% $Id: sgs_models.tex 991 2012-09-05 13:09:35Z franke $ \input{header_tmp.tex} %\input{header_lectures.tex} \usepackage[utf8]{inputenc} \usepackage{ngerman} \usepackage{pgf} \usetheme{Dresden} \usepackage{subfigure} \usepackage{units} \usepackage{multimedia} \usepackage{hyperref} \newcommand{\event}[1]{\newcommand{\eventname}{#1}} \usepackage{xmpmulti} \usepackage{tikz} \usetikzlibrary{shapes,arrows,positioning} \def\Tiny{\fontsize{4pt}{4pt}\selectfont} \usepackage{amsmath} \usepackage{amssymb} \usepackage{multicol} \usepackage{pdfcomment} \institute{Institut für Meteorologie und Klimatologie, Leibniz Universität Hannover} \date{last update: \today} \event{PALM Seminar} \setbeamertemplate{navigation symbols}{} \setbeamertemplate{footline} { \begin{beamercolorbox}[rightskip=-0.1cm]& {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} \end{beamercolorbox} \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} \end{beamercolorbox} \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} \end{beamercolorbox} } %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} \title[SGS Models]{SGS Models} \author{Siegfried Raasch} \begin{document} % Folie 1 \begin{frame} \titlepage \end{frame} \section{SGS Models} \subsection{SGS Models} % Folie 2 \begin{frame} \frametitle{SGS Models (I)} \small \begin{itemize} \item<2->The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence). \item<3->Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange) \item<4->SGS stresses should depend on: \begin{itemize} \item local resolved-scale field \hspace{3mm} and / or \item past history of the local fluid (via a PDE) \end{itemize} \item<5->Importance of the model depends on how much energy is contained in the subgrid-scales: \begin{itemize} \item $E_{SGS} / E < 50\%$: results relatively insensitive to the model, (but sensitive to the numerics, e.g. in case of upwind scheme) \item $E_{SGS} / E = 1$: model more important \item<6->\textbf{If the large-scale eddies are not resolved, the SGS model and the LES will fail at all!} \end{itemize} \end{itemize} \end{frame} % Folie 3 \begin{frame} \frametitle{SGS Models (II)} Requirements that a good SGS model must fulfill: \begin{footnotesize} \begin{itemize} \item<2-> Represent interactions with small scales. \item<3-> Provide adequate dissipation\\ (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation $\varepsilon$ in this context is the flux of energy through the inertial subrange). \item<4-> Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics. \item<5->In energy conserving codes (ideal for LES) the only way for TKE to leave the resolved modes is by the dissipation provided by the SGS model. \item<6->\underline{The primary goal of an SGS model is to obtain correct statistics of the}\\ \underline{energy containing scales of motion.} \end{itemize} \end{footnotesize} \end{frame} % Folie 4 \begin{frame} \frametitle{SGS Models (III)} \onslide<1-> All the above observation suggest the use of an eddy viscosity type SGS model: \begin{footnotesize} \begin{itemize} \item<2-> Take idea from RANS modeling, introduce eddy viscosity $\nu_T$: \begin{flalign*} &\tau_{ki} = - \nu_T \left( \frac{\partial \overline{u_k}}{\partial x_i}+ \frac{\partial \overline{u_i}}{\partial x_k}\right) = -2 \nu_T \overline{S}_{ki}& \text{with} \hspace{3mm} \overline{S}_{ki} = \frac{1}{2} \left( \frac{\partial \overline{u_k}}{\partial x_i}+ \frac{\partial \overline{u_i}}{\partial x_k}\right)\\ & & \text{filtered strain rate tensor} \end{flalign*} \end{itemize} \end{footnotesize} \onslide<3->Now we