[915] | 1 | % $Id: sgs_models.tex 945 2012-07-17 15:43:01Z maronga $ |
---|
| 2 | \input{header_tmp.tex} |
---|
| 3 | %\input{header_lectures.tex} |
---|
| 4 | |
---|
| 5 | \usepackage[utf8]{inputenc} |
---|
| 6 | \usepackage{ngerman} |
---|
| 7 | \usepackage{pgf} |
---|
| 8 | \usetheme{Dresden} |
---|
| 9 | \usepackage{subfigure} |
---|
| 10 | \usepackage{units} |
---|
| 11 | \usepackage{multimedia} |
---|
| 12 | \usepackage{hyperref} |
---|
| 13 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
| 14 | \usepackage{xmpmulti} |
---|
| 15 | \usepackage{tikz} |
---|
| 16 | \usetikzlibrary{shapes,arrows,positioning} |
---|
| 17 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
| 18 | \usepackage{amsmath} |
---|
| 19 | \usepackage{amssymb} |
---|
| 20 | \usepackage{multicol} |
---|
[945] | 21 | \usepackage{pdfcomment} |
---|
[915] | 22 | |
---|
| 23 | \institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} |
---|
| 24 | \date{last update: \today} |
---|
| 25 | \event{PALM Seminar} |
---|
| 26 | \setbeamertemplate{navigation symbols}{} |
---|
| 27 | |
---|
| 28 | \setbeamertemplate{footline} |
---|
| 29 | { |
---|
| 30 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
| 31 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
| 32 | \end{beamercolorbox} |
---|
| 33 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, |
---|
| 34 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} |
---|
| 35 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} |
---|
| 36 | \end{beamercolorbox} |
---|
| 37 | \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} |
---|
| 38 | \end{beamercolorbox} |
---|
| 39 | } |
---|
| 40 | %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} |
---|
| 41 | |
---|
| 42 | \title[SGS Models]{SGS Models} |
---|
| 43 | \author{Siegfried Raasch} |
---|
| 44 | |
---|
| 45 | \begin{document} |
---|
| 46 | |
---|
| 47 | % Folie 1 |
---|
| 48 | \begin{frame} |
---|
| 49 | \titlepage |
---|
| 50 | \end{frame} |
---|
| 51 | |
---|
| 52 | |
---|
| 53 | \section{SGS Models} |
---|
| 54 | \subsection{SGS Models} |
---|
| 55 | |
---|
| 56 | % Folie 2 |
---|
| 57 | \begin{frame} |
---|
| 58 | \frametitle{SGS Models (I)} |
---|
| 59 | \small |
---|
| 60 | \begin{itemize} |
---|
| 61 | \item<2->The SGS model has to parameterize the effect of the SGS motions (small-scale turbulence) on the large eddies (resolved-scale turbulence). |
---|
| 62 | \item<3->Features of small-scale turbulence: local, isotropic, dissipative (inertial subrange) |
---|
| 63 | \item<4->SGS stresses should depend on: |
---|
| 64 | \begin{itemize} |
---|
| 65 | \item local resolved-scale field \hspace{3mm} and / or |
---|
| 66 | \item past history of the local fluid (via a PDE) |
---|
| 67 | \end{itemize} |
---|
| 68 | \item<5->Importance of the model depends on how much energy is contained in the subgrid-scales: |
---|
| 69 | \begin{itemize} |
---|
| 70 | \item $E_{SGS} / E < 50\%$: results relatively insensitive to the model, (but sensitive to the numerics, e.g. in case of upwind scheme) |
---|
| 71 | \item $E_{SGS} / E = 1$: model more important |
---|
| 72 | \item<6->\textbf{If the large-scale eddies are not resolved, the SGS model and the LES will fail at all!} |
---|
| 73 | \end{itemize} |
---|
| 74 | \end{itemize} |
---|
| 75 | \end{frame} |
---|
| 76 | |
---|
| 77 | % Folie 3 |
---|
| 78 | \begin{frame} |
---|
| 79 | \frametitle{SGS Models (II)} |
---|
| 80 | Requirements that a good SGS model must fulfill: |
---|
| 81 | \begin{footnotesize} |
---|
| 82 | \begin{itemize} |
---|
| 83 | \item<2-> Represent interactions with small scales. |
---|
| 84 | \item<3-> Provide adequate dissipation\\ (transport of energy from the resolved grid scales to the unresolved grid scales; the rate of dissipation $\varepsilon$ in this context is the flux of energy through the inertial subrange). |
---|
| 85 | \item<4-> Dissipation rate must depend on the large scales of the flow rather than being imposed arbitrarily by the model. The SGS model must depend on the large-scale statistics and must be sufficiently flexible to adjust to changes in these statistics. |
---|
| 86 | \item<5->In energy conserving codes (ideal for LES) the only way for TKE to leave the resolved modes is by the dissipation provided by the SGS model. |
---|
