% $Id: mrun_steering_parameters.tex 945 2012-07-17 15:43:01Z raasch $ \input{header_tmp.tex} %\input{../header_lectures.tex} \usepackage[utf8]{inputenc} \usepackage{ngerman} \usepackage{pgf} \usetheme{Dresden} \usepackage{subfigure} \usepackage{units} \usepackage{multimedia} \usepackage{hyperref} \newcommand{\event}[1]{\newcommand{\eventname}{#1}} \usepackage{xmpmulti} \usepackage{tikz} \usetikzlibrary{shapes,arrows,positioning} \usetikzlibrary{decorations.markings} %neues paket \usetikzlibrary{decorations.pathreplacing} %neues paket \def\Tiny{\fontsize{4pt}{4pt}\selectfont} \usepackage{amsmath} \usepackage{amssymb} \usepackage{multicol} \usepackage{pdfcomment} \usepackage{graphicx} \usepackage{listings} \lstset{showspaces=false,language=fortran,basicstyle= \ttfamily,showstringspaces=false,captionpos=b} \institute{Institut für Meteorologie und Klimatologie, Leibniz Universität Hannover} \date{last update: \today} \event{PALM Seminar} \setbeamertemplate{navigation symbols}{} \setbeamertemplate{footline} { \begin{beamercolorbox}[rightskip=-0.1cm]& {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} \end{beamercolorbox} \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} \end{beamercolorbox} \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} \end{beamercolorbox} } %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} \title[General Steering Parameters]{General Steering Parameters} \author{Siegfried Raasch} \begin{document} % Folie 1 \begin{frame} \titlepage \end{frame} \section{General Steering Parameters} \subsection{General Steering Parameters} % Folie 2 \begin{frame} \frametitle{General Hints for Carrying out LES} \begin{itemize} \scriptsize \item<2-> Domain size \begin{itemize} \scriptsize \item[-]<3-> Must be large enough to capture all relevant scales of turbulence \end{itemize} \item<4-> Grid spacing \begin{itemize} \scriptsize \item[-]<4-> Must be so fine that most of the turbulent transport is resolved (explicit transport $>>$ subgrid-scale transport)\\ $\rightarrow$ check profiles of resolved-scale and subgrid-scale fluxes \item[-]<5-> Results should not depend on grid spacing $\rightarrow$ carry out sensitivity study \end{itemize} \item<6-> Simulation time \begin{itemize} \scriptsize \item[-]<6-> Must be long enough that turbulence can develop $\rightarrow$ check the timeseries of velocity components or resolved-scale TKE \item[-]<7-> In case of horizontally homogeneous boundary conditions, onset of turbulence has to be triggered by imposing random disturbances to the flow $\rightarrow$ otherwise, there will be no turbulence! \item[-]<8-> Must be long enough to guarantee, that the mean flow has reached a (quasi-) stationary state $\rightarrow$ otherwise, turbulence statistics may be wrong \end{itemize} \item<9-> Data analysis \begin{itemize} \scriptsize \item[-]<9-> Data analysis should start only after onset of turbulence and after the mean flow has reached a (quasi-) stationary state \item[-]<10-> Getting correct mean flow profiles generally requires temporal averaging of the data (e.g. over the eddy-turnover timescale in the \\ convective boundary layer) \end{itemize} \end{itemize} \end{frame} % Folie 3 \begin{frame} \frametitle{PALM - General Steering Parameters - Overview (I)} Steering parameters can be classified into different groups: \begin{itemize} \footnotesize \item<2-> Grid parameters (computational grid / processor grid) \begin{itemize} \footnotesize \item[-]<2-> grid spacing, number of gridpoints, etc. \end{itemize} \item<3-> Numerical parameters \begin{itemize} \footnotesize \item[-]<3-> timestep scheme, advection scheme, etc. \end{itemize} \item<4-> Boundary condition parameters \begin{itemize} \footnotesize \item[-]<4-> horizontal (cyclic/non-cyclic), vertical (Prandtl-layer, free-slip condition, etc.) \end{itemize} \item<5-> Initialization parameters \begin{itemize} \footnotesize \item[-]<5-> kind of initial profiles, restart run, main rain (following pre-run) \end{itemize} \item<6-> Output parameters \begin{itemize} \footnotesize \item[-]<6-> 1d, 2d, 3d output, output intervals, etc. \end{itemize} \item<7-> Physical parameters \begin{itemize} \footnotesize \item[-]<7-> latitude, angular velocity, etc. \end{itemize} \end{itemize} \end{frame} % Folie 4 \begin{frame} \frametitle{PALM - General Steering Parameters - Overview (II)} \footnotesize A complete alphabetical list of all parameters can be found under: \url{http://palm.muk.uni-hannover.de/wiki/doc/app/parlist} \begin{itemize} \footnotesize \item<2-> General initialization methods \begin{itemize} \footnotesize \item[-]<2-> controlled by parameter \texttt{initializing\_actions =} \end{itemize} \item<3-> Initial run: \begin{itemize} \footnotesize \item[-]<3-> \texttt{initializing\_actions = ‘set\_constant\_profiles’}\\ constant, piecewise linear, profiles are used \item[-]<4-> \texttt{initializing\_actions = ‘set\_1d-model-profiles’}\\ wind/TKE-profiles are created by a 1d-model, embedded in PALM, using stationary temperature/humidity-profiles \item[-]<5-> \texttt{initializing\_actions = ‘cyclic\_fill’}\\ 3d-data from a pre-run (possibly with smaller domain size than the initial run) are used \item[-]<6-> \texttt{initializing\_actions = ‘by\_user’}\\ user has to provide all initial settings \end{itemize} \item<7-> Restart run: \begin{itemize} \footnotesize \item[-]<7-> \texttt{initializing\_actions = ‘read\_restart\_data’}\\ data from the previous run in the job-chain are used \end{itemize} \end{itemize} \end{frame} % Folie 5 \begin{frame} \frametitle{PALM - Initialization Example} \begin{itemize} \footnotesize \item<1-> The following parameters have to be set for an initial atmosphere at rest with neutral temperature stratification and a capping inversion: \quad \texttt{initializing\_actions = ‘set\_constant\_profiles’,}\\ \quad \texttt{ug\_surface = 0.0, vg\_surface = 0.0,}\\ \quad \texttt{pt\_surface = 300.0,}\\ \quad \texttt{pt\_initial\_gradient = 0.0, 1.0,}\\ \quad \texttt{pt\_initial\_gradient\_level = 0.0, 800.0,}\\ \end{itemize} \begin{center} \onslide<2-> \begin{tikzpicture}[scale=0.7] % define coordinates \coordinate (O) at (0,0) ; \coordinate (X) at (5,0) ; \coordinate (Z) at (0,5) ; % axis \draw[->, thick] (O) -- (X) ; \draw[->, thick] (O) -- (Z) ; % axis tics \draw[-] (1,-0.2) -- (1,0) ; \draw[-] (-0.2,0) -- (0,0) ; \draw[-] (-0.2,3) -- (0,3) ; % x-axis labels \node[below] at (5,-0.2) {$\theta$}; \node[below] at (1,-0.2) {$\unit{300}{K}$}; % z-axis labels \node[left] at (-0.2,5) {$z$}; \node[left] at (-0.2,3) {$\unit{800}{m}$}; \node[left] at (-0.2,0) {$\unit{0}{m}$}; % theta lines \draw[red, ultra thick] (1,0) -- (1,3) ; \draw[red, ultra thick] (1,3) -- (3,4.4) ; % theta profiles \uncover<3->{ \draw [decorate,decoration={brace,amplitude=10pt,mirror}] (1,0) -- (1,3) node[black,midway,xshift=0pt] {} ; \node at (3.6,1.5) {$\dfrac{\partial \theta}{\partial z} = \unit{0.0}{K} / \unit{100}{m}$} ;} \uncover<4->{ \node at (4.7,3.5) {$\dfrac{\partial \theta}{\partial z} = \unit{1.0}{K} / \unit{100}{m}$} ;} \end{tikzpicture} \end{center} \end{frame} \end{document}