Changeset 1645


Ignore:
Timestamp:
Sep 1, 2015 11:24:37 AM (7 years ago)
Author:
hoffmann
Message:

updated tutorial: exercise 3, user interface

Location:
palm/trunk/TUTORIAL/SOURCE
Files:
10 added
24 deleted
1 edited

Legend:

Unmodified
Added
Removed
  • palm/trunk/TUTORIAL/SOURCE/exercise_interface.tex

    r1515 r1645  
    7171   \frametitle{Exercise 3: User Interface}
    7272   \begin{itemize}
    73       \item Carry out a run for a convective boundary layer where a surface heat flux is given for a limited rectangular area only.
     73      \item Carry out a run for a convective boundary layer where a surface heat flux is given for a limited rectangular area:
    7474
    7575            \tikzstyle{green} = [rectangle, draw, fill=green!70, minimum size=51pt, font=\tiny]
     
    8181               \uncover<2->{\node [green] (green) {};}
    8282               \uncover<3->{\node [red, rotate=90] (red) {};}
    83                \uncover<4->{\node [textd] (textd) {d};}
     83               \uncover<4->{\node [textd] (textd) {$d$};}
    8484               \uncover<4->{\draw [latex-,line width=0.8pt] (red.south) -- (textd.east);}
    8585               \uncover<4->{\draw [latex-,line width=0.8pt] (red.north) -- (textd.west);}
     
    8787            \end{center}
    8888
    89       \item<5-> It should be possible to control the area width d by a user-defined parameter in the parameter file. All other parameters should be chosen as in the example run ({\texttt{\scriptsize example\_cbl}}).
     89      \item<5-> It should be possible to control the area width $d$ by a user-defined parameter in the parameter file. All other parameters should be chosen as in the example run ({\texttt{\scriptsize example\_cbl}}).
    9090      \item<6-> Create horizontal and vertical cross sections of variables in order to analyze the flow field.
    91       \item<7-> Create mean vertical profiles of temperature and resolved/subgrid-scale heatflux for the total domain but also for the limited rectangular area and the total domain without the limited area. Also create time series for these three domains.\\
    92       This can be done by using the \textbf{statistic region concept} already implemented in PALM.
     91     
     92      \only<7->{\scriptsize \textit{Recommendations: Create mean vertical profiles of temperature and resolved/subgrid-scale heatflux for the total domain but also for the limited rectangular area and the total domain without the limited area. Also create time series for these three domains. This can be done by using the \textbf{statistic region concept} already implemented in PALM.}}
    9393
    9494   \end{itemize}
     
    101101    \begin{itemize}
    102102       \item<1-> By default, mean horizontal profiles are calculated and output for the total domain.
    103        \item<2-> The user can define up to nine so-called statistic regions, which can be arbitrary subsets of the total domain and PALM will calculate and output mean profiles for these regions too.
     103       \item<2-> The user can define up to nine so-called statistic regions, which can be arbitrary subsets of the total domain and PALM will calculate and output mean profiles for these regions, too.
    104104    \end{itemize}
    105105    \vspace{1em}
    106106    \onslide<3->\textbf{Procedure:}
    107107    \begin{enumerate}
    108        \item<3-> Set the number of statistic regions you additionally want to define by assigning a value to the {\texttt{\scriptsize {\&}inipar}}-parameter {\texttt{\scriptsize statistic\_regions}}.
     108       \item<3-> Set the number of statistic regions you additionally want to define by assigning a value to the {\texttt{\scriptsize {\&}inipar}}-parameter {\texttt{\scriptsize \textcolor{blue}{statistic\_regions}}}.
    109109       \item<4-> Within the user-interface ({\texttt{\scriptsize user\_init}}), set the masking array {\texttt{\scriptsize rmask}}. It is an {\texttt{\scriptsize INTEGER}} array with array-bounds
    110110       \begin{center}
    111        {\texttt{\scriptsize rmask(nysg:nyng,nxlg:nxrg,0:9)}}
     111       {\texttt{\scriptsize rmask(nysg:nyng,nxlg:nxrg,0:\textcolor{blue}{statistic\_regions})}}
    112112       \end{center}
    113        The last index represents the respective statistic region (index {\texttt{\scriptsize 0}} stands for total domain). Assign a 1 to each array element (grid point) which shall belong to the respective statistic region.\\
    114        {\texttt{\scriptsize rmask}} is pre-set as:
     113       The last index represents the respective statistic region (index {\texttt{\scriptsize 0}} stands for total domain). Assign a 1 to each array element (grid point) which shall belong to the respective statistic region. {\texttt{\scriptsize rmask}} is pre-set as:
    115114       \begin{center}
    116        {\texttt{\scriptsize rmask(:,:,0:9)   = 1}}
     115       {\texttt{\scriptsize rmask(:,:,0:\textcolor{blue}{statistic\_regions})   = 1}}
    117116       \end{center}
    118117    \end{enumerate}
     
