%$Id: canopy_model.tex 1205 2013-07-15 10:55:47Z maronga $ \input{header_tmp.tex} %\input{../header_lectures.tex} %\documentclass{beamer} \usepackage[utf8]{inputenc} \usepackage{ngerman} \usepackage{pgf} \usetheme{Dresden} \usepackage{subfigure} \usepackage{units} \usepackage{amsmath} \usepackage{multimedia} \newcommand{\event}[1]{\newcommand{\eventname}{#1}} \usepackage{xmpmulti} \usepackage{tikz} \usepackage{pdfcomment} \usetikzlibrary{shapes,arrows,positioning,calc,decorations.pathmorphing,decorations.pathreplacing,decorations.markings} \def\Tiny{\fontsize{4pt}{4pt}\selectfont} \usepackage{listings} \lstset{language=[90]Fortran, basicstyle=\ttfamily \tiny, keywordstyle=\color{black}, commentstyle=\color{black}, morecomment=[l]{!\ }% Comment only with space after ! } \institute{Institut für Meteorologie und Klimatologie, Leibniz Universität Hannover} \date{last update: \today} \event{PALM Seminar} \setbeamertemplate{navigation symbols}{} \setbeamertemplate{footline} {% \begin{beamercolorbox}[rightskip=-0.1cm]& {\includegraphics[height=0.65cm]{imuk_logo.pdf}\hfill \includegraphics[height=0.65cm]{luh_logo.pdf}} \end{beamercolorbox} \begin{beamercolorbox}[ht=2.5ex,dp=1.125ex,% leftskip=.3cm,rightskip=0.3cm plus1fil]{title in head/foot}% {\leavevmode{\usebeamerfont{author in head/foot}\insertshortauthor} \hfill \eventname \hfill \insertframenumber \; / \inserttotalframenumber}% \end{beamercolorbox}% % \begin{beamercolorbox}[colsep=1.5pt]{lower separation line foot}% % \end{beamercolorbox} } %\logo{\includegraphics[width=0.3\textwidth]{luhimuk_logo.png}} \title[PALM's Canopy Model]{PALM's Canopy Model} \author{Siegfried Raasch} % Notes: % jede subsection bekommt einen punkt im menu (vertikal ausgerichtet. % jeder frame in einer subsection bekommt einen punkt (horizontal ausgerichtet) \begin{document} \begin{frame} \titlepage \end{frame} \section{PALM's Canopy Model} \subsection{The embedded Canopy Model} %Folie 01 \begin{frame} \frametitle{Overview} \begin{itemize} \item<1->{The canopy model embedded in PALM can be used to study the effect of a plant canopy on e.g.:} \begin{itemize} \item<2->{mean flow field,} \item<3->{development of coherent turbulence structures,} \item<4->{scalar exchange processes between canopy and atmosphere.} \end{itemize} \item<5->{Within the canopy model, the plant canopy acts as a sink for momentum and as a source/sink for active (e.g. temperature) and passive (e.g. tracer) scalars.} \item<6->{The canopy model does not account for each plant element, but rather accounts for a volume averaged effect on the flow and scalar concentration, depending on:} \begin{itemize} \item<7->{leaf area density,} \item<8->{drag coefficient.} \end{itemize} \end{itemize} \end{frame} %Folie 02 \begin{frame} \frametitle{Theory (I)} \begin{footnotesize} \begin{itemize} \item<1->{A plant canopy affects the flow by acting as a momentum sink due to form and viscous drag forces.} \item<2->{The effectiveness of momentum absorption depends on the amount of leaf area per unit volume and the aerodynamic drag.} \item<3->{Due to the aerodynamic drag, the flow is decelerated within the canopy, leading to an inflection point in the vertical profile of the horizontal velocity at the canopy top. \begin{center} \includegraphics[width=0.5\textwidth]{canopy_model_figures/abb1.png} \end{center} } \end{itemize} \end{footnotesize} \end{frame} %Folie 03 \begin{frame} \frametitle{Theory (II)} \begin{footnotesize} \begin{itemize} \item<1->{The inflection point in the velocity profile introduces instabilities to the flow, leading to the formation of Kelvin-Helmholtz waves near the canopy top (\textcircled{{\tiny 1}}).