TD WIDTH=1280> |
| 2182 | <P>Initial number of iterations with the SOR algorithm. |
| 2183 | </P> |
| 2184 | <P>This parameter is only effective if the SOR algorithm was |
| 2185 | selected as the pressure solver scheme (<A HREF="chapter_4.2.html#psolver">psolver</A> |
| 2186 | = <I>'sor'</I>) and specifies the number of initial iterations of |
| 2187 | the SOR scheme (at t = 0). The number of subsequent iterations at |
| 2188 | the following timesteps is determined with the parameter <A HREF="#nsor">nsor</A>. |
| 2189 | Usually <B>nsor</B> < <B>nsor_ini</B>, since in each case |
| 2190 | subsequent calls to <A HREF="chapter_4.2.html#psolver">psolver</A> |
| 2191 | use the solution of the previous call as initial value. Suitable |
| 2192 | test runs should determine whether sufficient convergence of the |
| 2193 | solution is obtained with the default value and if necessary the |
| 2194 | value of <B>nsor_ini</B> should be changed.</P> |
| 2195 | </TD> |
| 2196 | </TR> |
| 2197 | <TR> |
| 2198 | <TD WIDTH=126> |
| 2199 | <P><A NAME="nx"></A><B>nx</B></P> |
| 2200 | </TD> |
| 2201 | <TD WIDTH=45> |
| 2202 | <P>I</P> |
| 2203 | </TD> |
| 2204 | <TD WIDTH=159> |
| 2205 | <P><BR><BR> |
| 2206 | </P> |
| 2207 | </TD> |
| 2208 | <TD WIDTH=1280> |
| 2209 | <P>Number of grid points in x-direction. |
| 2210 | </P> |
| 2211 | <P>A value for this parameter must be assigned. Since the lower |
| 2212 | array bound in PALM starts with i = 0, the actual number of grid |
| 2213 | points is equal to <B>nx+1</B>. In case of cyclic boundary |
| 2214 | conditions along x, the domain size is (<B>nx+1</B>)* <A HREF="#dx">dx</A>.</P> |
| 2215 | <P>For parallel runs, in case of <A HREF="#grid_matching">grid_matching</A> |
| 2216 | = <I>'strict'</I>, <B>nx+1</B> must be an integral multiple of the |
| 2217 | processor numbers (see <A HREF="#npex">npex</A> and <A HREF="#npey">npey</A>) |
| 2218 | along x- as well as along y-direction (due to data transposition |
| 2219 | restrictions).</P> |
| 2220 | <P>For <A HREF="chapter_3.8.html">coupled runs</A> this parameter |
| 2221 | must be equal in both parameter files <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN</FONT></A> |
| 2222 | and <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A>.</P> |
| 2223 | </TD> |
| 2224 | </TR> |
| 2225 | <TR> |
| 2226 | <TD WIDTH=126> |
| 2227 | <P><A NAME="ny"></A><B>ny</B></P> |
| 2228 | </TD> |
| 2229 | <TD WIDTH=45> |
| 2230 | <P>I</P> |
| 2231 | </TD> |
| 2232 | <TD WIDTH=159> |
| 2233 | <P><BR><BR> |
| 2234 | </P> |
| 2235 | </TD> |
| 2236 | <TD WIDTH=1280> |
| 2237 | <P>Number of grid points in y-direction. |
| 2238 | </P> |
| 2239 | <P>A value for this parameter must be assigned. Since the lower |
| 2240 | array bound in PALM starts with j = 0, the actual number of grid |
| 2241 | points is equal to <B>ny+1</B>. In case of cyclic boundary |
| 2242 | conditions along y, the domain size is (<B>ny+1</B>) * <A HREF="#dy">dy</A>.</P> |
| 2243 | <P>For parallel runs, in case of <A HREF="#grid_matching">grid_matching</A> |
| 2244 | = <I>'strict'</I>, <B>ny+1</B> must be an integral multiple of the |
| 2245 | processor numbers (see <A HREF="#npex">npex</A> and <A HREF="#npey">npey</A>) |
| 2246 | along y- as well as along x-direction (due to data transposition |
| 2247 | restrictions).</P> |
| 2248 | <P>For <A HREF="chapter_3.8.html">coupled runs</A> this parameter |
| 2249 | must be equal in both parameter files <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN</FONT></A> |
| 2250 | and <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A>.</P> |
| 2251 | </TD> |
| 2252 | </TR> |
| 2253 | <TR> |
| 2254 | <TD WIDTH=126> |
| 2255 | <P><A NAME="nz"></A><B>nz</B></P> |
| 2256 | </TD> |
| 2257 | <TD WIDTH=45> |
| 2258 | <P>I</P> |
| 2259 | </TD> |
| 2260 | <TD WIDTH=159> |
| 2261 | <P><BR><BR> |
| 2262 | </P> |
| 2263 | </TD> |
| 2264 | <TD WIDTH=1280> |
| 2265 | <P>Number of grid points in z-direction. |
| 2266 | </P> |
| 2267 | <P>A value for this parameter must be assigned. Since the lower |
| 2268 | array bound in PALM starts with k = 0 and since one additional |
| 2269 | grid point is added at the top boundary (k = <B>nz+1</B>), the |
| 2270 | actual number of grid points is <B>nz+2</B>. However, the |
| 2271 | prognostic equations are only solved up to <B>nz</B> (u, v) or up |
| 2272 | to <B>nz-1</B> (w, scalar quantities). The top boundary for u and |
| 2273 | v is at k = <B>nz+1</B> (u, v) while at k = <B>nz</B> for all |
| 2274 | other quantities. |
| 2275 | </P> |
| 2276 | <P>For parallel runs, in case of <A HREF="#grid_matching">grid_matching</A> |
| 2277 | = <I>'strict'</I>, <B>nz</B> must be an integral multiple of the |
| 2278 | number of processors in x-direction (due to data transposition |
| 2279 | restrictions).</P> |
| 2280 | </TD> |
| 2281 | </TR> |
| 2282 | <TR> |
| 2283 | <TD WIDTH=126> |
| 2284 | <P><A NAME="ocean"></A><B>ocean</B></P> |
| 2285 | </TD> |
| 2286 | <TD WIDTH=45> |
| 2287 | <P>L</P> |
| 2288 | </TD> |
| 2289 | <TD WIDTH=159> |
| 2290 | <P><I>.F.</I></P> |
| 2291 | </TD> |
| 2292 | <TD WIDTH=1280> |
| 2293 | <P>Parameter to switch on ocean runs.<BR><BR>By default PALM |
| 2294 | is configured to simulate atmospheric flows. However, |
| 2295 | starting from version 3.3, <B>ocean</B> = <I>.T.</I> |
| 2296 | allows simulation of ocean turbulent flows. Setting this |
| 2297 | switch has several effects:</P> |
| 2298 | <UL> |
| 2299 | <LI><P STYLE="margin-bottom: 0in">An additional prognostic |
| 2300 | equation for salinity is solved. |
| 2301 | </P> |
| 2302 | <LI><P STYLE="margin-bottom: 0in">Potential temperature in |
| 2303 | buoyancy and stability-related terms is replaced by potential |
| 2304 | density. |
| 2305 | </P> |
| 2306 | <LI><P STYLE="margin-bottom: 0in">Potential density is calculated |
| 2307 | from the equation of state for seawater after each timestep, |
| 2308 | using the algorithm proposed by Jackett et al. (2006, J. Atmos. |
| 2309 | Oceanic Technol., <B>23</B>, 1709-1728).<BR>So far, only the |
| 2310 | initial hydrostatic pressure is entered into this equation. |
| 2311 | </P> |
| 2312 | <LI><P STYLE="margin-bottom: 0in">z=0 (sea surface) is assumed at |
| 2313 | the model top (vertical grid index <FONT FACE="Courier New, Courier, monospace">k=nzt</FONT> |
| 2314 | on the w-grid), with negative values of z indicating the depth. |
| 2315 | </P> |
| 2316 | <LI><P STYLE="margin-bottom: 0in">Initial profiles are |
| 2317 | constructed (e.g. from <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A> |
| 2318 | / <A HREF="#pt_vertical_gradient_level">pt_vertical_gradient_level</A>) |
| 2319 | starting from the sea surface, using surface values given by |
| 2320 | <A HREF="#pt_surface">pt_surface</A>, <A HREF="#sa_surface">sa_surface</A>, |
| 2321 | <A HREF="#ug_surface">ug_surface</A>, and <A HREF="#vg_surface">vg_surface</A>. |
| 2322 | </P> |
| 2323 | <LI><P STYLE="margin-bottom: 0in">Zero salinity flux is used as |
| 2324 | default boundary condition at the bottom of the sea. |
| 2325 | </P> |
| 2326 | <LI><P>If switched on, random perturbations are by default |
| 2327 | imposed to the upper model domain from zu(nzt*2/3) to zu(nzt-3). |
| 2328 | </P> |
| 2329 | </UL> |
| 2330 | <P><BR>Relevant parameters to be exclusively used for steering |
| 2331 | ocean runs are <A HREF="#bc_sa_t">bc_sa_t</A>, |
| 2332 | <A HREF="#bottom_salinityflux">bottom_salinityflux</A>, |
| 2333 | <A HREF="#sa_surface">sa_surface</A>, <A HREF="#sa_vertical_gradient">sa_vertical_gradient</A>, |
| 2334 | <A HREF="#sa_vertical_gradient_level">sa_vertical_gradient_level</A>, |
| 2335 | and <A HREF="#top_salinityflux">top_salinityflux</A>.<BR><BR>Section |
| 2336 | <A HREF="chapter_4.2.2.html">4.4.2</A> gives an example for |
| 2337 | appropriate settings of these and other parameters neccessary for |
| 2338 | ocean runs.<BR><BR><B>ocean</B> = <I>.T.</I> does not allow |
| 2339 | settings of <A HREF="#timestep_scheme">timestep_scheme</A> = |
| 2340 | <I>'leapfrog'</I> or <I>'leapfrog+euler'</I> as well as |
| 2341 | <A HREF="#scalar_advec">scalar_advec</A> = <I>'ups-scheme'</I>.</P> |
| 2342 | </TD> |
| 2343 | </TR> |
| 2344 | <TR> |
| 2345 | <TD WIDTH=126> |
| 2346 | <P><A NAME="omega"></A><B>omega</B></P> |
| 2347 | </TD> |
| 2348 | <TD WIDTH=45> |
| 2349 | <P>R</P> |
| 2350 | </TD> |
| 2351 | <TD WIDTH=159> |
| 2352 | <P><I>7.29212E-5</I></P> |
| 2353 | </TD> |
| 2354 | <TD WIDTH=1280> |
| 2355 | <P>Angular velocity of the rotating system (in rad s<SUP>-1</SUP>). |
| 2356 | </P> |
| 2357 | <P>The angular velocity of the earth is set by default. The values |
| 2358 | of the Coriolis parameters are calculated as: |
| 2359 | </P> |
| 2360 | <UL> |
| 2361 | <P>f = 2.0 * <B>omega</B> * sin(<A HREF="#phi">phi</A>) <BR>f* |
| 2362 | = 2.0 * <B>omega</B> * cos(<A HREF="#phi">phi</A>)</P> |
| 2363 | </UL> |
| 2364 | </TD> |
| 2365 | </TR> |
| 2366 | <TR> |
| 2367 | <TD WIDTH=126> |
| 2368 | <P><A NAME="outflow_damping_width"></A><B>outflow_damping_width</B></P> |
| 2369 | </TD> |
| 2370 | <TD WIDTH=45> |
| 2371 | <P>I</P> |
| 2372 | </TD> |
| 2373 | <TD WIDTH=159> |
| 2374 | <P><I>MIN(20, nx/2</I> or <I>ny/2)</I></P> |
| 2375 | </TD> |
| 2376 | <TD WIDTH=1280> |
| 2377 | <P>Width of the damping range in the vicinity of the outflow |
| 2378 | (gridpoints).<BR><BR>When using non-cyclic lateral boundaries (see |
| 2379 | <A HREF="#bc_lr">bc_lr</A> or <A HREF="#bc_ns">bc_ns</A>), a |
| 2380 | smoothing has to be applied to the velocity field in the vicinity |
| 2381 | of the outflow in order to suppress any reflections of outgoing |
| 2382 | disturbances. This parameter controlls the horizontal range to |
| 2383 | which the smoothing is applied. The range is given in gridpoints |
| 2384 | counted from the respective outflow boundary. For further details |
| 2385 | about the smoothing see parameter <A HREF="#km_damp_max">km_damp_max</A>, |
| 2386 | which defines the magnitude of the damping.</P> |
| 2387 | </TD> |
| 2388 | </TR> |
| 2389 | <TR> |
| 2390 | <TD WIDTH=126> |
| 2391 | <P><A NAME="overshoot_limit_e"></A><B>overshoot_limit_e</B></P> |
| 2392 | </TD> |
| 2393 | <TD WIDTH=45> |
| 2394 | <P>R</P> |
| 2395 | </TD> |
| 2396 | <TD WIDTH=159> |
| 2397 | <P><I>0.0</I></P> |
| 2398 | </TD> |
| 2399 | <TD WIDTH=1280> |
| 2400 | <P>Allowed limit for the overshooting of subgrid-scale TKE in case |
| 2401 | that the upstream-spline scheme is switched on (in m<SUP>2</SUP>/s<SUP>2</SUP>). |
| 2402 | </P> |
| 2403 | <P>By deafult, if cut-off of overshoots is switched on for the |
| 2404 | upstream-spline scheme (see <A HREF="#cut_spline_overshoot">cut_spline_overshoot</A>), |
| 2405 | no overshoots are permitted at all. If <B>overshoot_limit_e</B> is |
| 2406 | given a non-zero value, overshoots with the respective amplitude |
| 2407 | (both upward and downward) are allowed. |
| 2408 | </P> |
| 2409 | <P>Only positive values are allowed for <B>overshoot_limit_e</B>.</P> |
| 2410 | </TD> |
| 2411 | </TR> |
| 2412 | <TR> |
| 2413 | <TD WIDTH=126> |
| 2414 | <P><A NAME="overshoot_limit_pt"></A><B>overshoot_limit_pt</B></P> |
| 2415 | </TD> |
| 2416 | <TD WIDTH=45> |
| 2417 | <P>R</P> |
| 2418 | </TD> |
| 2419 | <TD WIDTH=159> |
| 2420 | <P><I>0.0</I></P> |
| 2421 | </TD> |
| 2422 | <TD WIDTH=1280> |
| 2423 | <P>Allowed limit for the overshooting of potential temperature in |
| 2424 | case that the upstream-spline scheme is switched on (in K). |
| 2425 | </P> |
| 2426 | <P>For further information see <A HREF="#overshoot_limit_e">overshoot_limit_e</A>. |
| 2427 | </P> |
| 2428 | <P>Only positive values are allowed for <B>overshoot_limit_pt</B>.</P> |
| 2429 | </TD> |
| 2430 | </TR> |
| 2431 | <TR> |
| 2432 | <TD WIDTH=126> |
| 2433 | <P><A NAME="overshoot_limit_u"></A><B>overshoot_limit_u</B></P> |
| 2434 | </TD> |
| 2435 | <TD WIDTH=45> |
| 2436 | <P>R</P> |
| 2437 | </TD> |
| 2438 | <TD WIDTH=159> |
| 2439 | <P><I>0.0</I></P> |
| 2440 | </TD> |
| 2441 | <TD WIDTH=1280> |
| 2442 | <P>Allowed limit for the overshooting of the u-component of |
| 2443 | velocity in case that the upstream-spline scheme is switched on |
| 2444 | (in m/s). |
| 2445 | </P> |
| 2446 | <P>For further information see <A HREF="#overshoot_limit_e">overshoot_limit_e</A>. |
| 2447 | </P> |
| 2448 | <P>Only positive values are allowed for <B>overshoot_limit_u</B>.</P> |
| 2449 | </TD> |
| 2450 | </TR> |
| 2451 | <TR> |
| 2452 | <TD WIDTH=126> |
| 2453 | <P><A NAME="overshoot_limit_v"></A><B>overshoot_limit_v</B></P> |
| 2454 | </TD> |
| 2455 | <TD WIDTH=45> |
| 2456 | <P>R</P> |
| 2457 | </TD> |
| 2458 | <TD WIDTH=159> |
| 2459 | <P><I>0.0</I></P> |
| 2460 | </TD> |
| 2461 | <TD WIDTH=1280> |
| 2462 | <P>Allowed limit for the overshooting of the v-component of |
| 2463 | velocity in case that the upstream-spline scheme is switched on |
| 2464 | (in m/s). |
| 2465 | </P> |
| 2466 | <P>For further information see <A HREF="#overshoot_limit_e">overshoot_limit_e</A>. |
| 2467 | </P> |
| 2468 | <P>Only positive values are allowed for <B>overshoot_limit_v</B>.</P> |
| 2469 | </TD> |
| 2470 | </TR> |
| 2471 | <TR> |
| 2472 | <TD WIDTH=126> |
| 2473 | <P><A NAME="overshoot_limit_w"></A><B>overshoot_limit_w</B></P> |
| 2474 | </TD> |
| 2475 | <TD WIDTH=45> |
| 2476 | <P>R</P> |
| 2477 | </TD> |
| 2478 | <TD WIDTH=159> |
| 2479 | <P><I>0.0</I></P> |
| 2480 | </TD> |
| 2481 | <TD WIDTH=1280> |
| 2482 | <P>Allowed limit for the overshooting of the w-component of |
| 2483 | velocity in case that the upstream-spline scheme is switched on |
| 2484 | (in m/s). |
| 2485 | </P> |