    129128       {\texttt{\scriptsize shf $=$ shf * rmask(:,:,1)}}
    130129       \end{center}
    131        sets the surface heatflux to zero at all those array elements (grid points), where {\texttt{\scriptsize rmask(...,1)}} is zero.
     130       This sets the surface heatflux to zero at all those array elements (grid points) where {\texttt{\scriptsize rmask(...,1)}} is zero.
    132131       \item<3-> In case of using the default netCDF format, the profile data for the additional statistic regions are added to the default local file {\texttt{\scriptsize DATA\_1D\_PR\_NETCDF}}.
    133        \item<4-> The developing mean flow is quasi two-dimensional (in the xz-plane). You can easily get plots of the mean flow by averaging results along the y-axis. The standard output provides such averages. See description of parameter {\texttt{\scriptsize \textcolor{blue}{section\_xz}}} on how to get averages along y.
     132       \item<4-> The developing mean flow is quasi two-dimensional (in the $xz$-plane). You can easily get plots of the mean flow by averaging results along the $y$-axis. The standard output provides such averages. See description of parameter {\texttt{\scriptsize \textcolor{blue}{section\_xz}}} on how to get averages along $y$.
    134133    \end{itemize}
    135134\end{frame}
     
    137136% Folie 5
    138137\begin{frame}
    139    \frametitle{If You Finished the Exercise Very Fast:}
     138   \frametitle{Bonus (if you finished the exercise very fast):}
    140139    \begin{itemize}
    141        \item<1-> Repeat the simulation, but now for a geostrophic wind of 0.5 m/s
    142        \item<2-> The resulting flow will be (should be) quite similar to the flow over an arctic lead.
     140       \item<1-> Repeat the simulation, but now for a geostrophic wind of 0.5 m s$^{-1}$
     141       
     142        (Consider the wind direction!)
     143       \item<1-> The resulting flow will be quite similar to the flow over an arctic lead
    143144    \end{itemize}
     145       \begin{columns}
     146       \begin{column}{8cm}
     147      \includegraphics[angle=0,width=0.95\textwidth]{exercise_interface_figures/arctic_lead_nasa_2013.jpg}
     148      \end{column}
     149      \begin{column}{3cm}
     150      \tiny
     151      \vspace{-4.8cm}
     152      $\Leftarrow$ Image curtesy: NASA, 2013
     153      \end{column}
     154  \end{columns}
    144155\end{frame}
    145156
     
    150161% Folie 7
    151162\begin{frame}
    152    \frametitle{XY cross-sections}
    153    \begin{center}
    154       \includegraphics[width=0.415\textwidth]{exercise_interface_figures/xy_shf.eps}
    155       \includegraphics[angle=90,width=0.60\textwidth]{exercise_interface_figures/xy_w.eps}\\
     163   \frametitle{xy cross-sections: vertical velocity and surface heat flux}
     164   \vspace{-0.15cm}
     165   \begin{center}
     166      \includegraphics[width=0.9\textwidth]{exercise_interface_figures/interface_shf.pdf}
    156167   \end{center}
    157168\end{frame}
     
    159170% Folie 8
    160171\begin{frame}
    161    \frametitle{vertical profiles (I)}
    162    \begin{center}
    163       \includegraphics[angle=90,width=0.8\textwidth]{exercise_interface_figures/pr_pt0.eps}
     172   \frametitle{vertical profiles: potential temperature}
     173   \begin{center}
     174      \includegraphics[angle=0,width=1.0\textwidth]{exercise_interface_figures/interface_pt.pdf}
    164175   \end{center}
    165176\end{frame}
     
