1 | MODULE chem_gasphase_mod |
---|
2 | |
---|
3 | ! Mechanism: cbm4 |
---|
4 | ! |
---|
5 | !------------------------------------------------------------------------------! |
---|
6 | ! |
---|
7 | ! ******Module chem_gasphase_mod is automatically generated by kpp4palm ****** |
---|
8 | ! |
---|
9 | ! *********Please do NOT change this Code,it will be ovewritten ********* |
---|
10 | ! |
---|
11 | !------------------------------------------------------------------------------! |
---|
12 | ! This file was created by KPP (http://people.cs.vt.edu/asandu/Software/Kpp/) |
---|
13 | ! and kpp4palm (created by Klaus Ketelsen). kpp4palm is an adapted version |
---|
14 | ! of KP4 (Jöckel,P.,Kerkweg,A.,Pozzer,A.,Sander,R.,Tost,H.,Riede, |
---|
15 | ! H.,Baumgaertner,A.,Gromov,S.,and Kern,B.,2010: Development cycle 2 of |
---|
16 | ! the Modular Earth Submodel System (MESSy2),Geosci. Model Dev.,3,717-752, |
---|
17 | ! https://doi.org/10.5194/gmd-3-717-2010). KP4 is part of the Modular Earth |
---|
18 | ! Submodel System (MESSy),which is is available under the GNU General Public |
---|
19 | ! License (GPL). |
---|
20 | ! |
---|
21 | ! KPP is free software; you can redistribute it and/or modify it under the terms |
---|
22 | ! of the General Public Licence as published by the Free Software Foundation; |
---|
23 | ! either version 2 of the License,or (at your option) any later version. |
---|
24 | ! KPP is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; |
---|
25 | ! without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
---|
26 | ! PURPOSE. See the GNU General Public Licence for more details. |
---|
27 | ! |
---|
28 | !------------------------------------------------------------------------------! |
---|
29 | ! This file is part of the PALM model system. |
---|
30 | ! |
---|
31 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
32 | ! terms of the GNU General Public License as published by the Free Software |
---|
33 | ! Foundation,either version 3 of the License,or (at your option) any later |
---|
34 | ! version. |
---|
35 | ! |
---|
36 | ! PALM is distributed in the hope that it will be useful,but WITHOUT ANY |
---|
37 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
38 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
39 | ! |
---|
40 | ! You should have received a copy of the GNU General Public License along with |
---|
41 | ! PALM. If not,see <http://www.gnu.org/licenses/>. |
---|
42 | ! |
---|
43 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
44 | !--------------------------------------------------------------------------------! |
---|
45 | ! |
---|
46 | ! Current revisions: |
---|
47 | ! ------------------ |
---|
48 | ! |
---|
49 | ! |
---|
50 | ! Former revisions: |
---|
51 | ! ----------------- |
---|
52 | ! $Id: module_header 2460 2017-09-13 14:47:48Z forkel $ |
---|
53 | ! forkel June 2018: qvap,fakt added |
---|
54 | ! forkel June 2018: reset case in Initialize,Integrate,Update_rconst |
---|
55 | ! |
---|
56 | ! |
---|
57 | ! 2460 2017-09-13 14:47:48Z forkel |
---|
58 | ! |
---|
59 | ! forkel Sept. 2017: Variables for photolyis added |
---|
60 | ! |
---|
61 | ! |
---|
62 | ! Nov. 2016: Intial version (Klaus Ketelsen) |
---|
63 | ! |
---|
64 | !------------------------------------------------------------------------------! |
---|
65 | ! |
---|
66 | |
---|
67 | |
---|
68 | ! Set kpp Double Precision to PALM Default Precision |
---|
69 | |
---|
70 | USE kinds, ONLY: dp=>wp |
---|
71 | |
---|
72 | USE pegrid, ONLY: myid, threads_per_task |
---|
73 | |
---|
74 | IMPLICIT NONE |
---|
75 | PRIVATE |
---|
76 | !SAVE ! note: occurs again in automatically generated code ... |
---|
77 | |
---|
78 | ! PUBLIC :: IERR_NAMES |
---|
79 | |
---|
80 | ! PUBLIC :: SPC_NAMES,EQN_NAMES,EQN_TAGS,REQ_HET,REQ_AEROSOL,REQ_PHOTRAT & |
---|
81 | ! ,REQ_MCFCT,IP_MAX,jname |
---|
82 | |
---|
83 | PUBLIC :: eqn_names, phot_names, spc_names |
---|
84 | PUBLIC :: nmaxfixsteps |
---|
85 | PUBLIC :: atol, rtol |
---|
86 | PUBLIC :: nspec, nreact |
---|
87 | PUBLIC :: temp |
---|
88 | PUBLIC :: qvap |
---|
89 | PUBLIC :: fakt |
---|
90 | PUBLIC :: phot |
---|
91 | PUBLIC :: rconst |
---|
92 | PUBLIC :: nvar |
---|
93 | PUBLIC :: nphot |
---|
94 | PUBLIC :: vl_dim ! PUBLIC to ebable other MODULEs to distiguish between scalar and vec |
---|
95 | |
---|
96 | PUBLIC :: initialize, integrate, update_rconst |
---|
97 | PUBLIC :: chem_gasphase_integrate |
---|
98 | PUBLIC :: initialize_kpp_ctrl |
---|
99 | |
---|
100 | ! END OF MODULE HEADER TEMPLATE |
---|
101 | |
---|
102 | ! Variables used for vector mode |
---|
103 | |
---|
104 | LOGICAL, PARAMETER :: l_vector = .FALSE. |
---|
105 | INTEGER, PARAMETER :: i_lu_di = 2 |
---|
106 | INTEGER, PARAMETER :: vl_dim = 1 |
---|
107 | INTEGER :: vl |
---|
108 | |
---|
109 | INTEGER :: vl_glo |
---|
110 | INTEGER :: is, ie |
---|
111 | |
---|
112 | |
---|
113 | INTEGER, DIMENSION(vl_dim) :: kacc, krej |
---|
114 | INTEGER, DIMENSION(vl_dim) :: ierrv |
---|
115 | LOGICAL :: data_loaded = .FALSE. |
---|
116 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
117 | ! |
---|
118 | ! Parameter Module File |
---|
119 | ! |
---|
120 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
121 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
122 | ! KPP is distributed under GPL,the general public licence |
---|
123 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
124 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
125 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
126 | ! With important contributions from: |
---|
127 | ! M. Damian,Villanova University,USA |
---|
128 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
129 | ! |
---|
130 | ! File : chem_gasphase_mod_Parameters.f90 |
---|
131 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
132 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
133 | ! Equation file : chem_gasphase_mod.kpp |
---|
134 | ! Output root filename : chem_gasphase_mod |
---|
135 | ! |
---|
136 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
137 | |
---|
138 | |
---|
139 | |
---|
140 | |
---|
141 | |
---|
142 | |
---|
143 | ! NSPEC - Number of chemical species |
---|
144 | INTEGER, PARAMETER :: nspec = 33 |
---|
145 | ! NVAR - Number of Variable species |
---|
146 | INTEGER, PARAMETER :: nvar = 32 |
---|
147 | ! NVARACT - Number of Active species |
---|
148 | INTEGER, PARAMETER :: nvaract = 32 |
---|
149 | ! NFIX - Number of Fixed species |
---|
150 | INTEGER, PARAMETER :: nfix = 1 |
---|
151 | ! NREACT - Number of reactions |
---|
152 | INTEGER, PARAMETER :: nreact = 81 |
---|
153 | ! NVARST - Starting of variables in conc. vect. |
---|
154 | INTEGER, PARAMETER :: nvarst = 1 |
---|
155 | ! NFIXST - Starting of fixed in conc. vect. |
---|
156 | INTEGER, PARAMETER :: nfixst = 33 |
---|
157 | ! NONZERO - Number of nonzero entries in Jacobian |
---|
158 | INTEGER, PARAMETER :: nonzero = 276 |
---|
159 | ! LU_NONZERO - Number of nonzero entries in LU factoriz. of Jacobian |
---|
160 | INTEGER, PARAMETER :: lu_nonzero = 300 |
---|
161 | ! CNVAR - (NVAR+1) Number of elements in compressed row format |
---|
162 | INTEGER, PARAMETER :: cnvar = 33 |
---|
163 | ! CNEQN - (NREACT+1) Number stoicm elements in compressed col format |
---|
164 | INTEGER, PARAMETER :: cneqn = 82 |
---|
165 | ! NHESS - Length of Sparse Hessian |
---|
166 | INTEGER, PARAMETER :: nhess = 258 |
---|
167 | ! NMASS - Number of atoms to check mass balance |
---|
168 | INTEGER, PARAMETER :: nmass = 1 |
---|
169 | |
---|
170 | ! Index declaration for variable species in C and VAR |
---|
171 | ! VAR(ind_spc) = C(ind_spc) |
---|
172 | |
---|
173 | INTEGER, PARAMETER, PUBLIC :: ind_o1d_cb4 = 1 |
---|
174 | INTEGER, PARAMETER, PUBLIC :: ind_h2o2 = 2 |
---|
175 | INTEGER, PARAMETER, PUBLIC :: ind_pan = 3 |
---|
176 | INTEGER, PARAMETER, PUBLIC :: ind_cro = 4 |
---|
177 | INTEGER, PARAMETER, PUBLIC :: ind_tol = 5 |
---|
178 | INTEGER, PARAMETER, PUBLIC :: ind_n2o5 = 6 |
---|
179 | INTEGER, PARAMETER, PUBLIC :: ind_xyl = 7 |
---|
180 | INTEGER, PARAMETER, PUBLIC :: ind_xo2n = 8 |
---|
181 | INTEGER, PARAMETER, PUBLIC :: ind_hono = 9 |
---|
182 | INTEGER, PARAMETER, PUBLIC :: ind_pna = 10 |
---|
183 | INTEGER, PARAMETER, PUBLIC :: ind_to2 = 11 |
---|
184 | INTEGER, PARAMETER, PUBLIC :: ind_hno3 = 12 |
---|
185 | INTEGER, PARAMETER, PUBLIC :: ind_ror = 13 |
---|
186 | INTEGER, PARAMETER, PUBLIC :: ind_cres = 14 |
---|
187 | INTEGER, PARAMETER, PUBLIC :: ind_mgly = 15 |
---|
188 | INTEGER, PARAMETER, PUBLIC :: ind_co = 16 |
---|
189 | INTEGER, PARAMETER, PUBLIC :: ind_eth = 17 |
---|
190 | INTEGER, PARAMETER, PUBLIC :: ind_xo2 = 18 |
---|
191 | INTEGER, PARAMETER, PUBLIC :: ind_open = 19 |
---|
192 | INTEGER, PARAMETER, PUBLIC :: ind_par = 20 |
---|
193 | INTEGER, PARAMETER, PUBLIC :: ind_hcho = 21 |
---|
194 | INTEGER, PARAMETER, PUBLIC :: ind_isop = 22 |
---|
195 | INTEGER, PARAMETER, PUBLIC :: ind_ole = 23 |
---|
196 | INTEGER, PARAMETER, PUBLIC :: ind_ald2 = 24 |
---|
197 | INTEGER, PARAMETER, PUBLIC :: ind_o3 = 25 |
---|
198 | INTEGER, PARAMETER, PUBLIC :: ind_no2 = 26 |
---|
199 | INTEGER, PARAMETER, PUBLIC :: ind_ho = 27 |
---|
200 | INTEGER, PARAMETER, PUBLIC :: ind_ho2 = 28 |
---|
201 | INTEGER, PARAMETER, PUBLIC :: ind_o = 29 |
---|
202 | INTEGER, PARAMETER, PUBLIC :: ind_no3 = 30 |
---|
203 | INTEGER, PARAMETER, PUBLIC :: ind_no = 31 |
---|
204 | INTEGER, PARAMETER, PUBLIC :: ind_c2o3 = 32 |
---|
205 | |
---|
206 | ! Index declaration for fixed species in C |
---|
207 | ! C(ind_spc) |
---|
208 | |
---|
209 | INTEGER, PARAMETER, PUBLIC :: ind_h2o = 33 |
---|
210 | |
---|
211 | ! Index declaration for fixed species in FIX |
---|
212 | ! FIX(indf_spc) = C(ind_spc) = C(NVAR+indf_spc) |
---|
213 | |
---|
214 | INTEGER, PARAMETER :: indf_h2o = 1 |
---|
215 | |
---|
216 | ! NJVRP - Length of sparse Jacobian JVRP |
---|
217 | INTEGER, PARAMETER :: njvrp = 134 |
---|
218 | |
---|
219 | ! NSTOICM - Length of Sparse Stoichiometric Matrix |
---|
220 | INTEGER, PARAMETER :: nstoicm = 329 |
---|
221 | |
---|
222 | |
---|
223 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
224 | ! |
---|
225 | ! Global Data Module File |
---|
226 | ! |
---|
227 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
228 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
229 | ! KPP is distributed under GPL,the general public licence |
---|
230 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
231 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
232 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
233 | ! With important contributions from: |
---|
234 | ! M. Damian,Villanova University,USA |
---|
235 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
236 | ! |
---|
237 | ! File : chem_gasphase_mod_Global.f90 |
---|
238 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
239 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
240 | ! Equation file : chem_gasphase_mod.kpp |
---|
241 | ! Output root filename : chem_gasphase_mod |
---|
242 | ! |
---|
243 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
244 | |
---|
245 | |
---|
246 | |
---|
247 | |
---|
248 | |
---|
249 | |
---|
250 | ! Declaration of global variables |
---|
251 | |
---|
252 | ! C - Concentration of all species |
---|
253 | REAL(kind=dp):: c(nspec) |
---|
254 | ! VAR - Concentrations of variable species (global) |
---|
255 | REAL(kind=dp):: var(nvar) |
---|
256 | ! FIX - Concentrations of fixed species (global) |
---|
257 | REAL(kind=dp):: fix(nfix) |
---|
258 | ! VAR,FIX are chunks of array C |
---|
259 | EQUIVALENCE( c(1), var(1)) |
---|
260 | EQUIVALENCE( c(33), fix(1)) |
---|
261 | ! RCONST - Rate constants (global) |
---|
262 | REAL(kind=dp):: rconst(nreact) |
---|
263 | ! TIME - Current integration time |
---|
264 | REAL(kind=dp):: time |
---|
265 | ! TEMP - Temperature |
---|
266 | REAL(kind=dp):: temp |
---|
267 | ! TSTART - Integration start time |
---|
268 | REAL(kind=dp):: tstart |
---|
269 | ! ATOL - Absolute tolerance |
---|
270 | REAL(kind=dp):: atol(nvar) |
---|
271 | ! RTOL - Relative tolerance |
---|
272 | REAL(kind=dp):: rtol(nvar) |
---|
273 | ! STEPMIN - Lower bound for integration step |
---|
274 | REAL(kind=dp):: stepmin |
---|
275 | ! CFACTOR - Conversion factor for concentration units |
---|
276 | REAL(kind=dp):: cfactor |
---|
277 | |
---|
278 | ! INLINED global variable declarations |
---|
279 | |
---|
280 | ! QVAP - Water vapor |
---|
281 | REAL(kind=dp):: qvap |
---|
282 | ! FAKT - Conversion factor |
---|
283 | REAL(kind=dp):: fakt |
---|
284 | |
---|
285 | ! declaration of global variable declarations for photolysis will come from |
---|
286 | |
---|
287 | ! QVAP - Water vapor |
---|
288 | REAL(kind=dp):: qvap |
---|
289 | ! FAKT - Conversion factor |
---|
290 | REAL(kind=dp):: fakt |
---|
291 | |
---|
292 | |
---|
293 | ! INLINED global variable declarations |
---|
294 | |
---|
295 | |
---|
296 | |
---|
297 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
298 | ! |
---|
299 | ! Sparse Jacobian Data Structures File |
---|
300 | ! |
---|
301 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
302 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
303 | ! KPP is distributed under GPL,the general public licence |
---|
304 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
305 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
306 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
307 | ! With important contributions from: |
---|
308 | ! M. Damian,Villanova University,USA |
---|
309 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
310 | ! |
---|
311 | ! File : chem_gasphase_mod_JacobianSP.f90 |
---|
312 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
313 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
314 | ! Equation file : chem_gasphase_mod.kpp |
---|
315 | ! Output root filename : chem_gasphase_mod |
---|
316 | ! |
---|
317 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
318 | |
---|
319 | |
---|
320 | |
---|
321 | |
---|
322 | |
---|
323 | |
---|
324 | ! Sparse Jacobian Data |
---|
325 | |
---|
326 | |
---|
327 | INTEGER, PARAMETER, DIMENSION(300):: lu_irow = (/ & |
---|
328 | 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, & |
---|
329 | 4, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 8, & |
---|
330 | 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, & |
---|
331 | 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, & |
---|
332 | 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, & |
---|
333 | 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, & |
---|
334 | 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, & |
---|
335 | 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, & |
---|
336 | 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, & |
---|
337 | 19, 19, 19, 20, 20, 20, 20, 20, 20, 20, 20, 20, & |
---|
338 | 20, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, & |
---|
339 | 21, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, & |
---|
340 | 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, & |
---|
341 | 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, & |
---|
342 | 25, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, & |
---|
343 | 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, & |
---|
344 | 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, & |
---|
345 | 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, & |
---|
346 | 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, & |
---|
347 | 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, & |
---|
348 | 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, & |
---|
349 | 29, 29, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, & |
---|
350 | 30, 30, 30, 30, 30, 31, 31, 31, 31, 31, 31, 31, & |
---|
351 | 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 32, & |
---|
352 | 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32 /) |
---|
353 | |
---|
354 | INTEGER, PARAMETER, DIMENSION(300):: lu_icol = (/ & |
---|
355 | 1, 25, 2, 27, 28, 3, 26, 32, 4, 14, 26, 27, & |
---|
356 | 30, 5, 27, 6, 26, 30, 7, 27, 8, 13, 20, 22, & |
---|
357 | 23, 27, 29, 30, 31, 9, 26, 27, 31, 10, 26, 27, & |
---|
358 | 28, 5, 7, 11, 27, 31, 6, 12, 14, 21, 24, 26, & |
---|
359 | 27, 30, 13, 20, 26, 27, 5, 7, 11, 14, 27, 30, & |
---|
360 | 31, 7, 15, 19, 22, 25, 27, 15, 16, 17, 19, 21, & |
---|
361 | 22, 23, 24, 25, 27, 29, 30, 17, 22, 25, 27, 29, & |
---|
362 | 5, 7, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, & |
---|
363 | 25, 26, 27, 28, 29, 30, 31, 32, 11, 14, 19, 25, & |
---|
364 | 27, 30, 31, 7, 13, 20, 22, 23, 25, 26, 27, 29, & |
---|
365 | 30, 17, 19, 21, 22, 23, 24, 25, 27, 28, 29, 30, & |
---|
366 | 31, 32, 22, 25, 27, 29, 30, 22, 23, 25, 27, 29, & |
---|
367 | 30, 13, 17, 19, 20, 22, 23, 24, 25, 26, 27, 29, & |
---|
368 | 30, 31, 17, 19, 22, 23, 25, 26, 27, 28, 29, 30, & |
---|
369 | 31, 3, 4, 6, 9, 10, 11, 13, 14, 18, 19, 20, & |
---|
370 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 1, & |
---|
371 | 2, 5, 7, 9, 10, 12, 14, 15, 16, 17, 19, 20, & |
---|
372 | 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, & |
---|
373 | 2, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 20, & |
---|
374 | 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, & |
---|
375 | 1, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, & |
---|
376 | 31, 32, 6, 12, 14, 21, 22, 23, 24, 25, 26, 27, & |
---|
377 | 28, 29, 30, 31, 32, 8, 9, 11, 13, 18, 19, 20, & |
---|
378 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 3, & |
---|
379 | 15, 19, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32 /) |
---|
380 | |
---|
381 | INTEGER, PARAMETER, DIMENSION(33):: lu_crow = (/ & |
---|
382 | 1, 3, 6, 9, 14, 16, 19, 21, 30, 34, 38, 43, & |
---|
383 | 51, 55, 62, 68, 80, 85, 105, 112, 122, 135, 140, 146, & |
---|
384 | 159, 170, 192, 217, 241, 255, 270, 288, 301 /) |
---|
385 | |
---|
386 | INTEGER, PARAMETER, DIMENSION(33):: lu_diag = (/ & |
---|
387 | 1, 3, 6, 9, 14, 16, 19, 21, 30, 34, 40, 44, & |
---|
388 | 51, 58, 63, 69, 80, 91, 107, 114, 124, 135, 141, 152, & |
---|
389 | 163, 185, 211, 236, 251, 267, 286, 300, 301 /) |
---|
390 | |
---|
391 | |
---|
392 | |
---|
393 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
394 | ! |
---|
395 | ! Utility Data Module File |
---|
396 | ! |
---|
397 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
398 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
399 | ! KPP is distributed under GPL,the general public licence |
---|
400 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
401 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
402 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
403 | ! With important contributions from: |
---|
404 | ! M. Damian,Villanova University,USA |
---|
405 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
406 | ! |
---|
407 | ! File : chem_gasphase_mod_Monitor.f90 |
---|
408 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
409 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
410 | ! Equation file : chem_gasphase_mod.kpp |
---|
411 | ! Output root filename : chem_gasphase_mod |
---|
412 | ! |
---|
413 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
414 | |
---|
415 | |
---|
416 | |
---|
417 | |
---|
418 | |
---|
419 | CHARACTER(len=15), PARAMETER, DIMENSION(33):: spc_names = (/ & |
---|
420 | 'O1D_CB4 ','H2O2 ','PAN ',& |
---|
421 | 'CRO ','TOL ','N2O5 ',& |
---|
422 | 'XYL ','XO2N ','HONO ',& |
---|
423 | 'PNA ','TO2 ','HNO3 ',& |
---|
424 | 'ROR ','CRES ','MGLY ',& |
---|
425 | 'CO ','ETH ','XO2 ',& |
---|
426 | 'OPEN ','PAR ','HCHO ',& |
---|
427 | 'ISOP ','OLE ','ALD2 ',& |
---|
428 | 'O3 ','NO2 ','HO ',& |
---|
429 | 'HO2 ','O ','NO3 ',& |
---|
430 | 'NO ','C2O3 ','H2O ' /) |
---|
431 | |
---|
432 | CHARACTER(len=100), PARAMETER, DIMENSION(30):: eqn_names_0 = (/ & |
---|
433 | ' NO2 --> O + NO ',& |
---|
434 | ' O3 --> O ',& |
---|
435 | ' O3 --> O1D_CB4 ',& |
---|
436 | ' NO3 --> 0.89 NO2 + 0.89 O + 0.11 NO ',& |
---|
437 | ' HONO --> HO + NO ',& |
---|
438 | ' H2O2 --> 2 HO ',& |
---|
439 | ' HCHO --> CO + 2 HO2 ',& |
---|
440 | ' HCHO --> CO ',& |
---|
441 | ' ALD2 --> CO + XO2 + HCHO + 2 HO2 ',& |
---|
