SUBROUTINE INTEGRATE( TIN, TOUT ) INCLUDE 'KPP_ROOT_params.h' INCLUDE 'KPP_ROOT_global.h' C TIN - Start Time KPP_REAL TIN C TOUT - End Time KPP_REAL TOUT INTEGER INFO(5) EXTERNAL FUNC_CHEM, JAC_CHEM INFO(1) = Autonomous CALL ROS1(NVAR,TIN,TOUT,STEPMIN,VAR, + Info,FUNC_CHEM,JAC_CHEM) RETURN END SUBROUTINE ROS1(N,T,Tnext,Hstart, + y,Info,FUNC_CHEM,JAC_CHEM) INCLUDE 'KPP_ROOT_params.h' INCLUDE 'KPP_ROOT_sparse.h' C C Linearly Implicit Euler C A method of theoretical interest but of no practical value C C INPUT ARGUMENTS: C y = Vector of (NVAR) concentrations, contains the C initial values on input C [T, Tnext] = the integration interval C Hmin, Hmax = lower and upper bounds for the selected step-size. C Note that for Step = Hmin the current computed C solution is unconditionally accepted by the error C control mechanism. C AbsTol, RelTol = (NVAR) dimensional vectors of C componentwise absolute and relative tolerances. C FUNC_CHEM = name of routine of derivatives. KPP syntax. C See the header below. C JAC_CHEM = name of routine that computes the Jacobian, in C sparse format. KPP syntax. See the header below. C Info(1) = 1 for Autonomous system C = 0 for nonAutonomous system C C OUTPUT ARGUMENTS: C y = the values of concentrations at Tend. C T = equals TENDon output. C Info(2) = # of FUNC_CHEM CALLs. C Info(3) = # of JAC_CHEM CALLs. C Info(4) = # of accepted steps. C Info(5) = # of rejected steps. C Hstart = The last accepted stepsize C C Adrian Sandu, December 2001 C KPP_REAL Fv(NVAR) KPP_REAL JAC(LU_NONZERO) KPP_REAL H, Hstart KPP_REAL y(NVAR) KPP_REAL T, Tnext, Tplus KPP_REAL elo,ghinv,uround INTEGER n,nfcn,njac,Naccept,Nreject,i,j INTEGER Info(5) LOGICAL IsReject, Autonomous EXTERNAL FUNC_CHEM, JAC_CHEM H = Hstart Tplus = T Nfcn = 0 Njac = 0 C === Starting the time loop === 10 CONTINUE Tplus = T + H IF ( Tplus .gt. Tnext ) THEN H = Tnext - T Tplus = Tnext END IF C Initial Function and Jacobian values CALL FUNC_CHEM(NVAR, T, y, Fv) Nfcn = Nfcn+1 CALL JAC_CHEM(NVAR, T, y, JAC) Njac = Njac+1 C Form the Prediction matrix and compute its LU factorization DO 40 j=1,NVAR JAC(LU_DIAG(j)) = JAC(LU_DIAG(j)) - 1.0d0/H 40 CONTINUE CALL KppDecomp (JAC, ier) C IF (ier.ne.0) THEN PRINT *,'ROS1: Singular factorization at T=',T,'; H=',H STOP END IF C ------------ STAGE 1------------------------- CALL KppSolve (JAC, Fv) C ---- The Solution --- DO 160 j = 1,NVAR y(j) = y(j) - Fv(j) 160 CONTINUE T = T + H C ======= End of the time loop =============================== IF ( T .lt. Tnext ) GO TO 10 C ======= Output Information ================================= Info(2) = Nfcn Info(3) = Njac Info(4) = Njac Info(5) = 0 Hstart = H RETURN END SUBROUTINE FUNC_CHEM(N, T, Y, P) INCLUDE 'KPP_ROOT_params.h' INCLUDE 'KPP_ROOT_global.h' INTEGER N KPP_REAL T, Told KPP_REAL Y(NVAR), P(NVAR) Told = TIME TIME = T CALL Update_SUN() CALL Update_RCONST() CALL Fun( Y, FIX, RCONST, P ) TIME = Told RETURN END SUBROUTINE JAC_CHEM(N, T, Y, J) INCLUDE 'KPP_ROOT_params.h' INCLUDE 'KPP_ROOT_global.h' INTEGER N KPP_REAL Told, T KPP_REAL Y(NVAR), J(LU_NONZERO) Told = TIME TIME = T CALL Update_SUN() CALL Update_RCONST() CALL Jac_SP( Y, FIX, RCONST, J ) TIME = Told RETURN END