    167178% Folie 9
    168179\begin{frame}
    169    \frametitle{XZ cross-sections after 1h (averaged)}
    170    \begin{center}
    171       \includegraphics[angle=90,width=0.8\textwidth]{exercise_interface_figures/xz_w_avg.eps}\\
     180   \frametitle{xz cross-sections: vertical velocity}
     181      \vspace{-0.15cm}
     182   \begin{center}
     183      \includegraphics[angle=0,width=0.9\textwidth]{exercise_interface_figures/interface_w_av.pdf}\\
    172184   \end{center}
    173185\end{frame}
     
    175187% Folie 10
    176188\begin{frame}
    177    \frametitle{XZ cross-sections after 1h (instantaneous)}
    178    \begin{center}
    179       \includegraphics[angle=90,width=0.8\textwidth]{exercise_interface_figures/xz_w_y1000.eps}\\
     189   \frametitle{vertical profiles: resolved vertical heat flux}
     190   \begin{center}
     191      \includegraphics[angle=0,width=1.0\textwidth]{exercise_interface_figures/interface_wpt_res.pdf}
    180192   \end{center}
    181193\end{frame}
     
    183195% Folie 11
    184196\begin{frame}
    185    \frametitle{vertical profiles (II)}
    186    \begin{center}
    187       \includegraphics[angle=90,width=0.75\textwidth]{exercise_interface_figures/pr_wpt_resolved.eps}
     197   \frametitle{vertical profiles: subgrid scale vertical heat flux}
     198   \begin{center}
     199      \includegraphics[angle=0,width=1.0\textwidth]{exercise_interface_figures/interface_wpt_sgs.pdf}
    188200   \end{center}
    189201\end{frame}
     
    191203% Folie 12
    192204\begin{frame}
    193    \frametitle{time series (I)}
    194    \begin{center}
    195       \includegraphics[angle=90,width=0.7\textwidth]{exercise_interface_figures/ts_pt0.eps}\\
     205   \frametitle{time series: potential temperature and vertical heat flux}
     206   \begin{center}
     207      \includegraphics[angle=0,width=0.85\textwidth]{exercise_interface_figures/interface_ts.pdf}\\
    196208   \end{center}
    197209\end{frame}
     
    199211% Folie 13
    200212\begin{frame}
    201    \frametitle{time series (II)}
    202    \begin{center}
    203       \includegraphics[angle=90,width=0.7\textwidth]{exercise_interface_figures/ts_wpt0.eps}\\
    204    \end{center}
    205 \end{frame}
    206 
    207 % Folie 14
    208 \begin{frame}
    209    \frametitle{time series (III)}
    210    \begin{center}
    211       \includegraphics[angle=90,width=0.7\textwidth]{exercise_interface_figures/ts_wpt0_sgs.eps}\\
    212    \end{center}
    213 \end{frame}
    214 
    215 % Folie 15
    216 \begin{frame}
    217    \frametitle{XZ cross-sections (b) - averaged}
    218    \begin{center}
    219       \includegraphics[angle=90,width=0.7\textwidth]{exercise_interface_figures/xz_w_avg_wind.eps}
    220    \end{center}
    221 \end{frame}
    222 
    223 % Folie 16
    224 \begin{frame}
    225    \frametitle{XZ cross-sections (b) - instantaneous}
    226    \begin{center}
    227       \includegraphics[angle=90,width=0.7\textwidth]{exercise_interface_figures/xz_w_y250_wind.eps}\\
    228    \end{center}
    229 \end{frame}
    230 
     213   \frametitle{Bonus: xz cross-sections: vertical velocity}
     214         \vspace{-0.15cm}
     215   \begin{center}
     216      \includegraphics[angle=0,width=0.9\textwidth]{exercise_interface_figures/interface_lead.pdf}
     217   \end{center}
     218\end{frame}
    231219
    232220\end{document}
Note: See TracChangeset for help on using the changeset viewer.