1 | % $Id: exercise_neutral.tex 1228 2013-09-19 15:14:26Z hoffmann $ |
---|
2 | \input{header_tmp.tex} |
---|
3 | %\input{../header_lectures.tex} |
---|
4 | |
---|
5 | \usepackage[utf8]{inputenc} |
---|
6 | \usepackage{ngerman} |
---|
7 | \usepackage{pgf} |
---|
8 | \usetheme{Dresden} |
---|
9 | \usepackage{subfigure} |
---|
10 | \usepackage{units} |
---|
11 | \usepackage{tabto} |
---|
12 | \usepackage{multimedia} |
---|
13 | \usepackage{hyperref} |
---|
14 | \newcommand{\event}[1]{\newcommand{\eventname}{#1}} |
---|
15 | \usepackage{xmpmulti} |
---|
16 | \usepackage{tikz} |
---|
17 | \usetikzlibrary{shapes,arrows,positioning} |
---|
18 | \usetikzlibrary{decorations.markings} %neues paket |
---|
19 | \usetikzlibrary{decorations.pathreplacing} %neues paket |
---|
20 | \def\Tiny{\fontsize{4pt}{4pt}\selectfont} |
---|
21 | \usepackage{amsmath} |
---|
22 | \usepackage{amssymb} |
---|
23 | \usepackage{multicol} |
---|
24 | \usepackage{pdfcomment} |
---|
25 | \usepackage{graphicx} |
---|
26 | \usepackage{listings} |
---|
27 | \lstset{showspaces=false,language=fortran,basicstyle= |
---|
28 | \ttfamily,showstringspaces=false,captionpos=b} |
---|
29 | |
---|
30 | \institute{Institut fÌr Meteorologie und Klimatologie, Leibniz UniversitÀt Hannover} |
---|
31 | \date{last update: \today} |
---|
32 | \event{PALM Seminar} |
---|
33 | \setbeamertemplate{navigation symbols}{} |
---|
34 | |
---|
35 | \setbeamertemplate{footline} |
---|
36 | { |
---|
37 | \begin{beamercolorbox}[rightskip=-0.1cm]& |
---|
38 | {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} |
---|
39 | \end{beamercolorbox} |
---|
40 | \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex, |
---|
41 | leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot} |
---|
42 | {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber} |
---|
43 | \end{beamercolorbox} |
---|
44 | \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot} |
---|
45 | \end{beamercolorbox} |
---|
46 | } |
---|
47 | %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}} |
---|
48 | |
---|
49 | \title[Exercise 2: Neutrally Stratified Boundary Layer]{Exercise 2: Neutrally Stratified Boundary Layer} |
---|
50 | \author{Siegfried Raasch} |
---|
51 | |
---|
52 | \setbeamersize{text margin left=.2cm,text margin right=.2cm} |
---|
53 | |
---|
54 | \begin{document} |
---|
55 | \footnotesize |
---|
56 | % Folie 1 |
---|
57 | \begin{frame} |
---|
58 | \titlepage |
---|
59 | \end{frame} |
---|
60 | |
---|
61 | \section{Exercise} |
---|
62 | \subsection{Exercise} |
---|
63 | |
---|
64 | % Folie 2 |
---|
65 | \begin{frame} |
---|
66 | \frametitle{Exercise 2: Neutrally Stratified Atmospheric Boundary Layer} |
---|
67 | \begin{itemize} |
---|
68 | \item A neutrally stratified atmospheric boundary layer shall be simulated. |
---|
69 | \item<2-> The flow shall be driven by a constant large-scale pressure gradient, i.e. a geostrophic wind. |
---|
70 | \item<3-> At the end of the simulation, turbulence as well as the mean flow should be in a stationary state. |
---|
71 | \end{itemize} |
---|
72 | \onslide<4->\textbf{Simulation features:} |
---|
73 | \begin{itemize} |
---|
74 | \item<4-> geostrophic wind: \tabto{3cm} $u_\mathrm{g} = \unit[5]{m\ s^{-1}}, v_\mathrm{g} = \unit[0]{m\ s^{-1}}$ |
---|
