source: palm/trunk/TUTORIAL/SOURCE/exercise_cbl.tex @ 1526

Last change on this file since 1526 was 1515, checked in by boeske, 9 years ago

several updates in the tutorial

  • Property svn:executable set to *
  • Property svn:keywords set to Id
File size: 10.4 KB
Line 
1% $Id: exercise_cbl.tex 1515 2015-01-02 11:35:51Z keck $
2\input{header_tmp.tex}
3%\input{../header_lectures.tex}
4
5\usepackage[utf8]{inputenc}
6\usepackage{ngerman}
7\usepackage{pgf}
8\usetheme{Dresden}
9\usepackage{subfigure}
10\usepackage{units}
11\usepackage{multimedia}
12\usepackage{hyperref}
13\newcommand{\event}[1]{\newcommand{\eventname}{#1}}
14\usepackage{xmpmulti}
15\usepackage{tikz}
16\usetikzlibrary{shapes,arrows,positioning}
17\usetikzlibrary{decorations.markings}             %neues paket
18\usetikzlibrary{decorations.pathreplacing}        %neues paket
19\def\Tiny{\fontsize{4pt}{4pt}\selectfont}
20\usepackage{amsmath}
21\usepackage{amssymb}
22\usepackage{multicol}
23\usepackage{pdfcomment}
24\usepackage{graphicx}
25\usepackage{listings}
26\lstset{showspaces=false,language=fortran,basicstyle=
27        \ttfamily,showstringspaces=false,captionpos=b}
28
29\institute{Institute of Meteorology and Climatology, Leibniz UniversitÀt Hannover}
30\selectlanguage{english}
31\date{last update: \today}
32\event{PALM Seminar}
33\setbeamertemplate{navigation symbols}{}
34
35\setbeamertemplate{footline}
36  {
37    \begin{beamercolorbox}[rightskip=-0.1cm]&
38     {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}}
39    \end{beamercolorbox}
40    \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,
41      leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}
42      {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}
43    \end{beamercolorbox}
44    \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}
45    \end{beamercolorbox}
46  }
47%\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.pdf}}
48
49\title[Exercise 1: Convection Between Plates]{Exercise 1: Convection Between Plates}
50\author{PALM group}
51
52\begin{document}
53
54% Folie 1
55\begin{frame}
56\titlepage
57\end{frame}
58
59\section{Exercise}
60\subsection{Exercise}
61
62% Folie 2
63\begin{frame}
64   \frametitle{Exercise 1: Convection Between Plates}
65   
66   Please try to carry out a run with following initial and boundary conditions and create the required output.
67   \begin{itemize}
68      \scriptsize
69           \item<2-> The simulation should represent a stationary convective boundary layer between two uniformly heated/cooled plates with zero mean flow.
70           \item<3-> A free-slip condition for velocity shall be used at the bottom and top boundary.
71           \item<4-> The sensible heat flux at the bottom and top boundary shall be constant throughout the simulation.
72   \end{itemize}   
73   \onslide<5-> Simulation features:
74   \begin{itemize}
75      \scriptsize
76           \item<6-> domain size: about $\unit[2000 \times 2000 \times 1000]{m^3}$ ($x$/$y$/$z$)
77           \item<7-> grid size: $\unit[50]{m}$ equidistant
78           \item<8-> simulated time:    $\unit[3600]{s}$
79           \item<9-> surface heatflux: $\unit[0.1]{K\ m\ s^{-1}}$
80           \item<10-> heatflux at top: $\unit[0.1]{K\ m\ s^{-1}}$
81           \item<11-> initial temperature: $\unit[300]{K}$ everywhere
82           \item<12-> initial velocity: zero everywhere
83   \end{itemize} 
84\end{frame}
85
86% Folie 3
87\begin{frame}
88   \frametitle{Questions to be Answered:}
89   
90   \begin{itemize}
91   \item<1-> How does the flow field look like after 60 minutes of simulated time? (What kind of output do you need to answer this?)
92   \item<2-> How do the horizontally and temporally averaged vertical temperature and heat flux profiles look like?
93   \item<3-> Is it really a large-eddy simulation, i.e. are the subgrid-scale fluxes much smaller than the resolved-scale fluxes? (How long should the averaging time interval be?)
94   \item<4-> How do the total kinetic energy and the maximum velocity components change in time? Has the flow become stationary?