| 2486 | <P>For further information see <A HREF="#overshoot_limit_e">overshoot_limit_e</A>. |
| 2487 | </P> |
| 2488 | <P>Only positive values are permitted for <B>overshoot_limit_w</B>.</P> |
| 2489 | </TD> |
| 2490 | </TR> |
| 2491 | <TR> |
| 2492 | <TD WIDTH=126> |
| 2493 | <P><A NAME="passive_scalar"></A><B>passive_scalar</B></P> |
| 2494 | </TD> |
| 2495 | <TD WIDTH=45> |
| 2496 | <P>L</P> |
| 2497 | </TD> |
| 2498 | <TD WIDTH=159> |
| 2499 | <P><I>.F.</I></P> |
| 2500 | </TD> |
| 2501 | <TD WIDTH=1280> |
| 2502 | <P>Parameter to switch on the prognostic equation for a passive |
| 2503 | scalar. |
| 2504 | </P> |
| 2505 | <P>The initial vertical profile of s can be set via parameters |
| 2506 | <A HREF="#s_surface">s_surface</A>, <A HREF="#s_vertical_gradient">s_vertical_gradient</A> |
| 2507 | and <A HREF="#s_vertical_gradient_level">s_vertical_gradient_level</A>. |
| 2508 | Boundary conditions can be set via <A HREF="#s_surface_initial_change">s_surface_initial_change</A> |
| 2509 | and <A HREF="#surface_scalarflux">surface_scalarflux</A>. |
| 2510 | </P> |
| 2511 | <P><B>Note:</B> <BR>With <B>passive_scalar</B> switched on, the |
| 2512 | simultaneous use of humidity (see <A HREF="#humidity">humidity</A>) |
| 2513 | is impossible.</P> |
| 2514 | </TD> |
| 2515 | </TR> |
| 2516 | <TR> |
| 2517 | <TD WIDTH=126> |
| 2518 | <P><A NAME="pch_index"></A><B>pch_index</B></P> |
| 2519 | </TD> |
| 2520 | <TD WIDTH=45> |
| 2521 | <P>I</P> |
| 2522 | </TD> |
| 2523 | <TD WIDTH=159> |
| 2524 | <P><I>0</I></P> |
| 2525 | </TD> |
| 2526 | <TD WIDTH=1280> |
| 2527 | <P>Grid point index (scalar) of the upper boundary of the plant |
| 2528 | canopy layer.<BR><BR>Above <B>pch_index</B> the arrays of leaf |
| 2529 | area density and drag_coeffient are automatically set to zero in |
| 2530 | case of <A HREF="#plant_canopy">plant_canopy</A> = .T.. Up to |
| 2531 | <B>pch_index</B> a leaf area density profile can be prescribed by |
| 2532 | using the parameters <A HREF="#lad_surface">lad_surface</A>, |
| 2533 | <A HREF="#lad_vertical_gradient">lad_vertical_gradient</A> and |
| 2534 | <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level</A>.</P> |
| 2535 | </TD> |
| 2536 | </TR> |
| 2537 | <TR> |
| 2538 | <TD WIDTH=126> |
| 2539 | <P><A NAME="phi"></A><B>phi</B></P> |
| 2540 | </TD> |
| 2541 | <TD WIDTH=45> |
| 2542 | <P>R</P> |
| 2543 | </TD> |
| 2544 | <TD WIDTH=159> |
| 2545 | <P><I>55.0</I></P> |
| 2546 | </TD> |
| 2547 | <TD WIDTH=1280> |
| 2548 | <P>Geographical latitude (in degrees). |
| 2549 | </P> |
| 2550 | <P>The value of this parameter determines the value of the |
| 2551 | Coriolis parameters f and f*, provided that the angular velocity |
| 2552 | (see <A HREF="#omega">omega</A>) is non-zero.</P> |
| 2553 | </TD> |
| 2554 | </TR> |
| 2555 | <TR> |
| 2556 | <TD WIDTH=126> |
| 2557 | <P><A NAME="plant_canopy"></A><B>plant_canopy</B></P> |
| 2558 | </TD> |
| 2559 | <TD WIDTH=45> |
| 2560 | <P>L</P> |
| 2561 | </TD> |
| 2562 | <TD WIDTH=159> |
| 2563 | <P><I>.F.</I></P> |
| 2564 | </TD> |
| 2565 | <TD WIDTH=1280> |
| 2566 | <P>Switch for the plant_canopy_model.<BR><BR>If <B>plant_canopy</B> |
| 2567 | is set <I>.T.</I>, the plant canopy model of Watanabe (2004, BLM |
| 2568 | 112, 307-341) is used. <BR>The impact of a plant canopy on a |
| 2569 | turbulent flow is considered by an additional drag term in the |
| 2570 | momentum equations and an additional sink term in the prognostic |
| 2571 | equation for the subgrid-scale TKE. These additional terms are |
| 2572 | dependent on the leaf drag coefficient (see <A HREF="#drag_coefficient">drag_coefficient</A>) |
| 2573 | and the leaf area density (see <A HREF="#lad_surface">lad_surface</A>, |
| 2574 | <A HREF="#lad_vertical_gradient">lad_vertical_gradient</A>, |
| 2575 | <A HREF="#lad_vertical_gradient_level">lad_vertical_gradient_level</A>). |
| 2576 | The top boundary of the plant canopy is determined by the |
| 2577 | parameter <A HREF="#pch_index">pch_index</A>. For all heights |
| 2578 | equal to or larger than zw(k=<B>pch_index</B>) the leaf area |
| 2579 | density is 0 (i.e. there is no canopy at these heights!). <BR>By |
| 2580 | default, a horizontally homogeneous plant canopy is prescribed, |
| 2581 | if <B>plant_canopy</B> is set <I>.T.</I>. However, the user |
| 2582 | can define other types of plant canopies (see <A HREF="#canopy_mode">canopy_mode</A>).<BR><BR>If |
| 2583 | <B>plant_canopy</B> and <B>passive_scalar</B> are set <I>.T.</I>, |
| 2584 | the canopy acts as an additional source or sink, respectively, of |
| 2585 | scalar concentration. The source/sink strength is dependent on the |
| 2586 | scalar concentration at the leaf surface, which is generally |
| 2587 | constant with time in PALM and which can be specified by |
| 2588 | specifying the parameter <A HREF="#leaf_surface_concentration">leaf_surface_concentration</A>. |
| 2589 | <BR><BR>Additional heating of the air by the plant canopy is taken |
| 2590 | into account, when the default value of the parameter <A HREF="#cthf">cthf</A> |
| 2591 | is altered in the parameter file. In that case the value of |
| 2592 | <A HREF="#surface_heatflux">surface_heatflux</A> specified in the |
| 2593 | parameter file is not used in the model. Instead the near-surface |
| 2594 | heat flux is derived from an expontial function that is dependent |
| 2595 | on the cumulative leaf area index. <BR><BR><B>plant_canopy</B> = |
| 2596 | <I>.T. </I>is only allowed together with a non-zero |
| 2597 | <A HREF="#drag_coefficient">drag_coefficient</A>.</P> |
| 2598 | </TD> |
| 2599 | </TR> |
| 2600 | <TR> |
| 2601 | <TD WIDTH=126> |
| 2602 | <P><A NAME="prandtl_layer"></A><B>prandtl_layer</B></P> |
| 2603 | </TD> |
| 2604 | <TD WIDTH=45> |
| 2605 | <P>L</P> |
| 2606 | </TD> |
| 2607 | <TD WIDTH=159> |
| 2608 | <P><I>.T.</I></P> |
| 2609 | </TD> |
| 2610 | <TD WIDTH=1280> |
| 2611 | <P>Parameter to switch on a Prandtl layer. |
| 2612 | </P> |
| 2613 | <P>By default, a Prandtl layer is switched on at the bottom |
| 2614 | boundary between z = 0 and z = 0.5 * <A HREF="#dz">dz</A> (the |
| 2615 | first computational grid point above ground for u, v and the |
| 2616 | scalar quantities). In this case, at the bottom boundary, |
| 2617 | free-slip conditions for u and v (see <A HREF="#bc_uv_b">bc_uv_b</A>) |
| 2618 | are not allowed. Likewise, laminar simulations with constant eddy |
| 2619 | diffusivities (<A HREF="#km_constant">km_constant</A>) are |
| 2620 | forbidden. |
| 2621 | </P> |
| 2622 | <P>With Prandtl-layer switched off, the TKE boundary condition |
| 2623 | <A HREF="#bc_e_b">bc_e_b</A> = '<I>(u*)**2+neumann'</I> must not |
| 2624 | be used and is automatically changed to <I>'neumann'</I> if |
| 2625 | necessary. Also, the pressure boundary condition <A HREF="#bc_p_b">bc_p_b</A> |
| 2626 | = <I>'neumann+inhomo'</I> is not allowed. |
| 2627 | </P> |
| 2628 | <P>The roughness length is declared via the parameter |
| 2629 | <A HREF="#roughness_length">roughness_length</A>.</P> |
| 2630 | </TD> |
| 2631 | </TR> |
| 2632 | <TR> |
| 2633 | <TD WIDTH=126> |
| 2634 | <P><A NAME="precipitation"></A><B>precipitation</B></P> |
| 2635 | </TD> |
| 2636 | <TD WIDTH=45> |
| 2637 | <P>L</P> |
| 2638 | </TD> |
| 2639 | <TD WIDTH=159> |
| 2640 | <P><I>.F.</I></P> |
| 2641 | </TD> |
| 2642 | <TD WIDTH=1280> |
| 2643 | <P>Parameter to switch on the precipitation scheme.</P> |
| 2644 | <P>For precipitation processes PALM uses a simplified Kessler |
| 2645 | scheme. This scheme only considers the so-called autoconversion, |
| 2646 | that means the generation of rain water by coagulation of cloud |
| 2647 | drops among themselves. Precipitation begins and is immediately |
| 2648 | removed from the flow as soon as the liquid water content exceeds |
| 2649 | the critical value of 0.5 g/kg.</P> |
| 2650 | <P>The precipitation rate and amount can be output by assigning |
| 2651 | the runtime parameter <A HREF="chapter_4.2.html#data_output">data_output</A> |
| 2652 | = <I>'prr*'</I> or <I>'pra*'</I>, respectively. The time interval |
| 2653 | on which the precipitation amount is defined can be controlled via |
| 2654 | runtime parameter <A HREF="chapter_4.2.html#precipitation_amount_interval">precipitation_amount_interval</A>.</P> |
| 2655 | </TD> |
| 2656 | </TR> |
| 2657 | <TR> |
| 2658 | <TD WIDTH=126> |
| 2659 | <P><A NAME="pt_reference"></A><B>pt_reference</B></P> |
| 2660 | </TD> |
| 2661 | <TD WIDTH=45> |
| 2662 | <P>R</P> |
| 2663 | </TD> |
| 2664 | <TD WIDTH=159> |
| 2665 | <P><I>use horizontal average as refrence</I></P> |
| 2666 | </TD> |
| 2667 | <TD WIDTH=1280> |
| 2668 | <P>Reference temperature to be used in all buoyancy terms (in |
| 2669 | K).<BR><BR>By default, the instantaneous horizontal average over |
| 2670 | the total model domain is used.<BR><BR><B>Attention:</B><BR>In |
| 2671 | case of ocean runs (see <A HREF="#ocean">ocean</A>), always a |
| 2672 | reference temperature is used in the buoyancy terms with a default |
| 2673 | value of <B>pt_reference</B> = <A HREF="#pt_surface">pt_surface</A>.</P> |
| 2674 | </TD> |
| 2675 | </TR> |
| 2676 | <TR> |
| 2677 | <TD WIDTH=126> |
| 2678 | <P><A NAME="pt_surface"></A><B>pt_surface</B></P> |
| 2679 | </TD> |
| 2680 | <TD WIDTH=45> |
| 2681 | <P>R</P> |
| 2682 | </TD> |
| 2683 | <TD WIDTH=159> |
| 2684 | <P><I>300.0</I></P> |
| 2685 | </TD> |
| 2686 | <TD WIDTH=1280> |
| 2687 | <P>Surface potential temperature (in K). |
| 2688 | </P> |
| 2689 | <P>This parameter assigns the value of the potential temperature |
| 2690 | <B>pt</B> at the surface (k=0)<B>.</B> Starting from this value, |
| 2691 | the initial vertical temperature profile is constructed with |
| 2692 | <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A> and |
| 2693 | <A HREF="#pt_vertical_gradient_level">pt_vertical_gradient_level </A>. |
| 2694 | This profile is also used for the 1d-model as a stationary |
| 2695 | profile.</P> |
| 2696 | <P><B>Attention:</B><BR>In case of ocean runs (see <A HREF="#ocean">ocean</A>), |
| 2697 | this parameter gives the temperature value at the sea surface, |
| 2698 | which is at k=nzt. The profile is then constructed from the |
| 2699 | surface down to the bottom of the model.</P> |
| 2700 | </TD> |
| 2701 | </TR> |
| 2702 | <TR> |
| 2703 | <TD WIDTH=126> |
| 2704 | <P><A NAME="pt_surface_initial_change"></A><B>pt_surface_initial</B> |
| 2705 | <BR><B>_change</B></P> |
| 2706 | </TD> |
| 2707 | <TD WIDTH=45> |
| 2708 | <P>R</P> |
| 2709 | </TD> |
| 2710 | <TD WIDTH=159> |
| 2711 | <P><I>0.0</I></P> |
| 2712 | </TD> |
| 2713 | <TD WIDTH=1280> |
| 2714 | <P>Change in surface temperature to be made at the beginning of |
| 2715 | the 3d run (in K). |
| 2716 | </P> |
| 2717 | <P>If <B>pt_surface_initial_change</B> is set to a non-zero value, |
| 2718 | the near surface sensible heat flux is not allowed to be given |
| 2719 | simultaneously (see <A HREF="#surface_heatflux">surface_heatflux</A>).</P> |
| 2720 | </TD> |
| 2721 | </TR> |
| 2722 | <TR> |
| 2723 | <TD WIDTH=126> |
| 2724 | <P><A NAME="pt_vertical_gradient"></A><B>pt_vertical_gradient</B></P> |
| 2725 | </TD> |
| 2726 | <TD WIDTH=45> |
| 2727 | <P>R (10)</P> |
| 2728 | </TD> |
| 2729 | <TD WIDTH=159> |
| 2730 | <P><I>10 * 0.0</I></P> |
| 2731 | </TD> |
| 2732 | <TD WIDTH=1280> |
| 2733 | <P>Temperature gradient(s) of the initial temperature profile (in |
| 2734 | K / 100 m). |
| 2735 | </P> |
| 2736 | <P>This temperature gradient holds starting from the height |
| 2737 | level defined by <A HREF="#pt_vertical_gradient_level">pt_vertical_gradient_level</A> |
| 2738 | (precisely: for all uv levels k where zu(k) > |
| 2739 | pt_vertical_gradient_level, pt_init(k) is set: pt_init(k) = |
| 2740 | pt_init(k-1) + dzu(k) * <B>pt_vertical_gradient</B>) up to the top |
| 2741 | boundary or up to the next height level defined by |
| 2742 | <A HREF="#pt_vertical_gradient_level">pt_vertical_gradient_level</A>. |
| 2743 | A total of 10 different gradients for 11 height intervals (10 |
| 2744 | intervals if <A HREF="#pt_vertical_gradient_level">pt_vertical_gradient_level</A>(1) |
| 2745 | = <I>0.0</I>) can be assigned. The surface temperature is assigned |
| 2746 | via <A HREF="#pt_surface">pt_surface</A>. |
| 2747 | </P> |
| 2748 | <P>Example: |
| 2749 | </P> |
| 2750 | <UL> |
| 2751 | <P><B>pt_vertical_gradient</B> = <I>1.0</I>, <I>0.5</I>, |
| 2752 | <BR><B>pt_vertical_gradient_level</B> = <I>500.0</I>, <I>1000.0</I>,</P> |
| 2753 | </UL> |
| 2754 | <P>That defines the temperature profile to be neutrally stratified |
| 2755 | up to z = 500.0 m with a temperature given by <A HREF="#pt_surface">pt_surface</A>. |
| 2756 | For 500.0 m < z <= 1000.0 m the temperature gradient is 1.0 |
| 2757 | K / 100 m and for z > 1000.0 m up to the top boundary it is 0.5 |
| 2758 | K / 100 m (it is assumed that the assigned height levels |
| 2759 | correspond with uv levels).</P> |
| 2760 | <P><B>Attention:</B><BR>In case of ocean runs (see <A HREF="#ocean">ocean</A>), |
| 2761 | the profile is constructed like described above, but starting from |
| 2762 | the sea surface (k=nzt) down to the bottom boundary of the model. |
| 2763 | Height levels have then to be given as negative values, e.g. |
| 2764 | <B>pt_vertical_gradient_level</B> = <I>-500.0</I>, <I>-1000.0</I>.</P> |
| 2765 | </TD> |
| 2766 | </TR> |
| 2767 | <TR> |
| 2768 | <TD WIDTH=126> |
| 2769 | <P><A NAME="pt_vertical_gradient_level"></A><B>pt_vertical_gradient</B> |
| 2770 | <BR><B>_level</B></P> |
| 2771 | </TD> |
| 2772 | <TD WIDTH=45> |
| 2773 | <P>R (10)</P> |