} \item<2->{Wave breaking induces further instabilities, whereby a longitudinal component is added to the developing turbulence structures (\textcircled{{\tiny 2}} \& \textcircled{{\tiny 3}}).} \item<3->{Due to the persistent instabilities the turbulence structures develop a distinct three-dimensionality (\textcircled{{\tiny 4}}).} \item<4->{The large turbulence structures developing due to the inflection point instability significantly contribute to the vertical mixing of in-canopy and above-canopy air. \begin{center} \includegraphics[width=0.5\textwidth]{canopy_model_figures/abb2.png} \end{center} } \end{itemize} \end{footnotesize} \end{frame} %Folie 04 \begin{frame} \frametitle{Methods (I)} \begin{footnotesize} \begin{itemize} \item<1->{The canopy model in PALM is based on the models used by Shaw and Schumann (1992) and Watanabe (2004).} \item<2->{The aerodynamic effect of the canopy on the turbulent flow is accounted for by an additional term in the momentum equations:\\ \begin{align*} \frac{\partial \bar{u}_{i}}{\partial t} = \text{...} - c_{d} a U \bar{u}_{i} \end{align*} } \begin{itemize} \item<3->{ $c_{d}$ : drag coefficient} \item<4->{ $a $ : leaf area density $[m^{2}m^{-3}]$} \item<5->{ $U$ : $(u^{2} + v^{2} + w^{2})^{1/2}$ $[m s^{-1}]$} \item<6->{ $u_{i}$ : velocity component ($u_{1}=u$, $u_{2}=v$, $u_{3}=w$)} \end{itemize} \end{itemize} \uncover<7->{Note: The canopy model does not resolve the effect of single plant elements.} \end{footnotesize} \end{frame} %Folie 05 \begin{frame} \frametitle{Methods (II)} \begin{footnotesize} \begin{itemize} \item<1->{The effect of the canopy on the subgrid scale turbulence is accounted for by adding a sink term to the prognostic equation for the subgrid scale turbulent kinetic energy:\\ \begin{align*} \frac{\partial e}{\partial t} = \text{...} - 2 c_{d} a U e \end{align*} } \item<2->{It is assumed that the subgrid scale turbulent kinetic energy is dissipated by the canopy due to the rapid dissipation of wake turbulence in the lee of canopy elements (e.g. Watanabe, 2004).} \end{itemize} \end{footnotesize} \end{frame} %Folie 06 \begin{frame} \frametitle{Methods (III)} \begin{footnotesize} \begin{itemize} \item<1->{If desired, the effect of the canopy on the sensible heat transport can be considered. A source term is added to the prognostic equation for potential temperature:\\ \begin{align*} \frac{\partial \bar{\theta}}{\partial t} = \text{...} + S_{\theta} \end{align*} } \item<2->{It is assumed that the foliage is warmed by the penetrating solar radiation and, in turn, warms the surrounding air.} \item<3->{The source strength $S_{\theta}$ is defined as the vertical derivative of the upward kinematic vertical heat flux $Q_{\theta}$, given by (Shaw and Schumann, 1992):\\ \begin{align*} Q_{\theta}(z) = Q_{\theta}(h) exp(-\alpha F) \text{ , } Q_{\theta}(h) \text{ : Heat flux at canopy top} \end{align*} } \begin{itemize} \item<4->{ $\alpha = 0.6$ (extinction coefficient)} \item<5->{ $F = \int\limits_{z}^{h} a \: dz$ (downward cumulative leaf area index)} \end{itemize} \end{itemize} \end{footnotesize} \end{frame} %Folie 07 \begin{frame} \frametitle{Methods (IV)} \begin{footnotesize} \begin{itemize} \item<1->{The canopy might act as a sink or source for other scalars $q$ (e.g. humidity, passive tracer). Therefore, an additional term is added to the scalar transport equation:\\ \begin{align*} \frac{\partial \bar{q}}{\partial t} = \text{...