need a model for the eddy viscosity: \begin{footnotesize} \begin{itemize} \item<4-> Dimensionality of $\nu_T$ is $l^2/t$ \item<5-> Obvious choice: $\nu_T = Cql$ \hspace{5mm} (q, l: characterictic velocity / length scale) \item<6-> Turbulence length scale is easy to define: largest size of the unresolved scales is $\Delta$ \hspace{10mm} $l = \Delta$ \item<7-> Velocity scale not obvious (smallest resolved scales, their size is of the order of the variation of velocity over one grid element) \begin{flalign*} &q = l \frac{\partial \overline{u}}{\partial x} = l \overline{S}& \text{for 3D: } \overline{S} = \sqrt{2 \overline{S}_{ki}\,\overline{S}_{ki}} \hspace{15mm} \\ & & \text{characterictic filtered rate of strain}\hspace{15mm} \end{flalign*} \end{itemize} \end{footnotesize} \end{frame} \section{Smagorinsky Model} \subsection{The Smagorinsky Model} % Folie 5 \begin{frame} \frametitle{The Smagorinsky Model} \onslide<2->Combine previous expressions to obtain: \begin{equation*} \nu_T = C \Delta^2 \overline{S} = (C_S \Delta)^2 \overline{S} \end{equation*} \onslide<3-> Model due to Smagorinsky (1963): \begin{itemize} \item<3-> Originally designed at NCAR for global weather modeling. \item<4-> Can be derived in several ways: heuristically (above), from inertial range arguments (Lilly), from turbulence theories. \item<5-> Constant predicted by all methods (based on theory, decay of isotropic turbulence): $C_S = \sqrt{C} \approx 0.2$ \end{itemize} \end{frame} % Folie 6 \begin{frame} \frametitle{The Smagorinsky Model: Performance} \begin{itemize} \item<2-> Predicts many flows reasonably well \item<3-> Problems: \begin{itemize} \item<3-> Optimum parameter value varies with flow type: \begin{itemize} \item Isotropic turbulence: $C_S \approx 0.2$\\ \item Shear (channel) flows: $C_S \approx 0.065$ \end{itemize} \item<4-> Length scale uncertain with anisotropic filter: \begin{equation*} (\Delta_x \Delta_y \Delta_z)^{1/3} \hspace{5mm} (\Delta_x + \Delta_y + \Delta_z)/3 \end{equation*} \item<5-> Needs modification to account for: \begin{itemize} \item stratification: $C_S = F(Ri,...)$, $Ri$: Richardson number\\ \item near-wall region: $C_S = F(z+)$, $z+$: distance from wall \end{itemize} \end{itemize} \end{itemize} \end{frame} % Folie 7 \begin{frame} \frametitle{The Smagorinsky Model: Performance} \begin{itemize} \item<2-> Predicts many flows reasonably well \item<3-> Problems: \begin{itemize} \item<3-> Optimum parameter value varies with flow type: \begin{itemize} \item Isotropic turbulence: $C_S \approx 0.2$\\ \item Shear (channel) flows: $C_S \approx 0.065$ \end{itemize} \item<4-> Length scale uncertain with anisotropic filter: \begin{equation*} (\Delta_x \Delta_y \Delta_z)^{1/3} \hspace{5mm} (\Delta_x + \Delta_y + \Delta_z)/3 \end{equation*} \item<5-> Needs modification to account for: \begin{itemize} \item stratification: $C_S = F(Ri,...)$, $Ri$: Richardson number\\ \item near-wall region: $C_S = F(z+)$, $z+$: distance from wall \end{itemize} \end{itemize} \end{itemize} \end{frame} \section{Deardoff Modification} \subsection{Deardoff Modification} % Folie 8 \begin{frame} \frametitle{Deardorff (1980) Modification (Used in PALM) (I)} \footnotesize \onslide<1->{ $ \nu_T = Cql = C_M \Lambda \sqrt{\bar{e}} $ \quad \textbf{with} \quad $ \bar{e} = \frac{\overline{u_i' u_i'}}{2} $ \quad \textbf{SGS-turbulent kinetic energy}} \normalsize \begin{itemize} \item<2->{The SGS-TKE allows a much better estimation of the velocity scale for the SGS fluctuations and also contains information about the past history of the local fluid.