| 2774 | </TD> |
| 2775 | <TD WIDTH=159> |
| 2776 | <P><I>10 *</I> <I>0.0</I></P> |
| 2777 | </TD> |
| 2778 | <TD WIDTH=1280> |
| 2779 | <P>Height level from which on the temperature gradient defined by |
| 2780 | <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A> is |
| 2781 | effective (in m). |
| 2782 | </P> |
| 2783 | <P>The height levels have to be assigned in ascending order. The |
| 2784 | default values result in a neutral stratification regardless of |
| 2785 | the values of <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A> |
| 2786 | (unless the top boundary of the model is higher than 100000.0 m). |
| 2787 | For the piecewise construction of temperature profiles see |
| 2788 | <A HREF="#pt_vertical_gradient">pt_vertical_gradient</A>.</P> |
| 2789 | <P><B>Attention:</B><BR>In case of ocean runs (see <A HREF="#ocean">ocean</A>), |
| 2790 | the (negative) height levels have to be assigned in descending |
| 2791 | order. |
| 2792 | </P> |
| 2793 | </TD> |
| 2794 | </TR> |
| 2795 | <TR> |
| 2796 | <TD WIDTH=126> |
| 2797 | <P><A NAME="q_surface"></A><B>q_surface</B></P> |
| 2798 | </TD> |
| 2799 | <TD WIDTH=45> |
| 2800 | <P>R</P> |
| 2801 | </TD> |
| 2802 | <TD WIDTH=159> |
| 2803 | <P><I>0.0</I></P> |
| 2804 | </TD> |
| 2805 | <TD WIDTH=1280> |
| 2806 | <P>Surface specific humidity / total water content (kg/kg). |
| 2807 | </P> |
| 2808 | <P>This parameter assigns the value of the specific humidity q at |
| 2809 | the surface (k=0). Starting from this value, the initial |
| 2810 | humidity profile is constructed with <A HREF="#q_vertical_gradient">q_vertical_gradient</A> |
| 2811 | and <A HREF="#q_vertical_gradient_level">q_vertical_gradient_level</A>. |
| 2812 | This profile is also used for the 1d-model as a stationary |
| 2813 | profile.</P> |
| 2814 | </TD> |
| 2815 | </TR> |
| 2816 | <TR> |
| 2817 | <TD WIDTH=126> |
| 2818 | <P><A NAME="q_surface_initial_change"></A><B>q_surface_initial</B> |
| 2819 | <BR><B>_change</B></P> |
| 2820 | </TD> |
| 2821 | <TD WIDTH=45> |
| 2822 | <P>R</P> |
| 2823 | </TD> |
| 2824 | <TD WIDTH=159> |
| 2825 | <P><I>0.0</I></P> |
| 2826 | </TD> |
| 2827 | <TD WIDTH=1280> |
| 2828 | <P>Change in surface specific humidity / total water content to be |
| 2829 | made at the beginning of the 3d run (kg/kg). |
| 2830 | </P> |
| 2831 | <P>If <B>q_surface_initial_change</B> is set to a non-zero value |
| 2832 | the near surface latent heat flux (water flux) is not allowed to |
| 2833 | be given simultaneously (see <A HREF="#surface_waterflux">surface_waterflux</A>).</P> |
| 2834 | </TD> |
| 2835 | </TR> |
| 2836 | <TR> |
| 2837 | <TD WIDTH=126> |
| 2838 | <P><A NAME="q_vertical_gradient"></A><B>q_vertical_gradient</B></P> |
| 2839 | </TD> |
| 2840 | <TD WIDTH=45> |
| 2841 | <P>R (10)</P> |
| 2842 | </TD> |
| 2843 | <TD WIDTH=159> |
| 2844 | <P><I>10 * 0.0</I></P> |
| 2845 | </TD> |
| 2846 | <TD WIDTH=1280> |
| 2847 | <P>Humidity gradient(s) of the initial humidity profile (in 1/100 |
| 2848 | m). |
| 2849 | </P> |
| 2850 | <P>This humidity gradient holds starting from the height level |
| 2851 | defined by <A HREF="#q_vertical_gradient_level">q_vertical_gradient_level</A> |
| 2852 | (precisely: for all uv levels k, where zu(k) > |
| 2853 | q_vertical_gradient_level, q_init(k) is set: q_init(k) = |
| 2854 | q_init(k-1) + dzu(k) * <B>q_vertical_gradient</B>) up to the top |
| 2855 | boundary or up to the next height level defined by |
| 2856 | <A HREF="#q_vertical_gradient_level">q_vertical_gradient_level</A>. |
| 2857 | A total of 10 different gradients for 11 height intervals (10 |
| 2858 | intervals if <A HREF="#q_vertical_gradient_level">q_vertical_gradient_level</A>(1) |
| 2859 | = <I>0.0</I>) can be asigned. The surface humidity is assigned via |
| 2860 | <A HREF="#q_surface">q_surface</A>. |
| 2861 | </P> |
| 2862 | <P>Example: |
| 2863 | </P> |
| 2864 | <UL> |
| 2865 | <P><B>q_vertical_gradient</B> = <I>0.001</I>, <I>0.0005</I>, |
| 2866 | <BR><B>q_vertical_gradient_level</B> = <I>500.0</I>, <I>1000.0</I>,</P> |
| 2867 | </UL> |
| 2868 | <P>That defines the humidity to be constant with height up to z = |
| 2869 | 500.0 m with a value given by <A HREF="#q_surface">q_surface</A>. |
| 2870 | For 500.0 m < z <= 1000.0 m the humidity gradient is 0.001 / |
| 2871 | 100 m and for z > 1000.0 m up to the top boundary it is 0.0005 |
| 2872 | / 100 m (it is assumed that the assigned height levels correspond |
| 2873 | with uv levels). |
| 2874 | </P> |
| 2875 | </TD> |
| 2876 | </TR> |
| 2877 | <TR> |
| 2878 | <TD WIDTH=126> |
| 2879 | <P><A NAME="q_vertical_gradient_level"></A><B>q_vertical_gradient</B> |
| 2880 | <BR><B>_level</B></P> |
| 2881 | </TD> |
| 2882 | <TD WIDTH=45> |
| 2883 | <P>R (10)</P> |
| 2884 | </TD> |
| 2885 | <TD WIDTH=159> |
| 2886 | <P><I>10 *</I> <I>0.0</I></P> |
| 2887 | </TD> |
| 2888 | <TD WIDTH=1280> |
| 2889 | <P>Height level from which on the humidity gradient defined by |
| 2890 | <A HREF="#q_vertical_gradient">q_vertical_gradient</A> is |
| 2891 | effective (in m). |
| 2892 | </P> |
| 2893 | <P>The height levels are to be assigned in ascending order. The |
| 2894 | default values result in a humidity constant with height |
| 2895 | regardless of the values of <A HREF="#q_vertical_gradient">q_vertical_gradient</A> |
| 2896 | (unless the top boundary of the model is higher than 100000.0 m). |
| 2897 | For the piecewise construction of humidity profiles see |
| 2898 | <A HREF="#q_vertical_gradient">q_vertical_gradient</A>.</P> |
| 2899 | </TD> |
| 2900 | </TR> |
| 2901 | <TR> |
| 2902 | <TD WIDTH=126> |
| 2903 | <P><A NAME="radiation"></A><B>radiation</B></P> |
| 2904 | </TD> |
| 2905 | <TD WIDTH=45> |
| 2906 | <P>L</P> |
| 2907 | </TD> |
| 2908 | <TD WIDTH=159> |
| 2909 | <P><I>.F.</I></P> |
| 2910 | </TD> |
| 2911 | <TD WIDTH=1280> |
| 2912 | <P>Parameter to switch on longwave radiation cooling at |
| 2913 | cloud-tops. |
| 2914 | </P> |
| 2915 | <P>Long-wave radiation processes are parameterized by the |
| 2916 | effective emissivity, which considers only the absorption and |
| 2917 | emission of long-wave radiation at cloud droplets. The radiation |
| 2918 | scheme can be used only with <A HREF="#cloud_physics">cloud_physics</A> |
| 2919 | = .TRUE. .</P> |
| 2920 | </TD> |
| 2921 | </TR> |
| 2922 | <TR> |
| 2923 | <TD WIDTH=126> |
| 2924 | <P><A NAME="random_generator"></A><B>random_generator</B></P> |
| 2925 | </TD> |
| 2926 | <TD WIDTH=45> |
| 2927 | <P>C * 20</P> |
| 2928 | </TD> |
| 2929 | <TD WIDTH=159> |
| 2930 | <P><I>'numerical</I><BR><I>recipes'</I></P> |
| 2931 | </TD> |
| 2932 | <TD WIDTH=1280> |
| 2933 | <P>Random number generator to be used for creating uniformly |
| 2934 | distributed random numbers. |
| 2935 | </P> |
| 2936 | <P>It is used if random perturbations are to be imposed on the |
| 2937 | velocity field or on the surface heat flux field (see |
| 2938 | <A HREF="chapter_4.2.html#create_disturbances">create_disturbances</A> |
| 2939 | and <A HREF="chapter_4.2.html#random_heatflux">random_heatflux</A>). |
| 2940 | By default, the "Numerical Recipes" random number |
| 2941 | generator is used. This one provides exactly the same order of |
| 2942 | random numbers on all different machines and should be used in |
| 2943 | particular for comparison runs.<BR><BR>Besides, a system-specific |
| 2944 | generator is available ( <B>random_generator</B> = |
| 2945 | <I>'system-specific')</I> which should particularly be used for |
| 2946 | runs on vector parallel computers (NEC), because the default |
| 2947 | generator cannot be vectorized and therefore significantly drops |
| 2948 | down the code performance on these machines.</P> |
| 2949 | <P><B>Note:</B><BR>Results from two otherwise identical model runs |
| 2950 | will not be comparable one-to-one if they used different random |
| 2951 | number generators.</P> |
| 2952 | </TD> |
| 2953 | </TR> |
| 2954 | <TR> |
| 2955 | <TD WIDTH=126> |
| 2956 | <P><A NAME="random_heatflux"></A><B>random_heatflux</B></P> |
| 2957 | </TD> |
| 2958 | <TD WIDTH=45> |
| 2959 | <P>L</P> |
| 2960 | </TD> |
| 2961 | <TD WIDTH=159> |
| 2962 | <P><I>.F.</I></P> |
| 2963 | </TD> |
| 2964 | <TD WIDTH=1280> |
| 2965 | <P>Parameter to impose random perturbations on the internal |
| 2966 | two-dimensional near surface heat flux field <I>shf</I>. |
| 2967 | </P> |
| 2968 | <P>If a near surface heat flux is used as bottom boundary |
| 2969 | condition (see <A HREF="#surface_heatflux">surface_heatflux</A>), |
| 2970 | it is by default assumed to be horizontally homogeneous. Random |
| 2971 | perturbations can be imposed on the internal two-dimensional heat |
| 2972 | flux field <I>shf</I> by assigning <B>random_heatflux</B> = <I>.T.</I>. |
| 2973 | The disturbed heat flux field is calculated by multiplying the |
| 2974 | values at each mesh point with a normally distributed random |
| 2975 | number with a mean value and standard deviation of 1. This is |
| 2976 | repeated after every timestep.<BR><BR>In case of a non-flat |
| 2977 | <A HREF="#topography">topography</A>, assigning |
| 2978 | <B>random_heatflux</B> = <I>.T.</I> imposes random perturbations |
| 2979 | on the combined heat flux field <I>shf</I> composed of |
| 2980 | <A HREF="#surface_heatflux">surface_heatflux</A> at the bottom |
| 2981 | surface and <A HREF="#wall_heatflux">wall_heatflux(0)</A> at the |
| 2982 | topography top face.</P> |
| 2983 | </TD> |
| 2984 | </TR> |
| 2985 | <TR> |
| 2986 | <TD WIDTH=126> |
| 2987 | <P><A NAME="recycling_width"></A><B>recycling_width</B></P> |
| 2988 | </TD> |
| 2989 | <TD WIDTH=45> |
| 2990 | <P>R</P> |
| 2991 | </TD> |
| 2992 | <TD WIDTH=159> |
| 2993 | <P><I>0.1 * <A HREF="#nx">nx</A> * <A HREF="#dx">dx</A></I></P> |
| 2994 | </TD> |
| 2995 | <TD WIDTH=1280> |
| 2996 | <P>Distance of the recycling plane from the inflow boundary (in |
| 2997 | m).<BR><BR>This parameter sets the horizontal extension (along the |
| 2998 | direction of the main flow) of the so-called recycling domain |
| 2999 | which is used to generate a turbulent inflow (see |
| 3000 | <A HREF="#turbulent_inflow">turbulent_inflow</A>). <B>recycling_width</B> |
| 3001 | must be larger than the grid spacing (dx) and smaller than the |
| 3002 | length of the total domain (nx * dx).</P> |
| 3003 | </TD> |
| 3004 | </TR> |
| 3005 | <TR> |
| 3006 | <TD WIDTH=126> |
| 3007 | <P><A NAME="rif_max"></A><B>rif_max</B></P> |
| 3008 | </TD> |
| 3009 | <TD WIDTH=45> |
| 3010 | <P>R</P> |
| 3011 | </TD> |
| 3012 | <TD WIDTH=159> |
| 3013 | <P><I>1.0</I></P> |
| 3014 | </TD> |
| 3015 | <TD WIDTH=1280> |
| 3016 | <P>Upper limit of the flux-Richardson number. |
| 3017 | </P> |
| 3018 | <P>With the Prandtl layer switched on (see <A HREF="#prandtl_layer">prandtl_layer</A>), |
| 3019 | flux-Richardson numbers (rif) are calculated for z=z<SUB>p</SUB> |
| 3020 | (k=1) in the 3d-model (in the 1d model for all heights). Their |
| 3021 | values in particular determine the values of the friction velocity |
| 3022 | (1d- and 3d-model) and the values of the eddy diffusivity |
| 3023 | (1d-model). With small wind velocities at the Prandtl layer top or |
| 3024 | small vertical wind shears in the 1d-model, rif can take up |
| 3025 | unrealistic large values. They are limited by an upper (<B>rif_max</B>) |
| 3026 | and lower limit (see <A HREF="#rif_min">rif_min</A>) for the |
| 3027 | flux-Richardson number. The condition <B>rif_max</B> > <B>rif_min</B> |
| 3028 | must be met.</P> |
| 3029 | </TD> |
| 3030 | </TR> |
| 3031 | <TR> |
| 3032 | <TD WIDTH=126> |
| 3033 | <P><A NAME="rif_min"></A><B>rif_min</B></P> |
| 3034 | </TD> |
| 3035 | <TD WIDTH=45> |
| 3036 | <P>R</P> |
| 3037 | </TD> |
| 3038 | <TD WIDTH=159> |
| 3039 | <P><I>- 5.0</I></P> |
| 3040 | </TD> |
| 3041 | <TD WIDTH=1280> |
| 3042 | <P>Lower limit of the flux-Richardson number. |
| 3043 | </P> |
| 3044 | <P>For further explanations see <A HREF="#rif_max">rif_max</A>. |
| 3045 | The condition <B>rif_max</B> > <B>rif_min </B>must be met.</P> |
| 3046 | </TD> |
| 3047 | </TR> |
| 3048 | <TR> |
| 3049 | <TD WIDTH=126> |
| 3050 | <P><A NAME="roughness_length"></A><B>roughness_length</B></P> |
| 3051 | </TD> |
| 3052 | <TD WIDTH=45> |
| 3053 | <P>R</P> |
| 3054 | </TD> |
| 3055 | <TD WIDTH=159> |
| 3056 | <P><I>0.1</I></P> |
| 3057 | </TD> |
| 3058 | <TD WIDTH=1280> |
| 3059 | <P>Roughness length (in m). |
| 3060 | </P> |
| 3061 | <P>This parameter is effective only in case that a Prandtl layer |
| 3062 | is switched on (see <A HREF="#prandtl_layer">prandtl_layer</A>).</P> |
| 3063 | </TD> |
| 3064 | </TR> |
| 3065 | <TR> |
| 3066 | <TD WIDTH=126> |
| 3067 | <P><A NAME="sa_surface"></A><B>sa_surface</B></P> |
| 3068 | </TD> |
| 3069 | <TD WIDTH=45> |
| 3070 | <P>R</P> |
| 3071 | </TD> |
| 3072 | <TD WIDTH=159> |
| 3073 | <P><I>35.0</I></P> |
| 3074 | </TD> |
| 3075 | <TD WIDTH=1280> |
| 3076 | <P>Surface salinity (in psu). </P> |
| 3077 | <P>This parameter only comes into effect for ocean runs (see |
| 3078 | parameter <A HREF="#ocean">ocean</A>). |
| 3079 | </P> |
| 3080 | <P>This parameter assigns the value of the salinity <B>sa</B> at |
| 3081 | the sea surface (k=nzt)<B>.</B> Starting from this value, the |
| 3082 | initial vertical salinity profile is constructed from the surface |
| 3083 | down to the bottom of the model (k=0) by |
| 3084 | using <A HREF="#sa_vertical_gradient">sa_vertical_gradient</A> |
| 3085 | and <A HREF="#sa_vertical_gradient_level">sa_vertical_gradient_level |
| 3086 | </A>.</P> |
| 3087 | </TD> |
| 3088 | </TR> |
| 3089 | <TR> |
| 3090 | <TD WIDTH=126> |
