source: palm/trunk/TUTORIAL/SOURCE/fundamentals_of_les.tex @ 920

Last change on this file since 920 was 915, checked in by maronga, 12 years ago

added first LaTeX source code for the new tutorial

  • Property svn:keywords set to Id
File size: 11.0 KB
Line 
1% $Id: fundamentals_of_les.tex 915 2012-05-30 15:11:11Z maronga $
2\input{header_tmp.tex}
3%\input{../header_lectures.tex}
4
5\usepackage[utf8]{inputenc}
6\usepackage[T1]{fontenc}
7\usepackage{pgf}
8\usetheme{Dresden}
9\usepackage{subfigure}
10\usepackage{units}
11\usepackage{multimedia}
12\usepackage{hyperref}
13\newcommand{\event}[1]{\newcommand{\eventname}{#1}}
14\usepackage{xmpmulti}
15\usepackage{tikz}
16\usetikzlibrary{shapes,arrows,positioning}
17\def\Tiny{\fontsize{4pt}{4pt}\selectfont}
18
19%---------- neue Pakete
20\usepackage{amsmath}
21\usepackage{amssymb}
22\usepackage{multicol}
23
24\institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover}
25\date{last update: \today}
26\event{PALM Seminar}
27\setbeamertemplate{navigation symbols}{}
28
29\setbeamertemplate{footline}
30  {%
31    \begin{beamercolorbox}[rightskip=-0.1cm]&
32     {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}}
33    \end{beamercolorbox}
34    \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,%
35      leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}%
36      {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}%
37    \end{beamercolorbox}%
38%    \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}%
39%    \end{beamercolorbox}
40  }%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.eps}}
41
42\title[Fundamentals of Large-Eddy Simulation]{Fundamentals of Large-Eddy Simulation}
43\author{Siegfried Raasch}
44
45% Notes:
46% jede subsection bekommt einen punkt im menu (vertikal ausgerichtet.
47% jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet)
48\begin{document}
49%Folie 1
50\begin{frame}
51\titlepage
52\pdfnote{maronga}{Welcome to the PALM Tutorial!}
53\end{frame}
54
55\section{The Role of Turbulence}
56\subsection{The Role of Turbulence}
57
58% Folie 2
59\begin{frame}
60   \frametitle{The Role of Turbulence (I)}
61   \begin{itemize}
62      \item<1->{\textbf{Most flows in nature \& technical applications are turbulent}}
63      \item<2->{\textbf{Significance of Turbulence}}
64      \begin{itemize}
65         \item<2->{\underline{Meteorology / Oceanography:} Transport processes of momentum, heat, water vapor as well as other scalars}
66         \item<2->{\underline{Health care:} Air pollution}
67         \item<2->{\underline{Aviation, Engineering:} Wind impact on buildings, power output of windfarms}
68      \end{itemize}
69      \item<3->{\textbf{Characteristics of turbulence}}
70      \begin{itemize}
71         \item<3->{non-periodical, 3D stochastic movements}
72         \item<3->{mixes air and its properties on scales between large-scale advection and molecular diffusion}
73         \item<3->{non-linear $\rightarrow$ energy is distributed smoothly with wavelength}
74         \item<3->{wide range of spatial and temporal scales}
75      \end{itemize}
76   \end{itemize}
77\end{frame}
78
79% Folie 3
80\begin{frame}
81   \frametitle{The Role of Turbulence (II)}
82   \begin{columns}[c]
83   \column{0.5\textwidth}
84      \scriptsize
85      \begin{itemize}
86         \item<2->{\textbf{Large eddies:} $\unit[10^3]{m}$ ($L$), $\unit[1]{h}$ \\
87                   \textbf{Small eddies:} $\unit[10^{-3}]{m}$ ($\eta$), \unit[0.1]{s}}
88         \item<3->{\textbf{Energy production and dissipation on different scales}}
89         \begin{itemize}
90            \item<3->{\begin{scriptsize} Large scales: shear and buoyant production \end{scriptsize}}
91            \item<3->{\begin{scriptsize} Small scales: viscous dissipation \end{scriptsize}}
92         \end{itemize}
93         \item<4->{\textbf{Large eddies contain most energy}}
94         \item<5->{\textbf{Energy-cascade} \\ 
95                   Large eddies are broken up by instabilities and their energy is handled down to smaller scales.}
96      \end{itemize}