95   \item<5-> Has the domain size and grid size been chosen appropriately?
96   \end{itemize}
97
98\end{frame}
99       
100% Folie 4
101\begin{frame}
102   \frametitle{Hints (I)}
103   \scriptsize
104   
105   PALM parameter names are displayed by courier style, e.g. \textcolor{blue}{\texttt{end\_time}}.\\
106
107   \begin{itemize}
108      \item<2-> Domain size
109      \begin{itemize}
110         \scriptsize
111         \item[-]<2-> Is controlled by grid size (\textcolor{blue}{\texttt{dx}}, \textcolor{blue}{\texttt{dy}}, \textcolor{blue}{\texttt{dz}}) and number of grid points (\textcolor{blue}{\texttt{nx}}, \textcolor{blue}{\texttt{ny}}, \textcolor{blue}{\texttt{nz}}). Since the first grid point along each of the directions has index 0, the total number of grid points used are \textcolor{blue}{\texttt{nx}}+1, \textcolor{blue}{\texttt{ny}}+1, \textcolor{blue}{\texttt{nz}}+1. The total domain size in case of cyclic horizontal boundary conditions is (\textcolor{blue}{\texttt{nx}}+1)*\textcolor{blue}{\texttt{dx}}, (\textcolor{blue}{\texttt{ny}}+1)*\textcolor{blue}{\texttt{dy}}.
112      \end{itemize}
113     
114      \item<3-> Initial profiles
115      \begin{itemize}
116         \scriptsize
117         \item[-]<3-> Constant with height. See parameter \textcolor{blue}{\texttt{initializing\_actions}} for available initialization methods. See \textcolor{blue}{\texttt{ug\_surface}}, \textcolor{blue}{\texttt{vg\_surface}} and \textcolor{blue}{\texttt{pt\_surface}} for initial values of velocity and potential temperature.
118      \end{itemize}
119     
120      \item<4-> Boundary conditions
121       \begin{itemize}
122         \scriptsize
123         \item[-]<4-> For velocity, see \textcolor{blue}{\texttt{bc\_uv\_b}} and \textcolor{blue}{\texttt{bc\_uv\_t}}. See also \textcolor{blue}{\texttt{prandtl\_layer}}, because Neumann conditions don’t allow to use a Prandtl-layer.
124         \item[-]<5-> For temperature / heat flux, see \textcolor{blue}{\texttt{surface\_heatflux}} and \textcolor{blue}{\texttt{top\_heatflux}}. Prescribing of heat flux at the boundary requires a Neumann boundary condition for temperature, see \textcolor{blue}{\texttt{bc\_pt\_b}} and \textcolor{blue}{\texttt{bc\_pt\_t}}.
125         \item[-]<6-> Use a Neumann condition also for the perturbation pressure both at the bottom and the top (\textcolor{blue}{\texttt{bc\_p\_b}}, \textcolor{blue}{\texttt{bc\_p\_t}}).
126      \end{itemize}     
127     
128      \item<7-> Simulation time
129      \begin{itemize}
130         \scriptsize
131         \item[-]<7-> See parameter \textcolor{blue}{\texttt{end\_time}}.
132      \end{itemize}
133     
134   \end{itemize}
135
136\end{frame}
137
138% Folie 5
139\begin{frame}
140   \frametitle{Hints (II)}
141   \footnotesize
142   
143   Hints for data output.
144   
145   \begin{itemize}
146   
147      \item<2-> Variables
148      \begin{itemize}
149         \footnotesize
150         \item[-]<2-> Output variables are chosen with parameters \textcolor{blue}{\texttt{data\_output}} (3d-data or 2d-cross-sections) and \textcolor{blue}{\texttt{data\_output\_pr}} (profiles).
151      \end{itemize}
152
153      \item<3-> Output intervals
154      \begin{itemize}
155         \footnotesize
156         \item[-]<3-> Output intervals are set with parameter \textcolor{blue}{\texttt{dt\_data\_output}}. This parameter affects all output (cross-sections, profiles, etc.). Individual temporal intervals for the different output quantities can be assigned using parameters \textcolor{blue}{\texttt{dt\_do3d}}, \textcolor{blue}{\texttt{dt\_do2d\_xy}}, \textcolor{blue}{\texttt{dt\_do2d\_xz}}, \textcolor{blue}{\texttt{dt\_do2d\_yz}}, \textcolor{blue}{\texttt{dt\_dopr}}, etc.