| 3091 | <P><A NAME="sa_vertical_gradient"></A><B>sa_vertical_gradient</B></P> |
| 3092 | </TD> |
| 3093 | <TD WIDTH=45> |
| 3094 | <P>R(10)</P> |
| 3095 | </TD> |
| 3096 | <TD WIDTH=159> |
| 3097 | <P><I>10 * 0.0</I></P> |
| 3098 | </TD> |
| 3099 | <TD WIDTH=1280> |
| 3100 | <P>Salinity gradient(s) of the initial salinity profile (in psu / |
| 3101 | 100 m). |
| 3102 | </P> |
| 3103 | <P>This parameter only comes into effect for ocean runs (see |
| 3104 | parameter <A HREF="#ocean">ocean</A>).</P> |
| 3105 | <P>This salinity gradient holds starting from the height |
| 3106 | level defined by <A HREF="#sa_vertical_gradient_level">sa_vertical_gradient_level</A> |
| 3107 | (precisely: for all uv levels k where zu(k) < |
| 3108 | sa_vertical_gradient_level, sa_init(k) is set: sa_init(k) = |
| 3109 | sa_init(k+1) - dzu(k+1) * <B>sa_vertical_gradient</B>) down to the |
| 3110 | bottom boundary or down to the next height level defined by |
| 3111 | <A HREF="#sa_vertical_gradient_level">sa_vertical_gradient_level</A>. |
| 3112 | A total of 10 different gradients for 11 height intervals (10 |
| 3113 | intervals if <A HREF="#sa_vertical_gradient_level">sa_vertical_gradient_level</A>(1) |
| 3114 | = <I>0.0</I>) can be assigned. The surface salinity at k=nzt is |
| 3115 | assigned via <A HREF="#sa_surface">sa_surface</A>. |
| 3116 | </P> |
| 3117 | <P>Example: |
| 3118 | </P> |
| 3119 | <UL> |
| 3120 | <P><B>sa_vertical_gradient</B> = <I>1.0</I>, <I>0.5</I>, |
| 3121 | <BR><B>sa_vertical_gradient_level</B> = <I>-500.0</I>, -<I>1000.0</I>,</P> |
| 3122 | </UL> |
| 3123 | <P>That defines the salinity to be constant down to z = -500.0 m |
| 3124 | with a salinity given by <A HREF="#sa_surface">sa_surface</A>. For |
| 3125 | -500.0 m < z <= -1000.0 m the salinity gradient is 1.0 psu / |
| 3126 | 100 m and for z < -1000.0 m down to the bottom boundary it is |
| 3127 | 0.5 psu / 100 m (it is assumed that the assigned height levels |
| 3128 | correspond with uv levels).</P> |
| 3129 | </TD> |
| 3130 | </TR> |
| 3131 | <TR> |
| 3132 | <TD WIDTH=126> |
| 3133 | <P><A NAME="sa_vertical_gradient_level"></A><B>sa_vertical_gradient_level</B></P> |
| 3134 | </TD> |
| 3135 | <TD WIDTH=45> |
| 3136 | <P>R(10)</P> |
| 3137 | </TD> |
| 3138 | <TD WIDTH=159> |
| 3139 | <P><I>10 * 0.0</I></P> |
| 3140 | </TD> |
| 3141 | <TD WIDTH=1280> |
| 3142 | <P>Height level from which on the salinity gradient defined by |
| 3143 | <A HREF="#sa_vertical_gradient">sa_vertical_gradient</A> is |
| 3144 | effective (in m). |
| 3145 | </P> |
| 3146 | <P>This parameter only comes into effect for ocean runs (see |
| 3147 | parameter <A HREF="#ocean">ocean</A>).</P> |
| 3148 | <P>The height levels have to be assigned in descending order. The |
| 3149 | default values result in a constant salinity profile regardless of |
| 3150 | the values of <A HREF="#sa_vertical_gradient">sa_vertical_gradient</A> |
| 3151 | (unless the bottom boundary of the model is lower than -100000.0 |
| 3152 | m). For the piecewise construction of salinity profiles see |
| 3153 | <A HREF="#sa_vertical_gradient">sa_vertical_gradient</A>.</P> |
| 3154 | </TD> |
| 3155 | </TR> |
| 3156 | <TR> |
| 3157 | <TD WIDTH=126> |
| 3158 | <P><A NAME="scalar_advec"></A><B>scalar_advec</B></P> |
| 3159 | </TD> |
| 3160 | <TD WIDTH=45> |
| 3161 | <P>C * 10</P> |
| 3162 | </TD> |
| 3163 | <TD WIDTH=159> |
| 3164 | <P><I>'pw-scheme'</I></P> |
| 3165 | </TD> |
| 3166 | <TD WIDTH=1280> |
| 3167 | <P>Advection scheme to be used for the scalar quantities. |
| 3168 | </P> |
| 3169 | <P>The user can choose between the following schemes:</P> |
| 3170 | <P><I>'pw-scheme'</I></P> |
| 3171 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">The scheme of |
| 3172 | Piascek and Williams (1970, J. Comp. Phys., 6, 392-405) with |
| 3173 | central differences in the form C3 is used.<BR>If intermediate |
| 3174 | Euler-timesteps are carried out in case of <A HREF="#timestep_scheme">timestep_scheme</A> |
| 3175 | = <I>'leapfrog+euler'</I> the advection scheme is - for the |
| 3176 | Euler-timestep - automatically switched to an upstream-scheme. |
| 3177 | </P> |
| 3178 | <P><BR><BR> |
| 3179 | </P> |
| 3180 | <P><I>'bc-scheme'</I></P> |
| 3181 | <P STYLE="margin-left: 0.42in">The Bott scheme modified by Chlond |
| 3182 | (1994, Mon. Wea. Rev., 122, 111-125). This is a conservative |
| 3183 | monotonous scheme with very small numerical diffusion and |
| 3184 | therefore very good conservation of scalar flow features. The |
| 3185 | scheme however, is computationally very expensive both because it |
| 3186 | is expensive itself and because it does (so far) not allow |
| 3187 | specific code optimizations (e.g. cache optimization). Choice of |
| 3188 | this scheme forces the Euler timestep scheme to be used for the |
| 3189 | scalar quantities. For output of horizontally averaged profiles of |
| 3190 | the resolved / total heat flux, <A HREF="chapter_4.2.html#data_output_pr">data_output_pr</A> |
| 3191 | = <I>'w*pt*BC'</I> / <I>'wptBC' </I>should be used, instead of the |
| 3192 | standard profiles (<I>'w*pt*'</I> and <I>'wpt'</I>) because these |
| 3193 | are too inaccurate with this scheme. However, for subdomain |
| 3194 | analysis (see <A HREF="#statistic_regions">statistic_regions</A>) |
| 3195 | exactly the reverse holds: here <I>'w*pt*BC'</I> and <I>'wptBC'</I> |
| 3196 | show very large errors and should not be used.<BR><BR>This scheme |
| 3197 | is not allowed for non-cyclic lateral boundary conditions (see |
| 3198 | <A HREF="#bc_lr">bc_lr</A> and <A HREF="#bc_ns">bc_ns</A>).</P> |
| 3199 | <P><I>'ups-scheme'</I></P> |
| 3200 | <P STYLE="margin-left: 0.42in">The upstream-spline-scheme is used |
| 3201 | (see Mahrer and Pielke, 1978: Mon. Wea. Rev., 106, 818-830). In |
| 3202 | opposite to the Piascek Williams scheme, this is characterized by |
| 3203 | much better numerical features (less numerical diffusion, better |
| 3204 | preservation of flux structures, e.g. vortices), but |
| 3205 | computationally it is much more expensive. In addition, the use of |
| 3206 | the Euler-timestep scheme is mandatory (<A HREF="#timestep_scheme">timestep_scheme</A> |
| 3207 | = <I>'euler'</I>), i.e. the timestep accuracy is only first order. |
| 3208 | For this reason the advection of momentum (see <A HREF="#momentum_advec">momentum_advec</A>) |
| 3209 | should then also be carried out with the upstream-spline scheme, |
| 3210 | because otherwise the momentum would be subject to large numerical |
| 3211 | diffusion due to the upstream scheme. |
| 3212 | </P> |
| 3213 | <P STYLE="margin-left: 0.42in">Since the cubic splines used tend |
| 3214 | to overshoot under certain circumstances, this effect must be |
| 3215 | adjusted by suitable filtering and smoothing (see |
| 3216 | <A HREF="#cut_spline_overshoot">cut_spline_overshoot</A>, |
| 3217 | <A HREF="#long_filter_factor">long_filter_factor</A>, |
| 3218 | <A HREF="#ups_limit_pt">ups_limit_pt</A>, <A HREF="#ups_limit_u">ups_limit_u</A>, |
| 3219 | <A HREF="#ups_limit_v">ups_limit_v</A>, <A HREF="#ups_limit_w">ups_limit_w</A>). |
| 3220 | This is always neccesssary for runs with stable stratification, |
| 3221 | even if this stratification appears only in parts of the model |
| 3222 | domain. |
| 3223 | </P> |
| 3224 | <P STYLE="margin-left: 0.42in">With stable stratification the |
| 3225 | upstream-upline scheme also produces gravity waves with large |
| 3226 | amplitude, which must be suitably damped (see |
| 3227 | <A HREF="chapter_4.2.html#rayleigh_damping_factor">rayleigh_damping_factor</A>).</P> |
| 3228 | <P STYLE="margin-left: 0.42in"><B>Important: </B>The |
| 3229 | upstream-spline scheme is not implemented for humidity and passive |
| 3230 | scalars (see <A HREF="#humidity">humidity</A> and |
| 3231 | <A HREF="#passive_scalar">passive_scalar</A>) and requires the use |
| 3232 | of a 2d-domain-decomposition. The last conditions severely |
| 3233 | restricts code optimization on several machines leading to very |
| 3234 | long execution times! This scheme is also not allowed for |
| 3235 | non-cyclic lateral boundary conditions (see <A HREF="#bc_lr">bc_lr</A> |
| 3236 | and <A HREF="#bc_ns">bc_ns</A>).</P> |
| 3237 | <P><BR>A differing advection scheme can be choosed for the |
| 3238 | subgrid-scale TKE using parameter <A HREF="#use_upstream_for_tke">use_upstream_for_tke</A>.</P> |
| 3239 | </TD> |
| 3240 | </TR> |
| 3241 | <TR> |
| 3242 | <TD WIDTH=126> |
| 3243 | <P><A NAME="scalar_exchange_coefficient"></A><B>scalar_exchange_coefficient</B></P> |
| 3244 | </TD> |
| 3245 | <TD WIDTH=45> |
| 3246 | <P>R</P> |
| 3247 | </TD> |
| 3248 | <TD WIDTH=159> |
| 3249 | <P><I>0.0</I></P> |
| 3250 | </TD> |
| 3251 | <TD WIDTH=1280> |
| 3252 | <P>Scalar exchange coefficient for a leaf (dimensionless).<BR><BR>This |
| 3253 | parameter is only of importance in cases in that both, |
| 3254 | <A HREF="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#plant_canopy">plant_canopy</A> |
| 3255 | and <A HREF="../../../../../DEVELOPER_VERSION/chapter_4.1_adjusted.html#passive_scalar">passive_scalar</A>, |
| 3256 | are set <I>.T.</I>. The value of the scalar exchange coefficient |
| 3257 | is required for the parametrisation of the sources and sinks of |
| 3258 | scalar concentration due to the canopy.</P> |
| 3259 | </TD> |
| 3260 | </TR> |
| 3261 | <TR> |
| 3262 | <TD WIDTH=126> |
| 3263 | <P><A NAME="statistic_regions"></A><B>statistic_regions</B></P> |
| 3264 | </TD> |
| 3265 | <TD WIDTH=45> |
| 3266 | <P>I</P> |
| 3267 | </TD> |
| 3268 | <TD WIDTH=159> |
| 3269 | <P><I>0</I></P> |
| 3270 | </TD> |
| 3271 | <TD WIDTH=1280> |
| 3272 | <P>Number of additional user-defined subdomains for which |
| 3273 | statistical analysis and corresponding output (profiles, time |
| 3274 | series) shall be made. |
| 3275 | </P> |
| 3276 | <P>By default, vertical profiles and other statistical quantities |
| 3277 | are calculated as horizontal and/or volume average of the total |
| 3278 | model domain. Beyond that, these calculations can also be carried |
| 3279 | out for subdomains which can be defined using the field <A HREF="chapter_3.5.3.html">rmask |
| 3280 | </A>within the user-defined software (see <A HREF="chapter_3.5.3.html">chapter |
| 3281 | 3.5.3</A>). The number of these subdomains is determined with the |
| 3282 | parameter <B>statistic_regions</B>. Maximum 9 additional |
| 3283 | subdomains are allowed. The parameter <A HREF="chapter_4.3.html#region">region</A> |
| 3284 | can be used to assigned names (identifier) to these subdomains |
| 3285 | which are then used in the headers of the output files and plots.</P> |
| 3286 | <P>If the default NetCDF output format is selected (see parameter |
| 3287 | <A HREF="chapter_4.2.html#data_output_format">data_output_format</A>), |
| 3288 | data for the total domain and all defined subdomains are output to |
| 3289 | the same file(s) (<A HREF="chapter_3.4.html#DATA_1D_PR_NETCDF">DATA_1D_PR_NETCDF</A>, |
| 3290 | <A HREF="chapter_3.4.html#DATA_1D_TS_NETCDF">DATA_1D_TS_NETCDF</A>). |
| 3291 | In case of <B>statistic_regions</B> > <I>0</I>, data on the |
| 3292 | file for the different domains can be distinguished by a suffix |
| 3293 | which is appended to the quantity names. Suffix 0 means data for |
| 3294 | the total domain, suffix 1 means data for subdomain 1, etc.</P> |
| 3295 | <P>In case of <B>data_output_format</B> = <I>'profil'</I>, |
| 3296 | individual local files for profiles (<A HREF="chapter_3.4.html#PLOT1D_DATA">PLOT1D_DATA</A>) are |
| 3297 | created for each subdomain. The individual subdomain files differ |
| 3298 | by their name (the number of the respective subdomain is attached, |
| 3299 | e.g. PLOT1D_DATA_1). In this case the name of the file with the |
| 3300 | data of the total domain is PLOT1D_DATA_0. If no subdomains are |
| 3301 | declared (<B>statistic_regions</B> = <I>0</I>), the name |
| 3302 | PLOT1D_DATA is used (this must be considered in the respective |
| 3303 | file connection statements of the <B>mrun</B> configuration file).</P> |
| 3304 | </TD> |
| 3305 | </TR> |
| 3306 | <TR> |
| 3307 | <TD WIDTH=126> |
| 3308 | <P><A NAME="surface_heatflux"></A><B>surface_heatflux</B></P> |
| 3309 | </TD> |
| 3310 | <TD WIDTH=45> |
| 3311 | <P>R</P> |
| 3312 | </TD> |
| 3313 | <TD WIDTH=159> |
| 3314 | <P><I>no prescribed<BR>heatflux</I></P> |
| 3315 | </TD> |
| 3316 | <TD WIDTH=1280> |
| 3317 | <P>Kinematic sensible heat flux at the bottom surface (in K m/s). |
| 3318 | </P> |
| 3319 | <P>If a value is assigned to this parameter, the internal |
| 3320 | two-dimensional surface heat flux field <I>shf</I> is initialized |
| 3321 | with the value of <B>surface_heatflux</B> as bottom |
| 3322 | (horizontally homogeneous) boundary condition for the temperature |
| 3323 | equation. This additionally requires that a Neumann condition must |
| 3324 | be used for the potential temperature (see <A HREF="#bc_pt_b">bc_pt_b</A>), |
| 3325 | because otherwise the resolved scale may contribute to the surface |
| 3326 | flux so that a constant value cannot be guaranteed. Also, changes |
| 3327 | of the surface temperature (see <A HREF="#pt_surface_initial_change">pt_surface_initial_change</A>) |
| 3328 | are not allowed. The parameter <A HREF="#random_heatflux">random_heatflux</A> |
| 3329 | can be used to impose random perturbations on the (homogeneous) |
| 3330 | surface heat flux field <I>shf</I>. </P> |
| 3331 | <P>In case of a non-flat <A HREF="#topography">topography</A>, the |
| 3332 | internal two-dimensional surface heat flux field <I>shf</I> |