} - c_{q} a U (\bar{q} - q_{c}) \end{align*} } \begin{itemize} \item<2->{ $c_{q}$ : scalar exchange coefficient} \item<3->{ $q_{c}$ : scalar concentration at leaf surface} \end{itemize} \end{itemize} \end{footnotesize} \end{frame} %Folie 08 \begin{frame} \frametitle{Basics (I)} \begin{itemize} \item<1->{The canopy model is switched on by setting the parameter {\small \texttt{plant\_canopy = .TRUE.}} within the \&inipar {\small \texttt{NAMELIST}} in the parameter file ({\small \texttt{PARIN}}).} \item<2->{All parameters for steering the canopy model are described in:\\ {\scriptsize Documentation $\rightarrow$ Model steering $\rightarrow$ Parameters $\rightarrow$ Initialization $\rightarrow$ Canopy}\\ (http://palm.muk.uni-hannover.de) } \item<3->{The following slides will describe how to set up a simulation with a simple horizontally homogeneous canopy block covering the entire model domain surface. In this case, {\small \texttt{canopy\_mode = 'block'}} must be set in \&inipar {\small \texttt{NAMELIST}}.} \end{itemize} \end{frame} %Folie 09 \begin{frame} \frametitle{Basic canopy parameter (I)} The parameters for steering the canopy model have to be added to the \&inipar {\small \texttt{NAMELIST}} in the parameter file ({\small \texttt{PARIN}}).\\ \begin{itemize} \item<1->{Step I: Define the upper boundary of the plant canopy layer using the parameter {\small \texttt{pch\_index (grid point index, default 0)}}. {\small \texttt{pch\_index}} specifies the number of grid points resolving the canopy layer in the vertical direction.} \end{itemize} \vspace{10pt} \tikzstyle{background} = [rectangle, fill=gray!10, text width=1\textwidth, text centered, rounded corners, minimum height=10em] \tikzstyle{Key1} = [rectangle, draw, fill=gray!70, text width=0.05, minimum size=0.05, font=\tiny] \tikzstyle{Key2} = [rectangle, draw, fill=green!90, text width=0.05, minimum size=0.05, font=\tiny] \tikzstyle{Key3} = [rectangle, text width=3.0cm, minimum size=16pt, font=\tiny] \begin{tikzpicture}[>=latex'] %%% Edit the following coordinate to change the shape of your %%% cuboid %% Vanishing points for perspective handling \coordinate (P1) at (-4cm,1.5cm); % left vanishing point (To pick) \coordinate (P2) at (10cm,1.5cm); % right vanishing point (To pick) %% (A1) and (A2) defines the 2 central points of the cuboid \coordinate (A1) at (0cm,0cm); % central top point (To pick) \coordinate (A2) at (0cm,-2cm); % central bottom point (To pick) %% (A3) to (A8) are computed given a unique parameter (or 2) .8 % You can vary .8 from 0 to 1 to change perspective on left side \coordinate (A3) at ($(P1)!.8!(A2)$); % To pick for perspective \coordinate (A4) at ($(P1)!.8!(A1)$); % You can vary .8 from 0 to 1 to change perspective on right side \coordinate (A7) at ($(P2)!.7!(A2)$); \coordinate (A8) at ($(P2)!.7!(A1)$); %% Automatically compute the last 2 points with intersections \coordinate (A5) at (intersection cs: first line={(A8) -- (P1)}, second line={(A4) -- (P2)}); \coordinate (A6) at (intersection cs: first line={(A7) -- (P1)}, second line={(A3) -- (P2)}); %% Drawing the canopy layer \coordinate (A9) at (0em,-1.7cm); % central bottom point (To pick) \coordinate (A10) at ($(P2)!.7!(A9)$); \coordinate (A12) at ($(P1)!.8!