%$Id: topography.tex 1226 2013-09-18 13:19:19Z fricke $ \input{header_tmp.tex} %\input{../header_lectures.tex} \usepackage[utf8]{inputenc} \usepackage{ngerman} \usepackage{pgf} \usetheme{Dresden} \usepackage{subfigure} \usepackage{units} \usepackage{multimedia} \usepackage{hyperref} \newcommand{\event}[1]{\newcommand{\eventname}{#1}} \usepackage{xmpmulti} \usepackage{tikz} \usetikzlibrary{shapes,arrows,positioning,decorations.pathreplacing} \def\Tiny{\fontsize{4pt}{4pt}\selectfont} %---------- neue Pakete \usepackage{amsmath} \usepackage{amssymb} \usepackage{multicol} \usepackage{pdfcomment} \usepackage{xcolor} \institute{Institut für Meteorologie und Klimatologie, Leibniz Universität Hannover} \date{last update: \today} \event{PALM Seminar} \setbeamertemplate{navigation symbols}{} \setbeamersize{text margin left=.5cm,text margin right=.2cm} \setbeamertemplate{footline} {% \begin{beamercolorbox}[rightskip=-0.1cm]& {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} \end{beamercolorbox} \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,% leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}% {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}% \end{beamercolorbox}% % \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}% % \end{beamercolorbox} }%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.eps}} \title[PALM - Using Topography]{PALM - Using Topography} \author{Siegfried Raasch} % Notes: % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet. % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet) \begin{document} % Folie 1 \begin{frame} \titlepage \end{frame} % Folie 2 \begin{frame} \frametitle{Contents – Using Topography (I)} \begin{itemize} \item{Purpose of topography in PALM} \item{Definition} \item{Realization} \begin{itemize} \item{Physical concept} \item{Technical / numerical implementation} \end{itemize} \item{Strengths and limitations} \item{Control parameters} \begin{itemize} \item{Required / optional topography parameters} \item{Topography-related general control parameters} \begin{itemize} \item{Suitable driving methods, initial and boundary conditions} \item{Pressure solver} \end{itemize} \end{itemize} \item{Data output} \end{itemize} \end{frame} % Folie 3 \begin{frame} \frametitle{Purpose of Topography} \begin{itemize} \item{Optional feature to simulate flow around/above obstacles} \par\bigskip \item{Application fields} \begin{itemize} \item{Urban meteorology, wind engineering} \item{Mesoscale meteorology} \item{Oceanography} \item{...} \end{itemize} \end{itemize} \end{frame} % Folie 4 \begin{frame} \frametitle{Definition} \begin{itemize} \item{The topography definition in PALM covers solid, impermeable, fixed flow obstacles with a volume of at least one grid box.} \par\bigskip \item{The following qualifies as topography: \textcolor{green!50!black!100}{\checkmark}} \begin{itemize} \footnotesize \item{Human-made obstacles (buildings)} \item{Natural obstacles (hills, mountains)} \end{itemize} \par\bigskip \item{The following does NOT qualify as topography: \textcolor{red}{$\times$}} \begin{itemize} \footnotesize \item{\begin{tabbing}Permeable obstacles (vegetation) $\}$ \= Parameterization options in PALM: \\ \> canopy model, local roughness length \end{tabbing} } \item{Small obstacles (signposts)} \item{Moving obstacles (vehicles)} \end{itemize} \end{itemize} \end{frame} % Folie 5 \begin{frame} \frametitle{Realization - Physical Concept} \scriptsize \begin{columns}[c] \column{0.8\textwidth} \begin{itemize} \item{Flow cannot enter topography and is forced around/above it.