| 3333 | is initialized with the value of <B>surface_heatflux</B> at the |
| 3334 | bottom surface and <A HREF="#wall_heatflux">wall_heatflux(0)</A> |
| 3335 | at the topography top face. The parameter<A HREF="#random_heatflux"> |
| 3336 | random_heatflux</A> can be used to impose random perturbations on |
| 3337 | this combined surface heat flux field <I>shf</I>. |
| 3338 | </P> |
| 3339 | <P>If no surface heat flux is assigned, <I>shf</I> is calculated |
| 3340 | at each timestep by u<SUB>*</SUB> * theta<SUB>*</SUB> (of course |
| 3341 | only with <A HREF="#prandtl_layer">prandtl_layer</A> switched on). |
| 3342 | Here, u<SUB>*</SUB> and theta<SUB>*</SUB> are calculated from the |
| 3343 | Prandtl law assuming logarithmic wind and temperature profiles |
| 3344 | between k=0 and k=1. In this case a Dirichlet condition (see |
| 3345 | <A HREF="#bc_pt_b">bc_pt_b</A>) must be used as bottom boundary |
| 3346 | condition for the potential temperature.</P> |
| 3347 | <P>See also <A HREF="#top_heatflux">top_heatflux</A>.</P> |
| 3348 | </TD> |
| 3349 | </TR> |
| 3350 | <TR> |
| 3351 | <TD WIDTH=126> |
| 3352 | <P><A NAME="surface_pressure"></A><B>surface_pressure</B></P> |
| 3353 | </TD> |
| 3354 | <TD WIDTH=45> |
| 3355 | <P>R</P> |
| 3356 | </TD> |
| 3357 | <TD WIDTH=159> |
| 3358 | <P><I>1013.25</I></P> |
| 3359 | </TD> |
| 3360 | <TD WIDTH=1280> |
| 3361 | <P>Atmospheric pressure at the surface (in hPa). |
| 3362 | </P> |
| 3363 | <P>Starting from this surface value, the vertical pressure profile |
| 3364 | is calculated once at the beginning of the run assuming a |
| 3365 | neutrally stratified atmosphere. This is needed for converting |
| 3366 | between the liquid water potential temperature and the potential |
| 3367 | temperature (see <A HREF="#cloud_physics">cloud_physics</A>).</P> |
| 3368 | </TD> |
| 3369 | </TR> |
| 3370 | <TR> |
| 3371 | <TD WIDTH=126> |
| 3372 | <P><A NAME="surface_scalarflux"></A><B>surface_scalarflux</B></P> |
| 3373 | </TD> |
| 3374 | <TD WIDTH=45> |
| 3375 | <P>R</P> |
| 3376 | </TD> |
| 3377 | <TD WIDTH=159> |
| 3378 | <P><I>0.0</I></P> |
| 3379 | </TD> |
| 3380 | <TD WIDTH=1280> |
| 3381 | <P>Scalar flux at the surface (in kg/(m<SUP>2</SUP> s)). |
| 3382 | </P> |
| 3383 | <P>If a non-zero value is assigned to this parameter, the |
| 3384 | respective scalar flux value is used as bottom (horizontally |
| 3385 | homogeneous) boundary condition for the scalar concentration |
| 3386 | equation. This additionally requires that a Neumann condition |
| 3387 | must be used for the scalar concentration (see <A HREF="#bc_s_b">bc_s_b</A>), |
| 3388 | because otherwise the resolved scale may contribute to the surface |
| 3389 | flux so that a constant value cannot be guaranteed. Also, changes |
| 3390 | of the surface scalar concentration (see <A HREF="#s_surface_initial_change">s_surface_initial_change</A>) |
| 3391 | are not allowed. |
| 3392 | </P> |
| 3393 | <P>If no surface scalar flux is assigned (<B>surface_scalarflux</B> |
| 3394 | = <I>0.0</I>), it is calculated at each timestep by u<SUB>*</SUB> |
| 3395 | * s<SUB>*</SUB> (of course only with Prandtl layer switched on). |
| 3396 | Here, s<SUB>*</SUB> is calculated from the Prandtl law assuming a |
| 3397 | logarithmic scalar concentration profile between k=0 and k=1. In |
| 3398 | this case a Dirichlet condition (see <A HREF="#bc_s_b">bc_s_b</A>) |
| 3399 | must be used as bottom boundary condition for the scalar |
| 3400 | concentration.</P> |
| 3401 | </TD> |
| 3402 | </TR> |
| 3403 | <TR> |
| 3404 | <TD WIDTH=126> |
| 3405 | <P><A NAME="surface_waterflux"></A><B>surface_waterflux</B></P> |
| 3406 | </TD> |
| 3407 | <TD WIDTH=45> |
| 3408 | <P>R</P> |
| 3409 | </TD> |
| 3410 | <TD WIDTH=159> |
| 3411 | <P><I>0.0</I></P> |
| 3412 | </TD> |
| 3413 | <TD WIDTH=1280> |
| 3414 | <P>Kinematic water flux near the surface (in m/s). |
| 3415 | </P> |
| 3416 | <P>If a non-zero value is assigned to this parameter, the |
| 3417 | respective water flux value is used as bottom (horizontally |
| 3418 | homogeneous) boundary condition for the humidity equation. This |
| 3419 | additionally requires that a Neumann condition must be used for |
| 3420 | the specific humidity / total water content (see <A HREF="#bc_q_b">bc_q_b</A>), |
| 3421 | because otherwise the resolved scale may contribute to the surface |
| 3422 | flux so that a constant value cannot be guaranteed. Also, changes |
| 3423 | of the surface humidity (see <A HREF="#q_surface_initial_change">q_surface_initial_change</A>) |
| 3424 | are not allowed.</P> |
| 3425 | <P>If no surface water flux is assigned (<B>surface_waterflux</B> |
| 3426 | = <I>0.0</I>), it is calculated at each timestep by u<SUB>*</SUB> |
| 3427 | * q<SUB>*</SUB> (of course only with Prandtl layer switched on). |
| 3428 | Here, q<SUB>*</SUB> is calculated from the Prandtl law assuming a |
| 3429 | logarithmic temperature profile between k=0 and k=1. In this case |
| 3430 | a Dirichlet condition (see <A HREF="#bc_q_b">bc_q_b</A>) must be |
| 3431 | used as the bottom boundary condition for the humidity.</P> |
| 3432 | </TD> |
| 3433 | </TR> |
| 3434 | <TR> |
| 3435 | <TD WIDTH=126> |
| 3436 | <P><A NAME="s_surface"></A><B>s_surface</B></P> |
| 3437 | </TD> |
| 3438 | <TD WIDTH=45> |
| 3439 | <P>R</P> |
| 3440 | </TD> |
| 3441 | <TD WIDTH=159> |
| 3442 | <P><I>0.0</I></P> |
| 3443 | </TD> |
| 3444 | <TD WIDTH=1280> |
| 3445 | <P>Surface value of the passive scalar (in kg/m<SUP>3</SUP>). </P> |
| 3446 | <P>This parameter assigns the value of the passive scalar s at the |
| 3447 | surface (k=0)<B>.</B> Starting from this value, the initial |
| 3448 | vertical scalar concentration profile is constructed with<A HREF="#s_vertical_gradient"> |
| 3449 | s_vertical_gradient</A> and <A HREF="#s_vertical_gradient_level">s_vertical_gradient_level</A>.</P> |
| 3450 | </TD> |
| 3451 | </TR> |
| 3452 | <TR> |
| 3453 | <TD WIDTH=126> |
| 3454 | <P><A NAME="s_surface_initial_change"></A><B>s_surface_initial</B> |
| 3455 | <BR><B>_change</B></P> |
| 3456 | </TD> |
| 3457 | <TD WIDTH=45> |
| 3458 | <P>R</P> |
| 3459 | </TD> |
| 3460 | <TD WIDTH=159> |
| 3461 | <P><I>0.0</I></P> |
| 3462 | </TD> |
| 3463 | <TD WIDTH=1280> |
| 3464 | <P>Change in surface scalar concentration to be made at the |
| 3465 | beginning of the 3d run (in kg/m<SUP>3</SUP>). |
| 3466 | </P> |
| 3467 | <P>If <B>s_surface_initial_change</B> is set to a non-zero |
| 3468 | value, the near surface scalar flux is not allowed to be given |
| 3469 | simultaneously (see <A HREF="#surface_scalarflux">surface_scalarflux</A>).</P> |
| 3470 | </TD> |
| 3471 | </TR> |
| 3472 | <TR> |
| 3473 | <TD WIDTH=126> |
| 3474 | <P><A NAME="s_vertical_gradient"></A><B>s_vertical_gradient</B></P> |
| 3475 | </TD> |
| 3476 | <TD WIDTH=45> |
| 3477 | <P>R (10)</P> |
| 3478 | </TD> |
| 3479 | <TD WIDTH=159> |
| 3480 | <P><I>10 * 0.0</I></P> |
| 3481 | </TD> |
| 3482 | <TD WIDTH=1280> |
| 3483 | <P>Scalar concentration gradient(s) of the initial scalar |
| 3484 | concentration profile (in kg/m<SUP>3 </SUP>/ 100 m). |
| 3485 | </P> |
| 3486 | <P>The scalar gradient holds starting from the height level |
| 3487 | defined by <A HREF="#s_vertical_gradient_level">s_vertical_gradient_level |
| 3488 | </A>(precisely: for all uv levels k, where zu(k) > |
| 3489 | s_vertical_gradient_level, s_init(k) is set: s_init(k) = |
| 3490 | s_init(k-1) + dzu(k) * <B>s_vertical_gradient</B>) up to the top |
| 3491 | boundary or up to the next height level defined by |
| 3492 | <A HREF="#s_vertical_gradient_level">s_vertical_gradient_level</A>. |
| 3493 | A total of 10 different gradients for 11 height intervals (10 |
| 3494 | intervals if <A HREF="#s_vertical_gradient_level">s_vertical_gradient_level</A>(1) |
| 3495 | = <I>0.0</I>) can be assigned. The surface scalar value is |
| 3496 | assigned via <A HREF="#s_surface">s_surface</A>.</P> |
| 3497 | <P>Example: |
| 3498 | </P> |
| 3499 | <UL> |
| 3500 | <P><B>s_vertical_gradient</B> = <I>0.1</I>, <I>0.05</I>, |
| 3501 | <BR><B>s_vertical_gradient_level</B> = <I>500.0</I>, <I>1000.0</I>,</P> |
| 3502 | </UL> |
| 3503 | <P>That defines the scalar concentration to be constant with |
| 3504 | height up to z = 500.0 m with a value given by <A HREF="#s_surface">s_surface</A>. |
| 3505 | For 500.0 m < z <= 1000.0 m the scalar gradient is 0.1 kg/m<SUP>3 |
| 3506 | </SUP>/ 100 m and for z > 1000.0 m up to the top boundary it is |
| 3507 | 0.05 kg/m<SUP>3 </SUP>/ 100 m (it is assumed that the assigned |
| 3508 | height levels correspond with uv levels).</P> |
| 3509 | </TD> |
| 3510 | </TR> |
| 3511 | <TR> |
| 3512 | <TD WIDTH=126> |
| 3513 | <P><A NAME="s_vertical_gradient_level"></A><B>s_vertical_gradient_</B> |
| 3514 | <BR><B>level</B></P> |
| 3515 | </TD> |
| 3516 | <TD WIDTH=45> |
| 3517 | <P>R (10)</P> |
| 3518 | </TD> |
| 3519 | <TD WIDTH=159> |
| 3520 | <P><I>10 *</I> <I>0.0</I></P> |
| 3521 | </TD> |
| 3522 | <TD WIDTH=1280> |
| 3523 | <P>Height level from which on the scalar gradient defined by |
| 3524 | <A HREF="#s_vertical_gradient">s_vertical_gradient</A> is |
| 3525 | effective (in m). |
| 3526 | </P> |
| 3527 | <P>The height levels are to be assigned in ascending order. The |
| 3528 | default values result in a scalar concentration constant with |
| 3529 | height regardless of the values of <A HREF="#s_vertical_gradient">s_vertical_gradient</A> |
| 3530 | (unless the top boundary of the model is higher than 100000.0 m). |
| 3531 | For the piecewise construction of scalar concentration profiles |
| 3532 | see <A HREF="#s_vertical_gradient">s_vertical_gradient</A>.</P> |
| 3533 | </TD> |
| 3534 | </TR> |
| 3535 | <TR> |
| 3536 | <TD WIDTH=126> |
| 3537 | <P><A NAME="timestep_scheme"></A><B>timestep_scheme</B></P> |
| 3538 | </TD> |
| 3539 | <TD WIDTH=45> |
| 3540 | <P>C * 20</P> |
| 3541 | </TD> |
| 3542 | <TD WIDTH=159> |
| 3543 | <P><I>'runge</I><BR><I>kutta-3'</I></P> |
| 3544 | </TD> |
| 3545 | <TD WIDTH=1280> |
| 3546 | <P>Time step scheme to be used for the integration of the |
| 3547 | prognostic variables. |
| 3548 | </P> |
| 3549 | <P>The user can choose between the following schemes:</P> |
| 3550 | <P><I>'runge-kutta-3'</I></P> |
| 3551 | <P STYLE="margin-left: 0.42in">Third order Runge-Kutta |
| 3552 | scheme.<BR>This scheme requires the use of <A HREF="#momentum_advec">momentum_advec</A> |
| 3553 | = <A HREF="#scalar_advec">scalar_advec</A> = '<I>pw-scheme'</I>. |
| 3554 | Please refer to the <A HREF="../tec/numerik.heiko/zeitschrittverfahren.pdf">documentation |
| 3555 | on PALM's time integration schemes (28p., in German)</A> fur |
| 3556 | further details.</P> |
| 3557 | <P><I>'runge-kutta-2'</I></P> |
| 3558 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">Second order |
| 3559 | Runge-Kutta scheme.<BR>For special features see <B>timestep_scheme</B> |
| 3560 | = '<I>runge-kutta-3'</I>.</P> |
| 3561 | <P><BR><I>'leapfrog'</I></P> |
| 3562 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">Second order |
| 3563 | leapfrog scheme.<BR>Although this scheme requires a constant |
| 3564 | timestep (because it is centered in time), is even applied |
| 3565 | in case of changes in timestep. Therefore, only small changes of |
| 3566 | the timestep are allowed (see <A HREF="#dt">dt</A>). However, an |
| 3567 | Euler timestep is always used as the first timestep of an initiali |
| 3568 | run. When using the Bott-Chlond scheme for scalar advection (see |
| 3569 | <A HREF="#scalar_advec">scalar_advec</A>), the prognostic equation |
| 3570 | for potential temperature will be calculated with the Euler |
| 3571 | scheme, although the leapfrog scheme is switched on. <BR>The |
| 3572 | leapfrog scheme must not be used together with the upstream-spline |
| 3573 | scheme for calculating the advection (see <A HREF="#scalar_advec">scalar_advec</A> |
| 3574 | = '<I>ups-scheme'</I> and <A HREF="#momentum_advec">momentum_advec</A> |
| 3575 | = '<I>ups-scheme'</I>).</P> |
| 3576 | <P><BR><I>'leapfrog+euler'</I></P> |
| 3577 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">The leapfrog |
| 3578 | scheme is used, but after each change of a timestep an Euler |
| 3579 | timestep is carried out. Although this method is theoretically |
| 3580 | correct (because the pure leapfrog method does not allow timestep |
| 3581 | changes), the divergence of the velocity field (after applying the |
| 3582 | pressure solver) may be significantly larger than with <I>'leapfrog'</I>.</P> |
| 3583 | <P><BR><I>'euler'</I></P> |
| 3584 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">First order |
| 3585 | Euler scheme. <BR>The Euler scheme must be used when |
| 3586 | treating the advection terms with the upstream-spline scheme (see |
| 3587 | <A HREF="#scalar_advec">scalar_advec</A> = <I>'ups-scheme'</I> and |
| 3588 | <A HREF="#momentum_advec">momentum_advec</A> = <I>'ups-scheme'</I>).</P> |
| 3589 | <P STYLE="margin-bottom: 0in"><BR><BR>A differing timestep scheme |
| 3590 | can be choosed for the subgrid-scale TKE using parameter |
| 3591 | <A HREF="#use_upstream_for_tke">use_upstream_for_tke</A>.</P> |
| 3592 | </TD> |
| 3593 | </TR> |
| 3594 | <TR> |
| 3595 | <TD WIDTH=126> |
| 3596 | <P ALIGN=LEFT><A NAME="topography"></A><B>topography</B></P> |
| 3597 | </TD> |
| 3598 | <TD WIDTH=45> |
| 3599 | <P>C * 40</P> |
| 3600 | </TD> |
| 3601 | <TD WIDTH=159> |
| 3602 | <P><I>'flat'</I></P> |
| 3603 | </TD> |
| 3604 | <TD WIDTH=1280> |
| 3605 | <P>Topography mode. |
| 3606 | </P> |
| 3607 | <P>The user can choose between the following modes:</P> |