(A9)$); % To pick for perspective \coordinate (A11) at (intersection cs: first line={(A10) -- (P1)}, second line={(A12) -- (P2)}); %%% Depending of what you want to display, you can comment/edit %%% the following lines {\node [background, right=-0.8cm of A12] (background) {};} %% Possibly draw back faces \fill[gray!70] (A2) -- (A3) -- (A6) -- (A7) -- cycle; % face 6 \node at (barycentric cs:A2=1,A3=1,A6=1,A7=1) {\tiny }; \fill[gray!30] (A3) -- (A4) -- (A5) -- (A6) -- cycle; % face 3 \node at (barycentric cs:A3=1,A4=1,A5=1,A6=1) {\tiny }; \fill[gray!10] (A5) -- (A6) -- (A7) -- (A8) -- cycle; % face 4 \node at (barycentric cs:A5=1,A6=1,A7=1,A8=1) {\tiny }; \fill[green!90] (A9) -- (A10) -- (A11) -- (A12) -- cycle; % face 7 \node at (barycentric cs:A9=1,A10=1,A11=1,A12=1) {\tiny }; \fill[green!100] (A9) -- (A12) -- (A3) -- (A2) -- cycle; % face 8 \node at (barycentric cs:A9=1,A12=1,A3=1,A2=1) {\tiny }; \fill[green!100] (A9) -- (A10) -- (A7) -- (A2) -- cycle; % face 9 \node at (barycentric cs:A9=1,A10=1,A7=1,A2=1) {\tiny }; \draw[thin,dashed] (A5) -- (A6); \draw[thin,dashed] (A3) -- (A6); \draw[thin,dashed] (A7) -- (A6); \draw[thin,dashed] (A11) -- (A12); \draw[thin,dashed] (A10) -- (A11); %% Possibly draw front faces % \fill[orange] (A1) -- (A8) -- (A7) -- (A2) -- cycle; % face 1 % \node at (barycentric cs:A1=1,A8=1,A7=1,A2=1) {\tiny f1}; \fill[gray!50,opacity=0.2] (A1) -- (A2) -- (A3) -- (A4) -- cycle; % f2 \node at (barycentric cs:A1=1,A2=1,A3=1,A4=1) {\tiny }; \fill[gray!90,opacity=0.2] (A1) -- (A4) -- (A5) -- (A8) -- cycle; % f5 \node at (barycentric cs:A1=1,A4=1,A5=1,A8=1) {\tiny }; %% Possibly draw front lines \draw[thin] (A1) -- (A2); \draw[thin] (A3) -- (A4); \draw[thin] (A7) -- (A8); \draw[thin] (A1) -- (A4); \draw[thin] (A1) -- (A8); \draw[thin] (A2) -- (A3); \draw[thin] (A2) -- (A7); \draw[thin] (A4) -- (A5); \draw[thin] (A8) -- (A5); \draw[thin] (A9) -- (A10); \draw[thin] (A9) -- (A12); % Possibly draw points % (it can help you understand the cuboid structure) \foreach \i in {1,2,...,12} { % \draw[fill=black] (A\i) circle (0.05em) % node[above right] {\tiny \i}; } % \draw[fill=black] (P1) circle (0.1em) node[below] {\tiny p1}; % \draw[fill=black] (P2) circle (0.1em) node[below] {\tiny p2}; %Key \coordinate (K1) at (0.5cm,-2.3cm); \coordinate (K2) at (0.5cm,-2.7cm); \node [Key1, right=0.0cm of K1] (key1) {}; \node [Key2, right=0.0cm of K2] (key2) {}; \node [Key3, right=0.4cm of K1] (key11) {Total model domain}; \node [Key3, right=0.4cm of K2] (key21) {Plant canopy volume}; %% frame specific elements \node [Key3, right=0.45cm of A10] (label1) {\texttt{zw(pch\_index)} = canopy top}; \node [Key3, right=0.05cm of A10] (label0) {}; \draw[<-] (label0) -- (label1); \end{tikzpicture} \end{frame} %Folie 10 \begin{frame} \frametitle{Basic canopy parameter (II)} \begin{itemize} \item<1->{ Step II: Construct the vertical profile of the leaf area density (lad) to prescribe the distribution of leaf area within the plant canopy volume.