} \end{itemize} \onslide<3->{ $ C_M = const. = 0.1 $ \par\bigskip \scriptsize $ \Lambda = \begin{cases} min\left( 0.7 \cdot z, \Delta \right), & \textbf{unstable or neutral stratification} \\ min\left( 0.7 \cdot z, \Delta, 0.76 \sqrt{\bar{e}} \left[ \frac{g}{\Theta_0} \frac{\partial \bar{\Theta}}{\partial z} \right]^{-1/2} \right), & \textbf{stable stratification} \end{cases} $ \normalsize \par\bigskip $ \Delta = \left( \Delta x \Delta y \Delta z \right)^{1/3} $ } \end{frame} % Folie 9 \begin{frame} \frametitle{Deardorff (1980) Modification (Used in PALM) (II)} \begin{itemize} \item{SGS-TKE from prognostic equation} \end{itemize} $ \frac{\partial \bar{e}}{\partial t} = -\bar{u_k} \frac{\partial \bar{e}}{\partial x_k} - \tau_{ki} \frac{\partial \bar{u_i}}{\partial x_k} + \frac{g}{\Theta_0} \overline{u_3' \Theta'} - \frac{\partial}{\partial x_k} \left\{ \overline{u_k' \left( e' + \frac{\pi'}{\rho_0} \right)} \right\} - \epsilon $ \par\bigskip $ \tau_{ki} = -K_{m} \left(\frac{\partial \bar{u_{i}}}{\partial x_{k}} + \frac{\partial \bar{u_{k}}}{\partial x_{i}}\right) + \frac{2}{3}\delta_{ik}\bar{e} \qquad \textnormal{with} \qquad K_{m}=0.1\cdot \Lambda \sqrt{\bar{e}}$ \par\bigskip $ H_{k}=\overline{u_k'\Theta'} = -K_{h}\frac{\partial\bar{\Theta}}{\partial x_{k}} \qquad \textnormal{with} \qquad K_{h}= \left(1+2\frac{\Lambda}{\Delta}\right)$ \par\bigskip $W_{k}=\overline{u_k'q'} = -K_{h}\frac{\partial\bar{q}}{\partial x_{k}}$ \par\bigskip $ \frac{\partial}{\partial x_k} \left[ \overline{u_k' \left( e' + \frac{\pi'}{\rho_0} \right)} \right] = - \frac{\partial}{\partial x_k} \nu_e \frac{\partial \bar{e}}{\partial x_k} $ \par\bigskip $ \nu_e = 2 \nu_T $ \par\bigskip $ \epsilon = C_{\epsilon} \frac{\bar{e}^{3/2}}{\Lambda} \qquad \qquad C_{\epsilon} = 0.19 + 0.74\frac{\Lambda}{\Delta} $ \end{frame} % Folie 10 \begin{frame} \frametitle{Deardorff (1980) Modification (Used in PALM) (III)} \begin{itemize} \item{There are still problems with this parameterization:} \begin{itemize} \item[-]<2->{The model overestimates the velocity shear near the wall.} \item[-]<3->{$\textrm{C}_\mathrm{M}$ is still a constant but actually varies for different types of flows.} \item[-]<4->{Backscatter of energy from the SGS-turbulence to the resolved-scale flow can not be considered.} \end{itemize} \item<5->{Several other SGS models have been developed:} \begin{itemize} \item[-]<5->{Two part eddy viscosity model (Sullivan, et al.)} \item[-]<6->{Scale similarity model (Bardina et al.)} \item[-]<7->{Backscatter model (Mason)} \end{itemize} \item<8->{However, for fine grid resolutions ($\textrm{E}_\mathrm{SGS} << \ \textrm{E}$) LES results become almost independent from the different models (Beare et al., 2006, BLM).} \end{itemize} \end{frame} \section{Summary / Important Points for Beginners} \subsection{Summary / Important Points for Beginners} % Folie 11 \begin{frame} \frametitle{Summary / Important Points for Beginners (I)} \begin{columns}[c] \column[T]{0.4\textwidth} \includegraphics<2-7>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_2.png} \includegraphics<8>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_8.png} \includegraphics<9>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_9.png} \includegraphics<10>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_10.png} \onslide<8-10>{\begin{flushright} \begin{tiny} after Schatzmann and Leitl (2001) \end{tiny} \end{flushright}} \column[T]{0.2\textwidth} \vspace{0.9cm} \includegraphics<8-10>[width=0.7\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_arrow.png} \par \onslide<8->{\begin{small} fluctuations (\textbf{u},c) \end{small}} \par\bigskip \thicklines \onslide<9->{\mbox{\line(6,0){5} \, \line(1,0){5} \, \line(1,0){5} \quad \begin{small} {critical concentration level} \end{small}}} \vspace{1cm} \includegraphics<8-10>[width=0.7\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_arrow.png} \par \onslide<8->{\begin{small} smooth result \end{small}} \column[T]{0.4\textwidth} \includegraphics<1-2>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_1_neu.png} \includegraphics<3>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_3_neu.png} \includegraphics<4>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_4.png} \includegraphics<5-10>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_5.png} \vspace{1.3cm} \includegraphics<6>[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_6_neu.png} \uncover<7->{\includegraphics[width=\textwidth]{sgs_models_figures/Important_Points/Important_Points_1_7_neu.png}} \end{columns} \end{frame} % Folie 12 \begin{frame} \frametitle{Summary / Important Points for Beginners (II)} For an LES it always has to be guaranteed that the main energy containing eddies of the respective turbulent flow can really be simulated by the numerical model: \begin{itemize} \item<2->{The grid spacing has to be fine enough.} \item<3->{$\textrm{E}_\mathrm{SGS} < (<<) \ \textrm{E} $} \item<4->{The inflow/outflow boundaries must not effect the flow turbulence \\ (therefore cyclic boundary conditions are used in most cases).} \item<5->{In case of homogeneous initial and boundary conditions, the onset of turbulence has to be triggered by imposing random fluctuations.} \item<6->{Simulations have to be run for a long time to reach a stationary state and stable statistics.} \end{itemize} \end{frame} \section{Example Output} \subsection{Example Output} % Folie 13 \begin{frame} \frametitle{Example Output (I)} \begin{itemize} \item{LES of a convective boundary layer} \end{itemize} \includegraphics<1>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_1.png} \includegraphics<2>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_2.png} \includegraphics<3>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_3.png} \includegraphics<4>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_4.png} \includegraphics<5>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_5.png} \includegraphics<6>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_6.png} \includegraphics<7>[width=\textwidth]{sgs_models_figures/Example_Output_1/Example_Output_1_7.png} \end{frame} % Folie 14 \begin{frame} \frametitle{Example Output (II)} \begin{itemize} \item{LES of a convective boundary layer} \end{itemize} \begin{center} \includegraphics[width=0.8\textwidth]{sgs_models_figures/Example_output_2.png} power spectrum of vertical velocity \end{center} \end{frame} % Folie 15 \begin{frame} \frametitle{Some Symbols} \begin{columns}[c] \column{0.6\textwidth} \begin{tabbing} $u_i \quad (i = 1,2,3)$ \quad \= velocity components \\ $u,v,w$ \\ \\ $x_i \quad (i = 1,2,3)$ \> spatial coordinates \\ $x,y,z$ \\ \\ $\Theta$ \> potential temperature \\ \\ $\Psi$ \> passive scalar \\ \\ $T$ \> actual Temperatur \\ \\ \end{tabbing} \column{0.4\textwidth} \begin{tabbing} $\Phi = gz$ \quad \= geopotential \\ \\ $p$ \> pressure \\ \\ $\rho$ \> density \\ \\ $f_i$ \> Coriolis Parameter \\ \\ $\epsilon_{ijk}$ \> alternating symbol \\ \\ $\nu, \nu_\Psi$ \> molecular diffusivity \\ \\ $Q, Q_\Psi$ \> sources or sinks \\ \\ \end{tabbing} \end{columns} \end{frame} \end{document}