97      \normalsize
98   \column{0.5\textwidth}
99      \onslide<3->{
100         \includegraphics[width=\textwidth, height=0.9\textheight]{fundamentals_of_les_figures/Role_of_Turbulence_2.png}}
101   \end{columns}
102\end{frame}
103
104\section{The Reynolds Number}
105\subsection{The Reynolds Number}
106
107% Folie 4
108\begin{frame}
109   \frametitle{The Reynolds Number (Re)}
110   \begin{columns}[c]
111   \column{0.6\textwidth}
112      \onslide<1->{
113         $\frac{L}{\eta} \approx Re^{3/4} \approx 10^6$ \quad \begin{small} (in the atmosphere) \end{small}}
114      \par\bigskip
115      \onslide<2->{
116         $Re = \frac{\left| \textbf{u} \cdot \nabla \textbf{u} \right|}{\left| \nu \nabla^2 \textbf{u} \right|} \hat{=} \frac{LU}{\nu} \qquad \frac{\textnormal{inertia forces}}{\textnormal{viscous forces}} $}
117   \column{0.4\textwidth}
118      \footnotesize
119      \onslide<1->{
120         \textbf{u} 3D wind vector
121
122         $\nu$ kinematic molecular viscosity
123
124         $L$ outer scale of turbulence
125
126         $U$ characteristic velocity scale
127
128         $\eta$ inner scale of turbulence
129            \begin{scriptsize}(Kolmogorov dissipation length) \end{scriptsize} }             
130   \end{columns}
131   \normalsize
132   \par\bigskip
133   \par\bigskip
134   \onslide<3->{
135      $ \Rightarrow $ \underline{Number of gridpoints for a 3D simulation:}
136   \par\bigskip
137   $ \left( \frac{L}{\eta} \right)^3 \approx Re^{9/4} \approx 10^{18}$ (in the atmosphere)}
138\end{frame}
139
140\section{Classes of Turbulence Models}
141\subsection{Classes of Turbulence Models}
142
143% Folie 5
144\begin{frame}
145   \frametitle{Classes of Turbulence Models (I)}
146   \begin{itemize}
147      \item{\textbf{Direct numerical Simulation (DNS)}}
148      \begin{itemize}
149         \item<2->{\textbf{Most straight-forward approach:}}
150         \begin{itemize}
151            \item<2->{Resolve all scales of turbulent flow explicitly.}
152         \end{itemize}
153         \item<3->{\textbf{Advantage:}}
154         \begin{itemize}
155            \item<3->{(In principle) a very accurate turbulence representation.}
156         \end{itemize}
157         \item<4->{\textbf{Problem:}}
158         \begin{itemize}
159            \item<4->{Limited computer resources  (1996: $\sim$ $10^8$, today: $\sim$ $10^{11}$ gridpoints,
160                      but $\sim$ $10^{18}$ gridpoints needed, see prior slide).}
161            \item<4->{$\unit[1]{h}$ simulation of $10^9$ ($2048^3$) gridpoints on $512$ processors of the HLRN supercomputer needs $\unit[10]{h}$ CPU time.}
162         \end{itemize}
163         \item<5->{\textbf{Consequences:}}
164         \begin{itemize}
165            \item<5->{DNS is restricted to moderately turbulent flows (low Reynolds-number flows).}
166            \item<5->{Highly turbulent atmospheric turbulent flows cannot be simulated.}
167         \end{itemize}
168      \end{itemize}
169   \end{itemize}
170\end{frame}
171
172% Folie 6
173\begin{frame}
174   \frametitle{Classes of Turbulence Models (II)}
175   \begin{itemize}
176      \item{\textbf{Reynolds averaged (Navier-Stokes) simulation (RANS)}}
177      \begin{itemize}
178         \item<2->{\textbf{Opposite strategy:}}
179         \begin{itemize}
180            \item<2->{Applications that only require average statistics of the flow (i.e. the mean flow).}
181            \item<2->{Integrate merely the ensemble-averaged equations.}
182            \item<2->{Parameterize turbulence over the whole eddy spectrum.}
183         \end{itemize}
184         \item<3->{\textbf{Advantage:}}
185         \begin{itemize}
186            \item<3->{Computationally inexpensive, fast.}
187         \end{itemize}
188         \item<4->{\textbf{Problem:}}
189         \begin{itemize}
190            \item<4->{Turbulent fluctuations not explicitly captured.}
191            \item<4->{Parameterizations are very sensitive to large-eddy structure that depends on
192                      environmental conditions such as geometry and stratification $\rightarrow$     