442 | ' OPEN --> CO + HO2 + C2O3 ',& |
---|
443 | ' MGLY --> CO + HO2 + C2O3 ',& |
---|
444 | ' O --> O3 ',& |
---|
445 | ' O3 + NO --> NO2 ',& |
---|
446 | ' NO2 + O --> NO ',& |
---|
447 | ' NO2 + O --> NO3 ',& |
---|
448 | ' O + NO --> NO2 ',& |
---|
449 | ' O3 + NO2 --> NO3 ',& |
---|
450 | ' O1D_CB4 --> O ',& |
---|
451 | ' O1D_CB4 + H2O --> 2 HO ',& |
---|
452 | ' O3 + HO --> HO2 ',& |
---|
453 | ' O3 + HO2 --> HO ',& |
---|
454 | ' NO3 + NO --> 2 NO2 ',& |
---|
455 | ' NO2 + NO3 --> NO2 + NO ',& |
---|
456 | ' NO2 + NO3 --> N2O5 ',& |
---|
457 | ' N2O5 + H2O --> 2 HNO3 ',& |
---|
458 | ' N2O5 --> NO2 + NO3 ',& |
---|
459 | ' 2 NO --> 2 NO2 ',& |
---|
460 | 'NO2 + NO + H2O --> 2 HONO ',& |
---|
461 | ' HO + NO --> HONO ',& |
---|
462 | ' HONO + HO --> NO2 ' /) |
---|
463 | CHARACTER(len=100), PARAMETER, DIMENSION(30):: eqn_names_1 = (/ & |
---|
464 | ' 2 HONO --> NO2 + NO ',& |
---|
465 | ' NO2 + HO --> HNO3 ',& |
---|
466 | ' HNO3 + HO --> NO3 ',& |
---|
467 | ' HO2 + NO --> NO2 + HO ',& |
---|
468 | ' NO2 + HO2 --> PNA ',& |
---|
469 | ' PNA --> NO2 + HO2 ',& |
---|
470 | ' PNA + HO --> NO2 ',& |
---|
471 | ' 2 HO2 --> H2O2 ',& |
---|
472 | ' 2 HO2 + H2O --> H2O2 ',& |
---|
473 | ' H2O2 + HO --> HO2 ',& |
---|
474 | ' CO + HO --> HO2 ',& |
---|
475 | ' HCHO + HO --> CO + HO2 ',& |
---|
476 | ' HCHO + O --> CO + HO + HO2 ',& |
---|
477 | ' HCHO + NO3 --> HNO3 + CO + HO2 ',& |
---|
478 | ' ALD2 + O --> HO + C2O3 ',& |
---|
479 | ' ALD2 + HO --> C2O3 ',& |
---|
480 | ' ALD2 + NO3 --> HNO3 + C2O3 ',& |
---|
481 | ' NO + C2O3 --> XO2 + HCHO + NO2 + HO2 ',& |
---|
482 | ' NO2 + C2O3 --> PAN ',& |
---|
483 | ' PAN --> NO2 + C2O3 ',& |
---|
484 | ' 2 C2O3 --> 2 XO2 + 2 HCHO + 2 HO2 ',& |
---|
485 | ' HO2 + C2O3 --> 0.79 XO2 + 0.79 HCHO + 0.79 HO + 0.79 HO2 ',& |
---|
486 | ' HO --> XO2 + HCHO + HO2 ',& |
---|
487 | ' PAR + HO --> 0.13 XO2N + 0.76 ROR + 0.87 XO2 - -0.11 PAR + 0.11 ALD2 ... etc. ',& |
---|
488 | ' ROR --> 0.04 XO2N + 0.02 ROR + 0.96 XO2 - -2.1 PAR + 1.1 ALD2 ... etc. ',& |
---|
489 | ' ROR --> HO2 ',& |
---|
490 | ' ROR + NO2 --> ',& |
---|
491 | ' OLE + O --> 0.02 XO2N + 0.3 CO + 0.28 XO2 + 0.22 PAR + 0.2 HCHO ... etc. ',& |
---|
492 | ' OLE + HO --> XO2 - PAR + HCHO + ALD2 + HO2 ',& |
---|
493 | ' OLE + O3 --> 0.33 CO + 0.22 XO2 - PAR + 0.74 HCHO + 0.5 ALD2 + 0.1 HO ... etc. ' /) |
---|
494 | CHARACTER(len=100), PARAMETER, DIMENSION(21):: eqn_names_2 = (/ & |
---|
495 | ' OLE + NO3 --> 0.09 XO2N + 0.91 XO2 - PAR + HCHO + ALD2 + NO2 ',& |
---|
496 | ' ETH + O --> CO + 0.7 XO2 + HCHO + 0.3 HO + 1.7 HO2 ',& |
---|
497 | ' ETH + HO --> XO2 + 1.56 HCHO + 0.22 ALD2 + HO2 ',& |
---|
498 | ' ETH + O3 --> 0.42 CO + HCHO + 0.12 HO2 ',& |
---|
499 | ' TOL + HO --> 0.56 TO2 + 0.36 CRES + 0.08 XO2 + 0.44 HO2 ',& |
---|
500 | ' TO2 + NO --> 0.9 OPEN + 0.9 NO2 + 0.9 HO2 ',& |
---|
501 | ' TO2 --> CRES + HO2 ',& |
---|
502 | ' CRES + HO --> 0.4 CRO + 0.6 XO2 + 0.3 OPEN + 0.6 HO2 ',& |
---|
503 | ' CRES + NO3 --> CRO + HNO3 ',& |
---|
504 | ' CRO + NO2 --> ',& |
---|
505 | ' XYL + HO --> 0.3 TO2 + 0.2 CRES + 0.8 MGLY + 0.5 XO2 + 1.1 PAR + 0.7 HO2 ... etc. ',& |
---|
506 | ' OPEN + HO --> 2 CO + XO2 + HCHO + 2 HO2 + C2O3 ',& |
---|
507 | ' OPEN + O3 --> 0.2 MGLY + 0.69 CO + 0.03 XO2 + 0.7 HCHO + 0.03 ALD2 ... etc. ',& |
---|
508 | ' MGLY + HO --> XO2 + C2O3 ',& |
---|
509 | ' ISOP + O --> 0.5 CO + 0.45 ETH + 0.5 XO2 + 0.9 PAR + 0.55 OLE + 0.8 ALD2 ... etc. ',& |
---|
510 | ' ISOP + HO --> 0.13 XO2N + 0.4 MGLY + ETH + XO2 + HCHO + 0.2 ALD2 + 0.67 HO2 ... etc. ',& |
---|
511 | ' ISOP + O3 --> 0.2 MGLY + 0.06 CO + 0.55 ETH + 0.1 PAR + HCHO + 0.4 ALD2 ... etc. ',& |
---|
512 | ' ISOP + NO3 --> XO2N ',& |
---|
513 | ' XO2 + NO --> NO2 ',& |
---|
514 | ' 2 XO2 --> ',& |
---|
515 | ' XO2N + NO --> ' /) |
---|
516 | CHARACTER(len=100), PARAMETER, DIMENSION(81):: eqn_names = (/& |
---|
517 | eqn_names_0, eqn_names_1, eqn_names_2 /) |
---|
518 | |
---|
519 | ! INLINED global variables |
---|
520 | |
---|
521 | ! inline f90_data: declaration of global variables for photolysis |
---|
522 | ! REAL(kind=dp):: phot(nphot)must eventually be moved to global later for |
---|
523 | INTEGER, PARAMETER :: nphot = 9 |
---|
524 | ! phot photolysis frequencies |
---|
525 | REAL(kind=dp):: phot(nphot) |
---|
526 | |
---|
527 | INTEGER, PARAMETER, PUBLIC :: j_no2 = 1 |
---|
528 | INTEGER, PARAMETER, PUBLIC :: j_o33p = 2 |
---|
529 | INTEGER, PARAMETER, PUBLIC :: j_o31d = 3 |
---|
530 | INTEGER, PARAMETER, PUBLIC :: j_no3o = 4 |
---|
531 | INTEGER, PARAMETER, PUBLIC :: j_no3o2 = 5 |
---|
532 | INTEGER, PARAMETER, PUBLIC :: j_hono = 6 |
---|
533 | INTEGER, PARAMETER, PUBLIC :: j_h2o2 = 7 |
---|
534 | INTEGER, PARAMETER, PUBLIC :: j_ch2or = 8 |
---|
535 | INTEGER, PARAMETER, PUBLIC :: j_ch2om = 9 |
---|
536 | |
---|
537 | CHARACTER(len=15), PARAMETER, DIMENSION(nphot):: phot_names = (/ & |
---|
538 | 'J_NO2 ','J_O33P ','J_O31D ', & |
---|
539 | 'J_NO3O ','J_NO3O2 ','J_HONO ', & |
---|
540 | 'J_H2O2 ','J_HCHO_B ','J_HCHO_A '/) |
---|
541 | |
---|
542 | ! End INLINED global variables |
---|
543 | |
---|
544 | |
---|
545 | ! Automatic generated PUBLIC Statements for ip_ and ihs_ variables |
---|
546 | |
---|
547 | ! Automatic generated PUBLIC Statements for ip_ and ihs_ variables |
---|
548 | |
---|
549 | ! Automatic generated PUBLIC Statements for ip_ and ihs_ variables |
---|
550 | |
---|
551 | ! Automatic generated PUBLIC Statements for ip_ and ihs_ variables |
---|
552 | |
---|
553 | |
---|
554 | ! variable definations from individual module headers |
---|
555 | |
---|
556 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
557 | ! |
---|
558 | ! Initialization File |
---|
559 | ! |
---|
560 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
561 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
562 | ! KPP is distributed under GPL,the general public licence |
---|
563 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
564 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
565 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
566 | ! With important contributions from: |
---|
567 | ! M. Damian,Villanova University,USA |
---|
568 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
569 | ! |
---|
570 | ! File : chem_gasphase_mod_Initialize.f90 |
---|
571 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
572 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
573 | ! Equation file : chem_gasphase_mod.kpp |
---|
574 | ! Output root filename : chem_gasphase_mod |
---|
575 | ! |
---|
576 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
577 | |
---|
578 | |
---|
579 | |
---|
580 | |
---|
581 | |
---|
582 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
583 | ! |
---|
584 | ! Numerical Integrator (Time-Stepping) File |
---|
585 | ! |
---|
586 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
587 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
588 | ! KPP is distributed under GPL,the general public licence |
---|
589 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
590 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
591 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
592 | ! With important contributions from: |
---|
593 | ! M. Damian,Villanova University,USA |
---|
594 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
595 | ! |
---|
596 | ! File : chem_gasphase_mod_Integrator.f90 |
---|
597 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
598 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
599 | ! Equation file : chem_gasphase_mod.kpp |
---|
600 | ! Output root filename : chem_gasphase_mod |
---|
601 | ! |
---|
602 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
603 | |
---|
604 | |
---|
605 | |
---|
606 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
607 | ! |
---|
608 | ! INTEGRATE - Integrator routine |
---|
609 | ! Arguments : |
---|
610 | ! TIN - Start Time for Integration |
---|
611 | ! TOUT - End Time for Integration |
---|
612 | ! |
---|
613 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
614 | |
---|
615 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~! |
---|
616 | ! Rosenbrock - Implementation of several Rosenbrock methods: ! |
---|
617 | ! *Ros2 ! |
---|
618 | ! *Ros3 ! |
---|
619 | ! *Ros4 ! |
---|
620 | ! *Rodas3 ! |
---|
621 | ! *Rodas4 ! |
---|
622 | ! By default the code employs the KPP sparse linear algebra routines ! |
---|
623 | ! Compile with -DFULL_ALGEBRA to use full linear algebra (LAPACK) ! |
---|
624 | ! ! |
---|
625 | ! (C) Adrian Sandu,August 2004 ! |
---|
626 | ! Virginia Polytechnic Institute and State University ! |
---|
627 | ! Contact: sandu@cs.vt.edu ! |
---|
628 | ! Revised by Philipp Miehe and Adrian Sandu,May 2006 ! ! |
---|
629 | ! This implementation is part of KPP - the Kinetic PreProcessor ! |
---|
630 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~! |
---|
631 | |
---|
632 | |
---|
633 | SAVE |
---|
634 | |
---|
635 | !~~~> statistics on the work performed by the rosenbrock method |
---|
636 | INTEGER, PARAMETER :: nfun=1, njac=2, nstp=3, nacc=4, & |
---|
637 | nrej=5, ndec=6, nsol=7, nsng=8, & |
---|
638 | ntexit=1, nhexit=2, nhnew = 3 |
---|
639 | |
---|
640 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
641 | ! |
---|
642 | ! Linear Algebra Data and Routines File |
---|
643 | ! |
---|
644 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
645 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
646 | ! KPP is distributed under GPL,the general public licence |
---|
647 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
648 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
649 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
650 | ! With important contributions from: |
---|
651 | ! M. Damian,Villanova University,USA |
---|
652 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
653 | ! |
---|
654 | ! File : chem_gasphase_mod_LinearAlgebra.f90 |
---|
655 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
656 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
657 | ! Equation file : chem_gasphase_mod.kpp |
---|
658 | ! Output root filename : chem_gasphase_mod |
---|
659 | ! |
---|
660 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
661 | |
---|
662 | |
---|
663 | |
---|
664 | |
---|
665 | |
---|
666 | |
---|
667 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
668 | ! |
---|
669 | ! The ODE Jacobian of Chemical Model File |
---|
670 | ! |
---|
671 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
672 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
673 | ! KPP is distributed under GPL,the general public licence |
---|
674 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
675 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
676 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
677 | ! With important contributions from: |
---|
678 | ! M. Damian,Villanova University,USA |
---|
679 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
680 | ! |
---|
681 | ! File : chem_gasphase_mod_Jacobian.f90 |
---|
682 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
683 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
684 | ! Equation file : chem_gasphase_mod.kpp |
---|
685 | ! Output root filename : chem_gasphase_mod |
---|
686 | ! |
---|
687 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
688 | |
---|
689 | |
---|
690 | |
---|
691 | |
---|
692 | |
---|
693 | |
---|
694 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
695 | ! |
---|
696 | ! The ODE Function of Chemical Model File |
---|
697 | ! |
---|
698 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
699 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
700 | ! KPP is distributed under GPL,the general public licence |
---|
701 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
702 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
703 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
704 | ! With important contributions from: |
---|
705 | ! M. Damian,Villanova University,USA |
---|
706 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
707 | ! |
---|
708 | ! File : chem_gasphase_mod_Function.f90 |
---|
709 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
710 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
711 | ! Equation file : chem_gasphase_mod.kpp |
---|
712 | ! Output root filename : chem_gasphase_mod |
---|
713 | ! |
---|
714 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
715 | |
---|
716 | |
---|
717 | |
---|
718 | |
---|
719 | |
---|
720 | ! A - Rate for each equation |
---|
721 | REAL(kind=dp):: a(nreact) |
---|
722 | |
---|
723 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
724 | ! |
---|
725 | ! The Reaction Rates File |
---|
726 | ! |
---|
727 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
728 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
729 | ! KPP is distributed under GPL,the general public licence |
---|
730 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
731 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
732 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
733 | ! With important contributions from: |
---|
734 | ! M. Damian,Villanova University,USA |
---|
735 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
736 | ! |
---|
737 | ! File : chem_gasphase_mod_Rates.f90 |
---|
738 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
739 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
740 | ! Equation file : chem_gasphase_mod.kpp |
---|
741 | ! Output root filename : chem_gasphase_mod |
---|
742 | ! |
---|
743 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
744 | |
---|
745 | |
---|
746 | |
---|
747 | |
---|
748 | |
---|
749 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
750 | ! |
---|
751 | ! Auxiliary Routines File |
---|
752 | ! |
---|
753 | ! Generated by KPP-2.2.3 symbolic chemistry Kinetics PreProcessor |
---|
754 | ! (http://www.cs.vt.edu/~asandu/Software/KPP) |
---|
755 | ! KPP is distributed under GPL,the general public licence |
---|
756 | ! (http://www.gnu.org/copyleft/gpl.html) |
---|
757 | ! (C) 1995-1997,V. Damian & A. Sandu,CGRER,Univ. Iowa |
---|
758 | ! (C) 1997-2005,A. Sandu,Michigan Tech,Virginia Tech |
---|
759 | ! With important contributions from: |
---|
760 | ! M. Damian,Villanova University,USA |
---|
761 | ! R. Sander,Max-Planck Institute for Chemistry,Mainz,Germany |
---|
762 | ! |
---|
763 | ! File : chem_gasphase_mod_Util.f90 |
---|
764 | ! Time : Tue Sep 25 18:35:13 2018 |
---|
765 | ! Working directory : /home/forkel-r/palmstuff/work/chemistry20180925/UTIL/chemistry/gasphase_preproc/tmp_kpp4palm |
---|
766 | ! Equation file : chem_gasphase_mod.kpp |
---|
767 | ! Output root filename : chem_gasphase_mod |
---|
768 | ! |
---|
769 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
770 | |
---|
771 | |
---|
772 | |
---|
773 | |
---|
774 | |
---|
775 | |
---|
776 | ! header MODULE initialize_kpp_ctrl_template |
---|
777 | |
---|
778 | ! notes: |
---|
779 | ! - l_vector is automatically defined by kp4 |
---|
780 | ! - vl_dim is automatically defined by kp4 |
---|
781 | ! - i_lu_di is automatically defined by kp4 |
---|
782 | ! - wanted is automatically defined by xmecca |
---|
783 | ! - icntrl rcntrl are automatically defined by kpp |
---|
784 | ! - "USE messy_main_tools" is in MODULE_header of messy_mecca_kpp.f90 |
---|
785 | ! - SAVE will be automatically added by kp4 |
---|
786 | |
---|
787 | !SAVE |
---|
788 | |
---|
789 | ! for fixed time step control |
---|
790 | ! ... max. number of fixed time steps (sum must be 1) |
---|
791 | INTEGER, PARAMETER :: nmaxfixsteps = 50 |
---|
792 | ! ... switch for fixed time stepping |
---|
793 | LOGICAL, PUBLIC :: l_fixed_step = .FALSE. |
---|
794 | INTEGER, PUBLIC :: nfsteps = 1 |
---|
795 | ! ... number of kpp control PARAMETERs |
---|
796 | INTEGER, PARAMETER, PUBLIC :: nkppctrl = 20 |
---|
797 | ! |
---|
798 | INTEGER, DIMENSION(nkppctrl), PUBLIC :: icntrl = 0 |
---|
799 | REAL(dp), DIMENSION(nkppctrl), PUBLIC :: rcntrl = 0.0_dp |
---|
800 | REAL(dp), DIMENSION(nmaxfixsteps), PUBLIC :: t_steps = 0.0_dp |
---|
801 | |
---|
802 | ! END header MODULE initialize_kpp_ctrl_template |
---|
803 | |
---|
804 | |
---|
805 | ! Interface Block |
---|
806 | |
---|
807 | INTERFACE initialize |
---|
808 | MODULE PROCEDURE initialize |
---|
809 | END INTERFACE initialize |
---|
810 | |
---|
811 | INTERFACE integrate |
---|
812 | MODULE PROCEDURE integrate |
---|
813 | END INTERFACE integrate |
---|
814 | |
---|
815 | INTERFACE fun |
---|
816 | MODULE PROCEDURE fun |
---|
817 | END INTERFACE fun |
---|
818 | |
---|
819 | INTERFACE kppsolve |
---|
820 | MODULE PROCEDURE kppsolve |
---|
821 | END INTERFACE kppsolve |
---|
822 | |
---|
823 | INTERFACE jac_sp |
---|
824 | MODULE PROCEDURE jac_sp |
---|
825 | END INTERFACE jac_sp |
---|
826 | |
---|
827 | INTERFACE k_arr |
---|
828 | MODULE PROCEDURE k_arr |
---|
829 | END INTERFACE k_arr |
---|
830 | |
---|
831 | INTERFACE update_rconst |
---|
832 | MODULE PROCEDURE update_rconst |
---|
833 | END INTERFACE update_rconst |
---|
834 | |
---|
835 | INTERFACE arr2 |
---|
836 | MODULE PROCEDURE arr2 |
---|
837 | END INTERFACE arr2 |
---|
838 | |
---|
839 | INTERFACE initialize_kpp_ctrl |
---|
840 | MODULE PROCEDURE initialize_kpp_ctrl |
---|
841 | END INTERFACE initialize_kpp_ctrl |
---|
842 | |
---|
843 | INTERFACE error_output |
---|
844 | MODULE PROCEDURE error_output |
---|
845 | END INTERFACE error_output |
---|
846 | |
---|
847 | INTERFACE wscal |
---|
848 | MODULE PROCEDURE wscal |
---|
849 | END INTERFACE wscal |
---|
850 | |
---|
851 | !INTERFACE not working INTERFACE waxpy |
---|
852 | !INTERFACE not working MODULE PROCEDURE waxpy |
---|
853 | !INTERFACE not working END INTERFACE waxpy |
---|
854 | |
---|
855 | INTERFACE rosenbrock |
---|
856 | MODULE PROCEDURE rosenbrock |
---|
857 | END INTERFACE rosenbrock |
---|
858 | |
---|
859 | INTERFACE funtemplate |
---|
860 | MODULE PROCEDURE funtemplate |
---|
861 | END INTERFACE funtemplate |
---|
862 | |
---|
863 | INTERFACE jactemplate |
---|
864 | MODULE PROCEDURE jactemplate |
---|
865 | END INTERFACE jactemplate |
---|
866 | |
---|
867 | INTERFACE kppdecomp |
---|
868 | MODULE PROCEDURE kppdecomp |
---|
869 | END INTERFACE kppdecomp |
---|
870 | |
---|
871 | INTERFACE chem_gasphase_integrate |
---|
872 | MODULE PROCEDURE chem_gasphase_integrate |
---|
873 | END INTERFACE chem_gasphase_integrate |
---|
874 | |
---|
875 | |
---|
876 | CONTAINS |
---|
877 | |
---|
878 | SUBROUTINE initialize() |
---|
879 | |
---|
880 | |
---|
881 | INTEGER :: j, k |
---|
882 | |
---|
883 | INTEGER :: i |
---|
884 | REAL(kind=dp):: x |
---|
885 | k = is |
---|
886 | cfactor = 1.000000e+00_dp |
---|
887 | |
---|
888 | x = (0.) * cfactor |
---|
889 | DO i = 1 , nvar |
---|
890 | ENDDO |
---|
891 | |
---|
892 | x = (0.) * cfactor |
---|
893 | DO i = 1 , nfix |
---|
894 | fix(i) = x |
---|
895 | ENDDO |
---|
896 | |
---|
897 | ! constant rate coefficients |
---|
898 | ! END constant rate coefficients |
---|
899 | |
---|
900 | ! INLINED initializations |
---|
901 | |
---|
902 | fix(indf_h2o) = qvap |
---|
903 | |
---|
904 | ! End INLINED initializations |
---|
905 | |
---|
906 | |
---|
907 | END SUBROUTINE initialize |
---|
908 | |
---|
909 | SUBROUTINE integrate( tin, tout, & |
---|
910 | icntrl_u, rcntrl_u, istatus_u, rstatus_u, ierr_u) |
---|
911 | |
---|
912 | |
---|
913 | REAL(kind=dp), INTENT(IN):: tin ! start time |
---|
914 | REAL(kind=dp), INTENT(IN):: tout ! END time |
---|
915 | ! OPTIONAL input PARAMETERs and statistics |
---|
916 | INTEGER, INTENT(IN), OPTIONAL :: icntrl_u(20) |
---|
917 | REAL(kind=dp), INTENT(IN), OPTIONAL :: rcntrl_u(20) |
---|
918 | INTEGER, INTENT(OUT), OPTIONAL :: istatus_u(20) |
---|
919 | REAL(kind=dp), INTENT(OUT), OPTIONAL :: rstatus_u(20) |
---|
920 | INTEGER, INTENT(OUT), OPTIONAL :: ierr_u |
---|
921 | |
---|
922 | REAL(kind=dp):: rcntrl(20), rstatus(20) |
---|
923 | INTEGER :: icntrl(20), istatus(20), ierr |
---|
924 | |
---|
925 | INTEGER, SAVE :: ntotal = 0 |
---|
926 | |
---|
927 | icntrl(:) = 0 |
---|
928 | rcntrl(:) = 0.0_dp |
---|
929 | istatus(:) = 0 |
---|
930 | rstatus(:) = 0.0_dp |
---|
931 | |
---|
932 | !~~~> fine-tune the integrator: |
---|
