!> @file vdi_internal_controls.f90 !--------------------------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General ! Public License as published by the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General ! Public License for more details. ! ! You should have received a copy of the GNU General Public License along with PALM. If not, see ! . ! ! Copyright 1997-2021 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------------------------! ! ! ! Current revisions: ! ----------------- ! ! ! Former revisions: ! ----------------- ! $Id: vdi_internal_controls.f90 4828 2021-01-05 11:21:41Z schwenkel $ ! bugfix: mpi double precision replaced by mpi real ! ! 4497 2020-04-15 10:20:51Z raasch ! file re-formatted to follow the PALM coding standard ! ! 4481 2020-03-31 18:55:54Z maronga ! missing preprocessor directive added ! ! 4346 2019-12-18 11:55:56Z motisi ! Introduction of wall_flags_total_0, which currently sets bits based on static topography ! information used in wall_flags_static_0 ! ! 4329 2019-12-10 15:46:36Z motisi ! Renamed wall_flags_0 to wall_flags_static_0 ! ! 4182 2019-08-22 15:20:23Z scharf ! added "Authors" section ! ! 4175 2019-08-20 13:19:16Z gronemeier ! bugfix: removed unused variables ! ! 4173 2019-08-20 12:04:06Z weniger ! Initial version ! ! Authors: ! -------- ! @author Viola Weniger ! ! ! Description: ! ------------ !> According to VDI Guideline 3783 Part 9, internal assessment has to be carried out within the !> program for the model to be considered as evaluated. !--------------------------------------------------------------------------------------------------! MODULE vdi_internal_controls USE arrays_3d, & ONLY: dzw, & pt, & q, & u, & u_p, & v, & w USE control_parameters, & ONLY: bc_dirichlet_l, & bc_dirichlet_n, & bc_dirichlet_r, & bc_dirichlet_s, & bc_lr_cyc, & bc_ns_cyc, & end_time, & humidity, & message_string, & neutral, & time_since_reference_point USE indices, & ONLY: nx, & nxl, & nxlg, & nxr, & nxrg, & ny, & nyn, & nyng, & nys, & nysg, & nzb, & nzt, & wall_flags_total_0 USE kinds #if defined( __parallel ) USE pegrid, & ONLY: collective_wait, & comm2d, & ierr, & MPI_REAL, & MPI_INTEGER, & MPI_MAX, & MPI_SUM, & myid #else USE pegrid, & ONLY: myid #endif USE grid_variables, & ONLY: dx, & dy USE pmc_interface, & ONLY: nested_run IMPLICIT NONE INTEGER(iwp) :: internal_count = 0 !< counts calls to this module INTERFACE vdi_2_deltat_wave MODULE PROCEDURE vdi_2_deltat_wave END INTERFACE vdi_2_deltat_wave INTERFACE vdi_standard_differences MODULE PROCEDURE vdi_standard_differences END INTERFACE vdi_standard_differences INTERFACE vdi_domain_averages MODULE PROCEDURE vdi_domain_averages END INTERFACE vdi_domain_averages INTERFACE vdi_plausible_values MODULE PROCEDURE vdi_plausible_values END INTERFACE vdi_plausible_values INTERFACE vdi_actions MODULE PROCEDURE vdi_actions END INTERFACE vdi_actions INTERFACE vdi_conservation_of_mass MODULE PROCEDURE vdi_conservation_of_mass END INTERFACE vdi_conservation_of_mass SAVE PRIVATE ! !-- Public functions PUBLIC & vdi_actions CONTAINS !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Call for all grid points !> @todo Add proper description !--------------------------------------------------------------------------------------------------! SUBROUTINE vdi_actions( location ) CHARACTER(LEN=*), INTENT(IN) :: location !< call location string SELECT CASE ( location ) CASE ( 'after_integration' ) internal_count = internal_count + 1 CALL vdi_2_deltat_wave CALL vdi_standard_differences CALL vdi_domain_averages CALL vdi_conservation_of_mass CALL vdi_plausible_values CASE DEFAULT CONTINUE END SELECT END SUBROUTINE vdi_actions !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> At a control grid point in the interior of the model domain, 2 * delta t waves are not to be !> generated with increasing simulation time. !--------------------------------------------------------------------------------------------------! SUBROUTINE vdi_2_deltat_wave INTEGER(iwp) :: count_wave = 0 !< counts the number of consecutive waves INTEGER(iwp) :: count_time = 0 !< counter, so that the waves follow one another without gaps INTEGER(iwp) :: cgp_i = 0 !< x coordinate of the control grid point for testing 2 delta t waves INTEGER(iwp) :: cgp_j = 0 !< y coordinate of the control grid point for testing 2 delta t waves INTEGER(iwp) :: cgp_k = 0 !< z coordinate of the control grid point for testing 2 delta t waves INTEGER(iwp), DIMENSION(4) :: sig_arr = (/ 0, 0, 0, 0 /) !< indicates an increase(1) or a decrease (0) !< of u in the last four time steps REAL(wp) :: random !< random number ! !