| 3608 | <P><I>'flat'</I></P> |
| 3609 | <P STYLE="margin-left: 0.42in">Flat surface.</P> |
| 3610 | <P><I>'single_building'</I></P> |
| 3611 | <P STYLE="margin-left: 0.42in">Flow around a single |
| 3612 | rectangular building mounted on a flat surface.<BR>The building |
| 3613 | size and location can be specified by the parameters |
| 3614 | <A HREF="#building_height">building_height</A>, <A HREF="#building_length_x">building_length_x</A>, |
| 3615 | <A HREF="#building_length_y">building_length_y</A>, |
| 3616 | <A HREF="#building_wall_left">building_wall_left</A> and |
| 3617 | <A HREF="#building_wall_south">building_wall_south</A>.</P> |
| 3618 | <P><I>'single_street_canyon'</I></P> |
| 3619 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">Flow over a |
| 3620 | single, quasi-2D street canyon of infinite length oriented either |
| 3621 | in x- or in y-direction.<BR>The canyon size, orientation and |
| 3622 | location can be specified by the parameters <A HREF="#canyon_height">canyon_height</A> |
| 3623 | plus <B>either</B> <A HREF="#canyon_width_x">canyon_width_x</A> |
| 3624 | and <A HREF="#canyon_wall_left">canyon_wall_left</A> <B>or</B> |
| 3625 | <A HREF="#canyon_width_y">canyon_width_y</A> and |
| 3626 | <A HREF="#canyon_wall_south">canyon_wall_south</A>.</P> |
| 3627 | <P> </P> |
| 3628 | <P><I>'read_from_file'</I></P> |
| 3629 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in">Flow around |
| 3630 | arbitrary topography.<BR>This mode requires the input file |
| 3631 | <A HREF="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</A><FONT COLOR="#000000">. |
| 3632 | This file contains the arbitrary topography height |
| 3633 | information in m. These data must exactly match the |
| 3634 | horizontal grid.</FONT></P> |
| 3635 | <P STYLE="margin-bottom: 0in"><I><BR></I><FONT COLOR="#000000">Alternatively, |
| 3636 | the user may add code to the user interface subroutine |
| 3637 | <A HREF="chapter_3.5.1.html#user_init_grid">user_init_grid</A> to |
| 3638 | allow further topography modes. </FONT>These require to explicitly |
| 3639 | set the <A HREF="#topography_grid_convention">topography_grid_convention</A> to |
| 3640 | either <I>'cell_edge'</I> or <I>'cell_center'</I>.<BR><FONT COLOR="#000000"><BR>Non-flat |
| 3641 | </FONT><FONT COLOR="#000000"><B>topography</B></FONT><FONT COLOR="#000000"> |
| 3642 | modes may assign a</FONT> kinematic sensible<FONT COLOR="#000000"> |
| 3643 | <A HREF="#wall_heatflux">wall_heatflux</A> at the five topography |
| 3644 | faces.</FONT><BR><FONT COLOR="#000000"><BR>All non-flat </FONT><FONT COLOR="#000000"><B>topography</B></FONT><FONT COLOR="#000000"> |
| 3645 | modes </FONT>require the use of <A HREF="#momentum_advec">momentum_advec</A> |
| 3646 | = <A HREF="#scalar_advec">scalar_advec</A> = '<I>pw-scheme'</I>, |
| 3647 | <A HREF="chapter_4.2.html#psolver">psolver</A> /= <I>'sor'</I>, |
| 3648 | <A HREF="#alpha_surface">alpha_surface</A> = |
| 3649 | 0.0, <A HREF="#galilei_transformation">galilei_transformation</A> |
| 3650 | = <I>.F.</I>, <A HREF="#cloud_physics">cloud_physics </A> |
| 3651 | = <I>.F.</I>, <A HREF="#cloud_droplets">cloud_droplets</A> = |
| 3652 | <I>.F.</I>, <A HREF="#humidity">humidity</A> = <I>.F.</I>, |
| 3653 | and <A HREF="#prandtl_layer">prandtl_layer</A> = .T..<BR><FONT COLOR="#000000"><BR>Note |
| 3654 | that an inclined model domain requires the use of </FONT><FONT COLOR="#000000"><B>topography</B></FONT><FONT COLOR="#000000"> |
| 3655 | = </FONT><FONT COLOR="#000000"><I>'flat'</I></FONT><FONT COLOR="#000000"> |
| 3656 | and a nonzero </FONT><A HREF="#alpha_surface">alpha_surface</A>.</P> |
| 3657 | </TD> |
| 3658 | </TR> |
| 3659 | <TR> |
| 3660 | <TD WIDTH=126> |
| 3661 | <P><A NAME="topography_grid_convention"></A><B>topography_grid_</B><BR><B>convention</B></P> |
| 3662 | </TD> |
| 3663 | <TD WIDTH=45> |
| 3664 | <P>C*11</P> |
| 3665 | </TD> |
| 3666 | <TD WIDTH=159> |
| 3667 | <P><I>default depends on value of <A HREF="#topography">topography</A>; |
| 3668 | see text for details</I></P> |
| 3669 | </TD> |
| 3670 | <TD WIDTH=1280> |
| 3671 | <P>Convention for defining the topography grid.<BR><BR>Possible |
| 3672 | values are</P> |
| 3673 | <UL> |
| 3674 | <LI><P STYLE="margin-bottom: 0in"><I>'cell_edge': </I>the |
| 3675 | distance between cell edges defines the extent of topography. |
| 3676 | This setting is normally for <I>generic topographies</I>, i.e. |
| 3677 | topographies that are constructed using length parameters. For |
| 3678 | example, <A HREF="#topography">topography</A> = <I>'single_building'</I> |
| 3679 | is constructed using <A HREF="#building_length_x">building_length_x</A> |
| 3680 | and <A HREF="#building_length_y">building_length_y</A>. The |
| 3681 | advantage of this setting is that the actual size of generic |
| 3682 | topography is independent of the grid size, provided that the |
| 3683 | length parameters are an integer multiple of the grid lengths <A HREF="#dx">dx</A> |
| 3684 | and <A HREF="#dy">dy</A>. This is convenient for |
| 3685 | resolution parameter studies.</P> |
| 3686 | <LI><P><I>'cell_center': </I>the number of topography cells |
| 3687 | define the extent of topography. This setting is normally for |
| 3688 | <I>rastered real topographies</I> derived from digital elevation |
| 3689 | models. For example, <A HREF="#topography">topography</A> = |
| 3690 | <I>'read_from_file'</I> is constructed using the input file |
| 3691 | <A HREF="chapter_3.4.html#TOPOGRAPHY_DATA">TOPOGRAPHY_DATA</A><FONT COLOR="#000000">. </FONT>The |
| 3692 | advantage of this setting is that the rastered topography |
| 3693 | cells of the input file are directly mapped to topography grid |
| 3694 | boxes in PALM. |
| 3695 | </P> |
| 3696 | </UL> |
| 3697 | <P>The example files <CODE><FONT SIZE=4>example_topo_file</FONT></CODE> |
| 3698 | and <CODE><FONT SIZE=4>example_building</FONT></CODE> in |
| 3699 | <CODE><FONT SIZE=4>trunk/EXAMPLES/</FONT></CODE> illustrate the |
| 3700 | difference between both approaches. Both examples simulate a |
| 3701 | single building and yield the same results. The former uses a |
| 3702 | rastered topography input file with <I>'cell_center'</I> |
| 3703 | convention, the latter applies a generic topography with |
| 3704 | <I>'cell_edge'</I> convention.<BR><BR>The default value is</P> |
| 3705 | <UL> |
| 3706 | <LI><P STYLE="margin-bottom: 0in"><I>'cell_edge' </I>if |
| 3707 | <A HREF="#topography">topography</A> = <I>'single_building'</I> |
| 3708 | or <I>'single_street_canyon'</I>,</P> |
| 3709 | <LI><P STYLE="margin-bottom: 0in"><I>'cell_center'</I> if |
| 3710 | <A HREF="#topography">topography</A> = <I>'read_from_file'</I>,</P> |
| 3711 | <LI><P><I>none (' '</I> ) otherwise, leading to an abort |
| 3712 | if <B>topography_grid_convention</B> is not set.</P> |
| 3713 | </UL> |
| 3714 | <P>This means that |
| 3715 | </P> |
| 3716 | <UL> |
| 3717 | <LI><P STYLE="margin-bottom: 0in">For PALM simulations using a |
| 3718 | <I>user-defined topography</I>, the <B>topography_grid_convention</B> |
| 3719 | must be explicitly set to either <I>'cell_edge'</I> or |
| 3720 | <I>'cell_center'</I>.</P> |
| 3721 | <LI><P>For PALM simulations using a <I>standard topography</I> |
| 3722 | <I>('single_building'</I>, <I>'single_street_canyon'</I> or |
| 3723 | <I>'read_from_file')</I>, it is possible but not required to set |
| 3724 | the <B>topography_grid_convention</B> because appropriate |
| 3725 | default values apply.</P> |
| 3726 | </UL> |
| 3727 | </TD> |
| 3728 | </TR> |
| 3729 | <TR> |
| 3730 | <TD WIDTH=126> |
| 3731 | <P><A NAME="top_heatflux"></A><B>top_heatflux</B></P> |
| 3732 | </TD> |
| 3733 | <TD WIDTH=45> |
| 3734 | <P>R</P> |
| 3735 | </TD> |
| 3736 | <TD WIDTH=159> |
| 3737 | <P><I>no prescribed<BR>heatflux</I></P> |
| 3738 | </TD> |
| 3739 | <TD WIDTH=1280> |
| 3740 | <P>Kinematic sensible heat flux at the top boundary (in K m/s). |
| 3741 | </P> |
| 3742 | <P>If a value is assigned to this parameter, the internal |
| 3743 | two-dimensional surface heat flux field <FONT FACE="monospace">tswst</FONT> |
| 3744 | is initialized with the value of <B>top_heatflux</B> as top |
| 3745 | (horizontally homogeneous) boundary condition for the temperature |
| 3746 | equation. This additionally requires that a Neumann condition must |
| 3747 | be used for the potential temperature (see <A HREF="#bc_pt_t">bc_pt_t</A>), |
| 3748 | because otherwise the resolved scale may contribute to the top |
| 3749 | flux so that a constant flux value cannot be guaranteed. </P> |
| 3750 | <P><B>Note:</B><BR>The application of a top heat flux additionally |
| 3751 | requires the setting of initial parameter <A HREF="#use_top_fluxes">use_top_fluxes</A> |
| 3752 | = .T.. |
| 3753 | </P> |
| 3754 | <P>No Prandtl-layer is available at the top boundary so far.</P> |
| 3755 | <P>See also <A HREF="#surface_heatflux">surface_heatflux</A>.</P> |
| 3756 | </TD> |
| 3757 | </TR> |
| 3758 | <TR> |
| 3759 | <TD WIDTH=126> |
| 3760 | <P><A NAME="top_momentumflux_u"></A><B>top_momentumflux_u</B></P> |
| 3761 | </TD> |
| 3762 | <TD WIDTH=45> |
| 3763 | <P>R</P> |
| 3764 | </TD> |
| 3765 | <TD WIDTH=159> |
| 3766 | <P><I>no prescribed momentumflux</I></P> |
| 3767 | </TD> |
| 3768 | <TD WIDTH=1280> |
| 3769 | <P>Momentum flux along x at the top boundary (in m2/s2).</P> |
| 3770 | <P>If a value is assigned to this parameter, the internal |
| 3771 | two-dimensional u-momentum flux field <FONT FACE="monospace">uswst</FONT> |
| 3772 | is initialized with the value of <B>top_momentumflux_u</B> as top |
| 3773 | (horizontally homogeneous) boundary condition for the u-momentum |
| 3774 | equation.</P> |
| 3775 | <P><B>Notes:</B><BR>The application of a top momentum flux |
| 3776 | additionally requires the setting of initial parameter |
| 3777 | <A HREF="#use_top_fluxes">use_top_fluxes</A> = .T.. Setting of |
| 3778 | <B>top_momentumflux_u</B> requires setting of <A HREF="#top_momentumflux_v">top_momentumflux_v</A> |
| 3779 | also.</P> |
| 3780 | <P>A Neumann condition should be used for the u velocity |
| 3781 | component (see <A HREF="#bc_uv_t">bc_uv_t</A>), because otherwise |
| 3782 | the resolved scale may contribute to the top flux so that a |
| 3783 | constant flux value cannot be guaranteed. </P> |
| 3784 | <P>No Prandtl-layer is available at the top boundary so far.</P> |
| 3785 | <P>The <A HREF="chapter_3.8.html">coupled</A> ocean parameter |
| 3786 | file <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A> |
| 3787 | should include dummy REAL value assignments to both |
| 3788 | <A HREF="#top_momentumflux_u">top_momentumflux_u</A> |
| 3789 | and <A HREF="#top_momentumflux_v">top_momentumflux_v</A> |
| 3790 | (e.g. top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to |
| 3791 | enable the momentum flux coupling.</P> |
| 3792 | </TD> |
| 3793 | </TR> |
| 3794 | <TR> |
| 3795 | <TD WIDTH=126> |
| 3796 | <P><A NAME="top_momentumflux_v"></A><B>top_momentumflux_v</B></P> |
| 3797 | </TD> |
| 3798 | <TD WIDTH=45> |
| 3799 | <P>R</P> |
| 3800 | </TD> |
| 3801 | <TD WIDTH=159> |
| 3802 | <P><I>no prescribed momentumflux</I></P> |
| 3803 | </TD> |
| 3804 | <TD WIDTH=1280> |
| 3805 | <P>Momentum flux along y at the top boundary (in m2/s2).</P> |
| 3806 | <P>If a value is assigned to this parameter, the internal |
| 3807 | two-dimensional v-momentum flux field <FONT FACE="monospace">vswst</FONT> |
| 3808 | is initialized with the value of <B>top_momentumflux_v</B> as top |
| 3809 | (horizontally homogeneous) boundary condition for the v-momentum |
| 3810 | equation.</P> |
| 3811 | <P><B>Notes:</B><BR>The application of a top momentum flux |
| 3812 | additionally requires the setting of initial parameter |
| 3813 | <A HREF="#use_top_fluxes">use_top_fluxes</A> = .T.. Setting of |
| 3814 | <B>top_momentumflux_v</B> requires setting of <A HREF="#top_momentumflux_u">top_momentumflux_u</A> |
| 3815 | also.</P> |
| 3816 | <P>A Neumann condition should be used for the v velocity |
| 3817 | component (see <A HREF="#bc_uv_t">bc_uv_t</A>), because otherwise |
| 3818 | the resolved scale may contribute to the top flux so that a |
| 3819 | constant flux value cannot be guaranteed. </P> |
| 3820 | <P>No Prandtl-layer is available at the top boundary so far.</P> |
| 3821 | <P>The <A HREF="chapter_3.8.html">coupled</A> ocean parameter |
| 3822 | file <A HREF="chapter_3.4.html#PARIN"><FONT SIZE=2>PARIN_O</FONT></A> |
| 3823 | should include dummy REAL value assignments to both |
| 3824 | <A HREF="#top_momentumflux_u">top_momentumflux_u</A> |
| 3825 | and <A HREF="#top_momentumflux_v">top_momentumflux_v</A> |
| 3826 | (e.g. top_momentumflux_u = 0.0, top_momentumflux_v = 0.0) to |
| 3827 | enable the momentum flux coupling.</P> |
| 3828 | </TD> |
| 3829 | </TR> |
| 3830 | <TR> |
| 3831 | <TD WIDTH=126> |
| 3832 | <P><A NAME="top_salinityflux"></A><B>top_salinityflux</B></P> |
| 3833 | </TD> |
| 3834 | <TD WIDTH=45> |
| 3835 | <P>R</P> |
| 3836 | </TD> |
| 3837 | <TD WIDTH=159> |
| 3838 | <P><I>no prescribed<BR>salinityflux</I></P> |
| 3839 | </TD> |
| 3840 | <TD WIDTH=1280> |
| 3841 | <P>Kinematic salinity flux at the top boundary, i.e. the sea |
| 3842 | surface (in psu m/s). |
| 3843 | </P> |
| 3844 | <P>This parameter only comes into effect for ocean runs (see |
| 3845 | parameter <A HREF="#ocean">ocean</A>).</P> |
| 3846 | <P>If a value is assigned to this parameter, the internal |
| 3847 | two-dimensional surface heat flux field <FONT FACE="monospace">saswst</FONT> |
| 3848 | is initialized with the value of <B>top_salinityflux</B> as |
