% $Id: fundamentals_of_les.tex 945 2012-07-17 15:43:01Z maronga $ \input{header_tmp.tex} %\input{../header_lectures.tex} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{pgf} \usetheme{Dresden} \usepackage{subfigure} \usepackage{units} \usepackage{multimedia} \usepackage{hyperref} \newcommand{\event}[1]{\newcommand{\eventname}{#1}} \usepackage{xmpmulti} \usepackage{tikz} \usepackage{pdfcomment} \usetikzlibrary{shapes,arrows,positioning} \def\Tiny{\fontsize{4pt}{4pt}\selectfont} %---------- neue Pakete \usepackage{amsmath} \usepackage{amssymb} \usepackage{multicol} \institute{Institut für Meteorologie und Klimatologie, Leibniz Universität Hannover} \date{last update: \today} \event{PALM Seminar} \setbeamertemplate{navigation symbols}{} \setbeamertemplate{footline} {% \begin{beamercolorbox}[rightskip=-0.1cm]& {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} \end{beamercolorbox} \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,% leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}% {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}% \end{beamercolorbox}% % \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}% % \end{beamercolorbox} }%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.eps}} \title[Fundamentals of Large-Eddy Simulation]{Fundamentals of Large-Eddy Simulation} \author{Siegfried Raasch} % Notes: % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet. % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet) \begin{document} %Folie 1 \begin{frame} \titlepage \pdfnote{maronga}{Welcome to the PALM Tutorial!} \end{frame} \section{The Role of Turbulence} \subsection{The Role of Turbulence} % Folie 2 \begin{frame} \frametitle{The Role of Turbulence (I)} \begin{itemize} \item<1->{\textbf{Most flows in nature \& technical applications are turbulent}} \item<2->{\textbf{Significance of Turbulence}} \begin{itemize} \item<2->{\underline{Meteorology / Oceanography:} Transport processes of momentum, heat, water vapor as well as other scalars} \item<2->{\underline{Health care:} Air pollution} \item<2->{\underline{Aviation, Engineering:} Wind impact on buildings, power output of windfarms} \end{itemize} \item<3->{\textbf{Characteristics of turbulence}} \begin{itemize} \item<3->{non-periodical, 3D stochastic movements} \item<3->{mixes air and its properties on scales between large-scale advection and molecular diffusion} \item<3->{non-linear $\rightarrow$ energy is distributed smoothly with wavelength} \item<3->{wide range of spatial and temporal scales} \end{itemize} \end{itemize} \end{frame} % Folie 3 \begin{frame} \frametitle{The Role of Turbulence (II)} \begin{columns}[c] \column{0.5\textwidth} \scriptsize \begin{itemize} \item<2->{\textbf{Large eddies:} $\unit[10^3]{m}$ ($L$), $\unit[1]{h}$ \\ \textbf{Small eddies:} $\unit[10^{-3}]{m}$ ($\eta$), \unit[0.1]{s}} \item<3->{\textbf{Energy production and dissipation on different scales}} \begin{itemize} \item<3->{\begin{scriptsize} Large scales: shear and buoyant production \end{scriptsize}} \item<3->{\begin{scriptsize} Small scales: viscous dissipation \end{scriptsize}} \end{itemize} \item<4->{\textbf{Large eddies contain most energy}} \item<5->{\textbf{Energy-cascade} \\ Large eddies are broken up by instabilities and their energy is handled down to smaller scales.} \end{itemize} \normalsize \column{0.5\textwidth} \onslide<3->{ \includegraphics[width=\textwidth, height=0.9\textheight]{fundamentals_of_les_figures/Role_of_Turbulence_2.png}} \end{columns} \end{frame} \section{The Reynolds Number} \subsection{The Reynolds Number} % Folie 4 \begin{frame} \frametitle{The Reynolds Number (Re)} \begin{columns}[c] \column{0.6\textwidth} \onslide<1->{ $\frac{L}{\eta} \approx Re^{3/4} \approx 10^6$ \quad \begin{small} (in the atmosphere) \end{small}} \par\bigskip \onslide<2->{ $Re = \frac{\left| \textbf{u} \cdot \nabla \textbf{u} \right|}{\left| \nu \nabla^2 \textbf{u} \right|} \hat{=} \frac{LU}{\nu} \qquad \frac{\textnormal{inertia forces}}{\textnormal{viscous forces}} $} \column{0.4\textwidth} \footnotesize \onslide<1->{ \textbf{u} 3D wind vector $\nu$ kinematic molecular viscosity $L$ outer scale of turbulence $U$ characteristic velocity scale $\eta$ inner scale of turbulence \begin{scriptsize}(Kolmogorov dissipation length) \end{scriptsize} } \end{columns} \normalsize \par\bigskip \par\bigskip \onslide<3->{ $ \Rightarrow $ \underline{Number of gridpoints for a 3D simulation:} \par\bigskip $ \left( \frac{L}{\eta} \right)^3 \approx Re^{9/4} \approx 10^{18}$ (in the atmosphere)} \end{frame} \section{Classes of Turbulence Models} \subsection{Classes of Turbulence Models} % Folie 5 \begin{frame} \frametitle{Classes of Turbulence Models (I)} \begin{itemize} \item{\textbf{Direct numerical Simulation (DNS)}} \begin{itemize} \item<2->{\textbf{Most straight-forward approach:}} \begin{itemize} \item<2->{Resolve all scales of turbulent flow explicitly.