933 | icntrl(1) = 0 ! 0 - non- autonomous, 1 - autonomous |
---|
934 | icntrl(2) = 0 ! 0 - vector tolerances, 1 - scalars |
---|
935 | |
---|
936 | ! IF OPTIONAL PARAMETERs are given, and IF they are >0, |
---|
937 | ! THEN they overwrite default settings. |
---|
938 | IF (PRESENT(icntrl_u))THEN |
---|
939 | WHERE(icntrl_u(:)> 0)icntrl(:) = icntrl_u(:) |
---|
940 | ENDIF |
---|
941 | IF (PRESENT(rcntrl_u))THEN |
---|
942 | WHERE(rcntrl_u(:)> 0)rcntrl(:) = rcntrl_u(:) |
---|
943 | ENDIF |
---|
944 | |
---|
945 | |
---|
946 | CALL rosenbrock(nvar, var, tin, tout, & |
---|
947 | atol, rtol, & |
---|
948 | rcntrl, icntrl, rstatus, istatus, ierr) |
---|
949 | |
---|
950 | !~~~> debug option: show no of steps |
---|
951 | ! ntotal = ntotal + istatus(nstp) |
---|
952 | ! PRINT*,'NSTEPS=',ISTATUS(Nstp),' (',Ntotal,')',' O3=',VAR(ind_O3) |
---|
953 | |
---|
954 | stepmin = rstatus(nhexit) |
---|
955 | ! IF OPTIONAL PARAMETERs are given for output they |
---|
956 | ! are updated with the RETURN information |
---|
957 | IF (PRESENT(istatus_u))istatus_u(:) = istatus(:) |
---|
958 | IF (PRESENT(rstatus_u))rstatus_u(:) = rstatus(:) |
---|
959 | IF (PRESENT(ierr_u)) ierr_u = ierr |
---|
960 | |
---|
961 | END SUBROUTINE integrate |
---|
962 | |
---|
963 | SUBROUTINE fun(v, f, rct, vdot) |
---|
964 | |
---|
965 | ! V - Concentrations of variable species (local) |
---|
966 | REAL(kind=dp):: v(nvar) |
---|
967 | ! F - Concentrations of fixed species (local) |
---|
968 | REAL(kind=dp):: f(nfix) |
---|
969 | ! RCT - Rate constants (local) |
---|
970 | REAL(kind=dp):: rct(nreact) |
---|
971 | ! Vdot - Time derivative of variable species concentrations |
---|
972 | REAL(kind=dp):: vdot(nvar) |
---|
973 | |
---|
974 | |
---|
975 | ! Computation of equation rates |
---|
976 | a(1) = rct(1) * v(26) |
---|
977 | a(2) = rct(2) * v(25) |
---|
978 | a(3) = rct(3) * v(25) |
---|
979 | a(4) = rct(4) * v(30) |
---|
980 | a(5) = rct(5) * v(9) |
---|
981 | a(6) = rct(6) * v(2) |
---|
982 | a(7) = rct(7) * v(21) |
---|
983 | a(8) = rct(8) * v(21) |
---|
984 | a(9) = rct(9) * v(24) |
---|
985 | a(10) = rct(10) * v(19) |
---|
986 | a(11) = rct(11) * v(15) |
---|
987 | a(12) = rct(12) * v(29) |
---|
988 | a(13) = rct(13) * v(25) * v(31) |
---|
989 | a(14) = rct(14) * v(26) * v(29) |
---|
990 | a(15) = rct(15) * v(26) * v(29) |
---|
991 | a(16) = rct(16) * v(29) * v(31) |
---|
992 | a(17) = rct(17) * v(25) * v(26) |
---|
993 | a(18) = rct(18) * v(1) |
---|
994 | a(19) = rct(19) * v(1) * f(1) |
---|
995 | a(20) = rct(20) * v(25) * v(27) |
---|
996 | a(21) = rct(21) * v(25) * v(28) |
---|
997 | a(22) = rct(22) * v(30) * v(31) |
---|
998 | a(23) = rct(23) * v(26) * v(30) |
---|
999 | a(24) = rct(24) * v(26) * v(30) |
---|
1000 | a(25) = rct(25) * v(6) * f(1) |
---|
1001 | a(26) = rct(26) * v(6) |
---|
1002 | a(27) = rct(27) * v(31) * v(31) |
---|
1003 | a(28) = rct(28) * v(26) * v(31) * f(1) |
---|
1004 | a(29) = rct(29) * v(27) * v(31) |
---|
1005 | a(30) = rct(30) * v(9) * v(27) |
---|
1006 | a(31) = rct(31) * v(9) * v(9) |
---|
1007 | a(32) = rct(32) * v(26) * v(27) |
---|
1008 | a(33) = rct(33) * v(12) * v(27) |
---|
1009 | a(34) = rct(34) * v(28) * v(31) |
---|
1010 | a(35) = rct(35) * v(26) * v(28) |
---|
1011 | a(36) = rct(36) * v(10) |
---|
1012 | a(37) = rct(37) * v(10) * v(27) |
---|
1013 | a(38) = rct(38) * v(28) * v(28) |
---|
1014 | a(39) = rct(39) * v(28) * v(28) * f(1) |
---|
1015 | a(40) = rct(40) * v(2) * v(27) |
---|
1016 | a(41) = rct(41) * v(16) * v(27) |
---|
1017 | a(42) = rct(42) * v(21) * v(27) |
---|
1018 | a(43) = rct(43) * v(21) * v(29) |
---|
1019 | a(44) = rct(44) * v(21) * v(30) |
---|
1020 | a(45) = rct(45) * v(24) * v(29) |
---|
1021 | a(46) = rct(46) * v(24) * v(27) |
---|
1022 | a(47) = rct(47) * v(24) * v(30) |
---|
1023 | a(48) = rct(48) * v(31) * v(32) |
---|
1024 | a(49) = rct(49) * v(26) * v(32) |
---|
1025 | a(50) = rct(50) * v(3) |
---|
1026 | a(51) = rct(51) * v(32) * v(32) |
---|
1027 | a(52) = rct(52) * v(28) * v(32) |
---|
1028 | a(53) = rct(53) * v(27) |
---|
1029 | a(54) = rct(54) * v(20) * v(27) |
---|
1030 | a(55) = rct(55) * v(13) |
---|
1031 | a(56) = rct(56) * v(13) |
---|
1032 | a(57) = rct(57) * v(13) * v(26) |
---|
1033 | a(58) = rct(58) * v(23) * v(29) |
---|
1034 | a(59) = rct(59) * v(23) * v(27) |
---|
1035 | a(60) = rct(60) * v(23) * v(25) |
---|
1036 | a(61) = rct(61) * v(23) * v(30) |
---|
1037 | a(62) = rct(62) * v(17) * v(29) |
---|
1038 | a(63) = rct(63) * v(17) * v(27) |
---|
1039 | a(64) = rct(64) * v(17) * v(25) |
---|
1040 | a(65) = rct(65) * v(5) * v(27) |
---|
1041 | a(66) = rct(66) * v(11) * v(31) |
---|
1042 | a(67) = rct(67) * v(11) |
---|
1043 | a(68) = rct(68) * v(14) * v(27) |
---|
1044 | a(69) = rct(69) * v(14) * v(30) |
---|
1045 | a(70) = rct(70) * v(4) * v(26) |
---|
1046 | a(71) = rct(71) * v(7) * v(27) |
---|
1047 | a(72) = rct(72) * v(19) * v(27) |
---|
1048 | a(73) = rct(73) * v(19) * v(25) |
---|
1049 | a(74) = rct(74) * v(15) * v(27) |
---|
1050 | a(75) = rct(75) * v(22) * v(29) |
---|
1051 | a(76) = rct(76) * v(22) * v(27) |
---|
1052 | a(77) = rct(77) * v(22) * v(25) |
---|
1053 | a(78) = rct(78) * v(22) * v(30) |
---|
1054 | a(79) = rct(79) * v(18) * v(31) |
---|
1055 | a(80) = rct(80) * v(18) * v(18) |
---|
1056 | a(81) = rct(81) * v(8) * v(31) |
---|
1057 | |
---|
1058 | ! Aggregate function |
---|
1059 | vdot(1) = a(3) - a(18) - a(19) |
---|
1060 | vdot(2) = - a(6) + a(38) + a(39) - a(40) |
---|
1061 | vdot(3) = a(49) - a(50) |
---|
1062 | vdot(4) = 0.4* a(68) + a(69) - a(70) |
---|
1063 | vdot(5) = - a(65) |
---|
1064 | vdot(6) = a(24) - a(25) - a(26) |
---|
1065 | vdot(7) = - a(71) |
---|
1066 | vdot(8) = 0.13* a(54) + 0.04* a(55) + 0.02* a(58) + 0.09* a(61) + 0.13* a(76) + a(78) - a(81) |
---|
1067 | vdot(9) = - a(5) + 2* a(28) + a(29) - a(30) - 2* a(31) |
---|
1068 | vdot(10) = a(35) - a(36) - a(37) |
---|
1069 | vdot(11) = 0.56* a(65) - a(66) - a(67) + 0.3* a(71) |
---|
1070 | vdot(12) = 2* a(25) + a(32) - a(33) + a(44) + a(47) + a(69) |
---|
1071 | vdot(13) = 0.76* a(54) - 0.98* a(55) - a(56) - a(57) |
---|
1072 | vdot(14) = 0.36* a(65) + a(67) - a(68) - a(69) + 0.2* a(71) |
---|
1073 | vdot(15) = - a(11) + 0.8* a(71) + 0.2* a(73) - a(74) + 0.4* a(76) + 0.2* a(77) |
---|
1074 | vdot(16) = a(7) + a(8) + a(9) + a(10) + a(11) - a(41) + a(42) + a(43) + a(44) + 0.3* a(58) + 0.33* a(60) + a(62) + 0.42* a(64) & |
---|
1075 | + 2* a(72) + 0.69* a(73)& |
---|
1076 | &+ 0.5* a(75) + 0.06* a(77) |
---|
1077 | vdot(17) = - a(62) - a(63) - a(64) + 0.45* a(75) + a(76) + 0.55* a(77) |
---|
1078 | vdot(18) = a(9) + a(48) + 2* a(51) + 0.79* a(52) + a(53) + 0.87* a(54) + 0.96* a(55) + 0.28* a(58) + a(59) + 0.22* a(60) + & |
---|
1079 | 0.91* a(61) + 0.7* a(62)& |
---|
1080 | &+ a(63) + 0.08* a(65) + 0.6* a(68) + 0.5* a(71) + a(72) + 0.03* a(73) + a(74) + 0.5* a(75) + a(76) - a(79) - 2* & |
---|
1081 | a(80) |
---|
1082 | vdot(19) = - a(10) + 0.9* a(66) + 0.3* a(68) - a(72) - a(73) |
---|
1083 | vdot(20) = - 1.11* a(54) - 2.1* a(55) + 0.22* a(58) - a(59) - a(60) - a(61) + 1.1* a(71) + 0.9* a(75) + 0.1* a(77) |
---|
1084 | vdot(21) = - a(7) - a(8) + a(9) - a(42) - a(43) - a(44) + a(48) + 2* a(51) + 0.79* a(52) + a(53) + 0.2* a(58) + a(59) + 0.74* & |
---|
1085 | a(60) + a(61) + a(62)& |
---|
1086 | &+ 1.56* a(63) + a(64) + a(72) + 0.7* a(73) + a(76) + a(77) |
---|
1087 | vdot(22) = - a(75) - a(76) - a(77) - a(78) |
---|
1088 | vdot(23) = - a(58) - a(59) - a(60) - a(61) + 0.55* a(75) |
---|
1089 | vdot(24) = - a(9) - a(45) - a(46) - a(47) + 0.11* a(54) + 1.1* a(55) + 0.63* a(58) + a(59) + 0.5* a(60) + a(61) + 0.22* a(63) + & |
---|
1090 | 0.03* a(73) + 0.8& |
---|
1091 | &* a(75) + 0.2* a(76) + 0.4* a(77) |
---|
1092 | vdot(25) = - a(2) - a(3) + a(12) - a(13) - a(17) - a(20) - a(21) - a(60) - a(64) - a(73) - a(77) |
---|
1093 | vdot(26) = - a(1) + 0.89* a(4) + a(13) - a(14) - a(15) + a(16) - a(17) + 2* a(22) - a(24) + a(26) + 2* a(27) - a(28) + a(30) + & |
---|
1094 | a(31) - a(32) + a(34)& |
---|
1095 | &- a(35) + a(36) + a(37) + a(48) - a(49) + a(50) - a(57) + a(61) + 0.9* a(66) - a(70) + a(79) |
---|
1096 | vdot(27) = a(5) + 2* a(6) + 2* a(19) - a(20) + a(21) - a(29) - a(30) - a(32) - a(33) + a(34) - a(37) - a(40) - a(41) - a(42) + & |
---|
1097 | a(43) + a(45) - a(46)& |
---|
1098 | &+ 0.79* a(52) - a(53) - a(54) + 0.2* a(58) - a(59) + 0.1* a(60) + 0.3* a(62) - a(63) - a(65) - a(68) - a(71) - & |
---|
1099 | a(72) + 0.08* a(73) - a(74)& |
---|
1100 | &- a(76) + 0.1* a(77) |
---|
1101 | vdot(28) = 2* a(7) + 2* a(9) + a(10) + a(11) + a(20) - a(21) - a(34) - a(35) + a(36) - 2* a(38) - 2* a(39) + a(40) + a(41) + & |
---|
1102 | a(42) + a(43) + a(44) + a(48)& |
---|
1103 | &+ 2* a(51) - 0.21* a(52) + a(53) + 0.11* a(54) + 0.94* a(55) + a(56) + 0.38* a(58) + a(59) + 0.44* a(60) + 1.7* & |
---|
1104 | a(62) + a(63) + 0.12* a(64)& |
---|
1105 | &+ 0.44* a(65) + 0.9* a(66) + a(67) + 0.6* a(68) + 0.7* a(71) + 2* a(72) + 0.76* a(73) + 0.6* a(75) + 0.67* a(76) & |
---|
1106 | + 0.44* a(77) |
---|
1107 | vdot(29) = a(1) + a(2) + 0.89* a(4) - a(12) - a(14) - a(15) - a(16) + a(18) - a(43) - a(45) - a(58) - a(62) - a(75) |
---|
1108 | vdot(30) = - a(4) + a(15) + a(17) - a(22) - a(23) - a(24) + a(26) + a(33) - a(44) - a(47) - a(61) - a(69) - a(78) |
---|
1109 | vdot(31) = a(1) + 0.11* a(4) + a(5) - a(13) + a(14) - a(16) - a(22) + a(23) - 2* a(27) - a(28) - a(29) + a(31) - a(34) - a(48) & |
---|
1110 | - a(66) - a(79) - a(81) |
---|
1111 | vdot(32) = a(10) + a(11) + a(45) + a(46) + a(47) - a(48) - a(49) + a(50) - 2* a(51) - a(52) + a(72) + 0.62* a(73) + a(74) + & |
---|
1112 | 0.2* a(76) |
---|
1113 | |
---|
1114 | END SUBROUTINE fun |
---|
1115 | |
---|
1116 | SUBROUTINE kppsolve(jvs, x) |
---|
1117 | |
---|
1118 | ! JVS - sparse Jacobian of variables |
---|
1119 | REAL(kind=dp):: jvs(lu_nonzero) |
---|
1120 | ! X - Vector for variables |
---|
1121 | REAL(kind=dp):: x(nvar) |
---|
1122 | |
---|
1123 | x(11) = x(11) - jvs(38) * x(5) - jvs(39) * x(7) |
---|
1124 | x(12) = x(12) - jvs(43) * x(6) |
---|
1125 | x(14) = x(14) - jvs(55) * x(5) - jvs(56) * x(7) - jvs(57) * x(11) |
---|
1126 | x(15) = x(15) - jvs(62) * x(7) |
---|
1127 | x(16) = x(16) - jvs(68) * x(15) |
---|
1128 | x(18) = x(18) - jvs(85) * x(5) - jvs(86) * x(7) - jvs(87) * x(13) - jvs(88) * x(14) - jvs(89) * x(15) - jvs(90) * x(17) |
---|
1129 | x(19) = x(19) - jvs(105) * x(11) - jvs(106) * x(14) |
---|
1130 | x(20) = x(20) - jvs(112) * x(7) - jvs(113) * x(13) |
---|
1131 | x(21) = x(21) - jvs(122) * x(17) - jvs(123) * x(19) |
---|
1132 | x(23) = x(23) - jvs(140) * x(22) |
---|
1133 | x(24) = x(24) - jvs(146) * x(13) - jvs(147) * x(17) - jvs(148) * x(19) - jvs(149) * x(20) - jvs(150) * x(22) - jvs(151) * x(23) |
---|
1134 | x(25) = x(25) - jvs(159) * x(17) - jvs(160) * x(19) - jvs(161) * x(22) - jvs(162) * x(23) |
---|
1135 | x(26) = x(26) - jvs(170) * x(3) - jvs(171) * x(4) - jvs(172) * x(6) - jvs(173) * x(9) - jvs(174) * x(10) - jvs(175) * x(11) - & |
---|
1136 | jvs(176) * x(13)& |
---|
1137 | &- jvs(177) * x(14) - jvs(178) * x(18) - jvs(179) * x(19) - jvs(180) * x(20) - jvs(181) * x(22) - jvs(182) * x(23) - & |
---|
1138 | jvs(183) * x(24)& |
---|
1139 | &- jvs(184) * x(25) |
---|
1140 | x(27) = x(27) - jvs(192) * x(1) - jvs(193) * x(2) - jvs(194) * x(5) - jvs(195) * x(7) - jvs(196) * x(9) - jvs(197) * x(10) - & |
---|
1141 | jvs(198) * x(12)& |
---|
1142 | &- jvs(199) * x(14) - jvs(200) * x(15) - jvs(201) * x(16) - jvs(202) * x(17) - jvs(203) * x(19) - jvs(204) * x(20) - & |
---|
1143 | jvs(205) * x(21)& |
---|
1144 | &- jvs(206) * x(22) - jvs(207) * x(23) - jvs(208) * x(24) - jvs(209) * x(25) - jvs(210) * x(26) |
---|
1145 | x(28) = x(28) - jvs(217) * x(2) - jvs(218) * x(5) - jvs(219) * x(7) - jvs(220) * x(10) - jvs(221) * x(11) - jvs(222) * x(13) - & |
---|
1146 | jvs(223) * x(14)& |
---|
1147 | &- jvs(224) * x(15) - jvs(225) * x(16) - jvs(226) * x(17) - jvs(227) * x(19) - jvs(228) * x(20) - jvs(229) * x(21) - & |
---|
1148 | jvs(230) * x(22)& |
---|
1149 | &- jvs(231) * x(23) - jvs(232) * x(24) - jvs(233) * x(25) - jvs(234) * x(26) - jvs(235) * x(27) |
---|
1150 | x(29) = x(29) - jvs(241) * x(1) - jvs(242) * x(17) - jvs(243) * x(21) - jvs(244) * x(22) - jvs(245) * x(23) - jvs(246) * x(24) & |
---|
1151 | - jvs(247) * x(25)& |
---|
1152 | &- jvs(248) * x(26) - jvs(249) * x(27) - jvs(250) * x(28) |
---|
1153 | x(30) = x(30) - jvs(255) * x(6) - jvs(256) * x(12) - jvs(257) * x(14) - jvs(258) * x(21) - jvs(259) * x(22) - jvs(260) * x(23) & |
---|
1154 | - jvs(261) * x(24)& |
---|
1155 | &- jvs(262) * x(25) - jvs(263) * x(26) - jvs(264) * x(27) - jvs(265) * x(28) - jvs(266) * x(29) |
---|
1156 | x(31) = x(31) - jvs(270) * x(8) - jvs(271) * x(9) - jvs(272) * x(11) - jvs(273) * x(13) - jvs(274) * x(18) - jvs(275) * x(19) - & |
---|
1157 | jvs(276) * x(20)& |
---|
1158 | &- jvs(277) * x(22) - jvs(278) * x(23) - jvs(279) * x(24) - jvs(280) * x(25) - jvs(281) * x(26) - jvs(282) * x(27) - & |
---|
1159 | jvs(283) * x(28)& |
---|
1160 | &- jvs(284) * x(29) - jvs(285) * x(30) |
---|
1161 | x(32) = x(32) - jvs(288) * x(3) - jvs(289) * x(15) - jvs(290) * x(19) - jvs(291) * x(22) - jvs(292) * x(24) - jvs(293) * x(25) & |
---|
1162 | - jvs(294) * x(26)& |
---|
1163 | &- jvs(295) * x(27) - jvs(296) * x(28) - jvs(297) * x(29) - jvs(298) * x(30) - jvs(299) * x(31) |
---|
1164 | x(32) = x(32) / jvs(300) |
---|
1165 | x(31) = (x(31) - jvs(287) * x(32)) /(jvs(286)) |
---|
1166 | x(30) = (x(30) - jvs(268) * x(31) - jvs(269) * x(32)) /(jvs(267)) |
---|
1167 | x(29) = (x(29) - jvs(252) * x(30) - jvs(253) * x(31) - jvs(254) * x(32)) /(jvs(251)) |
---|
1168 | x(28) = (x(28) - jvs(237) * x(29) - jvs(238) * x(30) - jvs(239) * x(31) - jvs(240) * x(32)) /(jvs(236)) |
---|
1169 | x(27) = (x(27) - jvs(212) * x(28) - jvs(213) * x(29) - jvs(214) * x(30) - jvs(215) * x(31) - jvs(216) * x(32)) /(jvs(211)) |
---|
1170 | x(26) = (x(26) - jvs(186) * x(27) - jvs(187) * x(28) - jvs(188) * x(29) - jvs(189) * x(30) - jvs(190) * x(31) - jvs(191) * & |
---|
1171 | x(32)) /(jvs(185)) |
---|
1172 | x(25) = (x(25) - jvs(164) * x(26) - jvs(165) * x(27) - jvs(166) * x(28) - jvs(167) * x(29) - jvs(168) * x(30) - jvs(169) * & |
---|
1173 | x(31)) /(jvs(163)) |
---|
1174 | x(24) = (x(24) - jvs(153) * x(25) - jvs(154) * x(26) - jvs(155) * x(27) - jvs(156) * x(29) - jvs(157) * x(30) - jvs(158) * & |
---|
1175 | x(31)) /(jvs(152)) |
---|
1176 | x(23) = (x(23) - jvs(142) * x(25) - jvs(143) * x(27) - jvs(144) * x(29) - jvs(145) * x(30)) /(jvs(141)) |
---|
1177 | x(22) = (x(22) - jvs(136) * x(25) - jvs(137) * x(27) - jvs(138) * x(29) - jvs(139) * x(30)) /(jvs(135)) |
---|
1178 | x(21) = (x(21) - jvs(125) * x(22) - jvs(126) * x(23) - jvs(127) * x(24) - jvs(128) * x(25) - jvs(129) * x(27) - jvs(130) * & |
---|
1179 | x(28) - jvs(131)& |
---|
1180 | &* x(29) - jvs(132) * x(30) - jvs(133) * x(31) - jvs(134) * x(32)) /(jvs(124)) |
---|
1181 | x(20) = (x(20) - jvs(115) * x(22) - jvs(116) * x(23) - jvs(117) * x(25) - jvs(118) * x(26) - jvs(119) * x(27) - jvs(120) * & |
---|
1182 | x(29) - jvs(121)& |
---|
1183 | &* x(30)) /(jvs(114)) |
---|
1184 | x(19) = (x(19) - jvs(108) * x(25) - jvs(109) * x(27) - jvs(110) * x(30) - jvs(111) * x(31)) /(jvs(107)) |
---|
1185 | x(18) = (x(18) - jvs(92) * x(19) - jvs(93) * x(20) - jvs(94) * x(22) - jvs(95) * x(23) - jvs(96) * x(24) - jvs(97) * x(25) - & |
---|
1186 | jvs(98) * x(26)& |
---|
1187 | &- jvs(99) * x(27) - jvs(100) * x(28) - jvs(101) * x(29) - jvs(102) * x(30) - jvs(103) * x(31) - jvs(104) * x(32)) & |
---|
1188 | /(jvs(91)) |
---|
1189 | x(17) = (x(17) - jvs(81) * x(22) - jvs(82) * x(25) - jvs(83) * x(27) - jvs(84) * x(29)) /(jvs(80)) |
---|
1190 | x(16) = (x(16) - jvs(70) * x(17) - jvs(71) * x(19) - jvs(72) * x(21) - jvs(73) * x(22) - jvs(74) * x(23) - jvs(75) * x(24) - & |
---|
1191 | jvs(76) * x(25)& |
---|
1192 | &- jvs(77) * x(27) - jvs(78) * x(29) - jvs(79) * x(30)) /(jvs(69)) |
---|
1193 | x(15) = (x(15) - jvs(64) * x(19) - jvs(65) * x(22) - jvs(66) * x(25) - jvs(67) * x(27)) /(jvs(63)) |
---|
1194 | x(14) = (x(14) - jvs(59) * x(27) - jvs(60) * x(30) - jvs(61) * x(31)) /(jvs(58)) |
---|
1195 | x(13) = (x(13) - jvs(52) * x(20) - jvs(53) * x(26) - jvs(54) * x(27)) /(jvs(51)) |
---|
1196 | x(12) = (x(12) - jvs(45) * x(14) - jvs(46) * x(21) - jvs(47) * x(24) - jvs(48) * x(26) - jvs(49) * x(27) - jvs(50) * x(30)) & |
---|
1197 | /(jvs(44)) |
---|
1198 | x(11) = (x(11) - jvs(41) * x(27) - jvs(42) * x(31)) /(jvs(40)) |
---|
1199 | x(10) = (x(10) - jvs(35) * x(26) - jvs(36) * x(27) - jvs(37) * x(28)) /(jvs(34)) |
---|
1200 | x(9) = (x(9) - jvs(31) * x(26) - jvs(32) * x(27) - jvs(33) * x(31)) /(jvs(30)) |
---|
1201 | x(8) = (x(8) - jvs(22) * x(13) - jvs(23) * x(20) - jvs(24) * x(22) - jvs(25) * x(23) - jvs(26) * x(27) - jvs(27) * x(29) - & |
---|
1202 | jvs(28) * x(30) - jvs(29)& |
---|
1203 | &* x(31)) /(jvs(21)) |
---|
1204 | x(7) = (x(7) - jvs(20) * x(27)) /(jvs(19)) |
---|
1205 | x(6) = (x(6) - jvs(17) * x(26) - jvs(18) * x(30)) /(jvs(16)) |
---|
1206 | x(5) = (x(5) - jvs(15) * x(27)) /(jvs(14)) |
---|
1207 | x(4) = (x(4) - jvs(10) * x(14) - jvs(11) * x(26) - jvs(12) * x(27) - jvs(13) * x(30)) /(jvs(9)) |
---|
1208 | x(3) = (x(3) - jvs(7) * x(26) - jvs(8) * x(32)) /(jvs(6)) |
---|
1209 | x(2) = (x(2) - jvs(4) * x(27) - jvs(5) * x(28)) /(jvs(3)) |
---|
1210 | x(1) = (x(1) - jvs(2) * x(25)) /(jvs(1)) |
---|
1211 | |
---|
1212 | END SUBROUTINE kppsolve |
---|
1213 | |
---|
1214 | SUBROUTINE jac_sp(v, f, rct, jvs) |
---|
1215 | |
---|
1216 | ! V - Concentrations of variable species (local) |
---|
1217 | REAL(kind=dp):: v(nvar) |
---|
1218 | ! F - Concentrations of fixed species (local) |
---|
1219 | REAL(kind=dp):: f(nfix) |
---|
1220 | ! RCT - Rate constants (local) |
---|
1221 | REAL(kind=dp):: rct(nreact) |
---|
1222 | ! JVS - sparse Jacobian of variables |
---|
1223 | REAL(kind=dp):: jvs(lu_nonzero) |
---|
1224 | |
---|
1225 | |
---|
1226 | ! Local variables |
---|
1227 | ! B - Temporary array |
---|
1228 | REAL(kind=dp):: b(138) |
---|
1229 | |
---|
1230 | ! B(1) = dA(1)/dV(26) |
---|
1231 | b(1) = rct(1) |
---|
1232 | ! B(2) = dA(2)/dV(25) |
---|
1233 | b(2) = rct(2) |
---|
1234 | ! B(3) = dA(3)/dV(25) |
---|
1235 | b(3) = rct(3) |
---|
1236 | ! B(4) = dA(4)/dV(30) |
---|
1237 | b(4) = rct(4) |
---|
1238 | ! B(5) = dA(5)/dV(9) |
---|
1239 | b(5) = rct(5) |
---|
1240 | ! B(6) = dA(6)/dV(2) |
---|
1241 | b(6) = rct(6) |
---|
1242 | ! B(7) = dA(7)/dV(21) |
---|
1243 | b(7) = rct(7) |
---|
1244 | ! B(8) = dA(8)/dV(21) |
---|
1245 | b(8) = rct(8) |
---|
1246 | ! B(9) = dA(9)/dV(24) |
---|
1247 | b(9) = rct(9) |
---|
1248 | ! B(10) = dA(10)/dV(19) |
---|
1249 | b(10) = rct(10) |
---|
1250 | ! B(11) = dA(11)/dV(15) |
---|
1251 | b(11) = rct(11) |
---|
1252 | ! B(12) = dA(12)/dV(29) |
---|
1253 | b(12) = rct(12) |
---|
1254 | ! B(13) = dA(13)/dV(25) |
---|
1255 | b(13) = rct(13) * v(31) |
---|
1256 | ! B(14) = dA(13)/dV(31) |
---|
1257 | b(14) = rct(13) * v(25) |
---|
1258 | ! B(15) = dA(14)/dV(26) |
---|
1259 | b(15) = rct(14) * v(29) |
---|
1260 | ! B(16) = dA(14)/dV(29) |
---|
1261 | b(16) = rct(14) * v(26) |
---|
1262 | ! B(17) = dA(15)/dV(26) |
---|
1263 | b(17) = rct(15) * v(29) |
---|
1264 | ! B(18) = dA(15)/dV(29) |
---|
1265 | b(18) = rct(15) * v(26) |
---|
1266 | ! B(19) = dA(16)/dV(29) |
---|
1267 | b(19) = rct(16) * v(31) |
---|
1268 | ! B(20) = dA(16)/dV(31) |
---|
1269 | b(20) = rct(16) * v(29) |
---|
1270 | ! B(21) = dA(17)/dV(25) |
---|
1271 | b(21) = rct(17) * v(26) |
---|
1272 | ! B(22) = dA(17)/dV(26) |
---|
1273 | b(22) = rct(17) * v(25) |
---|
1274 | ! B(23) = dA(18)/dV(1) |
---|
1275 | b(23) = rct(18) |
---|
1276 | ! B(24) = dA(19)/dV(1) |
---|
1277 | b(24) = rct(19) * f(1) |
---|
1278 | ! B(26) = dA(20)/dV(25) |
---|
1279 | b(26) = rct(20) * v(27) |
---|
1280 | ! B(27) = dA(20)/dV(27) |
---|
1281 | b(27) = rct(20) * v(25) |
---|
1282 | ! B(28) = dA(21)/dV(25) |
---|
1283 | b(28) = rct(21) * v(28) |
---|
1284 | ! B(29) = dA(21)/dV(28) |
---|
1285 | b(29) = rct(21) * v(25) |
---|
1286 | ! B(30) = dA(22)/dV(30) |
---|
1287 | b(30) = rct(22) * v(31) |
---|
1288 | ! B(31) = dA(22)/dV(31) |
---|
1289 | b(31) = rct(22) * v(30) |
---|
1290 | ! B(32) = dA(23)/dV(26) |
---|
1291 | b(32) = rct(23) * v(30) |