75 | \item<5-> initial velocity: \tabto{3cm} try constant velocity ($u = u_\mathrm{g}, v = v_\mathrm{g}$, everywhere)\\ |
---|
76 | \tabto{3cm} or a mean vertical profile created by the 1D-model |
---|
77 | \item<6-> roughness length: \tabto{3cm} $z_0 = \unit[0.1]{m}$ |
---|
78 | \end{itemize} |
---|
79 | \onslide<7->Please choose domain size, grid size and time to be simulated appropriately. |
---|
80 | \end{frame} |
---|
81 | |
---|
82 | % Folie 3 |
---|
83 | \begin{frame} |
---|
84 | \frametitle{Questions to be Answered:} |
---|
85 | \begin{itemize} |
---|
86 | \item<1-> How long do you have to simulate until turbulence / mean flow become stationary? |
---|
87 | \vspace{1em} |
---|
88 | \item<2-> How do the horizontally and temporally averaged vertical velocity and momentum flux profiles look like? |
---|
89 | \vspace{1em} |
---|
90 | \item<3-> Is it really a large-eddy simulation, i.e. are the subgrid-scale fluxes much smaller than the resolved-scale fluxes? |
---|
91 | \vspace{1em} |
---|
92 | \item<4-> How do the turbulence spectra of $u$, $v$, $w$ along $x$ and along $y$ look like?\\ |
---|
93 | Can you identify the inertial subrange? |
---|
94 | \end{itemize} |
---|
95 | \end{frame} |
---|
96 | |
---|
97 | % Folie 4 |
---|
98 | \begin{frame} |
---|
99 | \frametitle{Hints (I)} |
---|
100 | \begin{itemize} |
---|
101 | \item<1-> Please remember hints given for the previous exercise! |
---|
102 | \item<2-> \textbf{Initial profiles:} |
---|
103 | \begin{itemize} |
---|
104 | \tiny |
---|
105 | \item<3-> The 1D-model (\texttt{\textcolor{blue}{initializing\_actions} = 'set\_1d-model\_profiles'}) is mainly controlled by parameters \texttt{\textcolor{blue}{end\_time\_1d}} and \texttt{\textcolor{blue}{damp\_level\_1d}}. Please keep in mind that the profiles from the 1D-model should also be in a stationary state. |
---|
106 | \vspace{0.5em} |
---|
107 | \item<3-> Output of vertical profile data generated by the 1D-model is controlled by parameter \texttt{\textcolor{blue}{dt\_pr\_1d}}. It is in ASCII-format and it is written into a separate file. You can include the profiles of the 1D-model, which are used to initialize the 3D-model, in the standard profile data output of the 3D-model (which is controlled by parameter \texttt{\textcolor{blue}{data\_output\_pr}}) by adding a \texttt{'\#'} sign to the respective output quantity, e.g. \texttt{\textcolor{blue}{data\_output\_pr} = '\#u'}. |
---|
108 | \vspace{0.5em} |
---|
109 | \item<3-> For the 1D-model, please set \texttt{\textcolor{blue}{mixing\_length\_1d} = 'blackadar'} and \texttt{\textcolor{blue}{dissipation\_1d} = 'detering'} in order to get a correct mean boundary layer wind profile. The default settings of these parameters would switch the turbulence parameterization of the 1D-model to the SGS-parameterization of the 3D-LES-model, which represents only the SGS-parts of turbulence. However, for this exercise the 1D-model has to parameterize all scales of turbulence (i.e. it should be used as a RANS-model). |
---|
110 | \end{itemize} |
---|
111 | |
---|
112 | \item<4-> \textbf{Stationary state:} |
---|
113 | \begin{itemize} |
---|
114 | \tiny |
---|
115 | \item<4-> You probably will find it difficult to get the mean flow to a stationary state (for the 1D-model as well as for the 3D-model. Can you identify the mechanism responsible for this? Try parameters \texttt{\textcolor{blue}{damp\_level\_1d}} (for the 1D-model) and \texttt{\textcolor{blue}{rayleigh\_damping\_factor}} (for the 3D-model; this is a \texttt{inipar}-parameter!) to overcome this problem. |