} \end{itemize} \column{0.2\textwidth} \end{columns} \begin{columns}[c] \column{0.6\textwidth} \begin{itemize} \item{Grid boxes are} \begin{itemize} \item{\begin{minipage}{0.1\textwidth} \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small1.png} \end{minipage} \begin{minipage}{0.5\textwidth} \scriptsize \par\medskip 100\% free fluid, \\ \end{minipage}} \item{\begin{minipage}{0.1\textwidth} \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small2.png} \end{minipage} \begin{minipage}{0.5\textwidth} \scriptsize 100\% fluid adjacent to an obstacle, or \end{minipage}} \item{\begin{minipage}{0.1\textwidth} \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small3.png} \end{minipage} \begin{minipage}{0.5\textwidth} \scriptsize \par\medskip 100\% obstacle. \\ \end{minipage}} \end{itemize} \item{No-slip boundary condition} \begin{itemize} \item{\scriptsize Wall-normal velocity component is zero at obstacle surface \textbf{\textcolor{blue}{---------}}} \end{itemize} \par\bigskip \item{\begin{minipage}{0.75\textwidth} \scriptsize Local surface layer for the first grid box \\adjacent to each obstacle surface \end{minipage} \begin{minipage}{0.1\textwidth} \includegraphics[width=0.7\textwidth]{topography_figures/physical_concept_small2.png} \end{minipage}} \par\smallskip \begin{itemize} \item{\scriptsize Neutral Monin-Obukhov similarity} \end{itemize} \end{itemize} \column{0.4\textwidth} \includegraphics[width=\textwidth]{topography_figures/physical_concept.png} \end{columns} \end{frame} % Folie 6 \begin{frame} \frametitle{Realization - \\ Numerical /Technical Implementation (I)} \small \begin{columns}[c] \column{0.5\textwidth} \begin{itemize} \item{Obstacles must be surface-mounted} \item{Overhanging structures \textcolor{blue}{$\times$}, holes \textcolor{red}{$\times$} etc. are not permitted.} \begin{itemize} \footnotesize \item{This simplification allows extra performance optimization by reducing the 3D obstacle dimension to a "'2.5D"' dimension.} \item{"'2.5D"' means that each horizontal grid cell is assigned only one height level.} \item{This conforms to the "'2.5D"' format of Digital Elevation Models (DEM).} \end{itemize} \end{itemize} \column{0.4\textwidth} \par\medskip \includegraphics[width=1.1\textwidth]{topography_figures/technical_implementation.png} \end{columns} \end{frame} % Folie 7 \begin{frame} \frametitle{Realization - \\ Numerical /Technical Implementation (II)} \begin{columns}[c] \column{0.4\textwidth} \footnotesize The location of the wall-normal velocity component defines the location of the impermeable obstacle surface. \\ \par\smallskip Obstacle surfaces that do not match the grid are approximated by grid boxes like a step-function. \par\bigskip $\bullet$ scalars \\ \textcolor{red}{$\bullet$ u (staggered)} \\ \textcolor{green!40!black!100}{\textbf{+} v (staggered)} % \includegraphics[width=0.4\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small1.png} \\ % \includegraphics[width=0.6\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small2.png} \\ % \includegraphics[width=0.6\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_small3.png} \column{0.6\textwidth} \includegraphics<1|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_1.png} \includegraphics<2|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_2.png} \includegraphics<3|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_3.png} \includegraphics<4|handout:0>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_4.png} \includegraphics<5|handout:1>[width=\textwidth]{topography_figures/technical_implementation_grid/technical_implementation_grid_5.png} \end{columns} \end{frame} % Folie 8 \begin{frame} \frametitle{Realization - \\ Numerical / Technical Implementation (III)} \footnotesize \textbf{Rastering GIS data: \dq from GIS data to ASCII raster data\dq} \begin{itemize} \item{In order to process topography from external data sources, the data must be made available to PALM as a rastered ASCII file, e.g. example\_topo.