% $Id: sgs_models.tex 945 2012-07-17 15:43:01Z fricke $ \input{header_tmp.tex} %\input{header_lectures.tex} \usepackage[utf8]{inputenc} \usepackage{ngerman} \usepackage{pgf} \usetheme{Dresden} \usepackage{subfigure} \usepackage{units} \usepackage{multimedia} \usepackage{hyperref} \newcommand{\event}[1]{\newcommand{\eventname}{#1}} \usepackage{xmpmulti} \usepackage{tikz} \usetikzlibrary{shapes,arrows,positioning} \def\Tiny{\fontsize{4pt}{4pt}\selectfont} \usepackage{amsmath} \usepackage{amssymb} \usepackage{multicol} \usepackage{pdfcomment} \institute{Institut für Meteorologie und Klimatologie, Leibniz Universität Hannover} \date{last update: \today} \event{PALM Seminar} \setbeamertemplate{navigation symbols}{} \setbeamertemplate{footline} { \begin{beamercolorbox}[rightskip=-0.1cm]& {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} \end{beamercolorbox} \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} \end{beamercolorbox} \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} \end{beamercolorbox} } %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} \title[SGS Models]{SGS Models} \author{Siegfried Raasch} \begin{document} % Folie 1 \begin{frame} \titlepage \end{frame} \section{SGS Models} \subsection{SGS Models} % Folie 2 \begin{frame} \frametitle{SGS Models (I)} \small \begin{itemize} \item<2->The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence). \item<3->Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange) \item<4->SGS stresses should depend on: \begin{itemize} \item local resolved-scale field \hspace{3mm} and / or \item past history of the local fluid (via a PDE) \end{itemize} \item<5->Importance of the model depends on how much energy is contained in the subgrid-scales: \begin{itemize} \item $E_{SGS} / E < 50\%$: results relatively insensitive to the model, (but sensitive to the numerics, e.g. in case of upwind scheme) \item $E_{SGS} / E = 1$: model more important \item<6->\textbf{If the large-scale eddies are not resolved, the SGS model and the LES will fail at all!} \end{itemize} \end{itemize} \end{frame} % Folie 3 \begin{frame} \frametitle{SGS Models (II)} Requirements that a good SGS model must fulfill: \begin{footnotesize} \begin{itemize} \item<2-> Represent interactions with small scales. \item<3-> Provide adequate dissipation\\ (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation $\varepsilon$ in this context is the flux of energy through the inertial subrange). \item<4-> Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics. \item<5->In energy conserving codes (ideal for LES) the only way for TKE to leave the resolved modes is by the dissipation provided by the SGS model. \item<6->\underline{The primary goal of an SGS model is to obtain correct statistics of the}\\ \underline{energy containing scales of motion.} \end{itemize} \end{footnotesize} \end{frame} % Folie 4 \begin{frame} \frametitle{SGS Models (III)} \onslide<1-> All the above observation suggest the use of an eddy viscosity type SGS model: \begin{footnotesize} \begin{itemize} \item<2-> Take idea from RANS modeling, introduce eddy viscosity $\nu_T$: \begin{flalign*} &\tau_{ki} = - \nu_T \left( \frac{\partial \overline{u_k}}{\partial x_i}+ \frac{\partial \overline{u_i}}{\partial x_k}\right) = -2 \nu_T \overline{S}_{ki}& \text{with} \hspace{3mm} \overline{S}_{ki} = \frac{1}{2} \left( \frac{\partial \overline{u_k}}{\partial x_i}+ \frac{\partial \overline{u_i}}{\partial x_k}\right)\\ & & \text{filtered strain rate tensor} \end{flalign*} \end{itemize} \end{footnotesize} \onslide<3->Now we need a model for the eddy viscosity: \begin{footnotesize} \begin{itemize} \item<4-> Dimensionality of $\nu_T$ is $l^2/t$ \item<5-> Obvious choice: $\nu_T = Cql$ \hspace{5mm} (q, l: characterictic velocity / length scale) \item<6-> Turbulence length scale is easy to define: largest size of the unresolved scales is $\Delta$ \hspace{10mm} $l = \Delta$ \item<7-> Velocity scale not obvious (smallest resolved scales, their size is of the order of the variation of velocity over one grid element) \begin{flalign*} &q = l \frac{\partial \overline{u}}{\partial x} = l \overline{S}& \text{for 3D: } \overline{S} = \sqrt{2 \overline{S}_{ki}\,\overline{S}_{ki}} \hspace{15mm} \\ & & \text{characterictic filtered rate of strain}\hspace{15mm} \end{flalign*} \end{itemize} \end{footnotesize} \end{frame} \section{Smagorinsky Model} \subsection{The Smagorinsky Model} % Folie 5 \begin{frame} \frametitle{The Smagorinsky Model} \onslide<2->Combine previous expressions to obtain: \begin{equation*} \nu_T = C \Delta^2 \overline{S} = (C_S \Delta)^2 \overline{S} \end{equation*} \onslide<3-> Model due to Smagorinsky (1963): \begin{itemize} \item<3-> Originally designed at NCAR for global weather modeling. \item<4-> Can be derived in several ways: heuristically (above), from inertial range arguments (Lilly), from turbulence theories. \item<5-> Constant predicted by all methods (based on theory, decay of isotropic turbulence): $C_S = \sqrt{C} \approx 0.2$ \end{itemize} \end{frame} % Folie 6 \begin{frame} \frametitle{The Smagorinsky Model: Performance} \begin{itemize} \item<2-> Predicts many flows reasonably well \item<3-> Problems: \begin{itemize} \item<3-> Optimum parameter value varies with flow type: \begin{itemize} \item Isotropic turbulence: $C_S \approx 0.2$\\ \item Shear (channel) flows: $C_S \approx 0.065$ \end{itemize} \item<4-> Length scale uncertain with anisotropic filter: \begin{equation*} (\Delta_x \Delta_y \Delta_z)^{1/3} \hspace{5mm} (\Delta_x + \Delta_y + \Delta_z)/3 \end{equation*} \item<5-> Needs modification to account for: \begin{itemize} \item stratification: $C_S = F(Ri,...)$, $Ri$: Richardson number\\ \item near-wall region: $C_S = F(z+)$, $z+$: distance from wall \end{itemize} \end{itemize} \end{itemize} \end{frame} \end{document}