\\ The canopy top is located between {\small \texttt{zu(pch\_index)}} and {\small \texttt{zu(pch\_index + 1)}} because this is the transition between the in-canopy grid point and the above-canopy grid point. } \end{itemize} \vspace{10pt} \tikzstyle{background} = [rectangle, fill=gray!10, text width=1\textwidth, text centered, rounded corners, minimum height=10em] \tikzstyle{Key1} = [rectangle, draw, fill=gray!70, text width=0.05, minimum size=0.05, font=\tiny] \tikzstyle{Key2} = [rectangle, draw, fill=green!90, text width=0.05, minimum size=0.05, font=\tiny] \tikzstyle{Key3} = [rectangle, text width=4.5cm, minimum size=16pt, font=\tiny] \tikzstyle{label} = [rectangle, text width=2.0cm, align=center, minimum size=16pt, font=\tiny] \begin{tikzpicture}[>=latex'] %%% Edit the following coordinate to change the shape of your %%% cuboid %% Vanishing points for perspective handling \coordinate (P1) at (-4cm,1.5cm); % left vanishing point (To pick) \coordinate (P2) at (10cm,1.5cm); % right vanishing point (To pick) %% (A1) and (A2) defines the 2 central points of the cuboid \coordinate (A1) at (0cm,0cm); % central top point (To pick) \coordinate (A2) at (0cm,-2cm); % central bottom point (To pick) %% (A3) to (A8) are computed given a unique parameter (or 2) .8 % You can vary .8 from 0 to 1 to change perspective on left side \coordinate (A3) at ($(P1)!.8!(A2)$); % To pick for perspective \coordinate (A4) at ($(P1)!.8!(A1)$); % You can vary .8 from 0 to 1 to change perspective on right side \coordinate (A7) at ($(P2)!.7!(A2)$); \coordinate (A8) at ($(P2)!.7!(A1)$); %% Automatically compute the last 2 points with intersections \coordinate (A5) at (intersection cs: first line={(A8) -- (P1)}, second line={(A4) -- (P2)}); \coordinate (A6) at (intersection cs: first line={(A7) -- (P1)}, second line={(A3) -- (P2)}); %% Drawing the canopy layer \coordinate (A9) at (0em,-1.7cm); % central bottom point (To pick) \coordinate (A10) at ($(P2)!.7!(A9)$); \coordinate (A12) at ($(P1)!.8!(A9)$); % To pick for perspective \coordinate (A11) at (intersection cs: first line={(A10) -- (P1)}, second line={(A12) -- (P2)}); %%% Depending of what you want to display, you can comment/edit %%% the following lines {\node [background, right=-0.8cm of A12] (background) {};} %% Possibly draw back faces \fill[gray!70] (A2) -- (A3) -- (A6) -- (A7) -- cycle; % face 6 \node at (barycentric cs:A2=1,A3=1,A6=1,A7=1) {\tiny }; \fill[gray!30] (A3) -- (A4) -- (A5) -- (A6) -- cycle; % face 3 \node at (barycentric cs:A3=1,A4=1,A5=1,A6=1) {\tiny }; \fill[gray!10] (A5) -- (A6) -- (A7) -- (A8) -- cycle; % face 4 \node at (barycentric cs:A5=1,A6=1,A7=1,A8=1) {\tiny }; \fill[green!90] (A9) -- (A10) -- (A11) -- (A12) -- cycle; % face 7 \node at (barycentric cs:A9=1,A10=1,A11=1,A12=1) {\tiny }; \fill[green!100] (A9) -- (A12) -- (A3) -- (A2) -- cycle; % face 8 \node at (barycentric cs:A9=1,A12=1,A3=1,A2=1) {\tiny }; \fill[green!100] (A9) -- (A10) -- (A7) -- (A2) -- cycle; % face 9 \node at (barycentric cs:A9=1,A10=1,A7=1,A2=1) {\tiny }; \draw[thin,dashed] (A5) -- (A6); \draw[thin,dashed] (A3) -- (A6); \draw[thin,dashed] (A7) -- (A6); \draw[thin,dashed] (A11) -- (A12); \draw[thin,dashed] (A10) -- (A11); %% Possibly draw front faces % \fill[orange] (A1) -- (A8) -- (A7) -- (A2) -- cycle; % face 1 % \node at (barycentric cs:A1=1,A8=1,A7=1,A2=1) {\tiny f1}; \fill[gray!50,opacity=0.2] (A1) -- (A2) -- (A3) -- (A4) -- cycle; % f2 \node at (barycentric cs:A1=1,A2=1,A3=1,A4=1) {\tiny }; \fill[gray!90,opacity=0.2] (A1) -- (A4) -- (A5) -- (A8) -- cycle; % f5 \node at (barycentric cs:A1=1,A4=1,A5=1,A8=1) {\tiny }; %% Possibly draw front lines \draw[thin] (A1) -- (A2); \draw[thin] (A3) -- (A4); \draw[thin] (A7) -- (A8); \draw[thin] (A1) -- (A4); \draw[thin] (A1) -- (A8); \draw[thin] (A2) -- (A3); \draw[thin] (A2) -- (A7); \draw[thin] (A4) -- (A5); \draw[thin] (A8) -- (A5); \draw[thin] (A9) -- (A10); \draw[thin] (A9) -- (A12); % Possibly draw points % (it can help you understand