| 3849 | top (horizontally homogeneous) boundary condition for the salinity |
| 3850 | equation. This additionally requires that a Neumann condition must |
| 3851 | be used for the salinity (see <A HREF="#bc_sa_t">bc_sa_t</A>), |
| 3852 | because otherwise the resolved scale may contribute to the top |
| 3853 | flux so that a constant flux value cannot be guaranteed. </P> |
| 3854 | <P><B>Note:</B><BR>The application of a salinity flux at the model |
| 3855 | top additionally requires the setting of initial parameter |
| 3856 | <A HREF="#use_top_fluxes">use_top_fluxes</A> = .T.. |
| 3857 | </P> |
| 3858 | <P>See also <A HREF="#bottom_salinityflux">bottom_salinityflux</A>.</P> |
| 3859 | </TD> |
| 3860 | </TR> |
| 3861 | <TR> |
| 3862 | <TD WIDTH=126> |
| 3863 | <P><A NAME="turbulent_inflow"></A><B>turbulent_inflow</B></P> |
| 3864 | </TD> |
| 3865 | <TD WIDTH=45> |
| 3866 | <P>L</P> |
| 3867 | </TD> |
| 3868 | <TD WIDTH=159> |
| 3869 | <P><I>.F.</I></P> |
| 3870 | </TD> |
| 3871 | <TD WIDTH=1280> |
| 3872 | <P>Generates a turbulent inflow at side boundaries using a |
| 3873 | turbulence recycling method.<BR><BR>Turbulent inflow is realized |
| 3874 | using the turbulence recycling method from Lund et al. (1998, J. |
| 3875 | Comp. Phys., <B>140</B>, 233-258) modified by Kataoka and Mizuno |
| 3876 | (2002, Wind and Structures, <B>5</B>, 379-392).<BR><BR>A turbulent |
| 3877 | inflow requires Dirichlet conditions at the respective inflow |
| 3878 | boundary. <B>So far, a turbulent inflow is realized from the left |
| 3879 | (west) side only, i.e. <A HREF="#bc_lr">bc_lr</A></B> <B>=</B> |
| 3880 | <I><B>'dirichlet/radiation'</B></I> <B>is required!</B><BR><BR>The |
| 3881 | initial (quasi-stationary) turbulence field should be generated by |
| 3882 | a precursor run and used by setting <A HREF="#initializing_actions">initializing_actions</A> |
| 3883 | = <I>'cyclic_fill'</I>.<BR><BR>The distance of the recycling plane |
| 3884 | from the inflow boundary can be set with parameter |
| 3885 | <A HREF="#recycling_width">recycling_width</A>. The heigth above |
| 3886 | ground above which the turbulence signal is not used for recycling |
| 3887 | and the width of the layer within the magnitude of the |
| 3888 | turbulence signal is damped from 100% to 0% can be set with |
| 3889 | parameters <A HREF="#inflow_damping_height">inflow_damping_height</A> |
| 3890 | and <A HREF="#inflow_damping_width">inflow_damping_width</A>.<BR><BR>The |
| 3891 | detailed setup for a turbulent inflow is described in <A HREF="chapter_3.9.html">chapter |
| 3892 | 3.9</A>.</P> |
| 3893 | </TD> |
| 3894 | </TR> |
| 3895 | <TR> |
| 3896 | <TD WIDTH=126> |
| 3897 | <P><A NAME="u_bulk"></A><B>u_bulk</B></P> |
| 3898 | </TD> |
| 3899 | <TD WIDTH=45> |
| 3900 | <P>R</P> |
| 3901 | </TD> |
| 3902 | <TD WIDTH=159> |
| 3903 | <P><I>0.0</I></P> |
| 3904 | </TD> |
| 3905 | <TD WIDTH=1280> |
| 3906 | <P>u-component of the predefined bulk velocity (in m/s).<BR><BR>This |
| 3907 | parameter comes into effect if <A HREF="#conserve_volume_flow">conserve_volume_flow</A> |
| 3908 | = <I>.T.</I> and <A HREF="#conserve_volume_flow_mode">conserve_volume_flow_mode</A> |
| 3909 | = <I>'bulk_velocity'</I>.</P> |
| 3910 | </TD> |
| 3911 | </TR> |
| 3912 | <TR> |
| 3913 | <TD WIDTH=126> |
| 3914 | <P><A NAME="ug_surface"></A><B>ug_surface</B></P> |
| 3915 | </TD> |
| 3916 | <TD WIDTH=45> |
| 3917 | <P>R</P> |
| 3918 | </TD> |
| 3919 | <TD WIDTH=159> |
| 3920 | <P><I>0.0</I></P> |
| 3921 | </TD> |
| 3922 | <TD WIDTH=1280> |
| 3923 | <P>u-component of the geostrophic wind at the surface (in |
| 3924 | m/s).<BR><BR>This parameter assigns the value of the u-component |
| 3925 | of the geostrophic wind (ug) at the surface (k=0). Starting from |
| 3926 | this value, the initial vertical profile of the <BR>u-component of |
| 3927 | the geostrophic wind is constructed with <A HREF="#ug_vertical_gradient">ug_vertical_gradient</A> |
| 3928 | and <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A>. |
| 3929 | The profile constructed in that way is used for creating the |
| 3930 | initial vertical velocity profile of the 3d-model. Either it is |
| 3931 | applied, as it has been specified by the user |
| 3932 | (<A HREF="#initializing_actions">initializing_actions</A> = |
| 3933 | 'set_constant_profiles') or it is used for calculating a |
| 3934 | stationary boundary layer wind profile (<A HREF="#initializing_actions">initializing_actions</A> |
| 3935 | = 'set_1d-model_profiles'). If ug is constant with height (i.e. |
| 3936 | ug(k)=<B>ug_surface</B>) and has a large value, it is |
| 3937 | recommended to use a Galilei-transformation of the coordinate |
| 3938 | system, if possible (see <A HREF="#galilei_transformation">galilei_transformation</A>), |
| 3939 | in order to obtain larger time steps.<BR><BR><B>Attention:</B><BR>In |
| 3940 | case of ocean runs (see <A HREF="#ocean">ocean</A>), this |
| 3941 | parameter gives the geostrophic velocity value (i.e. the pressure |
| 3942 | gradient) at the sea surface, which is at k=nzt. The profile is |
| 3943 | then constructed from the surface down to the bottom of the model.</P> |
| 3944 | </TD> |
| 3945 | </TR> |
| 3946 | <TR> |
| 3947 | <TD WIDTH=126> |
| 3948 | <P><A NAME="ug_vertical_gradient"></A><B>ug_vertical_gradient</B></P> |
| 3949 | </TD> |
| 3950 | <TD WIDTH=45> |
| 3951 | <P>R(10)</P> |
| 3952 | </TD> |
| 3953 | <TD WIDTH=159> |
| 3954 | <P><I>10 * 0.0</I></P> |
| 3955 | </TD> |
| 3956 | <TD WIDTH=1280> |
| 3957 | <P>Gradient(s) of the initial profile of the u-component of |
| 3958 | the geostrophic wind (in 1/100s).<BR><BR>The gradient holds |
| 3959 | starting from the height level defined by |
| 3960 | <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A> |
| 3961 | (precisely: for all uv levels k where zu(k) > |
| 3962 | <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A>, |
| 3963 | ug(k) is set: ug(k) = ug(k-1) + dzu(k) * <B>ug_vertical_gradient</B>) |
| 3964 | up to the top boundary or up to the next height level defined by |
| 3965 | <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A>. |
| 3966 | A total of 10 different gradients for 11 height intervals (10 |
| 3967 | intervals if <A HREF="#ug_vertical_gradient_level">ug_vertical_gradient_level</A>(1) |
| 3968 | = 0.0) can be assigned. The surface geostrophic wind is assigned |
| 3969 | by <A HREF="#ug_surface">ug_surface</A>.<BR><BR><B>Attention:</B><BR>In |
| 3970 | case of ocean runs (see <A HREF="#ocean">ocean</A>), the profile |
| 3971 | is constructed like described above, but starting from the sea |
| 3972 | surface (k=nzt) down to the bottom boundary of the model. Height |
| 3973 | levels have then to be given as negative values, e.g. |
| 3974 | <B>ug_vertical_gradient_level</B> = <I>-500.0</I>, <I>-1000.0</I>.</P> |
| 3975 | </TD> |
| 3976 | </TR> |
| 3977 | <TR> |
| 3978 | <TD WIDTH=126> |
| 3979 | <P><A NAME="ug_vertical_gradient_level"></A><B>ug_vertical_gradient_level</B></P> |
| 3980 | </TD> |
| 3981 | <TD WIDTH=45> |
| 3982 | <P>R(10)</P> |
| 3983 | </TD> |
| 3984 | <TD WIDTH=159> |
| 3985 | <P><I>10 * 0.0</I></P> |
| 3986 | </TD> |
| 3987 | <TD WIDTH=1280> |
| 3988 | <P>Height level from which on the gradient defined by |
| 3989 | <A HREF="#ug_vertical_gradient">ug_vertical_gradient</A> is |
| 3990 | effective (in m).<BR><BR>The height levels have to be assigned in |
| 3991 | ascending order. For the piecewise construction of a profile of |
| 3992 | the u-component of the geostrophic wind component (ug) see |
| 3993 | <A HREF="#ug_vertical_gradient">ug_vertical_gradient</A>.<BR><BR><B>Attention:</B><BR>In |
| 3994 | case of ocean runs (see <A HREF="#ocean">ocean</A>), the |
| 3995 | (negative) height levels have to be assigned in descending order.</P> |
| 3996 | </TD> |
| 3997 | </TR> |
| 3998 | <TR> |
| 3999 | <TD WIDTH=126> |
| 4000 | <P><A NAME="ups_limit_e"></A><B>ups_limit_e</B></P> |
| 4001 | </TD> |
| 4002 | <TD WIDTH=45> |
| 4003 | <P>R</P> |
| 4004 | </TD> |
| 4005 | <TD WIDTH=159> |
| 4006 | <P><I>0.0</I></P> |
| 4007 | </TD> |
| 4008 | <TD WIDTH=1280> |
| 4009 | <P>Subgrid-scale turbulent kinetic energy difference used as |
| 4010 | criterion for applying the upstream scheme when upstream-spline |
| 4011 | advection is switched on (in m<SUP>2</SUP>/s<SUP>2</SUP>). |
| 4012 | </P> |
| 4013 | <P>This variable steers the appropriate treatment of the advection |
| 4014 | of the subgrid-scale turbulent kinetic energy in case that the |
| 4015 | uptream-spline scheme is used . For further information see |
| 4016 | <A HREF="#ups_limit_pt">ups_limit_pt</A>. |
| 4017 | </P> |
| 4018 | <P>Only positive values are allowed for <B>ups_limit_e</B>. |
| 4019 | </P> |
| 4020 | </TD> |
| 4021 | </TR> |
| 4022 | <TR> |
| 4023 | <TD WIDTH=126> |
| 4024 | <P><A NAME="ups_limit_pt"></A><B>ups_limit_pt</B></P> |
| 4025 | </TD> |
| 4026 | <TD WIDTH=45> |
| 4027 | <P>R</P> |
| 4028 | </TD> |
| 4029 | <TD WIDTH=159> |
| 4030 | <P><I>0.0</I></P> |
| 4031 | </TD> |
| 4032 | <TD WIDTH=1280> |
| 4033 | <P>Temperature difference used as criterion for applying the |
| 4034 | upstream scheme when upstream-spline advection is switched |
| 4035 | on (in K). |
| 4036 | </P> |
| 4037 | <P>This criterion is used if the upstream-spline scheme is |
| 4038 | switched on (see <A HREF="#scalar_advec">scalar_advec</A>).<BR>If, |
| 4039 | for a given gridpoint, the absolute temperature difference with |
| 4040 | respect to the upstream grid point is smaller than the value given |
| 4041 | for <B>ups_limit_pt</B>, the upstream scheme is used for this |
| 4042 | gridpoint (by default, the upstream-spline scheme is always used). |
| 4043 | Reason: in case of a very small upstream gradient, the advection |
| 4044 | should cause only a very small tendency. However, in such |
| 4045 | situations the upstream-spline scheme may give wrong tendencies at |
| 4046 | a grid point due to spline overshooting, if simultaneously the |
| 4047 | downstream gradient is very large. In such cases it may be more |
| 4048 | reasonable to use the upstream scheme. The numerical diffusion |
| 4049 | caused by the upstream schme remains small as long as the upstream |
| 4050 | gradients are small.</P> |
| 4051 | <P>The percentage of grid points for which the upstream scheme is |
| 4052 | actually used, can be output as a time series with respect to the |
| 4053 | three directions in space with run parameter (see <A HREF="chapter_4.2.html#dt_dots">dt_dots</A>, |
| 4054 | the timeseries names in the NetCDF file are <I>'splptx'</I>, |
| 4055 | <I>'splpty'</I>, <I>'splptz'</I>). The percentage of gridpoints |
| 4056 | should stay below a certain limit, however, it is not possible to |
| 4057 | give a general limit, since it depends on the respective flow. |
| 4058 | </P> |
| 4059 | <P>Only positive values are permitted for <B>ups_limit_pt</B>.</P> |
| 4060 | <P>A more effective control of the âovershootsâ can be |
| 4061 | achieved with parameter <A HREF="#cut_spline_overshoot">cut_spline_overshoot</A>. |
| 4062 | </P> |
| 4063 | </TD> |
| 4064 | </TR> |
| 4065 | <TR> |
| 4066 | <TD WIDTH=126> |
| 4067 | <P><A NAME="ups_limit_u"></A><B>ups_limit_u</B></P> |
| 4068 | </TD> |
| 4069 | <TD WIDTH=45> |
| 4070 | <P>R</P> |
| 4071 | </TD> |
| 4072 | <TD WIDTH=159> |
| 4073 | <P><I>0.0</I></P> |
| 4074 | </TD> |
| 4075 | <TD WIDTH=1280> |
| 4076 | <P>Velocity difference (u-component) used as criterion for |
| 4077 | applying the upstream scheme when upstream-spline advection is |
| 4078 | switched on (in m/s). |
| 4079 | </P> |
| 4080 | <P>This variable steers the appropriate treatment of the advection |
| 4081 | of the u-velocity-component in case that the upstream-spline |
| 4082 | scheme is used. For further information see <A HREF="#ups_limit_pt">ups_limit_pt</A>. |
| 4083 | </P> |
| 4084 | <P>Only positive values are permitted for <B>ups_limit_u</B>.</P> |
| 4085 | </TD> |
| 4086 | </TR> |
| 4087 | <TR> |
| 4088 | <TD WIDTH=126> |
| 4089 | <P><A NAME="ups_limit_v"></A><B>ups_limit_v</B></P> |
| 4090 | </TD> |
| 4091 | <TD WIDTH=45> |
| 4092 | <P>R</P> |
| 4093 | </TD> |
| 4094 | <TD WIDTH=159> |
| 4095 | <P><I>0.0</I></P> |
| 4096 | </TD> |
| 4097 | <TD WIDTH=1280> |
| 4098 | <P>Velocity difference (v-component) used as criterion for |
| 4099 | applying the upstream scheme when upstream-spline advection is |
| 4100 | switched on (in m/s). |
| 4101 | </P> |
| 4102 | <P>This variable steers the appropriate treatment of the advection |
| 4103 | of the v-velocity-component in case that the upstream-spline |
| 4104 | scheme is used. For further information see <A HREF="#ups_limit_pt">ups_limit_pt</A>. |
| 4105 | </P> |
| 4106 | <P>Only positive values are permitted for <B>ups_limit_v</B>.</P> |
| 4107 | </TD> |
| 4108 | </TR> |
| 4109 | <TR> |
| 4110 | <TD WIDTH=126> |
| 4111 | <P><A NAME="ups_limit_w"></A><B>ups_limit_w</B></P> |
| 4112 | </TD> |
| 4113 | <TD WIDTH=45> |
| 4114 | <P>R</P> |
| 4115 | </TD> |
| 4116 | <TD WIDTH=159> |
| 4117 | <P><I>0.0</I></P> |
| 4118 | </TD> |
| 4119 | <TD WIDTH=1280> |
| 4120 | <P>Velocity difference (w-component) used as criterion for |
| 4121 | applying the upstream scheme when upstream-spline advection is |
| 4122 | switched on (in m/s). |
| 4123 | </P> |
| 4124 | <P>This variable steers the appropriate treatment of the advection |
| 4125 | of the w-velocity-component in case that the upstream-spline |
| 4126 | scheme is used. For further information see <A HREF="#ups_limit_pt">ups_limit_pt</A>. |
| 4127 | </P> |