---|
1292 | ! B(33) = dA(23)/dV(30) |
---|
1293 | b(33) = rct(23) * v(26) |
---|
1294 | ! B(34) = dA(24)/dV(26) |
---|
1295 | b(34) = rct(24) * v(30) |
---|
1296 | ! B(35) = dA(24)/dV(30) |
---|
1297 | b(35) = rct(24) * v(26) |
---|
1298 | ! B(36) = dA(25)/dV(6) |
---|
1299 | b(36) = rct(25) * f(1) |
---|
1300 | ! B(38) = dA(26)/dV(6) |
---|
1301 | b(38) = rct(26) |
---|
1302 | ! B(39) = dA(27)/dV(31) |
---|
1303 | b(39) = rct(27) * 2* v(31) |
---|
1304 | ! B(40) = dA(28)/dV(26) |
---|
1305 | b(40) = rct(28) * v(31) * f(1) |
---|
1306 | ! B(41) = dA(28)/dV(31) |
---|
1307 | b(41) = rct(28) * v(26) * f(1) |
---|
1308 | ! B(43) = dA(29)/dV(27) |
---|
1309 | b(43) = rct(29) * v(31) |
---|
1310 | ! B(44) = dA(29)/dV(31) |
---|
1311 | b(44) = rct(29) * v(27) |
---|
1312 | ! B(45) = dA(30)/dV(9) |
---|
1313 | b(45) = rct(30) * v(27) |
---|
1314 | ! B(46) = dA(30)/dV(27) |
---|
1315 | b(46) = rct(30) * v(9) |
---|
1316 | ! B(47) = dA(31)/dV(9) |
---|
1317 | b(47) = rct(31) * 2* v(9) |
---|
1318 | ! B(48) = dA(32)/dV(26) |
---|
1319 | b(48) = rct(32) * v(27) |
---|
1320 | ! B(49) = dA(32)/dV(27) |
---|
1321 | b(49) = rct(32) * v(26) |
---|
1322 | ! B(50) = dA(33)/dV(12) |
---|
1323 | b(50) = rct(33) * v(27) |
---|
1324 | ! B(51) = dA(33)/dV(27) |
---|
1325 | b(51) = rct(33) * v(12) |
---|
1326 | ! B(52) = dA(34)/dV(28) |
---|
1327 | b(52) = rct(34) * v(31) |
---|
1328 | ! B(53) = dA(34)/dV(31) |
---|
1329 | b(53) = rct(34) * v(28) |
---|
1330 | ! B(54) = dA(35)/dV(26) |
---|
1331 | b(54) = rct(35) * v(28) |
---|
1332 | ! B(55) = dA(35)/dV(28) |
---|
1333 | b(55) = rct(35) * v(26) |
---|
1334 | ! B(56) = dA(36)/dV(10) |
---|
1335 | b(56) = rct(36) |
---|
1336 | ! B(57) = dA(37)/dV(10) |
---|
1337 | b(57) = rct(37) * v(27) |
---|
1338 | ! B(58) = dA(37)/dV(27) |
---|
1339 | b(58) = rct(37) * v(10) |
---|
1340 | ! B(59) = dA(38)/dV(28) |
---|
1341 | b(59) = rct(38) * 2* v(28) |
---|
1342 | ! B(60) = dA(39)/dV(28) |
---|
1343 | b(60) = rct(39) * 2* v(28) * f(1) |
---|
1344 | ! B(62) = dA(40)/dV(2) |
---|
1345 | b(62) = rct(40) * v(27) |
---|
1346 | ! B(63) = dA(40)/dV(27) |
---|
1347 | b(63) = rct(40) * v(2) |
---|
1348 | ! B(64) = dA(41)/dV(16) |
---|
1349 | b(64) = rct(41) * v(27) |
---|
1350 | ! B(65) = dA(41)/dV(27) |
---|
1351 | b(65) = rct(41) * v(16) |
---|
1352 | ! B(66) = dA(42)/dV(21) |
---|
1353 | b(66) = rct(42) * v(27) |
---|
1354 | ! B(67) = dA(42)/dV(27) |
---|
1355 | b(67) = rct(42) * v(21) |
---|
1356 | ! B(68) = dA(43)/dV(21) |
---|
1357 | b(68) = rct(43) * v(29) |
---|
1358 | ! B(69) = dA(43)/dV(29) |
---|
1359 | b(69) = rct(43) * v(21) |
---|
1360 | ! B(70) = dA(44)/dV(21) |
---|
1361 | b(70) = rct(44) * v(30) |
---|
1362 | ! B(71) = dA(44)/dV(30) |
---|
1363 | b(71) = rct(44) * v(21) |
---|
1364 | ! B(72) = dA(45)/dV(24) |
---|
1365 | b(72) = rct(45) * v(29) |
---|
1366 | ! B(73) = dA(45)/dV(29) |
---|
1367 | b(73) = rct(45) * v(24) |
---|
1368 | ! B(74) = dA(46)/dV(24) |
---|
1369 | b(74) = rct(46) * v(27) |
---|
1370 | ! B(75) = dA(46)/dV(27) |
---|
1371 | b(75) = rct(46) * v(24) |
---|
1372 | ! B(76) = dA(47)/dV(24) |
---|
1373 | b(76) = rct(47) * v(30) |
---|
1374 | ! B(77) = dA(47)/dV(30) |
---|
1375 | b(77) = rct(47) * v(24) |
---|
1376 | ! B(78) = dA(48)/dV(31) |
---|
1377 | b(78) = rct(48) * v(32) |
---|
1378 | ! B(79) = dA(48)/dV(32) |
---|
1379 | b(79) = rct(48) * v(31) |
---|
1380 | ! B(80) = dA(49)/dV(26) |
---|
1381 | b(80) = rct(49) * v(32) |
---|
1382 | ! B(81) = dA(49)/dV(32) |
---|
1383 | b(81) = rct(49) * v(26) |
---|
1384 | ! B(82) = dA(50)/dV(3) |
---|
1385 | b(82) = rct(50) |
---|
1386 | ! B(83) = dA(51)/dV(32) |
---|
1387 | b(83) = rct(51) * 2* v(32) |
---|
1388 | ! B(84) = dA(52)/dV(28) |
---|
1389 | b(84) = rct(52) * v(32) |
---|
1390 | ! B(85) = dA(52)/dV(32) |
---|
1391 | b(85) = rct(52) * v(28) |
---|
1392 | ! B(86) = dA(53)/dV(27) |
---|
1393 | b(86) = rct(53) |
---|
1394 | ! B(87) = dA(54)/dV(20) |
---|
1395 | b(87) = rct(54) * v(27) |
---|
1396 | ! B(88) = dA(54)/dV(27) |
---|
1397 | b(88) = rct(54) * v(20) |
---|
1398 | ! B(89) = dA(55)/dV(13) |
---|
1399 | b(89) = rct(55) |
---|
1400 | ! B(90) = dA(56)/dV(13) |
---|
1401 | b(90) = rct(56) |
---|
1402 | ! B(91) = dA(57)/dV(13) |
---|
1403 | b(91) = rct(57) * v(26) |
---|
1404 | ! B(92) = dA(57)/dV(26) |
---|
1405 | b(92) = rct(57) * v(13) |
---|
1406 | ! B(93) = dA(58)/dV(23) |
---|
1407 | b(93) = rct(58) * v(29) |
---|
1408 | ! B(94) = dA(58)/dV(29) |
---|
1409 | b(94) = rct(58) * v(23) |
---|
1410 | ! B(95) = dA(59)/dV(23) |
---|
1411 | b(95) = rct(59) * v(27) |
---|
1412 | ! B(96) = dA(59)/dV(27) |
---|
1413 | b(96) = rct(59) * v(23) |
---|
1414 | ! B(97) = dA(60)/dV(23) |
---|
1415 | b(97) = rct(60) * v(25) |
---|
1416 | ! B(98) = dA(60)/dV(25) |
---|
1417 | b(98) = rct(60) * v(23) |
---|
1418 | ! B(99) = dA(61)/dV(23) |
---|
1419 | b(99) = rct(61) * v(30) |
---|
1420 | ! B(100) = dA(61)/dV(30) |
---|
1421 | b(100) = rct(61) * v(23) |
---|
1422 | ! B(101) = dA(62)/dV(17) |
---|
1423 | b(101) = rct(62) * v(29) |
---|
1424 | ! B(102) = dA(62)/dV(29) |
---|
1425 | b(102) = rct(62) * v(17) |
---|
1426 | ! B(103) = dA(63)/dV(17) |
---|
1427 | b(103) = rct(63) * v(27) |
---|
1428 | ! B(104) = dA(63)/dV(27) |
---|
1429 | b(104) = rct(63) * v(17) |
---|
1430 | ! B(105) = dA(64)/dV(17) |
---|
1431 | b(105) = rct(64) * v(25) |
---|
1432 | ! B(106) = dA(64)/dV(25) |
---|
1433 | b(106) = rct(64) * v(17) |
---|
1434 | ! B(107) = dA(65)/dV(5) |
---|
1435 | b(107) = rct(65) * v(27) |
---|
1436 | ! B(108) = dA(65)/dV(27) |
---|
1437 | b(108) = rct(65) * v(5) |
---|
1438 | ! B(109) = dA(66)/dV(11) |
---|
1439 | b(109) = rct(66) * v(31) |
---|
1440 | ! B(110) = dA(66)/dV(31) |
---|
1441 | b(110) = rct(66) * v(11) |
---|
1442 | ! B(111) = dA(67)/dV(11) |
---|
1443 | b(111) = rct(67) |
---|
1444 | ! B(112) = dA(68)/dV(14) |
---|
1445 | b(112) = rct(68) * v(27) |
---|
1446 | ! B(113) = dA(68)/dV(27) |
---|
1447 | b(113) = rct(68) * v(14) |
---|
1448 | ! B(114) = dA(69)/dV(14) |
---|
1449 | b(114) = rct(69) * v(30) |
---|
1450 | ! B(115) = dA(69)/dV(30) |
---|
1451 | b(115) = rct(69) * v(14) |
---|
1452 | ! B(116) = dA(70)/dV(4) |
---|
1453 | b(116) = rct(70) * v(26) |
---|
1454 | ! B(117) = dA(70)/dV(26) |
---|
1455 | b(117) = rct(70) * v(4) |
---|
1456 | ! B(118) = dA(71)/dV(7) |
---|
1457 | b(118) = rct(71) * v(27) |
---|
1458 | ! B(119) = dA(71)/dV(27) |
---|
1459 | b(119) = rct(71) * v(7) |
---|
1460 | ! B(120) = dA(72)/dV(19) |
---|
1461 | b(120) = rct(72) * v(27) |
---|
1462 | ! B(121) = dA(72)/dV(27) |
---|
1463 | b(121) = rct(72) * v(19) |
---|
1464 | ! B(122) = dA(73)/dV(19) |
---|
1465 | b(122) = rct(73) * v(25) |
---|
1466 | ! B(123) = dA(73)/dV(25) |
---|
1467 | b(123) = rct(73) * v(19) |
---|
1468 | ! B(124) = dA(74)/dV(15) |
---|
1469 | b(124) = rct(74) * v(27) |
---|
1470 | ! B(125) = dA(74)/dV(27) |
---|
1471 | b(125) = rct(74) * v(15) |
---|
1472 | ! B(126) = dA(75)/dV(22) |
---|
1473 | b(126) = rct(75) * v(29) |
---|
1474 | ! B(127) = dA(75)/dV(29) |
---|
1475 | b(127) = rct(75) * v(22) |
---|
1476 | ! B(128) = dA(76)/dV(22) |
---|
1477 | b(128) = rct(76) * v(27) |
---|
1478 | ! B(129) = dA(76)/dV(27) |
---|
1479 | b(129) = rct(76) * v(22) |
---|
1480 | ! B(130) = dA(77)/dV(22) |
---|
1481 | b(130) = rct(77) * v(25) |
---|
1482 | ! B(131) = dA(77)/dV(25) |
---|
1483 | b(131) = rct(77) * v(22) |
---|
1484 | ! B(132) = dA(78)/dV(22) |
---|
1485 | b(132) = rct(78) * v(30) |
---|
1486 | ! B(133) = dA(78)/dV(30) |
---|
1487 | b(133) = rct(78) * v(22) |
---|
1488 | ! B(134) = dA(79)/dV(18) |
---|
1489 | b(134) = rct(79) * v(31) |
---|
1490 | ! B(135) = dA(79)/dV(31) |
---|
1491 | b(135) = rct(79) * v(18) |
---|
1492 | ! B(136) = dA(80)/dV(18) |
---|
1493 | b(136) = rct(80) * 2* v(18) |
---|
1494 | ! B(137) = dA(81)/dV(8) |
---|
1495 | b(137) = rct(81) * v(31) |
---|
1496 | ! B(138) = dA(81)/dV(31) |
---|
1497 | b(138) = rct(81) * v(8) |
---|
1498 | |
---|
1499 | ! Construct the Jacobian terms from B's |
---|
1500 | ! JVS(1) = Jac_FULL(1,1) |
---|
1501 | jvs(1) = - b(23) - b(24) |
---|
1502 | ! JVS(2) = Jac_FULL(1,25) |
---|
1503 | jvs(2) = b(3) |
---|
1504 | ! JVS(3) = Jac_FULL(2,2) |
---|
1505 | jvs(3) = - b(6) - b(62) |
---|
1506 | ! JVS(4) = Jac_FULL(2,27) |
---|
1507 | jvs(4) = - b(63) |
---|
1508 | ! JVS(5) = Jac_FULL(2,28) |
---|
1509 | jvs(5) = b(59) + b(60) |
---|
1510 | ! JVS(6) = Jac_FULL(3,3) |
---|
1511 | jvs(6) = - b(82) |
---|
1512 | ! JVS(7) = Jac_FULL(3,26) |
---|
1513 | jvs(7) = b(80) |
---|
1514 | ! JVS(8) = Jac_FULL(3,32) |
---|
1515 | jvs(8) = b(81) |
---|
1516 | ! JVS(9) = Jac_FULL(4,4) |
---|
1517 | jvs(9) = - b(116) |
---|
1518 | ! JVS(10) = Jac_FULL(4,14) |
---|
1519 | jvs(10) = 0.4* b(112) + b(114) |
---|
1520 | ! JVS(11) = Jac_FULL(4,26) |
---|
1521 | jvs(11) = - b(117) |
---|
1522 | ! JVS(12) = Jac_FULL(4,27) |
---|
1523 | jvs(12) = 0.4* b(113) |
---|
1524 | ! JVS(13) = Jac_FULL(4,30) |
---|
1525 | jvs(13) = b(115) |
---|
1526 | ! JVS(14) = Jac_FULL(5,5) |
---|
1527 | jvs(14) = - b(107) |
---|
1528 | ! JVS(15) = Jac_FULL(5,27) |
---|
1529 | jvs(15) = - b(108) |
---|
1530 | ! JVS(16) = Jac_FULL(6,6) |
---|
1531 | jvs(16) = - b(36) - b(38) |
---|
1532 | ! JVS(17) = Jac_FULL(6,26) |
---|
1533 | jvs(17) = b(34) |
---|
1534 | ! JVS(18) = Jac_FULL(6,30) |
---|
1535 | jvs(18) = b(35) |
---|
1536 | ! JVS(19) = Jac_FULL(7,7) |
---|
1537 | jvs(19) = - b(118) |
---|
1538 | ! JVS(20) = Jac_FULL(7,27) |
---|
1539 | jvs(20) = - b(119) |
---|
1540 | ! JVS(21) = Jac_FULL(8,8) |
---|
1541 | jvs(21) = - b(137) |
---|
1542 | ! JVS(22) = Jac_FULL(8,13) |
---|
1543 | jvs(22) = 0.04* b(89) |
---|
1544 | ! JVS(23) = Jac_FULL(8,20) |
---|
1545 | jvs(23) = 0.13* b(87) |
---|
1546 | ! JVS(24) = Jac_FULL(8,22) |
---|
1547 | jvs(24) = 0.13* b(128) + b(132) |
---|
1548 | ! JVS(25) = Jac_FULL(8,23) |
---|
1549 | jvs(25) = 0.02* b(93) + 0.09* b(99) |
---|
1550 | ! JVS(26) = Jac_FULL(8,27) |
---|
1551 | jvs(26) = 0.13* b(88) + 0.13* b(129) |
---|
1552 | ! JVS(27) = Jac_FULL(8,29) |
---|
1553 | jvs(27) = 0.02* b(94) |
---|
1554 | ! JVS(28) = Jac_FULL(8,30) |
---|
1555 | jvs(28) = 0.09* b(100) + b(133) |
---|
1556 | ! JVS(29) = Jac_FULL(8,31) |
---|
1557 | jvs(29) = - b(138) |
---|
1558 | ! JVS(30) = Jac_FULL(9,9) |
---|
1559 | jvs(30) = - b(5) - b(45) - 2* b(47) |
---|
1560 | ! JVS(31) = Jac_FULL(9,26) |
---|
1561 | jvs(31) = 2* b(40) |
---|
1562 | ! JVS(32) = Jac_FULL(9,27) |
---|
1563 | jvs(32) = b(43) - b(46) |
---|
1564 | ! JVS(33) = Jac_FULL(9,31) |
---|
1565 | jvs(33) = 2* b(41) + b(44) |
---|
1566 | ! JVS(34) = Jac_FULL(10,10) |
---|
1567 | jvs(34) = - b(56) - b(57) |
---|
1568 | ! JVS(35) = Jac_FULL(10,26) |
---|
1569 | jvs(35) = b(54) |
---|
1570 | ! JVS(36) = Jac_FULL(10,27) |
---|
1571 | jvs(36) = - b(58) |
---|
1572 | ! JVS(37) = Jac_FULL(10,28) |
---|
1573 | jvs(37) = b(55) |
---|
1574 | ! JVS(38) = Jac_FULL(11,5) |
---|
1575 | jvs(38) = 0.56* b(107) |
---|
1576 | ! JVS(39) = Jac_FULL(11,7) |
---|
1577 | jvs(39) = 0.3* b(118) |
---|
1578 | ! JVS(40) = Jac_FULL(11,11) |
---|
1579 | jvs(40) = - b(109) - b(111) |
---|
1580 | ! JVS(41) = Jac_FULL(11,27) |
---|
1581 | jvs(41) = 0.56* b(108) + 0.3* b(119) |
---|
1582 | ! JVS(42) = Jac_FULL(11,31) |
---|
1583 | jvs(42) = - b(110) |
---|
1584 | ! JVS(43) = Jac_FULL(12,6) |
---|
1585 | jvs(43) = 2* b(36) |
---|
1586 | ! JVS(44) = Jac_FULL(12,12) |
---|
1587 | jvs(44) = - b(50) |
---|
1588 | ! JVS(45) = Jac_FULL(12,14) |
---|
1589 | jvs(45) = b(114) |
---|
1590 | ! JVS(46) = Jac_FULL(12,21) |
---|
1591 | jvs(46) = b(70) |
---|
1592 | ! JVS(47) = Jac_FULL(12,24) |
---|
1593 | jvs(47) = b(76) |
---|
1594 | ! JVS(48) = Jac_FULL(12,26) |
---|
1595 | jvs(48) = b(48) |
---|
1596 | ! JVS(49) = Jac_FULL(12,27) |
---|
1597 | jvs(49) = b(49) - b(51) |
---|
1598 | ! JVS(50) = Jac_FULL(12,30) |
---|
1599 | jvs(50) = b(71) + b(77) + b(115) |
---|
1600 | ! JVS(51) = Jac_FULL(13,13) |
---|
1601 | jvs(51) = - 0.98* b(89) - b(90) - b(91) |
---|
1602 | ! JVS(52) = Jac_FULL(13,20) |
---|
1603 | jvs(52) = 0.76* b(87) |
---|
1604 | ! JVS(53) = Jac_FULL(13,26) |
---|
1605 | jvs(53) = - b(92) |
---|
1606 | ! JVS(54) = Jac_FULL(13,27) |
---|
1607 | jvs(54) = 0.76* b(88) |
---|
1608 | ! JVS(55) = Jac_FULL(14,5) |
---|
1609 | jvs(55) = 0.36* b(107) |
---|
1610 | ! JVS(56) = Jac_FULL(14,7) |
---|
1611 | jvs(56) = 0.2* b(118) |
---|
1612 | ! JVS(57) = Jac_FULL(14,11) |
---|
1613 | jvs(57) = b(111) |
---|
1614 | ! JVS(58) = Jac_FULL(14,14) |
---|
1615 | jvs(58) = - b(112) - b(114) |
---|
1616 | ! JVS(59) = Jac_FULL(14,27) |
---|
1617 | jvs(59) = 0.36* b(108) - b(113) + 0.2* b(119) |
---|
1618 | ! JVS(60) = Jac_FULL(14,30) |
---|
1619 | jvs(60) = - b(115) |
---|
1620 | ! JVS(61) = Jac_FULL(14,31) |
---|
1621 | jvs(61) = 0 |
---|
1622 | ! JVS(62) = Jac_FULL(15,7) |
---|
1623 | jvs(62) = 0.8* b(118) |
---|
1624 | ! JVS(63) = Jac_FULL(15,15) |
---|
1625 | jvs(63) = - b(11) - b(124) |
---|
1626 | ! JVS(64) = Jac_FULL(15,19) |
---|
1627 | jvs(64) = 0.2* b(122) |
---|
1628 | ! JVS(65) = Jac_FULL(15,22) |
---|
1629 | jvs(65) = 0.4* b(128) + 0.2* b(130) |
---|
1630 | ! JVS(66) = Jac_FULL(15,25) |
---|
1631 | jvs(66) = 0.2* b(123) + 0.2* b(131) |
---|
1632 | ! JVS(67) = Jac_FULL(15,27) |
---|
1633 | jvs(67) = 0.8* b(119) - b(125) + 0.4* b(129) |
---|
1634 | ! JVS(68) = Jac_FULL(16,15) |
---|
1635 | jvs(68) = b(11) |
---|
1636 | ! JVS(69) = Jac_FULL(16,16) |
---|
1637 | jvs(69) = - b(64) |
---|
1638 | ! JVS(70) = Jac_FULL(16,17) |
---|
1639 | jvs(70) = b(101) + 0.42* b(105) |
---|
1640 | ! JVS(71) = Jac_FULL(16,19) |
---|
1641 | jvs(71) = b(10) + 2* b(120) + 0.69* b(122) |
---|
1642 | ! JVS(72) = Jac_FULL(16,21) |
---|
1643 | jvs(72) = b(7) + b(8) + b(66) + b(68) + b(70) |
---|
1644 | ! JVS(73) = Jac_FULL(16,22) |
---|
1645 | jvs(73) = 0.5* b(126) + 0.06* b(130) |
---|
1646 | ! JVS(74) = Jac_FULL(16,23) |
---|
1647 | jvs(74) = 0.3* b(93) + 0.33* b(97) |
---|
1648 | ! JVS(75) = Jac_FULL(16,24) |
---|
1649 | jvs(75) = b(9) |
---|
1650 | ! JVS(76) = Jac_FULL(16,25) |
---|
1651 | jvs(76) = 0.33* b(98) + 0.42* b(106) + 0.69* b(123) + 0.06* b(131) |
---|
1652 | ! JVS(77) = Jac_FULL(16,27) |
---|
1653 | jvs(77) = - b(65) + b(67) + 2* b(121) |
---|
1654 | ! JVS(78) = Jac_FULL(16,29) |
---|
1655 | jvs(78) = b(69) + 0.3* b(94) + b(102) + 0.5* b(127) |
---|
1656 | ! JVS(79) = Jac_FULL(16,30) |
---|
1657 | jvs(79) = b(71) |
---|
1658 | ! JVS(80) = Jac_FULL(17,17) |
---|
1659 | jvs(80) = - b(101) - b(103) - b(105) |
---|
1660 | ! JVS(81) = Jac_FULL(17,22) |
---|
1661 | jvs(81) = 0.45* b(126) + b(128) + 0.55* b(130) |
---|
1662 | ! JVS(82) = Jac_FULL(17,25) |
---|
1663 | jvs(82) = - b(106) + 0.55* b(131) |
---|
1664 | ! JVS(83) = Jac_FULL(17,27) |
---|
1665 | jvs(83) = - b(104) + b(129) |
---|
1666 | ! JVS(84) = Jac_FULL(17,29) |
---|
1667 | jvs(84) = - b(102) + 0.45* b(127) |
---|
1668 | ! JVS(85) = Jac_FULL(18,5) |
---|
1669 | jvs(85) = 0.08* b(107) |
---|
1670 | ! JVS(86) = Jac_FULL(18,7) |
---|
1671 | jvs(86) = 0.5* b(118) |
---|
1672 | ! JVS(87) = Jac_FULL(18,13) |
---|
1673 | jvs(87) = 0.96* b(89) |
---|
1674 | ! JVS(88) = Jac_FULL(18,14) |
---|
1675 | jvs(88) = 0.6* b(112) |
---|
1676 | ! JVS(89) = Jac_FULL(18,15) |
---|
1677 | jvs(89) = b(124) |
---|
1678 | ! JVS(90) = Jac_FULL(18,17) |
---|
1679 | jvs(90) = 0.7* b(101) + b(103) |
---|
1680 | ! JVS(91) = Jac_FULL(18,18) |
---|
1681 | jvs(91) = - b(134) - 2* b(136) |
---|
1682 | ! JVS(92) = Jac_FULL(18,19) |
---|
1683 | jvs(92) = b(120) + 0.03* b(122) |
---|
1684 | ! JVS(93) = Jac_FULL(18,20) |
---|
1685 | jvs(93) = 0.87* b(87) |
---|
1686 | ! JVS(94) = Jac_FULL(18,22) |
---|
1687 | jvs(94) = 0.5* b(126) + b(128) |
---|
1688 | ! JVS(95) = Jac_FULL(18,23) |
---|
1689 | jvs(95) = 0.28* b(93) + b(95) + 0.22* b(97) + 0.91* b(99) |
---|
1690 | ! JVS(96) = Jac_FULL(18,24) |
---|
1691 | jvs(96) = b(9) |
---|
1692 | ! JVS(97) = Jac_FULL(18,25) |
---|
1693 | jvs(97) = 0.22* b(98) + 0.03* b(123) |
---|
1694 | ! JVS(98) = Jac_FULL(18,26) |
---|
1695 | jvs(98) = 0 |
---|
1696 | ! JVS(99) = Jac_FULL(18,27) |
---|
1697 | jvs(99) = b(86) + 0.87* b(88) + b(96) + b(104) + 0.08* b(108) + 0.6* b(113) + 0.5* b(119) + b(121) + b(125) + b(129) |
---|
1698 | ! JVS(100) = Jac_FULL(18,28) |
---|
1699 | jvs(100) = 0.79* b(84) |
---|
1700 | ! JVS(101) = Jac_FULL(18,29) |
---|
1701 | jvs(101) = 0.28* b(94) + 0.7* b(102) + 0.5* b(127) |
---|
1702 | ! JVS(102) = Jac_FULL(18,30) |
---|
1703 | jvs(102) = 0.91* b(100) |
---|
1704 | ! JVS(103) = Jac_FULL(18,31) |
---|
1705 | jvs(103) = b(78) - b(135) |
---|
1706 | ! JVS(104) = Jac_FULL(18,32) |
---|
1707 | jvs(104) = b(79) + 2* b(83) + 0.79* b(85) |
---|
1708 | ! JVS(105) = Jac_FULL(19,11) |
---|
1709 | jvs(105) = 0.9* b(109) |
---|
1710 | ! JVS(106) = Jac_FULL(19,14) |
---|
1711 | jvs(106) = 0.3* b(112) |
---|
1712 | ! JVS(107) = Jac_FULL(19,19) |
---|
1713 | jvs(107) = - b(10) - b(120) - b(122) |
---|
1714 | ! JVS(108) = Jac_FULL(19,25) |
---|
1715 | jvs(108) = - b(123) |
---|
1716 | ! JVS(109) = Jac_FULL(19,27) |
---|
1717 | jvs(109) = 0.3* b(113) - b(121) |
---|
1718 | ! JVS(110) = Jac_FULL(19,30) |
---|
1719 | jvs(110) = 0 |
---|
1720 | ! JVS(111) = Jac_FULL(19,31) |
---|
1721 | jvs(111) = 0.9* b(110) |
---|
1722 | ! JVS(112) = Jac_FULL(20,7) |
---|
1723 | jvs(112) = 1.1* b(118) |
---|
1724 | ! JVS(113) = Jac_FULL(20,13) |
---|
1725 | jvs(113) = - 2.1* b(89) |
---|
1726 | ! JVS(114) = Jac_FULL(20,20) |
---|
1727 | jvs(114) = - 1.11* b(87) |
---|
1728 | ! JVS(115) = Jac_FULL(20,22) |
---|
1729 | jvs(115) = 0.9* b(126) + 0.1* b(130) |
---|
1730 | ! JVS(116) = Jac_FULL(20,23) |
---|
1731 | jvs(116) = 0.22* b(93) - b(95) - b(97) - b(99) |
---|
1732 | ! JVS(117) = Jac_FULL(20,25) |
---|
1733 | jvs(117) = - b(98) + 0.1* b(131) |
---|
1734 | ! JVS(118) = Jac_FULL(20,26) |
---|
1735 | jvs(118) = 0 |
---|
1736 | ! JVS(119) = Jac_FULL(20,27) |
---|
1737 | jvs(119) = - 1.11* b(88) - b(96) + 1.1* b(119) |
---|
1738 | ! JVS(120) = Jac_FULL(20,29) |
---|
1739 | jvs(120) = 0.22* b(94) + 0.9* b(127) |
---|
1740 | ! JVS(121) = Jac_FULL(20,30) |
---|
1741 | jvs(121) = - b(100) |
---|
1742 | ! JVS(122) = Jac_FULL(21,17) |
---|
1743 | jvs(122) = b(101) + 1.56* b(103) + b(105) |
---|
1744 | ! JVS(123) = Jac_FULL(21,19) |
---|
1745 | jvs(123) = b(120) + 0.7* b(122) |
---|
1746 | ! JVS(124) = Jac_FULL(21,21) |
---|
1747 | jvs(124) = - b(7) - b(8) - b(66) - b(68) - b(70) |
---|
1748 | ! JVS(125) = Jac_FULL(21,22) |
---|
1749 | jvs(125) = b(128) + b(130) |
---|
1750 | ! JVS(126) = Jac_FULL(21,23) |
---|
1751 | jvs(126) = 0.2* b(93) + b(95) + 0.74* b(97) + b(99) |
---|
1752 | ! JVS(127) = Jac_FULL(21,24) |
---|
1753 | jvs(127) = b(9) |
---|
1754 | ! JVS(128) = Jac_FULL(21,25) |
---|
1755 | jvs(128) = 0.74* b(98) + b(106) + 0.7* b(123) + b(131) |
---|
1756 | ! JVS(129) = Jac_FULL(21,27) |
---|
1757 | jvs(129) = - b(67) + b(86) + b(96) + 1.56* b(104) + b(121) + b(129) |
---|
1758 | ! JVS(130) = Jac_FULL(21,28) |
---|
1759 | jvs(130) = 0.79* b(84) |
---|
1760 | ! JVS(131) = Jac_FULL(21,29) |
---|
1761 | jvs(131) = - b(69) + 0.2* b(94) + b(102) |
---|
1762 | ! JVS(132) = Jac_FULL(21,30) |
---|
1763 | jvs(132) = - b(71) + b(100) |
---|
1764 | ! JVS(133) = Jac_FULL(21,31) |
---|
1765 | jvs(133) = b(78) |
---|
1766 | ! JVS(134) = Jac_FULL(21,32) |
---|
1767 | jvs(134) = b(79) + 2* b(83) + 0.79* b(85) |
---|
1768 | ! JVS(135) = Jac_FULL(22,22) |
---|
1769 | jvs(135) = - b(126) - b(128) - b(130) - b(132) |
---|
1770 | ! JVS(136) = Jac_FULL(22,25) |
---|
1771 | jvs(136) = - b(131) |
---|
1772 | ! JVS(137) = Jac_FULL(22,27) |
---|
1773 | jvs(137) = - b(129) |
---|
1774 | ! JVS(138) = Jac_FULL(22,29) |
---|
1775 | jvs(138) = - b(127) |
---|
1776 | ! JVS(139) = Jac_FULL(22,30) |
---|
1777 | jvs(139) = - b(133) |
---|
1778 | ! JVS(140) = Jac_FULL(23,22) |
---|
1779 | jvs(140) = 0.55* b(126) |
---|
1780 | ! JVS(141) = Jac_FULL(23,23) |
---|
1781 | jvs(141) = - b(93) - b(95) - b(97) - b(99) |
---|
1782 | ! JVS(142) = Jac_FULL(23,25) |
---|
1783 | jvs(142) = - b(98) |
---|
1784 | ! JVS(143) = Jac_FULL(23,27) |
---|
1785 | jvs(143) = - b(96) |
---|
1786 | ! JVS(144) = Jac_FULL(23,29) |
---|
1787 | jvs(144) = - b(94) + 0.55* b(127) |
---|
1788 | ! JVS(145) = Jac_FULL(23,30) |
---|
1789 | jvs(145) = - b(100) |
---|
1790 | ! JVS(146) = Jac_FULL(24,13) |