the cuboid structure) \foreach \i in {1,2,...,12} { % \draw[fill=black] (A\i) circle (0.05em) % node[above right] {\tiny \i}; } % \draw[fill=black] (P1) circle (0.1em) node[below] {\tiny p1}; % \draw[fill=black] (P2) circle (0.1em) node[below] {\tiny p2}; %Key \coordinate (K1) at (0.5cm,-2.3cm); \coordinate (K2) at (0.5cm,-2.7cm); \node [Key1, right=0.0cm of K1] (key1) {}; \node [Key2, right=0.0cm of K2] (key2) {}; \node [Key3, right=0.4cm of K1] (key11) {Total model domain}; \node [Key3, right=0.4cm of K2] (key21) {Plant canopy volume}; %% frame specific elements %% boundary layer profile 2D \coordinate (B1) at (4.0cm,0.3cm); \coordinate (B2) at (4.0cm,-2.5cm); \coordinate (B3) at (4.0cm,0.6cm); \coordinate (B4) at (6.6cm,-2.5cm); \draw[thin, dotted] (A10) -- (B1); \draw[thin, dotted] (A7) -- (B2); \draw[<-] (B3) -- (B2); \draw[<-] (B4) -- (B2); \coordinate (xlab) at (5.3cm,-2.5cm); \coordinate (ylab) at (4.0cm,-1.1cm); \node [label, below=0.0cm of xlab] (xlabel) {lad $[m^{2}m^{-3}]$}; \node [label, rotate=90, above=0.0cm of ylab] (ylabel) {z$[m]$}; \coordinate (B5) at (4.5cm,-2.5cm); % \draw [-,color=red] (B1) to [out=-10,in=90,looseness=2.0, relative=false] .. controls (4,0) and (5,0) .. (B5); \draw {(B1) .. controls (8.0,-0.2) and (4.5,-1.0) .. (B5)}; \draw [decorate, decoration={markings, mark=at position 00mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 04mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 08mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 12mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 16mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 20mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 24mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 28mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 32mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 36mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 40mm with{\draw[fill=black] (0,0) circle (0.1em);}, mark=at position 44mm with{\draw[fill=black] (0,0) circle (0.1em);}, }] {(B5) .. controls (4.5,-1.0) and (8.0,-0.2) .. (B1)}; \node [Key3, right=1.1cm of B1] (label1) {\texttt{zu(pch\_index + 1)}: lad = 0.0 (default)}; \node [Key3, left=0.1cm of B1] (label0) {}; \draw[-, dashed] (label0) -- (label1); \coordinate (curvelabel00) at (4.65cm,-2.45cm); \coordinate (curvelabel01) at (5.0cm,-2.25cm); \draw[<-] (curvelabel00) -- (curvelabel01); \node [Key3, right=0.0cm of curvelabel01] (curvelabel02) {\texttt{lad\_surface} (default 0.0)}; \coordinate (curvelabel10) at (5.4cm,-1.3cm); \coordinate (curvelabel11) at (5.6cm,-1.6cm); \draw[<-] (curvelabel10) -- (curvelabel11); \node [Key3, right=0.0cm of curvelabel11] (curvelabel12) {\texttt{lad\_vertical\_gradient\_level} (5)}; \coordinate (curvelabel10) at (5.47cm,-1.05cm); \coordinate (curvelabel11) at (5.8cm,-1.3cm); \draw[<-] (curvelabel10) -- (curvelabel11); \node [Key3, right=0.0cm of curvelabel11] (curvelabel12) {\texttt{lad\_vertical\_gradient} (5)}; \coordinate (curvelabel10) at (5.7cm,-0.93cm); \coordinate (curvelabel11) at (5.9cm,-1.0cm); \draw[<-] (curvelabel10) -- (curvelabel11); \node [Key3, right=0.0cm of curvelabel11] (curvelabel12) {\texttt{lad\_vertical\_gradient\_level} (6)}; \end{tikzpicture} \end{frame} %Folie 11 \begin{frame} \frametitle{Basic canopy parameter (III)} \begin{footnotesize} \begin{itemize} \item<1->{Step III: Prescribe a value for the parameter {\small \texttt{drag\_coefficient (default 0.0)}}. The drag coefficient is a dimensionless factor describing the magnitude of the form drag by the canopy working against the flow. A larger form drag results in a greater momentum reduction.