} \end{itemize} \item<3->{\textbf{Advantage:}} \begin{itemize} \item<3->{(In principle) a very accurate turbulence representation.} \end{itemize} \item<4->{\textbf{Problem:}} \begin{itemize} \item<4->{Limited computer resources (1996: $\sim$ $10^8$, today: $\sim$ $10^{11}$ gridpoints, but $\sim$ $10^{18}$ gridpoints needed, see prior slide).} \item<4->{$\unit[1]{h}$ simulation of $10^9$ ($2048^3$) gridpoints on $512$ processors of the HLRN supercomputer needs $\unit[10]{h}$ CPU time.} \end{itemize} \item<5->{\textbf{Consequences:}} \begin{itemize} \item<5->{DNS is restricted to moderately turbulent flows (low Reynolds-number flows).} \item<5->{Highly turbulent atmospheric turbulent flows cannot be simulated.} \end{itemize} \end{itemize} \end{itemize} \end{frame} % Folie 6 \begin{frame} \frametitle{Classes of Turbulence Models (II)} \begin{itemize} \item{\textbf{Reynolds averaged (Navier-Stokes) simulation (RANS)}} \begin{itemize} \item<2->{\textbf{Opposite strategy:}} \begin{itemize} \item<2->{Applications that only require average statistics of the flow (i.e. the mean flow).} \item<2->{Integrate merely the ensemble-averaged equations.} \item<2->{Parameterize turbulence over the whole eddy spectrum.} \end{itemize} \item<3->{\textbf{Advantage:}} \begin{itemize} \item<3->{Computationally inexpensive, fast.} \end{itemize} \item<4->{\textbf{Problem:}} \begin{itemize} \item<4->{Turbulent fluctuations not explicitly captured.} \item<4->{Parameterizations are very sensitive to large-eddy structure that depends on environmental conditions such as geometry and stratification $\rightarrow$ Parameterizations are not valid for a wide range of different flows.} \end{itemize} \item<5->{\textbf{Consequence:}} \begin{itemize} \item<5->{Not suitable for detailed turbulence studies.} \end{itemize} \end{itemize} \end{itemize} \end{frame} % Folie 7 \begin{frame} \frametitle{Classes of Turbulence Models (III)} \begin{itemize} \item{\textbf{Large eddy simulation (LES)}} \begin{itemize} \item<2->{Seeks to combine advantages and avoid disadvantages of DNS and RANS by \underline{treating large scales and small scales separately}, based on Kolmogorov's (1941) similarity theory of turbulence.} \item<3->{Large eddies are explicitly resolved.} \item<4->{The impact of small eddies on the large-scale flow is parameterized.} \item<5->{Advantages:} \begin{itemize} \item<5->{Highly turbulent flows can be simulated.} \item<5->{Local homogeneity and isotropy at large \textit{Re} (Kolmogorov's $1^\mathrm{st}$ hypothesis) leaves parameterizations uniformly valid for a wide range of different flows.} \end{itemize} \end{itemize} \end{itemize} \end{frame} \section{Concept of LES} \subsection{Concept of LES} % Folie 8 \begin{frame} \frametitle{Concept of Large Eddy Simulation (I)} \begin{columns} \column{0.55\textwidth} \begin{itemize} \item<1->{\textbf{Filtering}} \begin{footnotesize} \begin{itemize} \item<2->{Spectral cut at wavelength $\Delta x$.} \item<3->{Structures larger than $\Delta x$ are explicitly calculated (resolved scales).} \item<4->{Structures smaller than $\Delta x$ must be filtered out (subgrid scales), formally known as low-pass filtering.} \item<5->{Like for Reynolds averaging: split variables in mean part and fluctuation, spatially average the model equations, e.g.:} \end{itemize} \end{footnotesize} \onslide<6->{\begin{center} $w = \overline{w} + w', \theta = \overline{\theta} + \theta'$ \end{center}} \end{itemize} \column{0.45\textwidth} \includegraphics[width=\textwidth]{fundamentals_of_les_figures/Concept_of_LES.png} \end{columns} \end{frame} % Folie 9 \begin{frame} \frametitle{Concept of Large Eddy Simulation (II)} \begin{itemize} \item<1->{\textbf{Parameterization}} \begin{footnotesize} \begin{itemize} \item<2->{The filter procedure removes the small scales from the model equations, but it produces new unknowns, mainly averages of fluctuation products.} \begin{itemize} \item<2->{eg. $\overline{w'\theta'}$} \end{itemize} \item<3->{These unknowns describe the effect of the unresolved, small scales on the resolved, large scales; therefore it is important to include them in the model.} \item<4->{We do not have information about the variables (e.g., vertical wind component and potential temperature) on these small scales of their fluctuations.} \item<5->{Therefore, these unknowns have to be parameterized using information from the resolved scales.} \begin{itemize} \item<5->{A typical example is the flux-gradient relationship, e.g.,} \end{itemize} \end{itemize} \end{footnotesize} \end{itemize} \onslide<5->{ \begin{center} $ \overline{w'\theta'} = - \nu_\mathrm{h} \cdot \frac{\partial \overline{\theta}}{\partial z} $ \end{center}} \end{frame} \end{document}