---|
1791 | jvs(146) = 1.1* b(89) |
---|
1792 | ! JVS(147) = Jac_FULL(24,17) |
---|
1793 | jvs(147) = 0.22* b(103) |
---|
1794 | ! JVS(148) = Jac_FULL(24,19) |
---|
1795 | jvs(148) = 0.03* b(122) |
---|
1796 | ! JVS(149) = Jac_FULL(24,20) |
---|
1797 | jvs(149) = 0.11* b(87) |
---|
1798 | ! JVS(150) = Jac_FULL(24,22) |
---|
1799 | jvs(150) = 0.8* b(126) + 0.2* b(128) + 0.4* b(130) |
---|
1800 | ! JVS(151) = Jac_FULL(24,23) |
---|
1801 | jvs(151) = 0.63* b(93) + b(95) + 0.5* b(97) + b(99) |
---|
1802 | ! JVS(152) = Jac_FULL(24,24) |
---|
1803 | jvs(152) = - b(9) - b(72) - b(74) - b(76) |
---|
1804 | ! JVS(153) = Jac_FULL(24,25) |
---|
1805 | jvs(153) = 0.5* b(98) + 0.03* b(123) + 0.4* b(131) |
---|
1806 | ! JVS(154) = Jac_FULL(24,26) |
---|
1807 | jvs(154) = 0 |
---|
1808 | ! JVS(155) = Jac_FULL(24,27) |
---|
1809 | jvs(155) = - b(75) + 0.11* b(88) + b(96) + 0.22* b(104) + 0.2* b(129) |
---|
1810 | ! JVS(156) = Jac_FULL(24,29) |
---|
1811 | jvs(156) = - b(73) + 0.63* b(94) + 0.8* b(127) |
---|
1812 | ! JVS(157) = Jac_FULL(24,30) |
---|
1813 | jvs(157) = - b(77) + b(100) |
---|
1814 | ! JVS(158) = Jac_FULL(24,31) |
---|
1815 | jvs(158) = 0 |
---|
1816 | ! JVS(159) = Jac_FULL(25,17) |
---|
1817 | jvs(159) = - b(105) |
---|
1818 | ! JVS(160) = Jac_FULL(25,19) |
---|
1819 | jvs(160) = - b(122) |
---|
1820 | ! JVS(161) = Jac_FULL(25,22) |
---|
1821 | jvs(161) = - b(130) |
---|
1822 | ! JVS(162) = Jac_FULL(25,23) |
---|
1823 | jvs(162) = - b(97) |
---|
1824 | ! JVS(163) = Jac_FULL(25,25) |
---|
1825 | jvs(163) = - b(2) - b(3) - b(13) - b(21) - b(26) - b(28) - b(98) - b(106) - b(123) - b(131) |
---|
1826 | ! JVS(164) = Jac_FULL(25,26) |
---|
1827 | jvs(164) = - b(22) |
---|
1828 | ! JVS(165) = Jac_FULL(25,27) |
---|
1829 | jvs(165) = - b(27) |
---|
1830 | ! JVS(166) = Jac_FULL(25,28) |
---|
1831 | jvs(166) = - b(29) |
---|
1832 | ! JVS(167) = Jac_FULL(25,29) |
---|
1833 | jvs(167) = b(12) |
---|
1834 | ! JVS(168) = Jac_FULL(25,30) |
---|
1835 | jvs(168) = 0 |
---|
1836 | ! JVS(169) = Jac_FULL(25,31) |
---|
1837 | jvs(169) = - b(14) |
---|
1838 | ! JVS(170) = Jac_FULL(26,3) |
---|
1839 | jvs(170) = b(82) |
---|
1840 | ! JVS(171) = Jac_FULL(26,4) |
---|
1841 | jvs(171) = - b(116) |
---|
1842 | ! JVS(172) = Jac_FULL(26,6) |
---|
1843 | jvs(172) = b(38) |
---|
1844 | ! JVS(173) = Jac_FULL(26,9) |
---|
1845 | jvs(173) = b(45) + b(47) |
---|
1846 | ! JVS(174) = Jac_FULL(26,10) |
---|
1847 | jvs(174) = b(56) + b(57) |
---|
1848 | ! JVS(175) = Jac_FULL(26,11) |
---|
1849 | jvs(175) = 0.9* b(109) |
---|
1850 | ! JVS(176) = Jac_FULL(26,13) |
---|
1851 | jvs(176) = - b(91) |
---|
1852 | ! JVS(177) = Jac_FULL(26,14) |
---|
1853 | jvs(177) = 0 |
---|
1854 | ! JVS(178) = Jac_FULL(26,18) |
---|
1855 | jvs(178) = b(134) |
---|
1856 | ! JVS(179) = Jac_FULL(26,19) |
---|
1857 | jvs(179) = 0 |
---|
1858 | ! JVS(180) = Jac_FULL(26,20) |
---|
1859 | jvs(180) = 0 |
---|
1860 | ! JVS(181) = Jac_FULL(26,22) |
---|
1861 | jvs(181) = 0 |
---|
1862 | ! JVS(182) = Jac_FULL(26,23) |
---|
1863 | jvs(182) = b(99) |
---|
1864 | ! JVS(183) = Jac_FULL(26,24) |
---|
1865 | jvs(183) = 0 |
---|
1866 | ! JVS(184) = Jac_FULL(26,25) |
---|
1867 | jvs(184) = b(13) - b(21) |
---|
1868 | ! JVS(185) = Jac_FULL(26,26) |
---|
1869 | jvs(185) = - b(1) - b(15) - b(17) - b(22) - b(34) - b(40) - b(48) - b(54) - b(80) - b(92) - b(117) |
---|
1870 | ! JVS(186) = Jac_FULL(26,27) |
---|
1871 | jvs(186) = b(46) - b(49) + b(58) |
---|
1872 | ! JVS(187) = Jac_FULL(26,28) |
---|
1873 | jvs(187) = b(52) - b(55) |
---|
1874 | ! JVS(188) = Jac_FULL(26,29) |
---|
1875 | jvs(188) = - b(16) - b(18) + b(19) |
---|
1876 | ! JVS(189) = Jac_FULL(26,30) |
---|
1877 | jvs(189) = 0.89* b(4) + 2* b(30) - b(35) + b(100) |
---|
1878 | ! JVS(190) = Jac_FULL(26,31) |
---|
1879 | jvs(190) = b(14) + b(20) + 2* b(31) + 2* b(39) - b(41) + b(53) + b(78) + 0.9* b(110) + b(135) |
---|
1880 | ! JVS(191) = Jac_FULL(26,32) |
---|
1881 | jvs(191) = b(79) - b(81) |
---|
1882 | ! JVS(192) = Jac_FULL(27,1) |
---|
1883 | jvs(192) = 2* b(24) |
---|
1884 | ! JVS(193) = Jac_FULL(27,2) |
---|
1885 | jvs(193) = 2* b(6) - b(62) |
---|
1886 | ! JVS(194) = Jac_FULL(27,5) |
---|
1887 | jvs(194) = - b(107) |
---|
1888 | ! JVS(195) = Jac_FULL(27,7) |
---|
1889 | jvs(195) = - b(118) |
---|
1890 | ! JVS(196) = Jac_FULL(27,9) |
---|
1891 | jvs(196) = b(5) - b(45) |
---|
1892 | ! JVS(197) = Jac_FULL(27,10) |
---|
1893 | jvs(197) = - b(57) |
---|
1894 | ! JVS(198) = Jac_FULL(27,12) |
---|
1895 | jvs(198) = - b(50) |
---|
1896 | ! JVS(199) = Jac_FULL(27,14) |
---|
1897 | jvs(199) = - b(112) |
---|
1898 | ! JVS(200) = Jac_FULL(27,15) |
---|
1899 | jvs(200) = - b(124) |
---|
1900 | ! JVS(201) = Jac_FULL(27,16) |
---|
1901 | jvs(201) = - b(64) |
---|
1902 | ! JVS(202) = Jac_FULL(27,17) |
---|
1903 | jvs(202) = 0.3* b(101) - b(103) |
---|
1904 | ! JVS(203) = Jac_FULL(27,19) |
---|
1905 | jvs(203) = - b(120) + 0.08* b(122) |
---|
1906 | ! JVS(204) = Jac_FULL(27,20) |
---|
1907 | jvs(204) = - b(87) |
---|
1908 | ! JVS(205) = Jac_FULL(27,21) |
---|
1909 | jvs(205) = - b(66) + b(68) |
---|
1910 | ! JVS(206) = Jac_FULL(27,22) |
---|
1911 | jvs(206) = - b(128) + 0.1* b(130) |
---|
1912 | ! JVS(207) = Jac_FULL(27,23) |
---|
1913 | jvs(207) = 0.2* b(93) - b(95) + 0.1* b(97) |
---|
1914 | ! JVS(208) = Jac_FULL(27,24) |
---|
1915 | jvs(208) = b(72) - b(74) |
---|
1916 | ! JVS(209) = Jac_FULL(27,25) |
---|
1917 | jvs(209) = - b(26) + b(28) + 0.1* b(98) + 0.08* b(123) + 0.1* b(131) |
---|
1918 | ! JVS(210) = Jac_FULL(27,26) |
---|
1919 | jvs(210) = - b(48) |
---|
1920 | ! JVS(211) = Jac_FULL(27,27) |
---|
1921 | jvs(211) = - b(27) - b(43) - b(46) - b(49) - b(51) - b(58) - b(63) - b(65) - b(67) - b(75) - b(86) - b(88) - b(96) - b(104) - & |
---|
1922 | b(108) - b(113) - b(119)& |
---|
1923 | &- b(121) - b(125) - b(129) |
---|
1924 | ! JVS(212) = Jac_FULL(27,28) |
---|
1925 | jvs(212) = b(29) + b(52) + 0.79* b(84) |
---|
1926 | ! JVS(213) = Jac_FULL(27,29) |
---|
1927 | jvs(213) = b(69) + b(73) + 0.2* b(94) + 0.3* b(102) |
---|
1928 | ! JVS(214) = Jac_FULL(27,30) |
---|
1929 | jvs(214) = 0 |
---|
1930 | ! JVS(215) = Jac_FULL(27,31) |
---|
1931 | jvs(215) = - b(44) + b(53) |
---|
1932 | ! JVS(216) = Jac_FULL(27,32) |
---|
1933 | jvs(216) = 0.79* b(85) |
---|
1934 | ! JVS(217) = Jac_FULL(28,2) |
---|
1935 | jvs(217) = b(62) |
---|
1936 | ! JVS(218) = Jac_FULL(28,5) |
---|
1937 | jvs(218) = 0.44* b(107) |
---|
1938 | ! JVS(219) = Jac_FULL(28,7) |
---|
1939 | jvs(219) = 0.7* b(118) |
---|
1940 | ! JVS(220) = Jac_FULL(28,10) |
---|
1941 | jvs(220) = b(56) |
---|
1942 | ! JVS(221) = Jac_FULL(28,11) |
---|
1943 | jvs(221) = 0.9* b(109) + b(111) |
---|
1944 | ! JVS(222) = Jac_FULL(28,13) |
---|
1945 | jvs(222) = 0.94* b(89) + b(90) |
---|
1946 | ! JVS(223) = Jac_FULL(28,14) |
---|
1947 | jvs(223) = 0.6* b(112) |
---|
1948 | ! JVS(224) = Jac_FULL(28,15) |
---|
1949 | jvs(224) = b(11) |
---|
1950 | ! JVS(225) = Jac_FULL(28,16) |
---|
1951 | jvs(225) = b(64) |
---|
1952 | ! JVS(226) = Jac_FULL(28,17) |
---|
1953 | jvs(226) = 1.7* b(101) + b(103) + 0.12* b(105) |
---|
1954 | ! JVS(227) = Jac_FULL(28,19) |
---|
1955 | jvs(227) = b(10) + 2* b(120) + 0.76* b(122) |
---|
1956 | ! JVS(228) = Jac_FULL(28,20) |
---|
1957 | jvs(228) = 0.11* b(87) |
---|
1958 | ! JVS(229) = Jac_FULL(28,21) |
---|
1959 | jvs(229) = 2* b(7) + b(66) + b(68) + b(70) |
---|
1960 | ! JVS(230) = Jac_FULL(28,22) |
---|
1961 | jvs(230) = 0.6* b(126) + 0.67* b(128) + 0.44* b(130) |
---|
1962 | ! JVS(231) = Jac_FULL(28,23) |
---|
1963 | jvs(231) = 0.38* b(93) + b(95) + 0.44* b(97) |
---|
1964 | ! JVS(232) = Jac_FULL(28,24) |
---|
1965 | jvs(232) = 2* b(9) |
---|
1966 | ! JVS(233) = Jac_FULL(28,25) |
---|
1967 | jvs(233) = b(26) - b(28) + 0.44* b(98) + 0.12* b(106) + 0.76* b(123) + 0.44* b(131) |
---|
1968 | ! JVS(234) = Jac_FULL(28,26) |
---|
1969 | jvs(234) = - b(54) |
---|
1970 | ! JVS(235) = Jac_FULL(28,27) |
---|
1971 | jvs(235) = b(27) + b(63) + b(65) + b(67) + b(86) + 0.11* b(88) + b(96) + b(104) + 0.44* b(108) + 0.6* b(113) + 0.7* b(119) + 2* & |
---|
1972 | b(121) + 0.67& |
---|
1973 | &* b(129) |
---|
1974 | ! JVS(236) = Jac_FULL(28,28) |
---|
1975 | jvs(236) = - b(29) - b(52) - b(55) - 2* b(59) - 2* b(60) - 0.21* b(84) |
---|
1976 | ! JVS(237) = Jac_FULL(28,29) |
---|
1977 | jvs(237) = b(69) + 0.38* b(94) + 1.7* b(102) + 0.6* b(127) |
---|
1978 | ! JVS(238) = Jac_FULL(28,30) |
---|
1979 | jvs(238) = b(71) |
---|
1980 | ! JVS(239) = Jac_FULL(28,31) |
---|
1981 | jvs(239) = - b(53) + b(78) + 0.9* b(110) |
---|
1982 | ! JVS(240) = Jac_FULL(28,32) |
---|
1983 | jvs(240) = b(79) + 2* b(83) - 0.21* b(85) |
---|
1984 | ! JVS(241) = Jac_FULL(29,1) |
---|
1985 | jvs(241) = b(23) |
---|
1986 | ! JVS(242) = Jac_FULL(29,17) |
---|
1987 | jvs(242) = - b(101) |
---|
1988 | ! JVS(243) = Jac_FULL(29,21) |
---|
1989 | jvs(243) = - b(68) |
---|
1990 | ! JVS(244) = Jac_FULL(29,22) |
---|
1991 | jvs(244) = - b(126) |
---|
1992 | ! JVS(245) = Jac_FULL(29,23) |
---|
1993 | jvs(245) = - b(93) |
---|
1994 | ! JVS(246) = Jac_FULL(29,24) |
---|
1995 | jvs(246) = - b(72) |
---|
1996 | ! JVS(247) = Jac_FULL(29,25) |
---|
1997 | jvs(247) = b(2) |
---|
1998 | ! JVS(248) = Jac_FULL(29,26) |
---|
1999 | jvs(248) = b(1) - b(15) - b(17) |
---|
2000 | ! JVS(249) = Jac_FULL(29,27) |
---|
2001 | jvs(249) = 0 |
---|
2002 | ! JVS(250) = Jac_FULL(29,28) |
---|
2003 | jvs(250) = 0 |
---|
2004 | ! JVS(251) = Jac_FULL(29,29) |
---|
2005 | jvs(251) = - b(12) - b(16) - b(18) - b(19) - b(69) - b(73) - b(94) - b(102) - b(127) |
---|
2006 | ! JVS(252) = Jac_FULL(29,30) |
---|
2007 | jvs(252) = 0.89* b(4) |
---|
2008 | ! JVS(253) = Jac_FULL(29,31) |
---|
2009 | jvs(253) = - b(20) |
---|
2010 | ! JVS(254) = Jac_FULL(29,32) |
---|
2011 | jvs(254) = 0 |
---|
2012 | ! JVS(255) = Jac_FULL(30,6) |
---|
2013 | jvs(255) = b(38) |
---|
2014 | ! JVS(256) = Jac_FULL(30,12) |
---|
2015 | jvs(256) = b(50) |
---|
2016 | ! JVS(257) = Jac_FULL(30,14) |
---|
2017 | jvs(257) = - b(114) |
---|
2018 | ! JVS(258) = Jac_FULL(30,21) |
---|
2019 | jvs(258) = - b(70) |
---|
2020 | ! JVS(259) = Jac_FULL(30,22) |
---|
2021 | jvs(259) = - b(132) |
---|
2022 | ! JVS(260) = Jac_FULL(30,23) |
---|
2023 | jvs(260) = - b(99) |
---|
2024 | ! JVS(261) = Jac_FULL(30,24) |
---|
2025 | jvs(261) = - b(76) |
---|
2026 | ! JVS(262) = Jac_FULL(30,25) |
---|
2027 | jvs(262) = b(21) |
---|
2028 | ! JVS(263) = Jac_FULL(30,26) |
---|
2029 | jvs(263) = b(17) + b(22) - b(32) - b(34) |
---|
2030 | ! JVS(264) = Jac_FULL(30,27) |
---|
2031 | jvs(264) = b(51) |
---|
2032 | ! JVS(265) = Jac_FULL(30,28) |
---|
2033 | jvs(265) = 0 |
---|
2034 | ! JVS(266) = Jac_FULL(30,29) |
---|
2035 | jvs(266) = b(18) |
---|
2036 | ! JVS(267) = Jac_FULL(30,30) |
---|
2037 | jvs(267) = - b(4) - b(30) - b(33) - b(35) - b(71) - b(77) - b(100) - b(115) - b(133) |
---|
2038 | ! JVS(268) = Jac_FULL(30,31) |
---|
2039 | jvs(268) = - b(31) |
---|
2040 | ! JVS(269) = Jac_FULL(30,32) |
---|
2041 | jvs(269) = 0 |
---|
2042 | ! JVS(270) = Jac_FULL(31,8) |
---|
2043 | jvs(270) = - b(137) |
---|
2044 | ! JVS(271) = Jac_FULL(31,9) |
---|
2045 | jvs(271) = b(5) + b(47) |
---|
2046 | ! JVS(272) = Jac_FULL(31,11) |
---|
2047 | jvs(272) = - b(109) |
---|
2048 | ! JVS(273) = Jac_FULL(31,13) |
---|
2049 | jvs(273) = 0 |
---|
2050 | ! JVS(274) = Jac_FULL(31,18) |
---|
2051 | jvs(274) = - b(134) |
---|
2052 | ! JVS(275) = Jac_FULL(31,19) |
---|
2053 | jvs(275) = 0 |
---|
2054 | ! JVS(276) = Jac_FULL(31,20) |
---|
2055 | jvs(276) = 0 |
---|
2056 | ! JVS(277) = Jac_FULL(31,22) |
---|
2057 | jvs(277) = 0 |
---|
2058 | ! JVS(278) = Jac_FULL(31,23) |
---|
2059 | jvs(278) = 0 |
---|
2060 | ! JVS(279) = Jac_FULL(31,24) |
---|
2061 | jvs(279) = 0 |
---|
2062 | ! JVS(280) = Jac_FULL(31,25) |
---|
2063 | jvs(280) = - b(13) |
---|
2064 | ! JVS(281) = Jac_FULL(31,26) |
---|
2065 | jvs(281) = b(1) + b(15) + b(32) - b(40) |
---|
2066 | ! JVS(282) = Jac_FULL(31,27) |
---|
2067 | jvs(282) = - b(43) |
---|
2068 | ! JVS(283) = Jac_FULL(31,28) |
---|
2069 | jvs(283) = - b(52) |
---|
2070 | ! JVS(284) = Jac_FULL(31,29) |
---|
2071 | jvs(284) = b(16) - b(19) |
---|
2072 | ! JVS(285) = Jac_FULL(31,30) |
---|
2073 | jvs(285) = 0.11* b(4) - b(30) + b(33) |
---|
2074 | ! JVS(286) = Jac_FULL(31,31) |
---|
2075 | jvs(286) = - b(14) - b(20) - b(31) - 2* b(39) - b(41) - b(44) - b(53) - b(78) - b(110) - b(135) - b(138) |
---|
2076 | ! JVS(287) = Jac_FULL(31,32) |
---|
2077 | jvs(287) = - b(79) |
---|
2078 | ! JVS(288) = Jac_FULL(32,3) |
---|
2079 | jvs(288) = b(82) |
---|
2080 | ! JVS(289) = Jac_FULL(32,15) |
---|
2081 | jvs(289) = b(11) + b(124) |
---|
2082 | ! JVS(290) = Jac_FULL(32,19) |
---|
2083 | jvs(290) = b(10) + b(120) + 0.62* b(122) |
---|
2084 | ! JVS(291) = Jac_FULL(32,22) |
---|
2085 | jvs(291) = 0.2* b(128) |
---|
2086 | ! JVS(292) = Jac_FULL(32,24) |
---|
2087 | jvs(292) = b(72) + b(74) + b(76) |
---|
2088 | ! JVS(293) = Jac_FULL(32,25) |
---|
2089 | jvs(293) = 0.62* b(123) |
---|
2090 | ! JVS(294) = Jac_FULL(32,26) |
---|
2091 | jvs(294) = - b(80) |
---|
2092 | ! JVS(295) = Jac_FULL(32,27) |
---|
2093 | jvs(295) = b(75) + b(121) + b(125) + 0.2* b(129) |
---|
2094 | ! JVS(296) = Jac_FULL(32,28) |
---|
2095 | jvs(296) = - b(84) |
---|
2096 | ! JVS(297) = Jac_FULL(32,29) |
---|
2097 | jvs(297) = b(73) |
---|
2098 | ! JVS(298) = Jac_FULL(32,30) |
---|
2099 | jvs(298) = b(77) |
---|
2100 | ! JVS(299) = Jac_FULL(32,31) |
---|
2101 | jvs(299) = - b(78) |
---|
2102 | ! JVS(300) = Jac_FULL(32,32) |
---|
2103 | jvs(300) = - b(79) - b(81) - 2* b(83) - b(85) |
---|
2104 | |
---|
2105 | END SUBROUTINE jac_sp |
---|
2106 | |
---|
2107 | elemental REAL(kind=dp)FUNCTION k_arr (k_298, tdep, temp) |
---|
2108 | ! arrhenius FUNCTION |
---|
2109 | |
---|
2110 | REAL, INTENT(IN):: k_298 ! k at t = 298.15k |
---|
2111 | REAL, INTENT(IN):: tdep ! temperature dependence |
---|
2112 | REAL(kind=dp), INTENT(IN):: temp ! temperature |
---|
2113 | |
---|
2114 | intrinsic exp |
---|
2115 | |
---|
2116 | k_arr = k_298 * exp(tdep* (1._dp/temp- 3.3540e-3_dp))! 1/298.15=3.3540e-3 |
---|
2117 | |
---|
2118 | END FUNCTION k_arr |
---|
2119 | |
---|
2120 | SUBROUTINE update_rconst() |
---|
2121 | INTEGER :: k |
---|
2122 | |
---|
2123 | k = is |
---|
2124 | |
---|
2125 | ! Begin INLINED RCONST |
---|
2126 | |
---|
2127 | |
---|
2128 | ! End INLINED RCONST |
---|
2129 | |
---|
2130 | rconst(1) = (phot(j_no2)) |
---|
2131 | rconst(2) = (phot(j_o33p)) |
---|
2132 | rconst(3) = (phot(j_o31d)) |
---|
2133 | rconst(4) = (phot(j_no3o) + phot(j_no3o2)) |
---|
2134 | rconst(5) = (phot(j_hono)) |
---|
2135 | rconst(6) = (phot(j_h2o2)) |
---|
2136 | rconst(7) = (phot(j_ch2or)) |
---|
2137 | rconst(8) = (phot(j_ch2om)) |
---|
2138 | rconst(9) = (4.6e-4_dp * phot(j_no2)) |
---|
2139 | rconst(10) = (9.04_dp * phot(j_ch2or)) |
---|
2140 | rconst(11) = (9.64_dp * phot(j_ch2or)) |
---|
2141 | rconst(12) = (arr2(1.4e+3_dp , -1175.0_dp , temp)) |
---|
2142 | rconst(13) = (arr2(1.8e-12_dp , + 1370.0_dp , temp)) |
---|
2143 | rconst(14) = (9.3e-12_dp) |
---|
2144 | rconst(15) = (arr2(1.6e-13_dp , -687.0_dp , temp)) |
---|
2145 | rconst(16) = (arr2(2.2e-13_dp , -602.0_dp , temp)) |
---|
2146 | rconst(17) = (arr2(1.2e-13_dp , + 2450.0_dp , temp)) |
---|
2147 | rconst(18) = (arr2(1.9e+8_dp , -390.0_dp , temp)) |
---|
2148 | rconst(19) = (2.2e-10_dp) |
---|
2149 | rconst(20) = (arr2(1.6e-12_dp , + 940.0_dp , temp)) |
---|
2150 | rconst(21) = (arr2(1.4e-14_dp , + 580.0_dp , temp)) |
---|
2151 | rconst(22) = (arr2(1.3e-11_dp , -250.0_dp , temp)) |
---|
2152 | rconst(23) = (arr2(2.5e-14_dp , + 1230.0_dp , temp)) |
---|
2153 | rconst(24) = (arr2(5.3e-13_dp , -256.0_dp , temp)) |
---|
2154 | rconst(25) = (1.3e-21_dp) |
---|
2155 | rconst(26) = (arr2(3.5e+14_dp , + 10897.0_dp , temp)) |
---|
2156 | rconst(27) = (arr2(1.8e-20_dp , -530.0_dp , temp)) |
---|
2157 | rconst(28) = (4.4e-40_dp) |
---|
2158 | rconst(29) = (arr2(4.5e-13_dp , -806.0_dp , temp)) |
---|
2159 | rconst(30) = (6.6e-12_dp) |
---|
2160 | rconst(31) = (1.0e-20_dp) |
---|
2161 | rconst(32) = (arr2(1.0e-12_dp , -713.0_dp , temp)) |
---|
2162 | rconst(33) = (arr2(5.1e-15_dp , -1000.0_dp , temp)) |
---|
2163 | rconst(34) = (arr2(3.7e-12_dp , -240.0_dp , temp)) |
---|
2164 | rconst(35) = (arr2(1.2e-13_dp , -749.0_dp , temp)) |
---|
2165 | rconst(36) = (arr2(4.8e+13_dp , + 10121.0_dp , temp)) |
---|
2166 | rconst(37) = (arr2(1.3e-12_dp , -380.0_dp , temp)) |
---|
2167 | rconst(38) = (arr2(5.9e-14_dp , -1150.0_dp , temp)) |
---|
2168 | rconst(39) = (arr2(2.2e-38_dp , -5800.0_dp , temp)) |
---|
2169 | rconst(40) = (arr2(3.1e-12_dp , + 187.0_dp , temp)) |
---|
2170 | rconst(41) = (2.2e-13_dp) |
---|
2171 | rconst(42) = (1.0e-11_dp) |
---|
2172 | rconst(43) = (arr2(3.0e-11_dp , + 1550.0_dp , temp)) |
---|
2173 | rconst(44) = (6.3e-16_dp) |
---|
2174 | rconst(45) = (arr2(1.2e-11_dp , + 986.0_dp , temp)) |
---|
2175 | rconst(46) = (arr2(7.0e-12_dp , -250.0_dp , temp)) |
---|
2176 | rconst(47) = (2.5e-15_dp) |
---|
2177 | rconst(48) = (arr2(5.4e-12_dp , -250.0_dp , temp)) |
---|
2178 | rconst(49) = (arr2(8.0e-20_dp , -5500.0_dp , temp)) |
---|
2179 | rconst(50) = (arr2(9.4e+16_dp , + 14000.0_dp , temp)) |
---|
2180 | rconst(51) = (2.0e-12_dp) |
---|
2181 | rconst(52) = (6.5e-12_dp) |
---|
2182 | rconst(53) = (arr2(1.1e+2_dp , + 1710.0_dp , temp)) |
---|
2183 | rconst(54) = (8.1e-13_dp) |
---|
2184 | rconst(55) = (arr2(1.0e+15_dp , + 8000.0_dp , temp)) |
---|
2185 | rconst(56) = (1.6e+03_dp) |
---|
2186 | rconst(57) = (1.5e-11_dp) |
---|
2187 | rconst(58) = (arr2(1.2e-11_dp , + 324.0_dp , temp)) |
---|
2188 | rconst(59) = (arr2(5.2e-12_dp , -504.0_dp , temp)) |
---|
2189 | rconst(60) = (arr2(1.4e-14_dp , + 2105.0_dp , temp)) |
---|
2190 | rconst(61) = (7.7e-15_dp) |
---|
2191 | rconst(62) = (arr2(1.0e-11_dp , + 792.0_dp , temp)) |
---|
2192 | rconst(63) = (arr2(2.0e-12_dp , -411.0_dp , temp)) |
---|
2193 | rconst(64) = (arr2(1.3e-14_dp , + 2633.0_dp , temp)) |
---|
2194 | rconst(65) = (arr2(2.1e-12_dp , -322.0_dp , temp)) |
---|
2195 | rconst(66) = (8.1e-12_dp) |
---|
2196 | rconst(67) = (4.20_dp) |
---|
2197 | rconst(68) = (4.1e-11_dp) |
---|
2198 | rconst(69) = (2.2e-11_dp) |
---|
2199 | rconst(70) = (1.4e-11_dp) |
---|
2200 | rconst(71) = (arr2(1.7e-11_dp , -116.0_dp , temp)) |
---|
2201 | rconst(72) = (3.0e-11_dp) |
---|
2202 | rconst(73) = (arr2(5.4e-17_dp , + 500.0_dp , temp)) |
---|
2203 | rconst(74) = (1.70e-11_dp) |
---|
2204 | rconst(75) = (1.80e-11_dp) |
---|
2205 | rconst(76) = (9.6e-11_dp) |
---|
2206 | rconst(77) = (1.2e-17_dp) |
---|
2207 | rconst(78) = (3.2e-13_dp) |
---|
2208 | rconst(79) = (8.1e-12_dp) |
---|
2209 | rconst(80) = (arr2(1.7e-14_dp , -1300.0_dp , temp)) |
---|
2210 | rconst(81) = (6.8e-13_dp) |
---|
2211 | |
---|
2212 | END SUBROUTINE update_rconst |
---|
2213 | |
---|
2214 | ! END FUNCTION ARR2 |
---|
2215 | REAL(kind=dp)FUNCTION arr2( a0, b0, temp) |
---|
2216 | REAL(kind=dp):: temp |
---|
2217 | REAL(kind=dp):: a0, b0 |
---|
2218 | arr2 = a0 * exp( - b0 / temp) |
---|
2219 | END FUNCTION arr2 |
---|
2220 | |
---|
2221 | SUBROUTINE initialize_kpp_ctrl(status) |
---|
2222 | |
---|
2223 | |
---|
2224 | ! i/o |
---|
2225 | INTEGER, INTENT(OUT):: status |
---|
2226 | |
---|
2227 | ! local |
---|
2228 | REAL(dp):: tsum |
---|
2229 | INTEGER :: i |
---|
2230 | |
---|
2231 | ! check fixed time steps |
---|
2232 | tsum = 0.0_dp |
---|
2233 | DO i=1, nmaxfixsteps |
---|
2234 | IF (t_steps(i)< tiny(0.0_dp))exit |
---|
2235 | tsum = tsum + t_steps(i) |
---|
2236 | ENDDO |
---|
2237 | |
---|
2238 | nfsteps = i- 1 |
---|
2239 | |
---|
2240 | l_fixed_step = (nfsteps > 0).and.((tsum - 1.0)< tiny(0.0_dp)) |
---|
2241 | |
---|
2242 | IF (l_vector)THEN |
---|
2243 | WRITE(*,*) ' MODE : VECTOR (LENGTH=',VL_DIM,')' |
---|
2244 | ELSE |
---|
2245 | WRITE(*,*) ' MODE : SCALAR' |
---|
2246 | ENDIF |
---|
2247 | ! |
---|
2248 | WRITE(*,*) ' DE-INDEXING MODE :',I_LU_DI |
---|
2249 | ! |
---|
2250 | WRITE(*,*) ' ICNTRL : ',icntrl |
---|
2251 | WRITE(*,*) ' RCNTRL : ',rcntrl |
---|
2252 | ! |
---|
2253 | ! note: this is ONLY meaningful for vectorized (kp4)rosenbrock- methods |
---|
2254 | IF (l_vector)THEN |
---|
2255 | IF (l_fixed_step)THEN |
---|
2256 | WRITE(*,*) ' TIME STEPS : FIXED (',t_steps(1:nfsteps),')' |