} \end{itemize} \begin{minipage}{0.47\textwidth} \begin{center} \includegraphics[width=1\textwidth]{canopy_model_figures/large.png}\\ \end{center} \end{minipage} \hfill \begin{minipage}{0.47\textwidth} \begin{center} \includegraphics[width=1\textwidth]{canopy_model_figures/small.png}\\ \end{center} \end{minipage} \begin{minipage}{0.47\textwidth} \begin{center} Strong trees offer a larger form drag to the flow. \end{center} \end{minipage} \hfill \begin{minipage}{0.47\textwidth} \begin{center} Young / small trees offer a smaller form drag to the flow because they are more flexible. \end{center} \end{minipage} \end{footnotesize} \end{frame} %Folie 12 \begin{frame} \frametitle{Basic canopy parameter (IV)} \begin{itemize} \item<1->{For steering the effect of the canopy sensible heat transfer, prescribe a value for the sensible heat flux at the canopy top, using the parameter \texttt{cthf} (see Methods (III)).} \item<2->{The sink/source effect of the canopy on other scalar quantities, such as humidity or a passive tracer can be steered by the parameters \texttt{leaf\_surface\_concentration} and \texttt{scalar\_exchange\_coefficient} (see Methods (IV)).} \end{itemize} \end{frame} %Folie 13 \begin{frame} \frametitle{User-defined canopy} \begin{footnotesize} Do you want to simulate a more customized canopy, which e.g. covers only half the model surface?\\ \begin{itemize} \item<2->{Step I: Copy the file \texttt{user\_init\_plant\_canopy.f90} from {\small \texttt{trunk/SOURCE}} to the directory {\small \texttt{\$Home/palm/current\_version/USER\_CODE/}} and make the desired changes for {\small \texttt{CASE ('user\_defined\_canopy\_1')}}.} \item<3->{Step II: In your parameter file set: {\scriptsize \texttt{canopy\_mode = 'user\_defined\_canopy\_1'}}} \end{itemize} \end{footnotesize} \vspace{7pt} \tikzstyle{background} = [rectangle, fill=gray!10, text width=1\textwidth, text centered, rounded corners, minimum height=10em] \tikzstyle{Key1} = [rectangle, draw, fill=gray!70, text width=0.05, minimum size=0.05, font=\tiny] \tikzstyle{Key2} = [rectangle, draw, fill=green!90, text width=0.05, minimum size=0.05, font=\tiny] \tikzstyle{Key3} = [rectangle, text width=2.0cm, minimum size=4pt, font=\tiny] \tikzstyle{text1} = [rectangle, text width=0.4\textwidth, minimum height=10em] \begin{tikzpicture}[>=latex'] %%% Edit the following coordinate to change the shape of your %%% cuboid %% Vanishing points for perspective handling \coordinate (P1) at (-4cm,1.5cm); % left vanishing point (To pick) \coordinate (P2) at (10cm,1.5cm); % right vanishing point (To pick) %% (A1) and (A2) defines the 2 central points of the cuboid \coordinate (A1) at (0cm,0cm); % central top point (To pick) \coordinate (A2) at (0cm,-2cm); % central bottom point (To pick) %% (A3) to (A8) are computed given a unique parameter (or 2) .8 % You can vary .8 from 0 to 1 to change perspective on left side \coordinate (A3) at ($(P1)!.8!(A2)$); % To pick for perspective \coordinate (A4) at ($(P1)!.8!(A1)$); % You can vary .8 from 0 to 1 to change perspective on right side \coordinate (A7) at ($(P2)!.7!(A2)$); \coordinate (A8) at ($(P2)!.7!