157      \end{itemize}
158     
159      \item<4-> Time averaging
160      \begin{itemize}
161         \footnotesize
162         \item[-]<4-> Time averaging is controlled with parameters  \textcolor{blue}{\texttt{averaging\_interval}}\textcolor{blue}{\texttt{averaging\_interval\_pr}}\textcolor{blue}{\texttt{dt\_averaging\_input}}\textcolor{blue}{\texttt{dt\_averaging\_input\_pr}}.
163      \end{itemize}
164
165   \end{itemize}
166
167\end{frame}
168
169% Folie 6
170\begin{frame}
171   \frametitle{Further Hints}
172
173   \onslide<2-> You will find some more detailed information to solve this exercise in the PALM-online-documentation under:\\
174   \ \\
175   \small\url{http://palm.muk.uni-hannover.de/wiki/doc/app/examples/cbl}\\
176   \ \\
177   \normalsize (Attention: This documentation is for atmospheric convection with free upper lid.)
178   \ \\
179   \ \\
180   \onslide<3-> \normalsize Please also visit\\
181   \ \\
182   \small\url{http://palm.muk.uni-hannover.de/wiki/doc/app/netcdf}\\
183   \ \\
184   \normalsize where the complete PALM netCDF-data-output and the respective steering parameters are described.
185
186\end{frame}
187
188% Folie 7
189\begin{frame}
190   \frametitle{How to Start?}
191
192   \begin{itemize}
193      \item<2-> Create a data directory for a new run:\\
194           \quad \texttt{cd \~{}/palm/current\_version}\\
195           \quad \texttt{mkdir -p JOBS/uniform\_plates/INPUT}
196           
197           \item<3-> Create the parameter file and set the required parameters in\\
198           \quad \texttt{JOBS/uniform\_plates/INPUT/uniform\_plates\_p3d}
199           
200           \item<4-> Start the run with \texttt{mrun-command}\\
201           \quad \texttt{mrun -d uniform\_plates -h <hi> -K parallel ...}\\
202           and analyze the output files.
203
204   \end{itemize}
205   
206   \ \\
207   
208   \onslide<5-> \huge \centering \textcolor{blue}{Good Luck!}
209
210\end{frame}
211
212% Folie 8
213\section{Results}
214\subsection{Results}
215
216\begin{frame}
217   \frametitle{$xy$-cross sections (instantaneous at $t = \unit[3600]{s}$)}
218   \begin{center}
219      \includegraphics[width=0.42\textwidth]{exercise_cbl_figures/xy_w_100.eps}
220      \includegraphics[width=0.42\textwidth]{exercise_cbl_figures/xy_w_500.eps}\\
221      \includegraphics[width=0.42\textwidth]{exercise_cbl_figures/xy_w_750.eps}
222   \end{center}
223\end{frame}
224
225% Folie 9
226\begin{frame}
227   \frametitle{$xz$-cross sections ($\unit[900]{s}$ average)}
228   \begin{center}
229      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y250m.eps}
230      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y500m.eps}\\
231      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y750m.eps}
232      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/xz_w_y1000m.eps}
233   \end{center}
234\end{frame}
235
236% Folie 10
237\begin{frame}
238   \frametitle{Vertical profiles (I)}
239   \begin{center}
240      \includegraphics[angle=90,width=\textwidth]{exercise_cbl_figures/pr_pt.eps}
241   \end{center}
242\end{frame}
243
244% Folie 11
245\begin{frame}
246   \frametitle{LES?}
247   \begin{center}
248      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/pr_wpt2.eps}
249      \includegraphics[width=0.55\textwidth]{exercise_cbl_figures/pr_wpt_resolved.eps}
250   \end{center}
251\end{frame}
252
253% Folie 12
254\begin{frame}
255   \frametitle{Time series (I)}
256   \begin{center}
257      \includegraphics[angle=90,width=1.0\textwidth]{exercise_cbl_figures/ts.eps}
258   \end{center}
259\end{frame}
260
261% Folie 13
262\begin{frame}
263   \frametitle{Time series (II)}
264   \begin{center}
265      \includegraphics[angle=90,width=1.0\textwidth]{exercise_cbl_figures/ts2.eps}
266   \end{center}
267\end{frame}
268\end{document}
Note: See TracBrowser for help on using the repository browser.