193                      Parameterizations are not valid for a wide range of different flows.}
194         \end{itemize}
195         \item<5->{\textbf{Consequence:}}
196         \begin{itemize}
197            \item<5->{Not suitable for detailed turbulence studies.}
198         \end{itemize}
199      \end{itemize}
200   \end{itemize}
201\end{frame}
202
203% Folie 7
204\begin{frame}
205   \frametitle{Classes of Turbulence Models (III)} 
206   \begin{itemize}
207      \item{\textbf{Large eddy simulation (LES)}}
208      \begin{itemize}
209         \item<2->{Seeks to combine advantages and avoid disadvantages of DNS and RANS by \underline{treating
210                   large scales and small scales separately}, based on Kolmogorov's (1941) similarity theory of turbulence.}
211         \item<3->{Large eddies are explicitly resolved.}
212         \item<4->{The impact of small eddies on the large-scale flow is parameterized.}
213         \item<5->{Advantages:}
214         \begin{itemize}
215            \item<5->{Highly turbulent flows can be simulated.}
216            \item<5->{Local homogeneity and isotropy at large \textit{Re} (Kolmogorov's $1^\mathrm{st}$ hypothesis) leaves
217                      parameterizations uniformly valid for a wide range of different flows.}
218         \end{itemize}
219      \end{itemize}
220   \end{itemize}
221\end{frame}
222
223\section{Concept of LES}
224\subsection{Concept of LES}
225
226 % Folie 8
227 \begin{frame}
228    \frametitle{Concept of Large Eddy Simulation (I)}
229    \begin{columns}
230       \column{0.55\textwidth}
231          \begin{itemize}
232             \item<1->{\textbf{Filtering}}
233             \begin{footnotesize}
234                \begin{itemize}
235                   \item<2->{Spectral cut at wavelength $\Delta x$.}
236                   \item<3->{Structures larger than $\Delta x$ are explicitly calculated (resolved scales).}
237                   \item<4->{Structures smaller than $\Delta x$ must be filtered out (subgrid scales), formally known as low-pass filtering.}
238                   \item<5->{Like for Reynolds averaging: split variables in mean part and fluctuation, spatially average the model equations, e.g.:}
239                \end{itemize}
240             \end{footnotesize}
241             \onslide<6->{\begin{center} $w = \overline{w} + w', \theta = \overline{\theta} + \theta'$ \end{center}}
242          \end{itemize}
243       \column{0.45\textwidth}
244          \includegraphics[width=\textwidth]{fundamentals_of_les_figures/Concept_of_LES.png}
245    \end{columns}
246 \end{frame}
247
248% Folie 9
249\begin{frame}
250   \frametitle{Concept of Large Eddy Simulation (II)}
251   \begin{itemize}
252      \item<1->{\textbf{Parameterization}}   
253      \begin{footnotesize}
254      \begin{itemize}
255         \item<2->{The filter procedure removes the small scales from the model equations, but it produces new unknowns, mainly averages of fluctuation products.}
256         \begin{itemize} 
257            \item<2->{eg. $\overline{w'\theta'}$}
258         \end{itemize}
259         \item<3->{These unknowns describe the effect of the unresolved, small scales on the resolved, large scales; therefore it is important to include them in the model.}
260         \item<4->{We do not have information about the variables (e.g., vertical wind component and potential temperature) on these small scales of their fluctuations.}
261         \item<5->{Therefore, these unknowns have to be parameterized using information from the resolved scales.}
262         \begin{itemize}
263            \item<5->{A typical example is the flux-gradient relationship, e.g.,}
264         \end{itemize}
265      \end{itemize}
266      \end{footnotesize}
267   \end{itemize}
268   \onslide<5->{
269      \begin{center}
270      $ \overline{w'\theta'} = - \nu_\mathrm{h} \cdot \frac{\partial \overline{\theta}}{\partial z} $ 
271      \end{center}}
272\end{frame}
273
274\end{document}
Note: See TracBrowser for help on using the repository browser.