-- Defining the control grid point IF ( internal_count == 1 ) THEN cgp_i = INT( nxl + ( nxr - nxl ) / 2 ) cgp_j = INT( nys + ( nyn - nys ) / 2 ) cgp_k = INT( nzt / 2 ) ! !-- If the grid point lies in a building, a new point is defined DO WHILE ( .NOT. BTEST( wall_flags_total_0(cgp_k,cgp_j,cgp_i), 1 ) ) CALL RANDOM_NUMBER( random ) cgp_k = cgp_k + FLOOR( ( nzt - cgp_k ) * random ) !< Random number upon cgp_k ! !-- If there is topography in the entire grid column, a new x coordinate is chosen IF ( cgp_k >= nzt -1 ) THEN CALL RANDOM_NUMBER( random ) cgp_i = nxl + FLOOR( ( nxr + 1 - nxl ) * random ) cgp_k = INT( nzt / 2 ) ENDIF ENDDO ENDIF CALL testing_2_deltat_wave( u_p(cgp_k,cgp_j,cgp_i), u(cgp_k,cgp_j,cgp_i), & sig_arr, count_wave, count_time ) END SUBROUTINE vdi_2_deltat_wave !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> In this subroutine the quantity quant is tested for 2 delta t waves. For this, the size must have !> a wave-shaped course over 4*4 time steps and the amplitude of the wave has to be greater than the !> change of quant with increasing time. !--------------------------------------------------------------------------------------------------! SUBROUTINE testing_2_deltat_wave( quant_p_r, quant_r, sig_arr, count_wave, count_time ) INTEGER(iwp), INTENT(INOUT) :: count_wave !< counts the number of consecutive waves INTEGER(iwp), INTENT(INOUT) :: count_time !< counter, so that the waves follow one another without gaps INTEGER(iwp), PARAMETER :: number_wave = 10 !< number of consecutive waves that are not allowed INTEGER(iwp), DIMENSION(4), INTENT(INOUT) :: sig_arr !< indicates an increase (1) or a decrease (0) of !> quantity quant in the last four time steps REAL(wp), INTENT(IN) :: quant_p_r !< quantity from the previous time step as a real REAL(wp), INTENT(IN) :: quant_r !< quantity as a real REAL(wp) :: quant_rel = 0.0_wp !< rel. change of the quantity to the previous time step IF ( quant_p_r - quant_r > 0.0 ) THEN sig_arr(4) = 0 ELSE sig_arr(4) = 1 ENDIF quant_rel = ABS( ( quant_p_r - quant_r ) / quant_p_r ) ! !-- With this criterion 2 delta t waves are detected if the amplitude of the wave is greater than !-- the change of quant with increasing time IF ( ALL( sig_arr(1:4) == (/ 1, 0, 1, 0 /) ) .AND. quant_rel > 0.01 ) THEN count_wave = count_wave + 1 IF ( count_wave == number_wave .AND. count_time == 4 ) THEN message_string = '2 deltat waves are generated ' CALL message( 'vdi_2_deltat_wave', 'PA0669', 2, 2, myid, 6, 0 ) ENDIF count_time = 0 ELSE IF ( count_time >= 4 ) THEN count_wave = 0 ENDIF ENDIF sig_arr(1) = sig_arr(2) sig_arr(2) = sig_arr(3) sig_arr(3) = sig_arr(4) count_time = count_time + 1 END SUBROUTINE testing_2_deltat_wave !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> In this internal assessment the maxima of standard differences of the meteorological variables, !> computed layer by layer will be checked. The maxima should not remain at the open edges of the !> model or travel from there into the interior of the domain with increasing simulation time. !> @todo try to reduce repeating code. !--------------------------------------------------------------------------------------------------! SUBROUTINE vdi_standard_differences INTEGER(iwp) :: position_pt_deviation = 0 !< position of the maximum of the standard deviation of pt INTEGER(iwp) :: position_pt_deviation_p = 0 !< position of the maximum of the standard deviation of pt !< to the previous time step INTEGER(iwp) :: position_pt_deviation_pp = 0 !< position of the maximum of the standard deviation of pt two time steps ago INTEGER(iwp) :: position_q_deviation = 0 !< position of the maximum of the standard deviation of q INTEGER(iwp) :: position_q_deviation_p = 0 !< position of the maximum of the standard deviation of q to !< the previous time step INTEGER(iwp) :: position_q_deviation_pp = 0 !< position of the maximum of the standard deviation of q two time steps ago INTEGER(iwp) :: position_u_deviation = 0 !< position of the maximum of the standard deviation of u INTEGER(iwp) :: position_u_deviation_p = 0 !< position of the maximum of the standard deviation of u to !< the previous time step INTEGER(iwp) :: position_u_deviation_pp = 0 !< position of the maximum of the standard deviation of u two time steps ago INTEGER(iwp) :: position_v_deviation = 0 !< position of the maximum of the standard deviation of v INTEGER(iwp) :: position_v_deviation_p = 0 !< position of the maximum of the standard deviation of v !< to the previous time step INTEGER(iwp) :: position_v_deviation_pp = 0 !< position of the maximum of the standard deviation of v two time steps ago INTEGER(iwp) :: position_w_deviation = 0 !