} \item{The layout of example\_topo must conform to the computational domain size and to the grid size dx and dy.} \item{The rastered height data of example\_topo are given in m above ground and do not need to match the vertical grid, since they will be interpolated, if required.} \par\bigskip \item{Software known to be able to perfom the rastering process of GIS data in vector and/or raster format to PALM raster format:} \begin{itemize} \item{ArcGIS (commercial)} \item{GRASS GIS (freeware)} \item{...? (please report to us)} \end{itemize} \end{itemize} \end{frame} % Folie 9 \begin{frame} \frametitle{Realization – \\ Numerical / Technical Implementation (IV)} \small \textbf{Potential issues} \begin{itemize} \item{Load imbalance} \begin{itemize} \item{Leads to inefficient parallelization: \dq fast\dq CPU(s) must wait for \dq slow\dq CPU(s)} \item{Occurs if the CPUs do not share the same workload} \begin{itemize} \item{E.g. if topography is significantly heterogeneous in a large volume fraction of the computational domain} \end{itemize} \end{itemize} \item{\dq 2 $\Delta$x\dq instabilities (only if Piacsek-Williams advection scheme is used)} \begin{itemize} \item{Upstream of obstacle walls} \item{Due to second-order finite difference advection scheme} \item{Model remains stable throughout the simulation} \item{The default Wicker-Skamarock scheme does not show any instabilities} \end{itemize} \end{itemize} \end{frame} % Folie 10 \begin{frame} \frametitle{Summary: Strengths (+) and Limitations (–)} \small \begin{itemize} \item[+]{Horizontal and vertical surfaces can be exactly resolved (thanks to the finite difference Cartesian model architecture)} \item[+]{Optimization also for scalar computer architectures} \item[+]{Conforms with \dq 2.5D\dq format of Digital Elevation Models (DEM)} \par\bigskip \item[-]{Obstacles must be surface-mounted} \item[-]{Grid boxes can only be 100\% fluid or 100\% obstacle \\ \par\smallskip \begin{footnotesize} Obstacle surfaces that do not match the grid are approximated by grid boxes like a step-function, which modifies the real obstacle size \end{footnotesize}} \item[-]{Overhanging structures, holes etc. are not permitted due to the \dq 2.5D\dq format} \end{itemize} \end{frame} % Folie 11 \begin{frame} \frametitle{Take a Short Break... Urban Flow Visualization} \begin{columns}[c] \column{0.42\textwidth} \includegraphics<1>[width=\textwidth]{topography_figures/hannover_1.png} \href{.html}{\includegraphics<2>[width=\textwidth]{topography_figures/hannover_2.png}} \column{0.58\textwidth} Set-up: neutral boundary layer \begin{itemize} \item{Particle = passive tracer} \item{Colour $\sim$ particle height} \item{Tail length ~ particle velocity} \end{itemize} \par\bigskip \begin{itemize} \item{Flow past office tower:} \begin{itemize} \item{initially laminar: not yet an LES} \item{intermittent: different episodes} \end{itemize} \item{Broad street canyon flow:} \begin{itemize} \item{channeling} \item{low-level upstream flow} \end{itemize} \end{itemize} \end{columns} \end{frame} % Folie 12 \begin{frame} \frametitle{Required Topography Control Parameters} \footnotesize {\tt topography =} \begin{itemize} \item{{\tt 'flat'} \hspace{3cm} no topography (default)} \item{{\tt 'single\_building'} \hspace{1.2cm} \textcolor{red}{generic} single building} \item{{\tt 'single\_street\_canyon'} \hspace{0.4cm} \textcolor{red}{generic} single quasi-2D street canyon} \item{{\tt 