---|
2257 | ELSE |
---|
2258 | WRITE(*,*) ' TIME STEPS : AUTOMATIC' |
---|
2259 | ENDIF |
---|
2260 | ELSE |
---|
2261 | WRITE(*,*) ' TIME STEPS : AUTOMATIC '//& |
---|
2262 | &'(t_steps (CTRL_KPP) ignored in SCALAR MODE)' |
---|
2263 | ENDIF |
---|
2264 | ! mz_pj_20070531- |
---|
2265 | |
---|
2266 | status = 0 |
---|
2267 | |
---|
2268 | |
---|
2269 | END SUBROUTINE initialize_kpp_ctrl |
---|
2270 | |
---|
2271 | SUBROUTINE error_output(c, ierr, pe) |
---|
2272 | |
---|
2273 | |
---|
2274 | INTEGER, INTENT(IN):: ierr |
---|
2275 | INTEGER, INTENT(IN):: pe |
---|
2276 | REAL(dp), DIMENSION(:), INTENT(IN):: c |
---|
2277 | |
---|
2278 | write(6,*) 'ERROR in chem_gasphase_mod ',ierr,C(1) |
---|
2279 | |
---|
2280 | |
---|
2281 | END SUBROUTINE error_output |
---|
2282 | |
---|
2283 | SUBROUTINE wscal(n, alpha, x, incx) |
---|
2284 | !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
2285 | ! constant times a vector: x(1:N) <- Alpha*x(1:N) |
---|
2286 | ! only for incX=incY=1 |
---|
2287 | ! after BLAS |
---|
2288 | ! replace this by the function from the optimized BLAS implementation: |
---|
2289 | ! CALL SSCAL(N,Alpha,X,1) or CALL DSCAL(N,Alpha,X,1) |
---|
2290 | !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
2291 | |
---|
2292 | INTEGER :: i, incx, m, mp1, n |
---|
2293 | REAL(kind=dp) :: x(n), alpha |
---|
2294 | REAL(kind=dp), PARAMETER :: zero=0.0_dp, one=1.0_dp |
---|
2295 | |
---|
2296 | IF (alpha .eq. one)RETURN |
---|
2297 | IF (n .le. 0)RETURN |
---|
2298 | |
---|
2299 | m = mod(n, 5) |
---|
2300 | IF ( m .ne. 0)THEN |
---|
2301 | IF (alpha .eq. (- one))THEN |
---|
2302 | DO i = 1, m |
---|
2303 | x(i) = - x(i) |
---|
2304 | ENDDO |
---|
2305 | ELSEIF (alpha .eq. zero)THEN |
---|
2306 | DO i = 1, m |
---|
2307 | x(i) = zero |
---|
2308 | ENDDO |
---|
2309 | ELSE |
---|
2310 | DO i = 1, m |
---|
2311 | x(i) = alpha* x(i) |
---|
2312 | ENDDO |
---|
2313 | ENDIF |
---|
2314 | IF ( n .lt. 5)RETURN |
---|
2315 | ENDIF |
---|
2316 | mp1 = m + 1 |
---|
2317 | IF (alpha .eq. (- one))THEN |
---|
2318 | DO i = mp1, n, 5 |
---|
2319 | x(i) = - x(i) |
---|
2320 | x(i + 1) = - x(i + 1) |
---|
2321 | x(i + 2) = - x(i + 2) |
---|
2322 | x(i + 3) = - x(i + 3) |
---|
2323 | x(i + 4) = - x(i + 4) |
---|
2324 | ENDDO |
---|
2325 | ELSEIF (alpha .eq. zero)THEN |
---|
2326 | DO i = mp1, n, 5 |
---|
2327 | x(i) = zero |
---|
2328 | x(i + 1) = zero |
---|
2329 | x(i + 2) = zero |
---|
2330 | x(i + 3) = zero |
---|
2331 | x(i + 4) = zero |
---|
2332 | ENDDO |
---|
2333 | ELSE |
---|
2334 | DO i = mp1, n, 5 |
---|
2335 | x(i) = alpha* x(i) |
---|
2336 | x(i + 1) = alpha* x(i + 1) |
---|
2337 | x(i + 2) = alpha* x(i + 2) |
---|
2338 | x(i + 3) = alpha* x(i + 3) |
---|
2339 | x(i + 4) = alpha* x(i + 4) |
---|
2340 | ENDDO |
---|
2341 | ENDIF |
---|
2342 | |
---|
2343 | END SUBROUTINE wscal |
---|
2344 | |
---|
2345 | SUBROUTINE waxpy(n, alpha, x, incx, y, incy) |
---|
2346 | !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
2347 | ! constant times a vector plus a vector: y <- y + Alpha*x |
---|
2348 | ! only for incX=incY=1 |
---|
2349 | ! after BLAS |
---|
2350 | ! replace this by the function from the optimized BLAS implementation: |
---|
2351 | ! CALL SAXPY(N,Alpha,X,1,Y,1) or CALL DAXPY(N,Alpha,X,1,Y,1) |
---|
2352 | !- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - |
---|
2353 | |
---|
2354 | INTEGER :: i, incx, incy, m, mp1, n |
---|
2355 | REAL(kind=dp):: x(n), y(n), alpha |
---|
2356 | REAL(kind=dp), PARAMETER :: zero = 0.0_dp |
---|
2357 | |
---|
2358 | IF (alpha .eq. zero)RETURN |
---|
2359 | IF (n .le. 0)RETURN |
---|
2360 | |
---|
2361 | m = mod(n, 4) |
---|
2362 | IF ( m .ne. 0)THEN |
---|
2363 | DO i = 1, m |
---|
2364 | y(i) = y(i) + alpha* x(i) |
---|
2365 | ENDDO |
---|
2366 | IF ( n .lt. 4)RETURN |
---|
2367 | ENDIF |
---|
2368 | mp1 = m + 1 |
---|
2369 | DO i = mp1, n, 4 |
---|
2370 | y(i) = y(i) + alpha* x(i) |
---|
2371 | y(i + 1) = y(i + 1) + alpha* x(i + 1) |
---|
2372 | y(i + 2) = y(i + 2) + alpha* x(i + 2) |
---|
2373 | y(i + 3) = y(i + 3) + alpha* x(i + 3) |
---|
2374 | ENDDO |
---|
2375 | |
---|
2376 | END SUBROUTINE waxpy |
---|
2377 | |
---|
2378 | SUBROUTINE rosenbrock(n, y, tstart, tend, & |
---|
2379 | abstol, reltol, & |
---|
2380 | rcntrl, icntrl, rstatus, istatus, ierr) |
---|
2381 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2382 | ! |
---|
2383 | ! Solves the system y'=F(t,y) using a Rosenbrock method defined by: |
---|
2384 | ! |
---|
2385 | ! G = 1/(H*gamma(1)) - Jac(t0,Y0) |
---|
2386 | ! T_i = t0 + Alpha(i)*H |
---|
2387 | ! Y_i = Y0 + \sum_{j=1}^{i-1} A(i,j)*K_j |
---|
2388 | ! G *K_i = Fun( T_i,Y_i)+ \sum_{j=1}^S C(i,j)/H *K_j + |
---|
2389 | ! gamma(i)*dF/dT(t0,Y0) |
---|
2390 | ! Y1 = Y0 + \sum_{j=1}^S M(j)*K_j |
---|
2391 | ! |
---|
2392 | ! For details on Rosenbrock methods and their implementation consult: |
---|
2393 | ! E. Hairer and G. Wanner |
---|
2394 | ! "Solving ODEs II. Stiff and differential-algebraic problems". |
---|
2395 | ! Springer series in computational mathematics,Springer-Verlag,1996. |
---|
2396 | ! The codes contained in the book inspired this implementation. |
---|
2397 | ! |
---|
2398 | ! (C) Adrian Sandu,August 2004 |
---|
2399 | ! Virginia Polytechnic Institute and State University |
---|
2400 | ! Contact: sandu@cs.vt.edu |
---|
2401 | ! Revised by Philipp Miehe and Adrian Sandu,May 2006 |
---|
2402 | ! This implementation is part of KPP - the Kinetic PreProcessor |
---|
2403 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2404 | ! |
---|
2405 | !~~~> input arguments: |
---|
2406 | ! |
---|
2407 | !- y(n) = vector of initial conditions (at t=tstart) |
---|
2408 | !- [tstart, tend] = time range of integration |
---|
2409 | ! (if Tstart>Tend the integration is performed backwards in time) |
---|
2410 | !- reltol, abstol = user precribed accuracy |
---|
2411 | !- SUBROUTINE fun( t, y, ydot) = ode FUNCTION, |
---|
2412 | ! returns Ydot = Y' = F(T,Y) |
---|
2413 | !- SUBROUTINE jac( t, y, jcb) = jacobian of the ode FUNCTION, |
---|
2414 | ! returns Jcb = dFun/dY |
---|
2415 | !- icntrl(1:20) = INTEGER inputs PARAMETERs |
---|
2416 | !- rcntrl(1:20) = REAL inputs PARAMETERs |
---|
2417 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2418 | ! |
---|
2419 | !~~~> output arguments: |
---|
2420 | ! |
---|
2421 | !- y(n) - > vector of final states (at t- >tend) |
---|
2422 | !- istatus(1:20) - > INTEGER output PARAMETERs |
---|
2423 | !- rstatus(1:20) - > REAL output PARAMETERs |
---|
2424 | !- ierr - > job status upon RETURN |
---|
2425 | ! success (positive value) or |
---|
2426 | ! failure (negative value) |
---|
2427 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2428 | ! |
---|
2429 | !~~~> input PARAMETERs: |
---|
2430 | ! |
---|
2431 | ! Note: For input parameters equal to zero the default values of the |
---|
2432 | ! corresponding variables are used. |
---|
2433 | ! |
---|
2434 | ! ICNTRL(1) = 1: F = F(y) Independent of T (AUTONOMOUS) |
---|
2435 | ! = 0: F = F(t,y) Depends on T (NON-AUTONOMOUS) |
---|
2436 | ! |
---|
2437 | ! ICNTRL(2) = 0: AbsTol,RelTol are N-dimensional vectors |
---|
2438 | ! = 1: AbsTol,RelTol are scalars |
---|
2439 | ! |
---|
2440 | ! ICNTRL(3) -> selection of a particular Rosenbrock method |
---|
2441 | ! = 0 : Rodas3 (default) |
---|
2442 | ! = 1 : Ros2 |
---|
2443 | ! = 2 : Ros3 |
---|
2444 | ! = 3 : Ros4 |
---|
2445 | ! = 4 : Rodas3 |
---|
2446 | ! = 5 : Rodas4 |
---|
2447 | ! |
---|
2448 | ! ICNTRL(4) -> maximum number of integration steps |
---|
2449 | ! For ICNTRL(4) =0) the default value of 100000 is used |
---|
2450 | ! |
---|
2451 | ! RCNTRL(1) -> Hmin,lower bound for the integration step size |
---|
2452 | ! It is strongly recommended to keep Hmin = ZERO |
---|
2453 | ! RCNTRL(2) -> Hmax,upper bound for the integration step size |
---|
2454 | ! RCNTRL(3) -> Hstart,starting value for the integration step size |
---|
2455 | ! |
---|
2456 | ! RCNTRL(4) -> FacMin,lower bound on step decrease factor (default=0.2) |
---|
2457 | ! RCNTRL(5) -> FacMax,upper bound on step increase factor (default=6) |
---|
2458 | ! RCNTRL(6) -> FacRej,step decrease factor after multiple rejections |
---|
2459 | ! (default=0.1) |
---|
2460 | ! RCNTRL(7) -> FacSafe,by which the new step is slightly smaller |
---|
2461 | ! than the predicted value (default=0.9) |
---|
2462 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2463 | ! |
---|
2464 | ! |
---|
2465 | ! OUTPUT ARGUMENTS: |
---|
2466 | ! ----------------- |
---|
2467 | ! |
---|
2468 | ! T -> T value for which the solution has been computed |
---|
2469 | ! (after successful return T=Tend). |
---|
2470 | ! |
---|
2471 | ! Y(N) -> Numerical solution at T |
---|
2472 | ! |
---|
2473 | ! IDID -> Reports on successfulness upon return: |
---|
2474 | ! = 1 for success |
---|
2475 | ! < 0 for error (value equals error code) |
---|
2476 | ! |
---|
2477 | ! ISTATUS(1) -> No. of function calls |
---|
2478 | ! ISTATUS(2) -> No. of jacobian calls |
---|
2479 | ! ISTATUS(3) -> No. of steps |
---|
2480 | ! ISTATUS(4) -> No. of accepted steps |
---|
2481 | ! ISTATUS(5) -> No. of rejected steps (except at very beginning) |
---|
2482 | ! ISTATUS(6) -> No. of LU decompositions |
---|
2483 | ! ISTATUS(7) -> No. of forward/backward substitutions |
---|
2484 | ! ISTATUS(8) -> No. of singular matrix decompositions |
---|
2485 | ! |
---|
2486 | ! RSTATUS(1) -> Texit,the time corresponding to the |
---|
2487 | ! computed Y upon return |
---|
2488 | ! RSTATUS(2) -> Hexit,last accepted step before exit |
---|
2489 | ! RSTATUS(3) -> Hnew,last predicted step (not yet taken) |
---|
2490 | ! For multiple restarts,use Hnew as Hstart |
---|
2491 | ! in the subsequent run |
---|
2492 | ! |
---|
2493 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2494 | |
---|
2495 | |
---|
2496 | !~~~> arguments |
---|
2497 | INTEGER, INTENT(IN) :: n |
---|
2498 | REAL(kind=dp), INTENT(INOUT):: y(n) |
---|
2499 | REAL(kind=dp), INTENT(IN) :: tstart, tend |
---|
2500 | REAL(kind=dp), INTENT(IN) :: abstol(n), reltol(n) |
---|
2501 | INTEGER, INTENT(IN) :: icntrl(20) |
---|
2502 | REAL(kind=dp), INTENT(IN) :: rcntrl(20) |
---|
2503 | INTEGER, INTENT(INOUT):: istatus(20) |
---|
2504 | REAL(kind=dp), INTENT(INOUT):: rstatus(20) |
---|
2505 | INTEGER, INTENT(OUT) :: ierr |
---|
2506 | !~~~> PARAMETERs of the rosenbrock method, up to 6 stages |
---|
2507 | INTEGER :: ros_s, rosmethod |
---|
2508 | INTEGER, PARAMETER :: rs2=1, rs3=2, rs4=3, rd3=4, rd4=5, rg3=6 |
---|
2509 | REAL(kind=dp):: ros_a(15), ros_c(15), ros_m(6), ros_e(6), & |
---|
2510 | ros_alpha(6), ros_gamma(6), ros_elo |
---|
2511 | LOGICAL :: ros_newf(6) |
---|
2512 | CHARACTER(len=12):: ros_name |
---|
2513 | !~~~> local variables |
---|
2514 | REAL(kind=dp):: roundoff, facmin, facmax, facrej, facsafe |
---|
2515 | REAL(kind=dp):: hmin, hmax, hstart |
---|
2516 | REAL(kind=dp):: texit |
---|
2517 | INTEGER :: i, uplimtol, max_no_steps |
---|
2518 | LOGICAL :: autonomous, vectortol |
---|
2519 | !~~~> PARAMETERs |
---|
2520 | REAL(kind=dp), PARAMETER :: zero = 0.0_dp, one = 1.0_dp |
---|
2521 | REAL(kind=dp), PARAMETER :: deltamin = 1.0e-5_dp |
---|
2522 | |
---|
2523 | !~~~> initialize statistics |
---|
2524 | istatus(1:8) = 0 |
---|
2525 | rstatus(1:3) = zero |
---|
2526 | |
---|
2527 | !~~~> autonomous or time dependent ode. default is time dependent. |
---|
2528 | autonomous = .not.(icntrl(1) == 0) |
---|
2529 | |
---|
2530 | !~~~> for scalar tolerances (icntrl(2).ne.0) the code uses abstol(1)and reltol(1) |
---|
2531 | ! For Vector tolerances (ICNTRL(2) == 0) the code uses AbsTol(1:N) and RelTol(1:N) |
---|
2532 | IF (icntrl(2) == 0)THEN |
---|
2533 | vectortol = .TRUE. |
---|
2534 | uplimtol = n |
---|
2535 | ELSE |
---|
2536 | vectortol = .FALSE. |
---|
2537 | uplimtol = 1 |
---|
2538 | ENDIF |
---|
2539 | |
---|
2540 | !~~~> initialize the particular rosenbrock method selected |
---|
2541 | select CASE (icntrl(3)) |
---|
2542 | CASE (1) |
---|
2543 | CALL ros2 |
---|
2544 | CASE (2) |
---|
2545 | CALL ros3 |
---|
2546 | CASE (3) |
---|
2547 | CALL ros4 |
---|
2548 | CASE (0, 4) |
---|
2549 | CALL rodas3 |
---|
2550 | CASE (5) |
---|
2551 | CALL rodas4 |
---|
2552 | CASE (6) |
---|
2553 | CALL rang3 |
---|
2554 | CASE default |
---|
2555 | PRINT *,'Unknown Rosenbrock method: ICNTRL(3) =',ICNTRL(3) |
---|
2556 | CALL ros_errormsg(- 2, tstart, zero, ierr) |
---|
2557 | RETURN |
---|
2558 | END select |
---|
2559 | |
---|
2560 | !~~~> the maximum number of steps admitted |
---|
2561 | IF (icntrl(4) == 0)THEN |
---|
2562 | max_no_steps = 200000 |
---|
2563 | ELSEIF (icntrl(4)> 0)THEN |
---|
2564 | max_no_steps=icntrl(4) |
---|
2565 | ELSE |
---|
2566 | PRINT *,'User-selected max no. of steps: ICNTRL(4) =',ICNTRL(4) |
---|
2567 | CALL ros_errormsg(- 1, tstart, zero, ierr) |
---|
2568 | RETURN |
---|
2569 | ENDIF |
---|
2570 | |
---|
2571 | !~~~> unit roundoff (1+ roundoff>1) |
---|
2572 | roundoff = epsilon(one) |
---|
2573 | |
---|
2574 | !~~~> lower bound on the step size: (positive value) |
---|
2575 | IF (rcntrl(1) == zero)THEN |
---|
2576 | hmin = zero |
---|
2577 | ELSEIF (rcntrl(1)> zero)THEN |
---|
2578 | hmin = rcntrl(1) |
---|
2579 | ELSE |
---|
2580 | PRINT *,'User-selected Hmin: RCNTRL(1) =',RCNTRL(1) |
---|
2581 | CALL ros_errormsg(- 3, tstart, zero, ierr) |
---|
2582 | RETURN |
---|
2583 | ENDIF |
---|
2584 | !~~~> upper bound on the step size: (positive value) |
---|
2585 | IF (rcntrl(2) == zero)THEN |
---|
2586 | hmax = abs(tend-tstart) |
---|
2587 | ELSEIF (rcntrl(2)> zero)THEN |
---|
2588 | hmax = min(abs(rcntrl(2)), abs(tend-tstart)) |
---|
2589 | ELSE |
---|
2590 | PRINT *,'User-selected Hmax: RCNTRL(2) =',RCNTRL(2) |
---|
2591 | CALL ros_errormsg(- 3, tstart, zero, ierr) |
---|
2592 | RETURN |
---|
2593 | ENDIF |
---|
2594 | !~~~> starting step size: (positive value) |
---|
2595 | IF (rcntrl(3) == zero)THEN |
---|
2596 | hstart = max(hmin, deltamin) |
---|
2597 | ELSEIF (rcntrl(3)> zero)THEN |
---|
2598 | hstart = min(abs(rcntrl(3)), abs(tend-tstart)) |
---|
2599 | ELSE |
---|
2600 | PRINT *,'User-selected Hstart: RCNTRL(3) =',RCNTRL(3) |
---|
2601 | CALL ros_errormsg(- 3, tstart, zero, ierr) |
---|
2602 | RETURN |
---|
2603 | ENDIF |
---|
2604 | !~~~> step size can be changed s.t. facmin < hnew/hold < facmax |
---|
2605 | IF (rcntrl(4) == zero)THEN |
---|
2606 | facmin = 0.2_dp |
---|
2607 | ELSEIF (rcntrl(4)> zero)THEN |
---|
2608 | facmin = rcntrl(4) |
---|
2609 | ELSE |
---|
2610 | PRINT *,'User-selected FacMin: RCNTRL(4) =',RCNTRL(4) |
---|
2611 | CALL ros_errormsg(- 4, tstart, zero, ierr) |
---|
2612 | RETURN |
---|
2613 | ENDIF |
---|
2614 | IF (rcntrl(5) == zero)THEN |
---|
2615 | facmax = 6.0_dp |
---|
2616 | ELSEIF (rcntrl(5)> zero)THEN |
---|
2617 | facmax = rcntrl(5) |
---|
2618 | ELSE |
---|
2619 | PRINT *,'User-selected FacMax: RCNTRL(5) =',RCNTRL(5) |
---|
2620 | CALL ros_errormsg(- 4, tstart, zero, ierr) |
---|
2621 | RETURN |
---|
2622 | ENDIF |
---|
2623 | !~~~> facrej: factor to decrease step after 2 succesive rejections |
---|
2624 | IF (rcntrl(6) == zero)THEN |
---|
2625 | facrej = 0.1_dp |
---|
2626 | ELSEIF (rcntrl(6)> zero)THEN |
---|
2627 | facrej = rcntrl(6) |
---|
2628 | ELSE |
---|
2629 | PRINT *,'User-selected FacRej: RCNTRL(6) =',RCNTRL(6) |
---|
2630 | CALL ros_errormsg(- 4, tstart, zero, ierr) |
---|
2631 | RETURN |
---|
2632 | ENDIF |
---|
2633 | !~~~> facsafe: safety factor in the computation of new step size |
---|
2634 | IF (rcntrl(7) == zero)THEN |
---|
2635 | facsafe = 0.9_dp |
---|
2636 | ELSEIF (rcntrl(7)> zero)THEN |
---|
2637 | facsafe = rcntrl(7) |
---|
2638 | ELSE |
---|
2639 | PRINT *,'User-selected FacSafe: RCNTRL(7) =',RCNTRL(7) |
---|
2640 | CALL ros_errormsg(- 4, tstart, zero, ierr) |
---|
2641 | RETURN |
---|
2642 | ENDIF |
---|
2643 | !~~~> check IF tolerances are reasonable |
---|
2644 | DO i=1, uplimtol |
---|
2645 | IF ((abstol(i)<= zero).or. (reltol(i)<= 10.0_dp* roundoff)& |
---|
2646 | .or. (reltol(i)>= 1.0_dp))THEN |
---|
2647 | PRINT *,' AbsTol(',i,') = ',AbsTol(i) |
---|
2648 | PRINT *,' RelTol(',i,') = ',RelTol(i) |
---|
2649 | CALL ros_errormsg(- 5, tstart, zero, ierr) |
---|
2650 | RETURN |
---|
2651 | ENDIF |
---|
2652 | ENDDO |
---|
2653 | |
---|
2654 | |
---|
2655 | !~~~> CALL rosenbrock method |
---|
2656 | CALL ros_integrator(y, tstart, tend, texit, & |
---|
2657 | abstol, reltol, & |
---|
2658 | ! Integration parameters |
---|
2659 | autonomous, vectortol, max_no_steps, & |
---|
2660 | roundoff, hmin, hmax, hstart, & |
---|
2661 | facmin, facmax, facrej, facsafe, & |
---|
2662 | ! Error indicator |
---|
2663 | ierr) |
---|
2664 | |
---|
2665 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2666 | CONTAINS ! SUBROUTINEs internal to rosenbrock |
---|
2667 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2668 | |
---|
2669 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2670 | SUBROUTINE ros_errormsg(code, t, h, ierr) |
---|
2671 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2672 | ! Handles all error messages |
---|
2673 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2674 | |
---|
2675 | REAL(kind=dp), INTENT(IN):: t, h |
---|
2676 | INTEGER, INTENT(IN) :: code |
---|
2677 | INTEGER, INTENT(OUT):: ierr |
---|
2678 | |
---|
2679 | ierr = code |
---|
2680 | print * , & |
---|
2681 | 'Forced exit from Rosenbrock due to the following error:' |
---|
2682 | |
---|
2683 | select CASE (code) |
---|
2684 | CASE (- 1) |
---|
2685 | PRINT *,'--> Improper value for maximal no of steps' |
---|
2686 | CASE (- 2) |
---|
2687 | PRINT *,'--> Selected Rosenbrock method not implemented' |
---|
2688 | CASE (- 3) |
---|
2689 | PRINT *,'--> Hmin/Hmax/Hstart must be positive' |
---|
2690 | CASE (- 4) |
---|
2691 | PRINT *,'--> FacMin/FacMax/FacRej must be positive' |
---|
2692 | CASE (- 5) |
---|
2693 | PRINT *,'--> Improper tolerance values' |
---|
2694 | CASE (- 6) |
---|
2695 | PRINT *,'--> No of steps exceeds maximum bound' |
---|
2696 | CASE (- 7) |
---|
2697 | PRINT *,'--> Step size too small: T + 10*H = T',& |
---|
2698 | ' or H < Roundoff' |
---|
2699 | CASE (- 8) |
---|
2700 | PRINT *,'--> Matrix is repeatedly singular' |
---|
2701 | CASE default |
---|
2702 | PRINT *,'Unknown Error code: ',Code |
---|
2703 | END select |
---|
2704 | |
---|
2705 | print * , "t=", t, "and h=", h |
---|
2706 | |
---|
2707 | END SUBROUTINE ros_errormsg |
---|
2708 | |
---|
2709 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2710 | SUBROUTINE ros_integrator (y, tstart, tend, t, & |
---|
2711 | abstol, reltol, & |
---|
2712 | !~~~> integration PARAMETERs |
---|
2713 | autonomous, vectortol, max_no_steps, & |
---|
2714 | roundoff, hmin, hmax, hstart, & |
---|
2715 | facmin, facmax, facrej, facsafe, & |
---|
2716 | !~~~> error indicator |
---|
2717 | ierr) |
---|
2718 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2719 | ! Template for the implementation of a generic Rosenbrock method |
---|
2720 | ! defined by ros_S (no of stages) |
---|
2721 | ! and its coefficients ros_{A,C,M,E,Alpha,Gamma} |
---|
2722 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2723 | |
---|
2724 | |
---|
2725 | !~~~> input: the initial condition at tstart; output: the solution at t |
---|
2726 | REAL(kind=dp), INTENT(INOUT):: y(n) |
---|
2727 | !~~~> input: integration interval |
---|
2728 | REAL(kind=dp), INTENT(IN):: tstart, tend |
---|
2729 | !~~~> output: time at which the solution is RETURNed (t=tendIF success) |
---|
2730 | REAL(kind=dp), INTENT(OUT):: t |
---|
2731 | !~~~> input: tolerances |
---|
2732 | REAL(kind=dp), INTENT(IN):: abstol(n), reltol(n) |
---|
2733 | !~~~> input: integration PARAMETERs |
---|
2734 | LOGICAL, INTENT(IN):: autonomous, vectortol |
---|
2735 | REAL(kind=dp), INTENT(IN):: hstart, hmin, hmax |
---|
2736 | INTEGER, INTENT(IN):: max_no_steps |
---|
2737 | REAL(kind=dp), INTENT(IN):: roundoff, facmin, facmax, facrej, facsafe |
---|
2738 | !~~~> output: error indicator |
---|
2739 | INTEGER, INTENT(OUT):: ierr |
---|
2740 | ! ~~~~ Local variables |
---|
2741 | REAL(kind=dp):: ynew(n), fcn0(n), fcn(n) |
---|
2742 | REAL(kind=dp):: k(n* ros_s), dfdt(n) |
---|
2743 | #ifdef full_algebra |