---|
116 | \vspace{0.5em} |
---|
117 | \item<5-> You can switch on a Galilei-transformation in order to save CPU-time (see parameter \texttt{\textcolor{blue}{galilei\_transformation}}). |
---|
118 | \end{itemize} |
---|
119 | |
---|
120 | \end{itemize} |
---|
121 | \end{frame} |
---|
122 | |
---|
123 | % Folie 5 |
---|
124 | \begin{frame} |
---|
125 | \frametitle{Hints (II)} |
---|
126 | \begin{itemize} |
---|
127 | \item<1-> \textbf{Spectra:} |
---|
128 | \begin{itemize} |
---|
129 | \scriptsize |
---|
130 | \item<2-> Output of spectra requires to switch on the spectra-package using \textbf{mrun}-option \texttt{-p}:\\ |
---|
131 | \texttt{mrun ... -p spectra -r \dq d3\# sp\# ...\dq} |
---|
132 | \vspace{0.5em} |
---|
133 | \item<3-> Spectra output is controlled by parameters \texttt{\textcolor{blue}{data\_output\_sp}}, \texttt{\textcolor{blue}{dt\_dosp}}, etc. These package-parameters have to be given in a separate NAMELIST-block which has to follow the \texttt{d3par}-block:\\ |
---|
134 | \texttt{\&d3par end\_time = ... /}\\ |
---|
135 | \texttt{\&spectra\_par data\_output\_sp = ... /}\\ |
---|
136 | \end{itemize} |
---|
137 | \end{itemize} |
---|
138 | \end{frame} |
---|
139 | |
---|
140 | % Folie 6 |
---|
141 | \section{Results} |
---|
142 | \subsection{Results} |
---|
143 | |
---|
144 | % Folie 7 |
---|
145 | \begin{frame} |
---|
146 | \frametitle{Time series of TKE} |
---|
147 | \begin{center} |
---|
148 | \includegraphics[width=1.0\textwidth]{exercise_neutral_figures/ts.eps} |
---|
149 | \end{center} |
---|
150 | \end{frame} |
---|
151 | |
---|
152 | % Folie 8 |
---|
153 | \begin{frame} |
---|
154 | \frametitle{Vertical profiles of $\overline{w'u'}$, $\overline{w'v'}$} |
---|
155 | \begin{center} |
---|
156 | \includegraphics[width=0.50\textwidth]{exercise_neutral_figures/pr_wu.eps} |
---|
157 | \includegraphics[width=0.50\textwidth]{exercise_neutral_figures/pr_wv.eps}\\ |
---|
158 | \end{center} |
---|
159 | \end{frame} |
---|
160 | |
---|
161 | % Folie 9 |
---|
162 | \begin{frame} |
---|
163 | \frametitle{Vertical profiles of $\overline{w'u'}$, $\overline{w'v'}$} |
---|
164 | \begin{center} |
---|
165 | \includegraphics[width=0.36\textwidth]{exercise_neutral_figures/pr_wu_sgs.eps} |
---|
166 | \includegraphics[width=0.36\textwidth]{exercise_neutral_figures/pr_wv_sgs.eps}\\ |
---|
167 | \vspace{-0.3em} |
---|
168 | \includegraphics[width=0.36\textwidth]{exercise_neutral_figures/pr_wu_resolved.eps} |
---|
169 | \includegraphics[width=0.36\textwidth]{exercise_neutral_figures/pr_wv_resolved.eps}\\ |
---|
170 | \end{center} |
---|
171 | \end{frame} |
---|
172 | |
---|
173 | % Folie 10 |
---|
174 | \begin{frame} |
---|
175 | \frametitle{Spectra of $u$, $v$ and $w$} |
---|
176 | \hspace{-1em} |
---|
177 | \includegraphics[width=0.36\textwidth]{exercise_neutral_figures/sp_u.eps} |
---|
178 | \hspace{-2em} |
---|
179 | \includegraphics[width=0.36\textwidth]{exercise_neutral_figures/sp_v.eps} |
---|
180 | \hspace{-2em} |
---|
181 | \includegraphics[width=0.36\textwidth]{exercise_neutral_figures/sp_w.eps} |
---|
182 | \end{frame} |
---|
183 | |
---|
184 | \end{document} |
---|