| 87 | \item<6->\underline{The primary goal of an SGS model is to obtain correct statistics of the}\\ |
---|
| 88 | \underline{energy containing scales of motion.} |
---|
| 89 | \end{itemize} |
---|
| 90 | \end{footnotesize} |
---|
| 91 | \end{frame} |
---|
| 92 | |
---|
| 93 | % Folie 4 |
---|
| 94 | \begin{frame} |
---|
| 95 | \frametitle{SGS Models (III)} |
---|
| 96 | \onslide<1-> All the above observation suggest the use of an eddy viscosity type SGS model: |
---|
| 97 | \begin{footnotesize} |
---|
| 98 | \begin{itemize} |
---|
| 99 | \item<2-> Take idea from RANS modeling, introduce eddy viscosity $\nu_T$: |
---|
| 100 | \begin{flalign*} |
---|
| 101 | &\tau_{ki} = - \nu_T \left( \frac{\partial \overline{u_k}}{\partial x_i}+ \frac{\partial \overline{u_i}}{\partial x_k}\right) = -2 \nu_T \overline{S}_{ki}& \text{with} \hspace{3mm} \overline{S}_{ki} = \frac{1}{2} \left( \frac{\partial \overline{u_k}}{\partial x_i}+ \frac{\partial \overline{u_i}}{\partial x_k}\right)\\ |
---|
| 102 | & & \text{filtered strain rate tensor} |
---|
| 103 | \end{flalign*} |
---|
| 104 | \end{itemize} |
---|
| 105 | \end{footnotesize} |
---|
| 106 | \onslide<3->Now we need a model for the eddy viscosity: |
---|
| 107 | \begin{footnotesize} |
---|
| 108 | \begin{itemize} |
---|
| 109 | \item<4-> Dimensionality of $\nu_T$ is $l^2/t$ |
---|
| 110 | \item<5-> Obvious choice: $\nu_T = Cql$ \hspace{5mm} (q, l: characterictic velocity / length scale) |
---|
| 111 | \item<6-> Turbulence length scale is easy to define: largest size of the unresolved scales is $\Delta$ \hspace{10mm} $l = \Delta$ |
---|
| 112 | \item<7-> Velocity scale not obvious (smallest resolved scales, their size is of the order of the variation of velocity over one grid element) |
---|
| 113 | \begin{flalign*} |
---|
| 114 | &q = l \frac{\partial \overline{u}}{\partial x} = l \overline{S}& \text{for 3D: } \overline{S} = \sqrt{2 \overline{S}_{ki}\,\overline{S}_{ki}} \hspace{15mm} \\ |
---|
| 115 | & & \text{characterictic filtered rate of strain}\hspace{15mm} |
---|
| 116 | \end{flalign*} |
---|
| 117 | \end{itemize} |
---|
| 118 | \end{footnotesize} |
---|
| 119 | \end{frame} |
---|
| 120 | |
---|
| 121 | |
---|
| 122 | \section{Smagorinsky Model} |
---|
| 123 | \subsection{The Smagorinsky Model} |
---|
| 124 | |
---|
| 125 | % Folie 5 |
---|
| 126 | \begin{frame} |
---|
| 127 | \frametitle{The Smagorinsky Model} |
---|
| 128 | \onslide<2->Combine previous expressions to obtain: |
---|
| 129 | \begin{equation*} |
---|
| 130 | \nu_T = C \Delta^2 \overline{S} = (C_S \Delta)^2 \overline{S} |
---|
| 131 | \end{equation*} |
---|
| 132 | \onslide<3-> Model due to Smagorinsky (1963): |
---|
| 133 | \begin{itemize} |
---|
| 134 | \item<3-> Originally designed at NCAR for global weather modeling. |
---|
| 135 | \item<4-> Can be derived in several ways: heuristically (above), from inertial range arguments (Lilly), from turbulence theories. |
---|
| 136 | \item<5-> Constant predicted by all methods (based on theory, decay of isotropic turbulence): $C_S = \sqrt{C} \approx 0.2$ |
---|
| 137 | \end{itemize} |
---|
| 138 | \end{frame} |
---|
| 139 | |
---|
| 140 | % Folie 6 |
---|
| 141 | \begin{frame} |
---|
| 142 | \frametitle{The Smagorinsky Model: Performance} |
---|
| 143 | \begin{itemize} |
---|
| 144 | \item<2-> Predicts many flows reasonably well |
---|
| 145 | \item<3-> Problems: |
---|
| 146 | \begin{itemize} |
---|
| 147 | \item<3-> Optimum parameter value varies with flow type: |
---|
| 148 | \begin{itemize} |
---|
| 149 | \item Isotropic turbulence: $C_S \approx 0.2$\\ |
---|
| 150 | \item Shear (channel) flows: $C_S \approx 0.065$ |
---|
| 151 | \end{itemize} |
---|
| 152 | \item<4-> Length scale uncertain with anisotropic filter: |
---|
| 153 | \begin{equation*} |
---|
| 154 | (\Delta_x \Delta_y \Delta_z)^{1/3} \hspace{5mm} (\Delta_x + \Delta_y + \Delta_z)/3 |
---|
| 155 | \end{equation*} |
---|
| 156 | \item<5-> Needs modification to account for: |
---|
| 157 | \begin{itemize} |
---|
| 158 | \item stratification: $C_S = F(Ri,...)$, $Ri$: Richardson number\\ |
---|
| 159 | \item near-wall region: $C_S = F(z+)$, $z+$: distance from wall |
---|
| 160 | \end{itemize} |
---|
| 161 | \end{itemize} |
---|
| 162 | \end{itemize} |
---|
| 163 | \end{frame} |
---|
| 164 | |
---|
| 165 | |
---|
[945] | 166 | \end{document} |
---|