---|
2744 | REAL(kind=dp):: jac0(n, n), ghimj(n, n) |
---|
2745 | #else |
---|
2746 | REAL(kind=dp):: jac0(lu_nonzero), ghimj(lu_nonzero) |
---|
2747 | #endif |
---|
2748 | REAL(kind=dp):: h, hnew, hc, hg, fac, tau |
---|
2749 | REAL(kind=dp):: err, yerr(n) |
---|
2750 | INTEGER :: pivot(n), direction, ioffset, j, istage |
---|
2751 | LOGICAL :: rejectlasth, rejectmoreh, singular |
---|
2752 | !~~~> local PARAMETERs |
---|
2753 | REAL(kind=dp), PARAMETER :: zero = 0.0_dp, one = 1.0_dp |
---|
2754 | REAL(kind=dp), PARAMETER :: deltamin = 1.0e-5_dp |
---|
2755 | !~~~> locally called FUNCTIONs |
---|
2756 | ! REAL(kind=dp) WLAMCH |
---|
2757 | ! EXTERNAL WLAMCH |
---|
2758 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2759 | |
---|
2760 | |
---|
2761 | !~~~> initial preparations |
---|
2762 | t = tstart |
---|
2763 | rstatus(nhexit) = zero |
---|
2764 | h = min( max(abs(hmin), abs(hstart)), abs(hmax)) |
---|
2765 | IF (abs(h)<= 10.0_dp* roundoff)h = deltamin |
---|
2766 | |
---|
2767 | IF (tend >= tstart)THEN |
---|
2768 | direction = + 1 |
---|
2769 | ELSE |
---|
2770 | direction = - 1 |
---|
2771 | ENDIF |
---|
2772 | h = direction* h |
---|
2773 | |
---|
2774 | rejectlasth=.FALSE. |
---|
2775 | rejectmoreh=.FALSE. |
---|
2776 | |
---|
2777 | !~~~> time loop begins below |
---|
2778 | |
---|
2779 | timeloop: DO WHILE((direction > 0).and.((t- tend) + roundoff <= zero)& |
---|
2780 | .or. (direction < 0).and.((tend-t) + roundoff <= zero)) |
---|
2781 | |
---|
2782 | IF (istatus(nstp)> max_no_steps)THEN ! too many steps |
---|
2783 | CALL ros_errormsg(- 6, t, h, ierr) |
---|
2784 | RETURN |
---|
2785 | ENDIF |
---|
2786 | IF (((t+ 0.1_dp* h) == t).or.(h <= roundoff))THEN ! step size too small |
---|
2787 | CALL ros_errormsg(- 7, t, h, ierr) |
---|
2788 | RETURN |
---|
2789 | ENDIF |
---|
2790 | |
---|
2791 | !~~~> limit h IF necessary to avoid going beyond tend |
---|
2792 | h = min(h, abs(tend-t)) |
---|
2793 | |
---|
2794 | !~~~> compute the FUNCTION at current time |
---|
2795 | CALL funtemplate(t, y, fcn0) |
---|
2796 | istatus(nfun) = istatus(nfun) + 1 |
---|
2797 | |
---|
2798 | !~~~> compute the FUNCTION derivative with respect to t |
---|
2799 | IF (.not.autonomous)THEN |
---|
2800 | CALL ros_funtimederivative(t, roundoff, y, & |
---|
2801 | fcn0, dfdt) |
---|
2802 | ENDIF |
---|
2803 | |
---|
2804 | !~~~> compute the jacobian at current time |
---|
2805 | CALL jactemplate(t, y, jac0) |
---|
2806 | istatus(njac) = istatus(njac) + 1 |
---|
2807 | |
---|
2808 | !~~~> repeat step calculation until current step accepted |
---|
2809 | untilaccepted: do |
---|
2810 | |
---|
2811 | CALL ros_preparematrix(h, direction, ros_gamma(1), & |
---|
2812 | jac0, ghimj, pivot, singular) |
---|
2813 | IF (singular)THEN ! more than 5 consecutive failed decompositions |
---|
2814 | CALL ros_errormsg(- 8, t, h, ierr) |
---|
2815 | RETURN |
---|
2816 | ENDIF |
---|
2817 | |
---|
2818 | !~~~> compute the stages |
---|
2819 | stage: DO istage = 1, ros_s |
---|
2820 | |
---|
2821 | ! current istage offset. current istage vector is k(ioffset+ 1:ioffset+ n) |
---|
2822 | ioffset = n* (istage-1) |
---|
2823 | |
---|
2824 | ! for the 1st istage the FUNCTION has been computed previously |
---|
2825 | IF (istage == 1)THEN |
---|
2826 | !slim: CALL wcopy(n, fcn0, 1, fcn, 1) |
---|
2827 | fcn(1:n) = fcn0(1:n) |
---|
2828 | ! istage>1 and a new FUNCTION evaluation is needed at the current istage |
---|
2829 | ELSEIF(ros_newf(istage))THEN |
---|
2830 | !slim: CALL wcopy(n, y, 1, ynew, 1) |
---|
2831 | ynew(1:n) = y(1:n) |
---|
2832 | DO j = 1, istage-1 |
---|
2833 | CALL waxpy(n, ros_a((istage-1) * (istage-2) /2+ j), & |
---|
2834 | k(n* (j- 1) + 1), 1, ynew, 1) |
---|
2835 | ENDDO |
---|
2836 | tau = t + ros_alpha(istage) * direction* h |
---|
2837 | CALL funtemplate(tau, ynew, fcn) |
---|
2838 | istatus(nfun) = istatus(nfun) + 1 |
---|
2839 | ENDIF ! IF istage == 1 ELSEIF ros_newf(istage) |
---|
2840 | !slim: CALL wcopy(n, fcn, 1, k(ioffset+ 1), 1) |
---|
2841 | k(ioffset+ 1:ioffset+ n) = fcn(1:n) |
---|
2842 | DO j = 1, istage-1 |
---|
2843 | hc = ros_c((istage-1) * (istage-2) /2+ j) /(direction* h) |
---|
2844 | CALL waxpy(n, hc, k(n* (j- 1) + 1), 1, k(ioffset+ 1), 1) |
---|
2845 | ENDDO |
---|
2846 | IF ((.not. autonomous).and.(ros_gamma(istage).ne.zero))THEN |
---|
2847 | hg = direction* h* ros_gamma(istage) |
---|
2848 | CALL waxpy(n, hg, dfdt, 1, k(ioffset+ 1), 1) |
---|
2849 | ENDIF |
---|
2850 | CALL ros_solve(ghimj, pivot, k(ioffset+ 1)) |
---|
2851 | |
---|
2852 | END DO stage |
---|
2853 | |
---|
2854 | |
---|
2855 | !~~~> compute the new solution |
---|
2856 | !slim: CALL wcopy(n, y, 1, ynew, 1) |
---|
2857 | ynew(1:n) = y(1:n) |
---|
2858 | DO j=1, ros_s |
---|
2859 | CALL waxpy(n, ros_m(j), k(n* (j- 1) + 1), 1, ynew, 1) |
---|
2860 | ENDDO |
---|
2861 | |
---|
2862 | !~~~> compute the error estimation |
---|
2863 | !slim: CALL wscal(n, zero, yerr, 1) |
---|
2864 | yerr(1:n) = zero |
---|
2865 | DO j=1, ros_s |
---|
2866 | CALL waxpy(n, ros_e(j), k(n* (j- 1) + 1), 1, yerr, 1) |
---|
2867 | ENDDO |
---|
2868 | err = ros_errornorm(y, ynew, yerr, abstol, reltol, vectortol) |
---|
2869 | |
---|
2870 | !~~~> new step size is bounded by facmin <= hnew/h <= facmax |
---|
2871 | fac = min(facmax, max(facmin, facsafe/err** (one/ros_elo))) |
---|
2872 | hnew = h* fac |
---|
2873 | |
---|
2874 | !~~~> check the error magnitude and adjust step size |
---|
2875 | istatus(nstp) = istatus(nstp) + 1 |
---|
2876 | IF ((err <= one).or.(h <= hmin))THEN !~~~> accept step |
---|
2877 | istatus(nacc) = istatus(nacc) + 1 |
---|
2878 | !slim: CALL wcopy(n, ynew, 1, y, 1) |
---|
2879 | y(1:n) = ynew(1:n) |
---|
2880 | t = t + direction* h |
---|
2881 | hnew = max(hmin, min(hnew, hmax)) |
---|
2882 | IF (rejectlasth)THEN ! no step size increase after a rejected step |
---|
2883 | hnew = min(hnew, h) |
---|
2884 | ENDIF |
---|
2885 | rstatus(nhexit) = h |
---|
2886 | rstatus(nhnew) = hnew |
---|
2887 | rstatus(ntexit) = t |
---|
2888 | rejectlasth = .FALSE. |
---|
2889 | rejectmoreh = .FALSE. |
---|
2890 | h = hnew |
---|
2891 | exit untilaccepted ! exit the loop: WHILE step not accepted |
---|
2892 | ELSE !~~~> reject step |
---|
2893 | IF (rejectmoreh)THEN |
---|
2894 | hnew = h* facrej |
---|
2895 | ENDIF |
---|
2896 | rejectmoreh = rejectlasth |
---|
2897 | rejectlasth = .TRUE. |
---|
2898 | h = hnew |
---|
2899 | IF (istatus(nacc)>= 1) istatus(nrej) = istatus(nrej) + 1 |
---|
2900 | ENDIF ! err <= 1 |
---|
2901 | |
---|
2902 | END DO untilaccepted |
---|
2903 | |
---|
2904 | END DO timeloop |
---|
2905 | |
---|
2906 | !~~~> succesful exit |
---|
2907 | ierr = 1 !~~~> the integration was successful |
---|
2908 | |
---|
2909 | END SUBROUTINE ros_integrator |
---|
2910 | |
---|
2911 | |
---|
2912 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2913 | REAL(kind=dp)FUNCTION ros_errornorm(y, ynew, yerr, & |
---|
2914 | abstol, reltol, vectortol) |
---|
2915 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2916 | !~~~> computes the "scaled norm" of the error vector yerr |
---|
2917 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2918 | |
---|
2919 | ! Input arguments |
---|
2920 | REAL(kind=dp), INTENT(IN):: y(n), ynew(n), & |
---|
2921 | yerr(n), abstol(n), reltol(n) |
---|
2922 | LOGICAL, INTENT(IN):: vectortol |
---|
2923 | ! Local variables |
---|
2924 | REAL(kind=dp):: err, scale, ymax |
---|
2925 | INTEGER :: i |
---|
2926 | REAL(kind=dp), PARAMETER :: zero = 0.0_dp |
---|
2927 | |
---|
2928 | err = zero |
---|
2929 | DO i=1, n |
---|
2930 | ymax = max(abs(y(i)), abs(ynew(i))) |
---|
2931 | IF (vectortol)THEN |
---|
2932 | scale = abstol(i) + reltol(i) * ymax |
---|
2933 | ELSE |
---|
2934 | scale = abstol(1) + reltol(1) * ymax |
---|
2935 | ENDIF |
---|
2936 | err = err+ (yerr(i) /scale) ** 2 |
---|
2937 | ENDDO |
---|
2938 | err = sqrt(err/n) |
---|
2939 | |
---|
2940 | ros_errornorm = max(err, 1.0d-10) |
---|
2941 | |
---|
2942 | END FUNCTION ros_errornorm |
---|
2943 | |
---|
2944 | |
---|
2945 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2946 | SUBROUTINE ros_funtimederivative(t, roundoff, y, & |
---|
2947 | fcn0, dfdt) |
---|
2948 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2949 | !~~~> the time partial derivative of the FUNCTION by finite differences |
---|
2950 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2951 | |
---|
2952 | !~~~> input arguments |
---|
2953 | REAL(kind=dp), INTENT(IN):: t, roundoff, y(n), fcn0(n) |
---|
2954 | !~~~> output arguments |
---|
2955 | REAL(kind=dp), INTENT(OUT):: dfdt(n) |
---|
2956 | !~~~> local variables |
---|
2957 | REAL(kind=dp):: delta |
---|
2958 | REAL(kind=dp), PARAMETER :: one = 1.0_dp, deltamin = 1.0e-6_dp |
---|
2959 | |
---|
2960 | delta = sqrt(roundoff) * max(deltamin, abs(t)) |
---|
2961 | CALL funtemplate(t+ delta, y, dfdt) |
---|
2962 | istatus(nfun) = istatus(nfun) + 1 |
---|
2963 | CALL waxpy(n, (- one), fcn0, 1, dfdt, 1) |
---|
2964 | CALL wscal(n, (one/delta), dfdt, 1) |
---|
2965 | |
---|
2966 | END SUBROUTINE ros_funtimederivative |
---|
2967 | |
---|
2968 | |
---|
2969 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
2970 | SUBROUTINE ros_preparematrix(h, direction, gam, & |
---|
2971 | jac0, ghimj, pivot, singular) |
---|
2972 | ! --- --- --- --- --- --- --- --- --- --- --- --- --- |
---|
2973 | ! Prepares the LHS matrix for stage calculations |
---|
2974 | ! 1. Construct Ghimj = 1/(H*ham) - Jac0 |
---|
2975 | ! "(Gamma H) Inverse Minus Jacobian" |
---|
2976 | ! 2. Repeat LU decomposition of Ghimj until successful. |
---|
2977 | ! -half the step size if LU decomposition fails and retry |
---|
2978 | ! -exit after 5 consecutive fails |
---|
2979 | ! --- --- --- --- --- --- --- --- --- --- --- --- --- |
---|
2980 | |
---|
2981 | !~~~> input arguments |
---|
2982 | #ifdef full_algebra |
---|
2983 | REAL(kind=dp), INTENT(IN):: jac0(n, n) |
---|
2984 | #else |
---|
2985 | REAL(kind=dp), INTENT(IN):: jac0(lu_nonzero) |
---|
2986 | #endif |
---|
2987 | REAL(kind=dp), INTENT(IN):: gam |
---|
2988 | INTEGER, INTENT(IN):: direction |
---|
2989 | !~~~> output arguments |
---|
2990 | #ifdef full_algebra |
---|
2991 | REAL(kind=dp), INTENT(OUT):: ghimj(n, n) |
---|
2992 | #else |
---|
2993 | REAL(kind=dp), INTENT(OUT):: ghimj(lu_nonzero) |
---|
2994 | #endif |
---|
2995 | LOGICAL, INTENT(OUT):: singular |
---|
2996 | INTEGER, INTENT(OUT):: pivot(n) |
---|
2997 | !~~~> inout arguments |
---|
2998 | REAL(kind=dp), INTENT(INOUT):: h ! step size is decreased when lu fails |
---|
2999 | !~~~> local variables |
---|
3000 | INTEGER :: i, ising, nconsecutive |
---|
3001 | REAL(kind=dp):: ghinv |
---|
3002 | REAL(kind=dp), PARAMETER :: one = 1.0_dp, half = 0.5_dp |
---|
3003 | |
---|
3004 | nconsecutive = 0 |
---|
3005 | singular = .TRUE. |
---|
3006 | |
---|
3007 | DO WHILE (singular) |
---|
3008 | |
---|
3009 | !~~~> construct ghimj = 1/(h* gam) - jac0 |
---|
3010 | #ifdef full_algebra |
---|
3011 | !slim: CALL wcopy(n* n, jac0, 1, ghimj, 1) |
---|
3012 | !slim: CALL wscal(n* n, (- one), ghimj, 1) |
---|
3013 | ghimj = - jac0 |
---|
3014 | ghinv = one/(direction* h* gam) |
---|
3015 | DO i=1, n |
---|
3016 | ghimj(i, i) = ghimj(i, i) + ghinv |
---|
3017 | ENDDO |
---|
3018 | #else |
---|
3019 | !slim: CALL wcopy(lu_nonzero, jac0, 1, ghimj, 1) |
---|
3020 | !slim: CALL wscal(lu_nonzero, (- one), ghimj, 1) |
---|
3021 | ghimj(1:lu_nonzero) = - jac0(1:lu_nonzero) |
---|
3022 | ghinv = one/(direction* h* gam) |
---|
3023 | DO i=1, n |
---|
3024 | ghimj(lu_diag(i)) = ghimj(lu_diag(i)) + ghinv |
---|
3025 | ENDDO |
---|
3026 | #endif |
---|
3027 | !~~~> compute lu decomposition |
---|
3028 | CALL ros_decomp( ghimj, pivot, ising) |
---|
3029 | IF (ising == 0)THEN |
---|
3030 | !~~~> IF successful done |
---|
3031 | singular = .FALSE. |
---|
3032 | ELSE ! ising .ne. 0 |
---|
3033 | !~~~> IF unsuccessful half the step size; IF 5 consecutive fails THEN RETURN |
---|
3034 | istatus(nsng) = istatus(nsng) + 1 |
---|
3035 | nconsecutive = nconsecutive+1 |
---|
3036 | singular = .TRUE. |
---|
3037 | PRINT*,'Warning: LU Decomposition returned ISING = ',ISING |
---|
3038 | IF (nconsecutive <= 5)THEN ! less than 5 consecutive failed decompositions |
---|
3039 | h = h* half |
---|
3040 | ELSE ! more than 5 consecutive failed decompositions |
---|
3041 | RETURN |
---|
3042 | ENDIF ! nconsecutive |
---|
3043 | ENDIF ! ising |
---|
3044 | |
---|
3045 | END DO ! WHILE singular |
---|
3046 | |
---|
3047 | END SUBROUTINE ros_preparematrix |
---|
3048 | |
---|
3049 | |
---|
3050 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3051 | SUBROUTINE ros_decomp( a, pivot, ising) |
---|
3052 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3053 | ! Template for the LU decomposition |
---|
3054 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3055 | !~~~> inout variables |
---|
3056 | #ifdef full_algebra |
---|
3057 | REAL(kind=dp), INTENT(INOUT):: a(n, n) |
---|
3058 | #else |
---|
3059 | REAL(kind=dp), INTENT(INOUT):: a(lu_nonzero) |
---|
3060 | #endif |
---|
3061 | !~~~> output variables |
---|
3062 | INTEGER, INTENT(OUT):: pivot(n), ising |
---|
3063 | |
---|
3064 | #ifdef full_algebra |
---|
3065 | CALL dgetrf( n, n, a, n, pivot, ising) |
---|
3066 | #else |
---|
3067 | CALL kppdecomp(a, ising) |
---|
3068 | pivot(1) = 1 |
---|
3069 | #endif |
---|
3070 | istatus(ndec) = istatus(ndec) + 1 |
---|
3071 | |
---|
3072 | END SUBROUTINE ros_decomp |
---|
3073 | |
---|
3074 | |
---|
3075 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3076 | SUBROUTINE ros_solve( a, pivot, b) |
---|
3077 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3078 | ! Template for the forward/backward substitution (using pre-computed LU decomposition) |
---|
3079 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3080 | !~~~> input variables |
---|
3081 | #ifdef full_algebra |
---|
3082 | REAL(kind=dp), INTENT(IN):: a(n, n) |
---|
3083 | INTEGER :: ising |
---|
3084 | #else |
---|
3085 | REAL(kind=dp), INTENT(IN):: a(lu_nonzero) |
---|
3086 | #endif |
---|
3087 | INTEGER, INTENT(IN):: pivot(n) |
---|
3088 | !~~~> inout variables |
---|
3089 | REAL(kind=dp), INTENT(INOUT):: b(n) |
---|
3090 | |
---|
3091 | #ifdef full_algebra |
---|
3092 | CALL DGETRS( 'N',N ,1,A,N,Pivot,b,N,ISING) |
---|
3093 | IF (info < 0)THEN |
---|
3094 | print* , "error in dgetrs. ising=", ising |
---|
3095 | ENDIF |
---|
3096 | #else |
---|
3097 | CALL kppsolve( a, b) |
---|
3098 | #endif |
---|
3099 | |
---|
3100 | istatus(nsol) = istatus(nsol) + 1 |
---|
3101 | |
---|
3102 | END SUBROUTINE ros_solve |
---|
3103 | |
---|
3104 | |
---|
3105 | |
---|
3106 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3107 | SUBROUTINE ros2 |
---|
3108 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3109 | ! --- AN L-STABLE METHOD,2 stages,order 2 |
---|
3110 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3111 | |
---|
3112 | double precision g |
---|
3113 | |
---|
3114 | g = 1.0_dp + 1.0_dp/sqrt(2.0_dp) |
---|
3115 | rosmethod = rs2 |
---|
3116 | !~~~> name of the method |
---|
3117 | ros_Name = 'ROS-2' |
---|
3118 | !~~~> number of stages |
---|
3119 | ros_s = 2 |
---|
3120 | |
---|
3121 | !~~~> the coefficient matrices a and c are strictly lower triangular. |
---|
3122 | ! The lower triangular (subdiagonal) elements are stored in row-wise order: |
---|
3123 | ! A(2,1) = ros_A(1),A(3,1) =ros_A(2),A(3,2) =ros_A(3),etc. |
---|
3124 | ! The general mapping formula is: |
---|
3125 | ! A(i,j) = ros_A( (i-1)*(i-2)/2 + j) |
---|
3126 | ! C(i,j) = ros_C( (i-1)*(i-2)/2 + j) |
---|
3127 | |
---|
3128 | ros_a(1) = (1.0_dp) /g |
---|
3129 | ros_c(1) = (- 2.0_dp) /g |
---|
3130 | !~~~> does the stage i require a new FUNCTION evaluation (ros_newf(i) =true) |
---|
3131 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i) =FALSE) |
---|
3132 | ros_newf(1) = .TRUE. |
---|
3133 | ros_newf(2) = .TRUE. |
---|
3134 | !~~~> m_i = coefficients for new step solution |
---|
3135 | ros_m(1) = (3.0_dp) /(2.0_dp* g) |
---|
3136 | ros_m(2) = (1.0_dp) /(2.0_dp* g) |
---|
3137 | ! E_i = Coefficients for error estimator |
---|
3138 | ros_e(1) = 1.0_dp/(2.0_dp* g) |
---|
3139 | ros_e(2) = 1.0_dp/(2.0_dp* g) |
---|
3140 | !~~~> ros_elo = estimator of local order - the minimum between the |
---|
3141 | ! main and the embedded scheme orders plus one |
---|
3142 | ros_elo = 2.0_dp |
---|
3143 | !~~~> y_stage_i ~ y( t + h* alpha_i) |
---|
3144 | ros_alpha(1) = 0.0_dp |
---|
3145 | ros_alpha(2) = 1.0_dp |
---|
3146 | !~~~> gamma_i = \sum_j gamma_{i, j} |
---|
3147 | ros_gamma(1) = g |
---|
3148 | ros_gamma(2) = -g |
---|
3149 | |
---|
3150 | END SUBROUTINE ros2 |
---|
3151 | |
---|
3152 | |
---|
3153 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3154 | SUBROUTINE ros3 |
---|
3155 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3156 | ! --- AN L-STABLE METHOD,3 stages,order 3,2 function evaluations |
---|
3157 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3158 | |
---|
3159 | rosmethod = rs3 |
---|
3160 | !~~~> name of the method |
---|
3161 | ros_Name = 'ROS-3' |
---|
3162 | !~~~> number of stages |
---|
3163 | ros_s = 3 |
---|
3164 | |
---|
3165 | !~~~> the coefficient matrices a and c are strictly lower triangular. |
---|
3166 | ! The lower triangular (subdiagonal) elements are stored in row-wise order: |
---|
3167 | ! A(2,1) = ros_A(1),A(3,1) =ros_A(2),A(3,2) =ros_A(3),etc. |
---|
3168 | ! The general mapping formula is: |
---|
3169 | ! A(i,j) = ros_A( (i-1)*(i-2)/2 + j) |
---|
3170 | ! C(i,j) = ros_C( (i-1)*(i-2)/2 + j) |
---|
3171 | |
---|
3172 | ros_a(1) = 1.0_dp |
---|
3173 | ros_a(2) = 1.0_dp |
---|
3174 | ros_a(3) = 0.0_dp |
---|
3175 | |
---|
3176 | ros_c(1) = - 0.10156171083877702091975600115545e+01_dp |
---|
3177 | ros_c(2) = 0.40759956452537699824805835358067e+01_dp |
---|
3178 | ros_c(3) = 0.92076794298330791242156818474003e+01_dp |
---|
3179 | !~~~> does the stage i require a new FUNCTION evaluation (ros_newf(i) =true) |
---|
3180 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i) =FALSE) |
---|
3181 | ros_newf(1) = .TRUE. |
---|
3182 | ros_newf(2) = .TRUE. |
---|
3183 | ros_newf(3) = .FALSE. |
---|
3184 | !~~~> m_i = coefficients for new step solution |
---|
3185 | ros_m(1) = 0.1e+01_dp |
---|
3186 | ros_m(2) = 0.61697947043828245592553615689730e+01_dp |
---|
3187 | ros_m(3) = - 0.42772256543218573326238373806514_dp |
---|
3188 | ! E_i = Coefficients for error estimator |
---|
3189 | ros_e(1) = 0.5_dp |
---|
3190 | ros_e(2) = - 0.29079558716805469821718236208017e+01_dp |
---|
3191 | ros_e(3) = 0.22354069897811569627360909276199_dp |
---|
3192 | !~~~> ros_elo = estimator of local order - the minimum between the |
---|
3193 | ! main and the embedded scheme orders plus 1 |
---|
3194 | ros_elo = 3.0_dp |
---|
3195 | !~~~> y_stage_i ~ y( t + h* alpha_i) |
---|
3196 | ros_alpha(1) = 0.0_dp |
---|
3197 | ros_alpha(2) = 0.43586652150845899941601945119356_dp |
---|
3198 | ros_alpha(3) = 0.43586652150845899941601945119356_dp |
---|
3199 | !~~~> gamma_i = \sum_j gamma_{i, j} |
---|
3200 | ros_gamma(1) = 0.43586652150845899941601945119356_dp |
---|
3201 | ros_gamma(2) = 0.24291996454816804366592249683314_dp |
---|
3202 | ros_gamma(3) = 0.21851380027664058511513169485832e+01_dp |
---|
3203 | |
---|
3204 | END SUBROUTINE ros3 |
---|
3205 | |
---|
3206 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3207 | |
---|
3208 | |
---|
3209 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3210 | SUBROUTINE ros4 |
---|
3211 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3212 | ! L-STABLE ROSENBROCK METHOD OF ORDER 4,WITH 4 STAGES |
---|
3213 | ! L-STABLE EMBEDDED ROSENBROCK METHOD OF ORDER 3 |
---|
3214 | ! |
---|
3215 | ! E. HAIRER AND G. WANNER,SOLVING ORDINARY DIFFERENTIAL |
---|
3216 | ! EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS. |
---|
3217 | ! SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS, |
---|
3218 | ! SPRINGER-VERLAG (1990) |
---|
3219 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3220 | |
---|
3221 | |
---|
3222 | rosmethod = rs4 |
---|
3223 | !~~~> name of the method |
---|
3224 | ros_Name = 'ROS-4' |
---|
3225 | !~~~> number of stages |