(A1)$); %% Automatically compute the last 2 points with intersections \coordinate (A5) at (intersection cs: first line={(A8) -- (P1)}, second line={(A4) -- (P2)}); \coordinate (A6) at (intersection cs: first line={(A7) -- (P1)}, second line={(A3) -- (P2)}); %% Drawing the canopy layer \coordinate (A9) at (0em,-1.7cm); % central bottom point (To pick) \coordinate (A10) at ($(P2)!.7!(A9)$); \coordinate (A12) at ($(P1)!.8!(A9)$); % To pick for perspective \coordinate (A11) at (intersection cs: first line={(A10) -- (P1)}, second line={(A12) -- (P2)}); \coordinate (A13) at ($(A9)!.54!(A10)$); \coordinate (A14) at ($(A2)!.54!(A7)$); \coordinate (A15) at (intersection cs: first line={(A13) -- (P1)}, second line={(A12) -- (P2)}); \coordinate (A16) at (intersection cs: first line={(A14) -- (P1)}, second line={(A3) -- (P2)}); %%% Depending of what you want to display, you can comment/edit %%% the following lines {\node [background, right=-0.8cm of A12] (background) {};} %% Possibly draw back faces \fill[gray!70] (A2) -- (A3) -- (A6) -- (A7) -- cycle; % face 6 \node at (barycentric cs:A2=1,A3=1,A6=1,A7=1) {\tiny }; \fill[gray!30] (A3) -- (A4) -- (A5) -- (A6) -- cycle; % face 3 \node at (barycentric cs:A3=1,A4=1,A5=1,A6=1) {\tiny }; \fill[gray!10] (A5) -- (A6) -- (A7) -- (A8) -- cycle; % face 4 \node at (barycentric cs:A5=1,A6=1,A7=1,A8=1) {\tiny }; \fill[green!90] (A13) -- (A10) -- (A11) -- (A15) -- cycle; % face 4 \node at (barycentric cs:A9=1,A10=1,A11=1,A12=1) {\tiny }; \fill[green!100] (A13) -- (A15) -- (A16) -- (A14) -- cycle; % face 4 \node at (barycentric cs:A9=1,A12=1,A3=1,A2=1) {\tiny }; \fill[green!100] (A13) -- (A10) -- (A7) -- (A14) -- cycle; % face 4 \node at (barycentric cs:A9=1,A10=1,A7=1,A2=1) {\tiny }; \draw[thin,dashed] (A5) -- (A6); \draw[thin,dashed] (A3) -- (A6); \draw[thin,dashed] (A7) -- (A6); \draw[thin,dashed] (A11) -- (A15); \draw[thin,dashed] (A10) -- (A11); %% Possibly draw front faces % \fill[orange] (A1) -- (A8) -- (A7) -- (A2) -- cycle; % face 1 % \node at (barycentric cs:A1=1,A8=1,A7=1,A2=1) {\tiny f1}; \fill[gray!50,opacity=0.2] (A1) -- (A2) -- (A3) -- (A4) -- cycle; % f2 \node at (barycentric cs:A1=1,A2=1,A3=1,A4=1) {\tiny }; \fill[gray!90,opacity=0.2] (A1) -- (A4) -- (A5) -- (A8) -- cycle; % f5 \node at (barycentric cs:A1=1,A4=1,A5=1,A8=1) {\tiny }; %% Possibly draw front lines \draw[thin] (A1) -- (A2); \draw[thin] (A3) -- (A4); \draw[thin] (A7) -- (A8); \draw[thin] (A1) -- (A4); \draw[thin] (A1) -- (A8); \draw[thin] (A2) -- (A3); \draw[thin] (A2) -- (A7); \draw[thin] (A4) -- (A5); \draw[thin] (A8) -- (A5); \draw[thin] (A13) -- (A10); \draw[thin] (A13) -- (A15); \draw[thin] (A14) -- (A16); \draw[thin] (A13) -- (A14); \draw[thin] (A15) -- (A16); % Possibly draw points % (it can help you understand the cuboid structure) \foreach \i in {1,2,...,16} { % \draw[fill=black] (A\i) circle (0.05em) % node[above right] {\tiny \i}; } % \draw[fill=black] (P1) circle (0.1em) node[below] {\tiny p1}; % \draw[fill=black] (P2) circle (0.1em) node[below] {\tiny p2}; %Key \coordinate (K1) at (0.5cm,-2.3cm); \coordinate (K2) at (0.5cm,-2.7cm); \node [Key1, right=0.0cm of K1] (key1) {}; \node [Key2, right=0.0cm of K2] (key2) {}; \node [Key3, right=0.4cm of K1] (key11) {Total model domain}; \node [Key3, right=0.4cm of K2] (key21) {Plant canopy volume}; % % Text \uncover<4->{\node [text1, right=0.7cm of A7] (text1) {{\footnotesize Note: You might have to make changes in other parts of your {\small \texttt{USER\_CODE}} according to the changes / used parameters in: \texttt{user\_init\_plant\_canopy.f90}}};} \end{tikzpicture} \end{frame} \end{document}