| 4128 | <P>Only positive values are permitted for <B>ups_limit_w</B>.</P> |
| 4129 | </TD> |
| 4130 | </TR> |
| 4131 | <TR> |
| 4132 | <TD WIDTH=126> |
| 4133 | <P><A NAME="use_surface_fluxes"></A><B>use_surface_fluxes</B></P> |
| 4134 | </TD> |
| 4135 | <TD WIDTH=45> |
| 4136 | <P>L</P> |
| 4137 | </TD> |
| 4138 | <TD WIDTH=159> |
| 4139 | <P><I>.F.</I></P> |
| 4140 | </TD> |
| 4141 | <TD WIDTH=1280> |
| 4142 | <P>Parameter to steer the treatment of the subgrid-scale vertical |
| 4143 | fluxes within the diffusion terms at k=1 (bottom boundary).</P> |
| 4144 | <P>By default, the near-surface subgrid-scale fluxes are |
| 4145 | parameterized (like in the remaining model domain) using the |
| 4146 | gradient approach. If <B>use_surface_fluxes</B> = <I>.TRUE.</I>, |
| 4147 | the user-assigned surface fluxes are used instead (see |
| 4148 | <A HREF="#surface_heatflux">surface_heatflux</A>, |
| 4149 | <A HREF="#surface_waterflux">surface_waterflux</A> and |
| 4150 | <A HREF="#surface_scalarflux">surface_scalarflux</A>) <B>or</B> |
| 4151 | the surface fluxes are calculated via the Prandtl layer relation |
| 4152 | (depends on the bottom boundary conditions, see <A HREF="#bc_pt_b">bc_pt_b</A>, |
| 4153 | <A HREF="#bc_q_b">bc_q_b</A> and <A HREF="#bc_s_b">bc_s_b</A>).</P> |
| 4154 | <P><B>use_surface_fluxes</B> is automatically set <I>.TRUE.</I>, |
| 4155 | if a Prandtl layer is used (see <A HREF="#prandtl_layer">prandtl_layer</A>). |
| 4156 | </P> |
| 4157 | <P>The user may prescribe the surface fluxes at the bottom |
| 4158 | boundary without using a Prandtl layer by setting |
| 4159 | <B>use_surface_fluxes</B> = <I>.T.</I> and <B>prandtl_layer</B> = |
| 4160 | <I>.F.</I>. If , in this case, the momentum flux (u<SUB>*</SUB><SUP>2</SUP>) |
| 4161 | should also be prescribed, the user must assign an appropriate |
| 4162 | value within the user-defined code.</P> |
| 4163 | </TD> |
| 4164 | </TR> |
| 4165 | <TR> |
| 4166 | <TD WIDTH=126> |
| 4167 | <P><A NAME="use_top_fluxes"></A><B>use_top_fluxes</B></P> |
| 4168 | </TD> |
| 4169 | <TD WIDTH=45> |
| 4170 | <P>L</P> |
| 4171 | </TD> |
| 4172 | <TD WIDTH=159> |
| 4173 | <P><I>.F.</I></P> |
| 4174 | </TD> |
| 4175 | <TD WIDTH=1280> |
| 4176 | <P>Parameter to steer the treatment of the subgrid-scale vertical |
| 4177 | fluxes within the diffusion terms at k=nz (top boundary).</P> |
| 4178 | <P>By default, the fluxes at nz are calculated using the gradient |
| 4179 | approach. If <B>use_top_fluxes</B> = <I>.TRUE.</I>, the |
| 4180 | user-assigned top fluxes are used instead (see <A HREF="#top_heatflux">top_heatflux</A>, |
| 4181 | <A HREF="#top_momentumflux_u">top_momentumflux_u</A>, |
| 4182 | <A HREF="#top_momentumflux_v">top_momentumflux_v</A>, |
| 4183 | <A HREF="#top_salinityflux">top_salinityflux</A>).</P> |
| 4184 | <P>Currently, no value for the latent heatflux can be assigned. In |
| 4185 | case of <B>use_top_fluxes</B> = <I>.TRUE.</I>, the latent heat |
| 4186 | flux at the top will be automatically set to zero.</P> |
| 4187 | </TD> |
| 4188 | </TR> |
| 4189 | <TR> |
| 4190 | <TD WIDTH=126> |
| 4191 | <P><A NAME="use_ug_for_galilei_tr"></A><B>use_ug_for_galilei_tr</B></P> |
| 4192 | </TD> |
| 4193 | <TD WIDTH=45> |
| 4194 | <P>L</P> |
| 4195 | </TD> |
| 4196 | <TD WIDTH=159> |
| 4197 | <P><I>.T.</I></P> |
| 4198 | </TD> |
| 4199 | <TD WIDTH=1280> |
| 4200 | <P>Switch to determine the translation velocity in case that a |
| 4201 | Galilean transformation is used.</P> |
| 4202 | <P>In case of a Galilean transformation (see |
| 4203 | <A HREF="#galilei_transformation">galilei_transformation</A>), |
| 4204 | <B>use_ug_for_galilei_tr</B> = <I>.T.</I> ensures that the |
| 4205 | coordinate system is translated with the geostrophic windspeed.</P> |
| 4206 | <P>Alternatively, with <B>use_ug_for_galilei_tr</B> = <I>.F</I>., |
| 4207 | the geostrophic wind can be replaced as translation speed by the |
| 4208 | (volume) averaged velocity. However, in this case the user must be |
| 4209 | aware of fast growing gravity waves, so this choice is usually not |
| 4210 | recommended!</P> |
| 4211 | </TD> |
| 4212 | </TR> |
| 4213 | <TR VALIGN=TOP> |
| 4214 | <TD WIDTH=126> |
| 4215 | <P ALIGN=LEFT><A NAME="use_upstream_for_tke"></A><B>use_upstream_for_tke</B></P> |
| 4216 | </TD> |
| 4217 | <TD WIDTH=45> |
| 4218 | <P ALIGN=LEFT>L</P> |
| 4219 | </TD> |
| 4220 | <TD WIDTH=159> |
| 4221 | <P ALIGN=LEFT><I>.F.</I></P> |
| 4222 | </TD> |
| 4223 | <TD WIDTH=1280> |
| 4224 | <P ALIGN=LEFT>Parameter to choose the advection/timestep scheme to |
| 4225 | be used for the subgrid-scale TKE.<BR><BR>By default, the |
| 4226 | advection scheme and the timestep scheme to be used for the |
| 4227 | subgrid-scale TKE are set by the initialization parameters |
| 4228 | <A HREF="#scalar_advec">scalar_advec</A> and <A HREF="#timestep_scheme">timestep_scheme</A>, |
| 4229 | respectively. <B>use_upstream_for_tke</B> = <I>.T.</I> forces the |
| 4230 | Euler-scheme and the upstream-scheme to be used as timestep scheme |
| 4231 | and advection scheme, respectively. By these methods, the strong |
| 4232 | (artificial) near-surface vertical gradients of the subgrid-scale |
| 4233 | TKE are significantly reduced. This is required when subgrid-scale |
| 4234 | velocities are used for advection of particles (see particle |
| 4235 | package parameter <A HREF="chapter_4.2.html#use_sgs_for_particles">use_sgs_for_particles</A>).</P> |
| 4236 | </TD> |
| 4237 | </TR> |
| 4238 | <TR> |
| 4239 | <TD WIDTH=126> |
| 4240 | <P><A NAME="v_bulk"></A><B>v_bulk</B></P> |
| 4241 | </TD> |
| 4242 | <TD WIDTH=45> |
| 4243 | <P>R</P> |
| 4244 | </TD> |
| 4245 | <TD WIDTH=159> |
| 4246 | <P><I>0.0</I></P> |
| 4247 | </TD> |
| 4248 | <TD WIDTH=1280> |
| 4249 | <P>v-component of the predefined bulk velocity (in m/s).<BR><BR>This |
| 4250 | parameter comes into effect if <A HREF="#conserve_volume_flow">conserve_volume_flow</A> |
| 4251 | = <I>.T.</I> and <A HREF="#conserve_volume_flow_mode">conserve_volume_flow_mode</A> |
| 4252 | = <I>'bulk_velocity'</I>.</P> |
| 4253 | </TD> |
| 4254 | </TR> |
| 4255 | <TR> |
| 4256 | <TD WIDTH=126> |
| 4257 | <P><A NAME="vg_surface"></A><B>vg_surface</B></P> |
| 4258 | </TD> |
| 4259 | <TD WIDTH=45> |
| 4260 | <P>R</P> |
| 4261 | </TD> |
| 4262 | <TD WIDTH=159> |
| 4263 | <P><I>0.0</I></P> |
| 4264 | </TD> |
| 4265 | <TD WIDTH=1280> |
| 4266 | <P>v-component of the geostrophic wind at the surface (in |
| 4267 | m/s).<BR><BR>This parameter assigns the value of the v-component |
| 4268 | of the geostrophic wind (vg) at the surface (k=0). Starting from |
| 4269 | this value, the initial vertical profile of the <BR>v-component of |
| 4270 | the geostrophic wind is constructed with <A HREF="#vg_vertical_gradient">vg_vertical_gradient</A> |
| 4271 | and <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A>. |
| 4272 | The profile constructed in that way is used for creating the |
| 4273 | initial vertical velocity profile of the 3d-model. Either it is |
| 4274 | applied, as it has been specified by the user |
| 4275 | (<A HREF="#initializing_actions">initializing_actions</A> = |
| 4276 | 'set_constant_profiles') or it is used for calculating a |
| 4277 | stationary boundary layer wind profile (<A HREF="#initializing_actions">initializing_actions</A> |
| 4278 | = 'set_1d-model_profiles'). If vg is constant with height (i.e. |
| 4279 | vg(k)=<B>vg_surface</B>) and has a large value, it is |
| 4280 | recommended to use a Galilei-transformation of the coordinate |
| 4281 | system, if possible (see <A HREF="#galilei_transformation">galilei_transformation</A>), |
| 4282 | in order to obtain larger time steps.<BR><BR><B>Attention:</B><BR>In |
| 4283 | case of ocean runs (see <A HREF="#ocean">ocean</A>), this |
| 4284 | parameter gives the geostrophic velocity value (i.e. the pressure |
| 4285 | gradient) at the sea surface, which is at k=nzt. The profile is |
| 4286 | then constructed from the surface down to the bottom of the model.</P> |
| 4287 | </TD> |
| 4288 | </TR> |
| 4289 | <TR> |
| 4290 | <TD WIDTH=126> |
| 4291 | <P><A NAME="vg_vertical_gradient"></A><B>vg_vertical_gradient</B></P> |
| 4292 | </TD> |
| 4293 | <TD WIDTH=45> |
| 4294 | <P>R(10)</P> |
| 4295 | </TD> |
| 4296 | <TD WIDTH=159> |
| 4297 | <P><I>10 * 0.0</I></P> |
| 4298 | </TD> |
| 4299 | <TD WIDTH=1280> |
| 4300 | <P>Gradient(s) of the initial profile of the v-component of |
| 4301 | the geostrophic wind (in 1/100s).<BR><BR>The gradient holds |
| 4302 | starting from the height level defined by |
| 4303 | <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A> |
| 4304 | (precisely: for all uv levels k where zu(k) > |
| 4305 | <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A>, |
| 4306 | vg(k) is set: vg(k) = vg(k-1) + dzu(k) * <B>vg_vertical_gradient</B>) |
| 4307 | up to the top boundary or up to the next height level defined by |
| 4308 | <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A>. |
| 4309 | A total of 10 different gradients for 11 height intervals (10 |
| 4310 | intervals if <A HREF="#vg_vertical_gradient_level">vg_vertical_gradient_level</A>(1) |
| 4311 | = 0.0) can be assigned. The surface geostrophic wind is assigned |
| 4312 | by <A HREF="#vg_surface">vg_surface</A>.<BR><BR><B>Attention:</B><BR>In |
| 4313 | case of ocean runs (see <A HREF="#ocean">ocean</A>), the profile |
| 4314 | is constructed like described above, but starting from the sea |
| 4315 | surface (k=nzt) down to the bottom boundary of the model. Height |
| 4316 | levels have then to be given as negative values, e.g. |
| 4317 | <B>vg_vertical_gradient_level</B> = <I>-500.0</I>, <I>-1000.0</I>.</P> |
| 4318 | </TD> |
| 4319 | </TR> |
| 4320 | <TR> |
| 4321 | <TD WIDTH=126> |
| 4322 | <P><A NAME="vg_vertical_gradient_level"></A><B>vg_vertical_gradient_level</B></P> |
| 4323 | </TD> |
| 4324 | <TD WIDTH=45> |
| 4325 | <P>R(10)</P> |
| 4326 | </TD> |
| 4327 | <TD WIDTH=159> |
| 4328 | <P><I>10 * 0.0</I></P> |
| 4329 | </TD> |
| 4330 | <TD WIDTH=1280> |
| 4331 | <P>Height level from which on the gradient defined by |
| 4332 | <A HREF="#vg_vertical_gradient">vg_vertical_gradient</A> is |
| 4333 | effective (in m).<BR><BR>The height levels have to be assigned in |
| 4334 | ascending order. For the piecewise construction of a profile of |
| 4335 | the v-component of the geostrophic wind component (vg) see |
| 4336 | <A HREF="#vg_vertical_gradient">vg_vertical_gradient</A>.<BR><BR><B>Attention:</B><BR>In |
| 4337 | case of ocean runs (see <A HREF="#ocean">ocean</A>), the |
| 4338 | (negative) height levels have to be assigned in descending order.</P> |
| 4339 | </TD> |
| 4340 | </TR> |
| 4341 | <TR> |
| 4342 | <TD WIDTH=126> |
| 4343 | <P><A NAME="wall_adjustment"></A><B>wall_adjustment</B></P> |
| 4344 | </TD> |
| 4345 | <TD WIDTH=45> |
| 4346 | <P>L</P> |
| 4347 | </TD> |
| 4348 | <TD WIDTH=159> |
| 4349 | <P><I>.T.</I></P> |
| 4350 | </TD> |
| 4351 | <TD WIDTH=1280> |
| 4352 | <P>Parameter to restrict the mixing length in the vicinity of the |
| 4353 | bottom boundary (and near vertical walls of a non-flat |
| 4354 | <A HREF="#topography">topography</A>). |
| 4355 | </P> |
| 4356 | <P>With <B>wall_adjustment</B> = <I>.TRUE., </I>the mixing length |
| 4357 | is limited to a maximum of 1.8 * z. This condition typically |
| 4358 | affects only the first grid points above the bottom boundary.</P> |
| 4359 | <P>In case of a non-flat <A HREF="#topography">topography</A> |
| 4360 | the respective horizontal distance from vertical walls is used.</P> |
| 4361 | </TD> |
| 4362 | </TR> |
| 4363 | <TR> |
| 4364 | <TD WIDTH=126> |
| 4365 | <P><A NAME="wall_heatflux"></A><B>wall_heatflux</B></P> |
| 4366 | </TD> |
| 4367 | <TD WIDTH=45> |
| 4368 | <P>R(5)</P> |
| 4369 | </TD> |
| 4370 | <TD WIDTH=159> |
| 4371 | <P><I>5 * 0.0</I></P> |
| 4372 | </TD> |
| 4373 | <TD WIDTH=1280> |
| 4374 | <P>Prescribed kinematic sensible heat flux in K m/s at the five |
| 4375 | topography faces:</P> |
| 4376 | <P STYLE="margin-left: 0.42in; margin-bottom: 0in"><B>wall_heatflux(0) |
| 4377 | </B>top face<BR><B>wall_heatflux(1) </B>left |
| 4378 | face<BR><B>wall_heatflux(2) </B>right |
| 4379 | face<BR><B>wall_heatflux(3) </B>south |
| 4380 | face<BR><B>wall_heatflux(4) </B>north face</P> |
| 4381 | <P STYLE="margin-bottom: 0in"><BR>This parameter applies only in |
| 4382 | case of a non-flat <A HREF="#topography">topography</A>. The |
| 4383 | parameter <A HREF="#random_heatflux">random_heatflux</A> can be |
| 4384 | used to impose random perturbations on the internal |
| 4385 | two-dimensional surface heat flux field <I>shf</I> that is |
| 4386 | composed of <A HREF="#surface_heatflux">surface_heatflux</A> at |
| 4387 | the bottom surface and <B>wall_heatflux(0)</B> at the topography |
| 4388 | top face. </P> |
| 4389 | </TD> |
| 4390 | </TR> |
| 4391 | </TABLE> |
| 4392 | <P><BR><BR> |
| 4393 | </P> |
| 4394 | <P STYLE="line-height: 100%"><BR><FONT COLOR="#000080"><A HREF="chapter_4.0.html"><FONT COLOR="#000080"><IMG SRC="left.gif" NAME="Grafik1" ALIGN=BOTTOM WIDTH=32 HEIGHT=32 BORDER=1></FONT></A><A HREF="index.html"><FONT COLOR="#000080"><IMG SRC="up.gif" NAME="Grafik2" ALIGN=BOTTOM WIDTH=32 HEIGHT=32 BORDER=1></FONT></A><A HREF="chapter_4.2.html"><FONT COLOR="#000080"><IMG SRC="right.gif" NAME="Grafik3" ALIGN=BOTTOM WIDTH=32 HEIGHT=32 BORDER=1></FONT></A></FONT></P> |
| 4395 | <P STYLE="line-height: 100%"><I>Last change: </I> $Id: |
| 4396 | chapter_4.1.html 328 2009-05-28 12:13:56Z letzel $ |
| 4397 | </P> |
| 4398 | <P><BR><BR> |
| 4399 | </P> |
| 4400 | </BODY> |
| 4401 | </HTML> |