---|
3226 | ros_s = 4 |
---|
3227 | |
---|
3228 | !~~~> the coefficient matrices a and c are strictly lower triangular. |
---|
3229 | ! The lower triangular (subdiagonal) elements are stored in row-wise order: |
---|
3230 | ! A(2,1) = ros_A(1),A(3,1) =ros_A(2),A(3,2) =ros_A(3),etc. |
---|
3231 | ! The general mapping formula is: |
---|
3232 | ! A(i,j) = ros_A( (i-1)*(i-2)/2 + j) |
---|
3233 | ! C(i,j) = ros_C( (i-1)*(i-2)/2 + j) |
---|
3234 | |
---|
3235 | ros_a(1) = 0.2000000000000000e+01_dp |
---|
3236 | ros_a(2) = 0.1867943637803922e+01_dp |
---|
3237 | ros_a(3) = 0.2344449711399156_dp |
---|
3238 | ros_a(4) = ros_a(2) |
---|
3239 | ros_a(5) = ros_a(3) |
---|
3240 | ros_a(6) = 0.0_dp |
---|
3241 | |
---|
3242 | ros_c(1) = -0.7137615036412310e+01_dp |
---|
3243 | ros_c(2) = 0.2580708087951457e+01_dp |
---|
3244 | ros_c(3) = 0.6515950076447975_dp |
---|
3245 | ros_c(4) = -0.2137148994382534e+01_dp |
---|
3246 | ros_c(5) = -0.3214669691237626_dp |
---|
3247 | ros_c(6) = -0.6949742501781779_dp |
---|
3248 | !~~~> does the stage i require a new FUNCTION evaluation (ros_newf(i) =true) |
---|
3249 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i) =FALSE) |
---|
3250 | ros_newf(1) = .TRUE. |
---|
3251 | ros_newf(2) = .TRUE. |
---|
3252 | ros_newf(3) = .TRUE. |
---|
3253 | ros_newf(4) = .FALSE. |
---|
3254 | !~~~> m_i = coefficients for new step solution |
---|
3255 | ros_m(1) = 0.2255570073418735e+01_dp |
---|
3256 | ros_m(2) = 0.2870493262186792_dp |
---|
3257 | ros_m(3) = 0.4353179431840180_dp |
---|
3258 | ros_m(4) = 0.1093502252409163e+01_dp |
---|
3259 | !~~~> e_i = coefficients for error estimator |
---|
3260 | ros_e(1) = -0.2815431932141155_dp |
---|
3261 | ros_e(2) = -0.7276199124938920e-01_dp |
---|
3262 | ros_e(3) = -0.1082196201495311_dp |
---|
3263 | ros_e(4) = -0.1093502252409163e+01_dp |
---|
3264 | !~~~> ros_elo = estimator of local order - the minimum between the |
---|
3265 | ! main and the embedded scheme orders plus 1 |
---|
3266 | ros_elo = 4.0_dp |
---|
3267 | !~~~> y_stage_i ~ y( t + h* alpha_i) |
---|
3268 | ros_alpha(1) = 0.0_dp |
---|
3269 | ros_alpha(2) = 0.1145640000000000e+01_dp |
---|
3270 | ros_alpha(3) = 0.6552168638155900_dp |
---|
3271 | ros_alpha(4) = ros_alpha(3) |
---|
3272 | !~~~> gamma_i = \sum_j gamma_{i, j} |
---|
3273 | ros_gamma(1) = 0.5728200000000000_dp |
---|
3274 | ros_gamma(2) = -0.1769193891319233e+01_dp |
---|
3275 | ros_gamma(3) = 0.7592633437920482_dp |
---|
3276 | ros_gamma(4) = -0.1049021087100450_dp |
---|
3277 | |
---|
3278 | END SUBROUTINE ros4 |
---|
3279 | |
---|
3280 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3281 | SUBROUTINE rodas3 |
---|
3282 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3283 | ! --- A STIFFLY-STABLE METHOD,4 stages,order 3 |
---|
3284 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3285 | |
---|
3286 | |
---|
3287 | rosmethod = rd3 |
---|
3288 | !~~~> name of the method |
---|
3289 | ros_Name = 'RODAS-3' |
---|
3290 | !~~~> number of stages |
---|
3291 | ros_s = 4 |
---|
3292 | |
---|
3293 | !~~~> the coefficient matrices a and c are strictly lower triangular. |
---|
3294 | ! The lower triangular (subdiagonal) elements are stored in row-wise order: |
---|
3295 | ! A(2,1) = ros_A(1),A(3,1) =ros_A(2),A(3,2) =ros_A(3),etc. |
---|
3296 | ! The general mapping formula is: |
---|
3297 | ! A(i,j) = ros_A( (i-1)*(i-2)/2 + j) |
---|
3298 | ! C(i,j) = ros_C( (i-1)*(i-2)/2 + j) |
---|
3299 | |
---|
3300 | ros_a(1) = 0.0_dp |
---|
3301 | ros_a(2) = 2.0_dp |
---|
3302 | ros_a(3) = 0.0_dp |
---|
3303 | ros_a(4) = 2.0_dp |
---|
3304 | ros_a(5) = 0.0_dp |
---|
3305 | ros_a(6) = 1.0_dp |
---|
3306 | |
---|
3307 | ros_c(1) = 4.0_dp |
---|
3308 | ros_c(2) = 1.0_dp |
---|
3309 | ros_c(3) = -1.0_dp |
---|
3310 | ros_c(4) = 1.0_dp |
---|
3311 | ros_c(5) = -1.0_dp |
---|
3312 | ros_c(6) = -(8.0_dp/3.0_dp) |
---|
3313 | |
---|
3314 | !~~~> does the stage i require a new FUNCTION evaluation (ros_newf(i) =true) |
---|
3315 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i) =FALSE) |
---|
3316 | ros_newf(1) = .TRUE. |
---|
3317 | ros_newf(2) = .FALSE. |
---|
3318 | ros_newf(3) = .TRUE. |
---|
3319 | ros_newf(4) = .TRUE. |
---|
3320 | !~~~> m_i = coefficients for new step solution |
---|
3321 | ros_m(1) = 2.0_dp |
---|
3322 | ros_m(2) = 0.0_dp |
---|
3323 | ros_m(3) = 1.0_dp |
---|
3324 | ros_m(4) = 1.0_dp |
---|
3325 | !~~~> e_i = coefficients for error estimator |
---|
3326 | ros_e(1) = 0.0_dp |
---|
3327 | ros_e(2) = 0.0_dp |
---|
3328 | ros_e(3) = 0.0_dp |
---|
3329 | ros_e(4) = 1.0_dp |
---|
3330 | !~~~> ros_elo = estimator of local order - the minimum between the |
---|
3331 | ! main and the embedded scheme orders plus 1 |
---|
3332 | ros_elo = 3.0_dp |
---|
3333 | !~~~> y_stage_i ~ y( t + h* alpha_i) |
---|
3334 | ros_alpha(1) = 0.0_dp |
---|
3335 | ros_alpha(2) = 0.0_dp |
---|
3336 | ros_alpha(3) = 1.0_dp |
---|
3337 | ros_alpha(4) = 1.0_dp |
---|
3338 | !~~~> gamma_i = \sum_j gamma_{i, j} |
---|
3339 | ros_gamma(1) = 0.5_dp |
---|
3340 | ros_gamma(2) = 1.5_dp |
---|
3341 | ros_gamma(3) = 0.0_dp |
---|
3342 | ros_gamma(4) = 0.0_dp |
---|
3343 | |
---|
3344 | END SUBROUTINE rodas3 |
---|
3345 | |
---|
3346 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3347 | SUBROUTINE rodas4 |
---|
3348 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3349 | ! STIFFLY-STABLE ROSENBROCK METHOD OF ORDER 4,WITH 6 STAGES |
---|
3350 | ! |
---|
3351 | ! E. HAIRER AND G. WANNER,SOLVING ORDINARY DIFFERENTIAL |
---|
3352 | ! EQUATIONS II. STIFF AND DIFFERENTIAL-ALGEBRAIC PROBLEMS. |
---|
3353 | ! SPRINGER SERIES IN COMPUTATIONAL MATHEMATICS, |
---|
3354 | ! SPRINGER-VERLAG (1996) |
---|
3355 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3356 | |
---|
3357 | |
---|
3358 | rosmethod = rd4 |
---|
3359 | !~~~> name of the method |
---|
3360 | ros_Name = 'RODAS-4' |
---|
3361 | !~~~> number of stages |
---|
3362 | ros_s = 6 |
---|
3363 | |
---|
3364 | !~~~> y_stage_i ~ y( t + h* alpha_i) |
---|
3365 | ros_alpha(1) = 0.000_dp |
---|
3366 | ros_alpha(2) = 0.386_dp |
---|
3367 | ros_alpha(3) = 0.210_dp |
---|
3368 | ros_alpha(4) = 0.630_dp |
---|
3369 | ros_alpha(5) = 1.000_dp |
---|
3370 | ros_alpha(6) = 1.000_dp |
---|
3371 | |
---|
3372 | !~~~> gamma_i = \sum_j gamma_{i, j} |
---|
3373 | ros_gamma(1) = 0.2500000000000000_dp |
---|
3374 | ros_gamma(2) = -0.1043000000000000_dp |
---|
3375 | ros_gamma(3) = 0.1035000000000000_dp |
---|
3376 | ros_gamma(4) = -0.3620000000000023e-01_dp |
---|
3377 | ros_gamma(5) = 0.0_dp |
---|
3378 | ros_gamma(6) = 0.0_dp |
---|
3379 | |
---|
3380 | !~~~> the coefficient matrices a and c are strictly lower triangular. |
---|
3381 | ! The lower triangular (subdiagonal) elements are stored in row-wise order: |
---|
3382 | ! A(2,1) = ros_A(1),A(3,1) =ros_A(2),A(3,2) =ros_A(3),etc. |
---|
3383 | ! The general mapping formula is: A(i,j) = ros_A( (i-1)*(i-2)/2 + j) |
---|
3384 | ! C(i,j) = ros_C( (i-1)*(i-2)/2 + j) |
---|
3385 | |
---|
3386 | ros_a(1) = 0.1544000000000000e+01_dp |
---|
3387 | ros_a(2) = 0.9466785280815826_dp |
---|
3388 | ros_a(3) = 0.2557011698983284_dp |
---|
3389 | ros_a(4) = 0.3314825187068521e+01_dp |
---|
3390 | ros_a(5) = 0.2896124015972201e+01_dp |
---|
3391 | ros_a(6) = 0.9986419139977817_dp |
---|
3392 | ros_a(7) = 0.1221224509226641e+01_dp |
---|
3393 | ros_a(8) = 0.6019134481288629e+01_dp |
---|
3394 | ros_a(9) = 0.1253708332932087e+02_dp |
---|
3395 | ros_a(10) = -0.6878860361058950_dp |
---|
3396 | ros_a(11) = ros_a(7) |
---|
3397 | ros_a(12) = ros_a(8) |
---|
3398 | ros_a(13) = ros_a(9) |
---|
3399 | ros_a(14) = ros_a(10) |
---|
3400 | ros_a(15) = 1.0_dp |
---|
3401 | |
---|
3402 | ros_c(1) = -0.5668800000000000e+01_dp |
---|
3403 | ros_c(2) = -0.2430093356833875e+01_dp |
---|
3404 | ros_c(3) = -0.2063599157091915_dp |
---|
3405 | ros_c(4) = -0.1073529058151375_dp |
---|
3406 | ros_c(5) = -0.9594562251023355e+01_dp |
---|
3407 | ros_c(6) = -0.2047028614809616e+02_dp |
---|
3408 | ros_c(7) = 0.7496443313967647e+01_dp |
---|
3409 | ros_c(8) = -0.1024680431464352e+02_dp |
---|
3410 | ros_c(9) = -0.3399990352819905e+02_dp |
---|
3411 | ros_c(10) = 0.1170890893206160e+02_dp |
---|
3412 | ros_c(11) = 0.8083246795921522e+01_dp |
---|
3413 | ros_c(12) = -0.7981132988064893e+01_dp |
---|
3414 | ros_c(13) = -0.3152159432874371e+02_dp |
---|
3415 | ros_c(14) = 0.1631930543123136e+02_dp |
---|
3416 | ros_c(15) = -0.6058818238834054e+01_dp |
---|
3417 | |
---|
3418 | !~~~> m_i = coefficients for new step solution |
---|
3419 | ros_m(1) = ros_a(7) |
---|
3420 | ros_m(2) = ros_a(8) |
---|
3421 | ros_m(3) = ros_a(9) |
---|
3422 | ros_m(4) = ros_a(10) |
---|
3423 | ros_m(5) = 1.0_dp |
---|
3424 | ros_m(6) = 1.0_dp |
---|
3425 | |
---|
3426 | !~~~> e_i = coefficients for error estimator |
---|
3427 | ros_e(1) = 0.0_dp |
---|
3428 | ros_e(2) = 0.0_dp |
---|
3429 | ros_e(3) = 0.0_dp |
---|
3430 | ros_e(4) = 0.0_dp |
---|
3431 | ros_e(5) = 0.0_dp |
---|
3432 | ros_e(6) = 1.0_dp |
---|
3433 | |
---|
3434 | !~~~> does the stage i require a new FUNCTION evaluation (ros_newf(i) =true) |
---|
3435 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i) =FALSE) |
---|
3436 | ros_newf(1) = .TRUE. |
---|
3437 | ros_newf(2) = .TRUE. |
---|
3438 | ros_newf(3) = .TRUE. |
---|
3439 | ros_newf(4) = .TRUE. |
---|
3440 | ros_newf(5) = .TRUE. |
---|
3441 | ros_newf(6) = .TRUE. |
---|
3442 | |
---|
3443 | !~~~> ros_elo = estimator of local order - the minimum between the |
---|
3444 | ! main and the embedded scheme orders plus 1 |
---|
3445 | ros_elo = 4.0_dp |
---|
3446 | |
---|
3447 | END SUBROUTINE rodas4 |
---|
3448 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3449 | SUBROUTINE rang3 |
---|
3450 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3451 | ! STIFFLY-STABLE W METHOD OF ORDER 3,WITH 4 STAGES |
---|
3452 | ! |
---|
3453 | ! J. RANG and L. ANGERMANN |
---|
3454 | ! NEW ROSENBROCK W-METHODS OF ORDER 3 |
---|
3455 | ! FOR PARTIAL DIFFERENTIAL ALGEBRAIC |
---|
3456 | ! EQUATIONS OF INDEX 1 |
---|
3457 | ! BIT Numerical Mathematics (2005) 45: 761-787 |
---|
3458 | ! DOI: 10.1007/s10543-005-0035-y |
---|
3459 | ! Table 4.1-4.2 |
---|
3460 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3461 | |
---|
3462 | |
---|
3463 | rosmethod = rg3 |
---|
3464 | !~~~> name of the method |
---|
3465 | ros_Name = 'RANG-3' |
---|
3466 | !~~~> number of stages |
---|
3467 | ros_s = 4 |
---|
3468 | |
---|
3469 | ros_a(1) = 5.09052051067020d+00; |
---|
3470 | ros_a(2) = 5.09052051067020d+00; |
---|
3471 | ros_a(3) = 0.0d0; |
---|
3472 | ros_a(4) = 4.97628111010787d+00; |
---|
3473 | ros_a(5) = 2.77268164715849d-02; |
---|
3474 | ros_a(6) = 2.29428036027904d-01; |
---|
3475 | |
---|
3476 | ros_c(1) = - 1.16790812312283d+01; |
---|
3477 | ros_c(2) = - 1.64057326467367d+01; |
---|
3478 | ros_c(3) = - 2.77268164715850d-01; |
---|
3479 | ros_c(4) = - 8.38103960500476d+00; |
---|
3480 | ros_c(5) = - 8.48328409199343d-01; |
---|
3481 | ros_c(6) = 2.87009860433106d-01; |
---|
3482 | |
---|
3483 | ros_m(1) = 5.22582761233094d+00; |
---|
3484 | ros_m(2) = - 5.56971148154165d-01; |
---|
3485 | ros_m(3) = 3.57979469353645d-01; |
---|
3486 | ros_m(4) = 1.72337398521064d+00; |
---|
3487 | |
---|
3488 | ros_e(1) = - 5.16845212784040d+00; |
---|
3489 | ros_e(2) = - 1.26351942603842d+00; |
---|
3490 | ros_e(3) = - 1.11022302462516d-16; |
---|
3491 | ros_e(4) = 2.22044604925031d-16; |
---|
3492 | |
---|
3493 | ros_alpha(1) = 0.0d00; |
---|
3494 | ros_alpha(2) = 2.21878746765329d+00; |
---|
3495 | ros_alpha(3) = 2.21878746765329d+00; |
---|
3496 | ros_alpha(4) = 1.55392337535788d+00; |
---|
3497 | |
---|
3498 | ros_gamma(1) = 4.35866521508459d-01; |
---|
3499 | ros_gamma(2) = - 1.78292094614483d+00; |
---|
3500 | ros_gamma(3) = - 2.46541900496934d+00; |
---|
3501 | ros_gamma(4) = - 8.05529997906370d-01; |
---|
3502 | |
---|
3503 | |
---|
3504 | !~~~> does the stage i require a new FUNCTION evaluation (ros_newf(i) =true) |
---|
3505 | ! or does it re-use the function evaluation from stage i-1 (ros_NewF(i) =FALSE) |
---|
3506 | ros_newf(1) = .TRUE. |
---|
3507 | ros_newf(2) = .TRUE. |
---|
3508 | ros_newf(3) = .TRUE. |
---|
3509 | ros_newf(4) = .TRUE. |
---|
3510 | |
---|
3511 | !~~~> ros_elo = estimator of local order - the minimum between the |
---|
3512 | ! main and the embedded scheme orders plus 1 |
---|
3513 | ros_elo = 3.0_dp |
---|
3514 | |
---|
3515 | END SUBROUTINE rang3 |
---|
3516 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3517 | |
---|
3518 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3519 | ! End of the set of internal Rosenbrock subroutines |
---|
3520 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3521 | END SUBROUTINE rosenbrock |
---|
3522 | |
---|
3523 | SUBROUTINE funtemplate( t, y, ydot) |
---|
3524 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3525 | ! Template for the ODE function call. |
---|
3526 | ! Updates the rate coefficients (and possibly the fixed species) at each call |
---|
3527 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3528 | !~~~> input variables |
---|
3529 | REAL(kind=dp):: t, y(nvar) |
---|
3530 | !~~~> output variables |
---|
3531 | REAL(kind=dp):: ydot(nvar) |
---|
3532 | !~~~> local variables |
---|
3533 | REAL(kind=dp):: told |
---|
3534 | |
---|
3535 | told = time |
---|
3536 | time = t |
---|
3537 | CALL fun( y, fix, rconst, ydot) |
---|
3538 | time = told |
---|
3539 | |
---|
3540 | END SUBROUTINE funtemplate |
---|
3541 | |
---|
3542 | SUBROUTINE jactemplate( t, y, jcb) |
---|
3543 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3544 | ! Template for the ODE Jacobian call. |
---|
3545 | ! Updates the rate coefficients (and possibly the fixed species) at each call |
---|
3546 | !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3547 | !~~~> input variables |
---|
3548 | REAL(kind=dp):: t, y(nvar) |
---|
3549 | !~~~> output variables |
---|
3550 | #ifdef full_algebra |
---|
3551 | REAL(kind=dp):: jv(lu_nonzero), jcb(nvar, nvar) |
---|
3552 | #else |
---|
3553 | REAL(kind=dp):: jcb(lu_nonzero) |
---|
3554 | #endif |
---|
3555 | !~~~> local variables |
---|
3556 | REAL(kind=dp):: told |
---|
3557 | #ifdef full_algebra |
---|
3558 | INTEGER :: i, j |
---|
3559 | #endif |
---|
3560 | |
---|
3561 | told = time |
---|
3562 | time = t |
---|
3563 | #ifdef full_algebra |
---|
3564 | CALL jac_sp(y, fix, rconst, jv) |
---|
3565 | DO j=1, nvar |
---|
3566 | DO i=1, nvar |
---|
3567 | jcb(i, j) = 0.0_dp |
---|
3568 | ENDDO |
---|
3569 | ENDDO |
---|
3570 | DO i=1, lu_nonzero |
---|
3571 | jcb(lu_irow(i), lu_icol(i)) = jv(i) |
---|
3572 | ENDDO |
---|
3573 | #else |
---|
3574 | CALL jac_sp( y, fix, rconst, jcb) |
---|
3575 | #endif |
---|
3576 | time = told |
---|
3577 | |
---|
3578 | END SUBROUTINE jactemplate |
---|
3579 | |
---|
3580 | SUBROUTINE kppdecomp( jvs, ier) |
---|
3581 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3582 | ! sparse lu factorization |
---|
3583 | ! ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
---|
3584 | ! loop expansion generated by kp4 |
---|
3585 | |
---|
3586 | INTEGER :: ier |
---|
3587 | REAL(kind=dp):: jvs(lu_nonzero), w(nvar), a |
---|
3588 | INTEGER :: k, kk, j, jj |
---|
3589 | |
---|
3590 | a = 0. |
---|
3591 | ier = 0 |
---|
3592 | |
---|
3593 | ! i = 1 |
---|
3594 | ! i = 2 |
---|
3595 | ! i = 3 |
---|
3596 | ! i = 4 |
---|
3597 | ! i = 5 |
---|
3598 | ! i = 6 |
---|
3599 | ! i = 7 |
---|
3600 | ! i = 8 |
---|
3601 | ! i = 9 |
---|
3602 | ! i = 10 |
---|
3603 | ! i = 11 |
---|
3604 | jvs(38) = (jvs(38)) / jvs(14) |
---|
3605 | jvs(39) = (jvs(39)) / jvs(19) |
---|
3606 | jvs(41) = jvs(41) - jvs(15) * jvs(38) - jvs(20) * jvs(39) |
---|
3607 | ! i = 12 |
---|
3608 | jvs(43) = (jvs(43)) / jvs(16) |
---|
3609 | jvs(48) = jvs(48) - jvs(17) * jvs(43) |
---|
3610 | jvs(50) = jvs(50) - jvs(18) * jvs(43) |
---|
3611 | ! i = 13 |
---|
3612 | ! i = 14 |
---|
3613 | jvs(55) = (jvs(55)) / jvs(14) |
---|
3614 | jvs(56) = (jvs(56)) / jvs(19) |
---|
3615 | jvs(57) = (jvs(57)) / jvs(40) |
---|
3616 | jvs(59) = jvs(59) - jvs(15) * jvs(55) - jvs(20) * jvs(56) - jvs(41) * jvs(57) |
---|
3617 | jvs(61) = jvs(61) - jvs(42) * jvs(57) |
---|
3618 | ! i = 15 |
---|
3619 | jvs(62) = (jvs(62)) / jvs(19) |
---|
3620 | jvs(67) = jvs(67) - jvs(20) * jvs(62) |
---|
3621 | ! i = 16 |
---|
3622 | jvs(68) = (jvs(68)) / jvs(63) |
---|
3623 | jvs(71) = jvs(71) - jvs(64) * jvs(68) |
---|
3624 | jvs(73) = jvs(73) - jvs(65) * jvs(68) |
---|
3625 | jvs(76) = jvs(76) - jvs(66) * jvs(68) |
---|
3626 | jvs(77) = jvs(77) - jvs(67) * jvs(68) |
---|
3627 | ! i = 17 |
---|
3628 | ! i = 18 |
---|
3629 | jvs(85) = (jvs(85)) / jvs(14) |
---|
3630 | jvs(86) = (jvs(86)) / jvs(19) |
---|
3631 | jvs(87) = (jvs(87)) / jvs(51) |
---|
3632 | jvs(88) = (jvs(88)) / jvs(58) |
---|
3633 | jvs(89) = (jvs(89)) / jvs(63) |
---|
3634 | jvs(90) = (jvs(90)) / jvs(80) |
---|
3635 | jvs(92) = jvs(92) - jvs(64) * jvs(89) |
---|
3636 | jvs(93) = jvs(93) - jvs(52) * jvs(87) |
---|
3637 | jvs(94) = jvs(94) - jvs(65) * jvs(89) - jvs(81) * jvs(90) |
---|
3638 | jvs(97) = jvs(97) - jvs(66) * jvs(89) - jvs(82) * jvs(90) |
---|
3639 | jvs(98) = jvs(98) - jvs(53) * jvs(87) |
---|
3640 | jvs(99) = jvs(99) - jvs(15) * jvs(85) - jvs(20) * jvs(86) - jvs(54) * jvs(87) - jvs(59) * jvs(88)& |
---|
3641 | - jvs(67) * jvs(89) - jvs(83) * jvs(90) |
---|
3642 | jvs(101) = jvs(101) - jvs(84) * jvs(90) |
---|
3643 | jvs(102) = jvs(102) - jvs(60) * jvs(88) |
---|
3644 | jvs(103) = jvs(103) - jvs(61) * jvs(88) |
---|
3645 | ! i = 19 |
---|
3646 | jvs(105) = (jvs(105)) / jvs(40) |
---|
3647 | jvs(106) = (jvs(106)) / jvs(58) |
---|
3648 | jvs(109) = jvs(109) - jvs(41) * jvs(105) - jvs(59) * jvs(106) |
---|
3649 | jvs(110) = jvs(110) - jvs(60) * jvs(106) |
---|
3650 | jvs(111) = jvs(111) - jvs(42) * jvs(105) - jvs(61) * jvs(106) |
---|
3651 | ! i = 20 |
---|
3652 | jvs(112) = (jvs(112)) / jvs(19) |
---|
3653 | jvs(113) = (jvs(113)) / jvs(51) |
---|
3654 | jvs(114) = jvs(114) - jvs(52) * jvs(113) |
---|
3655 | jvs(118) = jvs(118) - jvs(53) * jvs(113) |
---|
3656 | jvs(119) = jvs(119) - jvs(20) * jvs(112) - jvs(54) * jvs(113) |
---|
3657 | ! i = 21 |
---|
3658 | jvs(122) = (jvs(122)) / jvs(80) |
---|
3659 | jvs(123) = (jvs(123)) / jvs(107) |
---|
3660 | jvs(125) = jvs(125) - jvs(81) * jvs(122) |
---|
3661 | jvs(128) = jvs(128) - jvs(82) * jvs(122) - jvs(108) * jvs(123) |
---|
3662 | jvs(129) = jvs(129) - jvs(83) * jvs(122) - jvs(109) * jvs(123) |
---|
3663 | jvs(131) = jvs(131) - jvs(84) * jvs(122) |
---|
3664 | jvs(132) = jvs(132) - jvs(110) * jvs(123) |
---|
3665 | jvs(133) = jvs(133) - jvs(111) * jvs(123) |
---|
3666 | ! i = 22 |
---|
3667 | ! i = 23 |
---|
3668 | jvs(140) = (jvs(140)) / jvs(135) |
---|
3669 | jvs(142) = jvs(142) - jvs(136) * jvs(140) |
---|
3670 | jvs(143) = jvs(143) - jvs(137) * jvs(140) |
---|
3671 | jvs(144) = jvs(144) - jvs(138) * jvs(140) |
---|
3672 | jvs(145) = jvs(145) - jvs(139) * jvs(140) |
---|
3673 | ! i = 24 |
---|
3674 | jvs(146) = (jvs(146)) / jvs(51) |
---|
3675 | jvs(147) = (jvs(147)) / jvs(80) |
---|
3676 | jvs(148) = (jvs(148)) / jvs(107) |
---|
3677 | a = 0.0; a = a - jvs(52) * jvs(146) |
---|
3678 | jvs(149) = (jvs(149) + a) / jvs(114) |
---|
3679 | a = 0.0; a = a - jvs(81) * jvs(147) - jvs(115) * jvs(149) |
---|
3680 | jvs(150) = (jvs(150) + a) / jvs(135) |
---|
3681 | a = 0.0; a = a - jvs(116) * jvs(149) |
---|
3682 | jvs(151) = (jvs(151) + a) / jvs(141) |
---|
3683 | jvs(153) = jvs(153) - jvs(82) * jvs(147) - jvs(108) * jvs(148) - jvs(117) * jvs(149) - jvs(136) * jvs(150)& |
---|
3684 | - jvs(142) * jvs(151) |
---|
3685 | jvs(154) = jvs(154) - jvs(53) * jvs(146) - jvs(118) * jvs(149) |
---|
3686 | jvs(155) = jvs(155) - jvs(54) * jvs(146) - jvs(83) * jvs(147) - jvs(109) * jvs(148) - jvs(119) * jvs(149)& |
---|
3687 | - jvs(137) * jvs(150) - jvs(143) * jvs(151) |
---|
3688 | jvs(156) = jvs(156) - jvs(84) * jvs(147) - jvs(120) * jvs(149) - jvs(138) * jvs(150) - jvs(144) * jvs(151) |
---|
3689 | jvs(157) = jvs(157) - jvs(110) * jvs(148) - jvs(121) * jvs(149) - jvs(139) * jvs(150) - jvs(145) * jvs(151) |
---|
3690 | jvs(158) = jvs(158) - jvs(111) * jvs(148) |
---|
3691 | ! i = 25 |
---|
3692 | jvs(159) = ( |
---|