'read\_from\_file'} \hspace{1.4cm} \textcolor{blue}{rastered} ASCII file, e.g. {\tt example\_topo}} \item{any other string \hspace{1.8cm} processed by user subroutine user\_init\_grid} \end{itemize} {\tt topography\_grid\_convention =} \begin{itemize} \item{{\tt '\textcolor{red}{cell\_edge}'} \hspace{2.2cm} default for \textcolor{red}{generic} topography: \textcolor{red}{$\leftrightarrow$}} \item{{\tt '\textcolor{blue}{cell\_center}'} \hspace{1.9cm} default for \textcolor{blue}{rastered} topography: \textcolor{blue}{$\bigcirc$ $\leftrightarrow$}} \end{itemize} \includegraphics<1|handout:0>[width=0.5\textwidth]{topography_figures/control_parameters_1.png} \includegraphics<2|handout:0>[width=0.5\textwidth]{topography_figures/control_parameters_2.png} \includegraphics<3|handout:0>[width=0.5\textwidth]{topography_figures/control_parameters_3.png} \includegraphics<4|handout:1>[width=0.5\textwidth]{topography_figures/control_parameters_4.png} \end{frame} % Folie 13 \begin{frame} \frametitle{Optional Topography Control Parameters (I)} \small \textbf{Generic topography} \scriptsize \begin{itemize} \item{topography = {\tt 'single\_building'}} \begin{itemize} \scriptsize \item{building\_height = 50.0 \hspace{0.67cm} height of the building} \item{building\_length\_x = 50.0 \hspace{0.43cm} length of the building in x-direction} \item{building\_length\_y = 50.0 \hspace{0.43cm} length of the building in y-direction} \item{building\_wall\_left \hspace{1.4cm} (default is building centered in x-direction)} \item{building\_wall\_south \hspace{1.13cm} (default is building centered in y-direction)} \end{itemize} \item{topography = {\tt 'single\_street\_canyon'}} \begin{itemize} \scriptsize \item{canyon\_height = 50.0 \hspace{0.45cm} height of the canyon \\ and} \item{canyon\_width\_x = 50.0 \hspace{0.3cm} implies canyon axis orientation in y-direction} \item{canyon\_wall\_left \hspace{1.17cm} (default is canyon centered in x-direction) \\ or} \item{canyon\_width\_y = 50.0 \hspace{0.3cm} implies canyon axis orientation in x-direction} \item{canyon\_wall\_south \hspace{0.9cm} (default is canyon centered in y-direction)} \end{itemize} \end{itemize} \end{frame} % Folie 14 \begin{frame} \frametitle{Optional Topography Control Parameters (II)} \scriptsize \textbf{Rastered topography}\\ \begin{minipage}{0.7\textwidth} \begin{itemize} \scriptsize \item{{\tt topography} = 'read\_from\_file'} \begin{itemize} \footnotesize \item{requires an external ASCII file, e.g. {\tt example\_topo:}} \end{itemize} \end{itemize} \end{minipage} \begin{minipage}{0.2\textwidth} \includegraphics[width=0.5\textwidth]{topography_figures/optional_control_parameters_1.png} \end{minipage} \begin{center} \includegraphics[width=0.85\textwidth]{topography_figures/optional_control_parameters_2.png} \end{center} \begin{itemize} \item[]{} \begin{itemize} \scriptsize \item{layout must conform to domain size and grid size dx and dy.} \item{height data} \begin{itemize} \scriptsize \item{in m above ground (INTEGER or REAL)} \item{do not need to match the vertical grid} \end{itemize} \end{itemize} \end{itemize} \end{frame} % Folie 15 \begin{frame} \frametitle{Optional Topography Control Parameters (III)} \small \textbf{Rastered topography} \begin{itemize} \item{{\tt topography} = 'read\_from\_file'} \par\smallskip \begin{itemize} \item{\textbf{mrun}-call: \\ {\tt mrun ... -r 'd3\# ...'}} \par\medskip \item{{\tt .mrun.config:}} \end{itemize} \end{itemize} \begin{center} \includegraphics[width=0.7\textwidth]{topography_figures/optional_control_parameters_3.png} \end{center} \end{frame} % Folie 16 \begin{frame} \frametitle{General Control Parameters (I): Suitable Driving Methods} \scriptsize \begin{itemize} \item{\textbf{\dq Meteorological\dq set-up M: geostrophic wind / Coriolis force}} \begin{itemize} \scriptsize \item{Set {\tt omega $ \neq$ 0.0}} \item{Construct a non-zero profile of geostrophic wind $u_g$ and/or $v_g$ using {\tt ug\_surface}, {\tt ug\_vertical\_gradient} and {\tt ug\_vertical\_gradient\_level} and/or the respective parameter set for $v_g$} \end{itemize} \par\bigskip \item{\textbf{\dq Engineering\dq set-up E: direct external pressure gradient / no Coriolis force}} \begin{itemize} \scriptsize \item{Set {\tt omega = 0.0}} \item{Set-up E1: direct external pressure gradient that does not change with time (the bulk velocity fluctuates with time)} \begin{itemize} \scriptsize \item{Parameters: {\tt dp\_external}, {\tt dp\_smooth}, {\tt dp\_level\_b}, {\tt dpdxy}} \end{itemize} \item{Set-up E2: maintain a constant bulk velocity (the direct external pressure gradient fluctuates with time)} \begin{itemize} \scriptsize \item{Parameters: {\tt conserve\_volume\_flow}, {\tt conserve\_volume\_flow\_mode}, {\tt u\_bulk}, {\tt v\_bulk}} \end{itemize} \end{itemize} \par\bigskip \item{\textbf{\dq Thermal\dq set-up T: directly prescribe sensible heatflux}} \begin{itemize} \item[]{} \begin{itemize} \scriptsize \item{surface\_heatflux at ground level only} \item{wall\_heatflux(0:4) at top/left/right/South/North obstacle face} \end{itemize} \end{itemize} \end{itemize} \end{frame} % Folie 17 \begin{frame} \frametitle{General Control Parameters (II): Initialization} \scriptsize \begin{itemize} \item{\textbf{\dq Meteorological\dq set-up M }\\ Initialize a non-zero profile of geostrophic wind $u_g$ and/or $v_g$ using} \begin{itemize} \scriptsize \item{{\tt initializing\_actions =} \textbf{'set\_constant\_profiles' (e.g. for convective BL)}} \begin{itemize} \scriptsize \item{Parameters: {\tt ug\_surface $ \neq $ 0.0} and/or {\tt vg\_surface $\neq $ 0.0}} \end{itemize} \item{{\tt initializing\_actions =} \textbf{'set\_1d-model\_profiles' (e.g. for neutral BL)}} \begin{itemize} \scriptsize \item{1D model prerun parameters with suffix {\tt \_1d} (e.g. {\tt end\_time\_1d}, {\tt damp\_level\_1d)}} \end{itemize} \end{itemize} \par\bigskip \item{\textbf{\dq Engineering\dq set-up E} \\ Good initialization may require a priori knowlegde, e.g. from previous test runs. Here, {\tt ug\_}... and {\tt vg\_}... don't refer to geostrophic wind but to the initial wind profile.} \begin{itemize} \scriptsize \item{{\tt initializing\_actions} = \textbf{'set\_constant\_profiles'}} \begin{itemize} \scriptsize \item{Parameter set: {\tt ug\_surface}, {\tt ug\_vertical\_gradient}[{\tt \_level}] and/or the respective set for $v_g$} \end{itemize} \item{{\tt initializing\_actions} = \textbf{'set\_1d-model\_profiles'}} \item{{\tt initializing\_actions} = \textbf{'by\_user' – processed by user\_init\_3d\_model}} \end{itemize} \par\bigskip \item{\textbf{\dq Thermal\dq set-up T} \\ Any of the above may apply} \end{itemize} \end{frame} % Folie 18 \begin{frame} \frametitle{General Control Parameters (III): Boundary Conditions} \footnotesize \begin{itemize} \item{Lateral boundary conditions} \begin{itemize} \item{Cyclic / non-cyclic: cf. lecture on \dq non-cyclic boundary conditions\dq} \end{itemize} \item{Bottom boundary conditions} \begin{itemize} \item{Cf. lecture on \dq numerics and boundary conditions\dq} \end{itemize} \item{Top boundary conditions} \begin{itemize} \footnotesize \item{\textbf{Channel}: {\tt bc\_uv\_t =} \textbf{'dirichlet\_0' (no-slip)}} \item{\textbf{Open channel}: {\tt bc\_uv\_t =} \textbf{'neumann' (slip)}} \item{\textbf{\dq Constant flux\dq layer} (not yet published): {\tt bc\_uv\_t =} \textbf{'neumann' (slip)} \\ with set-up E1 where {\tt dp\_level\_b >> 0} and {\tt dp\_smooth = .T.}} \end{itemize} \end{itemize} \end{frame} % Folie 19 \begin{frame} \frametitle{General Control Parameters (IV): Pressure Solver} {\tt psolver =} \par\medskip \begin{itemize} \item{'poisfft' (FFT scheme)} \begin{itemize} \item{Good performance for urban PALM version} \item{Cannot be used with non-cyclic boundary conditions} \end{itemize} \par\bigskip \item{'multigrid' (Multigrid scheme)} \begin{itemize} \item{Performance for very large number of grid points may be better than FFT} \item{This is the only possible choice for non-cyclic boundary conditions} \end{itemize} \end{itemize} \end{frame} % Folie 20 \begin{frame} \frametitle{Data Analysis / Output – Some Considerations (I)} \scriptsize \begin{itemize} \item{How to get turbulence statistics?} \begin{itemize} \scriptsize \item{Phase averaging if a direction of homogeneity exists} \item{Temporal averaging} \item{Ensemble averaging} \end{itemize} \item{Definition of turbulent fluctuations}\\ \textbf{Spatial fluctuations:} deviation from representative instantaneous spatial average \begin{itemize} \scriptsize \item{PALM: many statistics calculated on-the-fly as time series, 1D vertical profiles} \item{Not suitable for topography unless a direction of homogeneity exists} \end{itemize} \textbf{Temporal fluctuations}: deviation from representative local temporal average \begin{itemize} \scriptsize \item{Suitable for all applications including topography} \item{Requires much hard disk space and post-processing CPU time} \item{PALM: not natively supported, but following procedure works:} \begin{itemize} \scriptsize \item{Collect time-series during the simulation (2D/3D data output or user-defined time series)} \item{Check for (quasi-)steady turbulent state and sufficient averaging time} \item{Calculate statistics by post-processing making use of the Reynolds decomposition: \\ \par\medskip $\overline{w'\theta'} = \overline{w\theta} - \overline{w} \overline{\theta} $} \end{itemize} \end{itemize} \end{itemize} \end{frame} % Folie 21 \begin{frame} \frametitle{Your Responsibility and Contribution} \footnotesize \par\medskip In most cases, a new parameter is added to PALM for one specific purpose. \par\bigskip Beyond this one purpose, each new parameter normally gives many other new feature/parameter combinations in PALM. We are unable to check all these combinations by ourselves and rely on your help! \par\bigskip % For example, the combination of topography and non-cyclic lateral boundary conditions has not yet been tested % because both features have originally been introduced separately for different research projects. % \par\bigskip Therefore, we ask you for your responsibility and contribution: \begin{itemize} \item{Please always check your PALM setup carefully. PALM is not a black box.} \item{For example, design a simple case and test your expectation.} \item{Please report potential bugs – thank you!} \begin{itemize} \item{PALM developer team} \item{PALM user community (via trac-system)} \end{itemize} \end{itemize} \end{frame} % Folie 22 \begin{frame} \Large \begin{center} \textcolor{blue!90!black!100}{Topography - Scenario examples} \end{center} \end{frame} % Folie 23 \begin{frame} \frametitle{Set-up Scenario: Single Street Canyon (I)} \par\smallskip \textbf{Single quasi-2D street canyon in neutral open channel flow with constant bulk velocity} \par\smallskip \begin{itemize} \item{{\tt trunk/EXAMPLES/canyon/}} \begin{itemize} \item{Parameter file \hspace{2cm} {\tt example\_canyon\_p3d}} \item{Run-control file \hspace{1.78cm} {\tt example\_canyon\_rc}} \item{Some documentation \hspace{0.95cm} {\tt example\_canyon.odt}} \end{itemize} \end{itemize} \begin{center} \includegraphics[width=0.85\textwidth]{topography_figures/scenario_ssc_1.png} \end{center} \end{frame} % Folie 24 \begin{frame} \frametitle{Set-up Scenario: Single Street Canyon (II)} \textbf{The phase average makes use of homogeneity in y-direction:} \\ {\tt section\_xz = -1}, {\tt data\_output = \textbf{'u\_xz\_av'}}, {\tt 'v\_xz\_av'}, {\tt 'w\_xz\_av'} \begin{center} \includegraphics[width=0.85\textwidth]{topography_figures/scenario_ssc_2.png} \end{center} \end{frame} % Folie 25 \begin{frame} \begin{tikzpicture}[remember picture, overlay] \node [shift={(6.5 cm, 5cm)}] at (current page.south west) {% \begin{tikzpicture}[remember picture, overlay] \uncover<1>{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_1.png}};} \uncover<2>{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_2.png}};} \uncover<3->{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_ssc_example_3.png}};} \uncover<4->{\node at (-3.5,-0.2) {\includegraphics[width=0.48\textwidth]{topography_figures/scenario_ssc_example_4.png}};} \uncover<5->{\node at (3.5,-0.2) {\includegraphics[width=0.38\textwidth]{topography_figures/scenario_ssc_example_5.png}};} \end{tikzpicture} }; \end{tikzpicture} \end{frame} % Folie 26 \begin{frame} \frametitle{Set-up Scenario: Constant Flux Layer} \small \textbf{Single surface-mounted cube in neutral open channel flow with a constant flux layer} \begin{itemize} \item{{\tt trunk/EXAMPLES/constant\_flux\_layer/}} \begin{itemize} \footnotesize \item{Parameter file \hspace{2cm} {\tt example\_constant\_flux\_layer\_p3d}} \item{Run-control file \hspace{1.79cm} {\tt example\_constant\_flux\_layer\_rc}} \item{Some documentation \hspace{1.02cm} {\tt example\_constant\_flux\_layer.odt}} \end{itemize} \end{itemize} \begin{center} \includegraphics[width=0.85\textwidth]{topography_figures/scenario_cfl.png} \end{center} \end{frame} % Folie 27 \begin{frame} \begin{tikzpicture}[remember picture, overlay] \node [shift={(6.5 cm, 5cm)}] at (current page.south west) {% \begin{tikzpicture}[remember picture, overlay] \uncover<1->{\node at (0,-0.5) {\includegraphics[width=0.7\textwidth]{topography_figures/scenario_cfl_example_1.png}};} \uncover<2->{\node at (-3.5,-0.2) {\includegraphics[width=0.45\textwidth]{topography_figures/scenario_cfl_example_2.png}};} \uncover<3->{\node at (3.5,-0.2) {\includegraphics[width=0.38\textwidth]{topography_figures/scenario_cfl_example_3.png}};} \end{tikzpicture} }; \end{tikzpicture} \end{frame} % Folie 28 \begin{frame} \frametitle{Rules of Good Practise} \small \begin{itemize} \item{If you run PALM with topography, make sure that it is really LES...} \begin{itemize} \item{''Large eddies'' are ''small'' between obstacles} \begin{itemize} \item{use fine grid length to resolve turbulence there} \end{itemize} \item{Ratio of resolved to SGS fluxes} \end{itemize} \item{Check for (quasi-)steady turbulent state and sufficient averaging time.} \begin{itemize} \item{Fluctuations of time series of E, E*, maximum velocity components etc.} \end{itemize} \item{Make sure that your PALM result is independent of numerical parameters such as domain size and grid size.} \begin{itemize} \item{Sensitivity studies} \end{itemize} \item{If you intend to do a comparison with some kind of reference data, it is essential to configure the set-up of PALM in the same way as the reference experiment.} \begin{itemize} \item{For example, if you compare PALM with wind tunnel results, you have to follow the wind tunnel set-up for setting up PALM.} \end{itemize} \end{itemize} \end{frame} \end{document}