< position of the maximum of the standard deviation of w INTEGER(iwp) :: position_w_deviation_p = 0 !< position of the maximum of the standard deviation of w !< to the previous time step INTEGER(iwp) :: position_w_deviation_pp = 0 !< position of the maximum of the standard deviation of w two time steps ago REAL(wp), DIMENSION(nzb:nzt+1) :: pt_deviation !< standard deviation of pt depending on k REAL(wp), DIMENSION(nzb:nzt+1) :: q_deviation !< standard deviation of q depending on k REAL(wp), DIMENSION(nzb:nzt+1) :: u_deviation !< standard deviation of u depending on k REAL(wp), DIMENSION(nzb:nzt+1) :: v_deviation !< standard deviation of v depending on k REAL(wp), DIMENSION(nzb:nzt+1) :: w_deviation !< standard deviation of w depending on k ! !-- Calculation of the standard deviation of u CALL calc_standard_deviation( u, u_deviation, 1 ) ! !-- Determination of the position of the maximum position_u_deviation = MAXLOC( u_deviation, DIM = 1 ) ! !-- Check the position of the maximum of the standard deviation of u IF ( internal_count > 2 ) THEN CALL check_position( position_u_deviation, position_u_deviation_p, position_u_deviation_pp ) ENDIF position_u_deviation_pp = position_u_deviation_p position_u_deviation_p = position_u_deviation ! !-- Calculation of the standard deviation of v CALL calc_standard_deviation( v, v_deviation, 2 ) ! !-- Determination of the position of the maximum position_v_deviation = MAXLOC( v_deviation, DIM = 1 ) ! !-- Check the position of the maximum of the standard deviation of v IF ( internal_count > 2 ) THEN CALL check_position( position_v_deviation, position_v_deviation_p, position_v_deviation_pp ) ENDIF position_v_deviation_pp = position_v_deviation_p position_v_deviation_p = position_v_deviation ! !-- Calculation of the standard deviation of w CALL calc_standard_deviation( w, w_deviation, 3 ) ! !-- Determination of the position of the maximum position_w_deviation = MAXLOC( w_deviation, DIM = 1 ) ! !-- Check the position of the maximum of the standard deviation of w IF ( internal_count > 2 ) THEN CALL check_position( position_w_deviation, position_w_deviation_p, position_w_deviation_pp ) ENDIF position_w_deviation_pp = position_w_deviation_p position_w_deviation_p = position_w_deviation ! !-- Calculation of the standard deviation of pt IF ( .NOT. neutral ) THEN CALL calc_standard_deviation( pt, pt_deviation, 0 ) ! !-- Determination of the position of the maximum position_pt_deviation = MAXLOC( pt_deviation, DIM = 1 ) ! !-- Check the position of the maximum of the standard deviation of pt IF ( internal_count > 2 ) THEN CALL check_position( position_pt_deviation, & position_pt_deviation_p, & position_pt_deviation_pp ) ENDIF position_pt_deviation_pp = position_pt_deviation_p position_pt_deviation_p = position_pt_deviation ENDIF ! !-- Calculation of the standard deviation of q IF ( humidity ) THEN CALL calc_standard_deviation( q, q_deviation, 0 ) ! !-- Determination of the position of the maximum position_q_deviation = MAXLOC( q_deviation, DIM = 1 ) ! !-- Check the position of the maximum of the standard deviation of q IF ( internal_count > 2 ) THEN CALL check_position( position_q_deviation, & position_q_deviation_p, & position_q_deviation_pp ) ENDIF position_q_deviation_pp = position_q_deviation_p position_q_deviation_p = position_q_deviation ENDIF END SUBROUTINE vdi_standard_differences !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculation of the standard deviation !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_standard_deviation( quant, std_deviation, quant_type ) INTEGER(iwp) :: i !< loop index INTEGER(iwp) :: j !< loop index INTEGER(iwp) :: k !< loop index INTEGER(iwp), INTENT(IN) :: quant_type !< bit position (1 for u, 2 for v, 3 for w and 0 for scalar) INTEGER(iwp), DIMENSION(nzb:nzt+1) :: count_2d_l !< counter for averaging (local) INTEGER(iwp), DIMENSION(nzb:nzt+1) :: count_2d !< counter for averaging REAL(wp) :: flag !< flag indicating atmosphere (1) or wall (0) grid point REAL(wp), DIMENSION(nzb:nzt+1) :: quant_av_k_l !< Mean of the quantity quant depending on k (local) REAL(wp), DIMENSION(nzb:nzt+1) :: quant_av_k !< Mean of the quantity quant depending on k REAL(wp), DIMENSION(nzb:nzt+1), INTENT(OUT) :: std_deviation !< standard deviation of quant REAL(wp), DIMENSION(nzb:nzt+1) :: std_deviation_l !< standard deviation of quant (local) REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: quant !< Quantity ! !-- Calculation of the standard deviation quant_av_k_l = 0.0_wp quant_av_k = 0.0_wp std_deviation = 0.0_wp std_deviation_l = 0.0_wp ! !-- Average count_2d_l = 0 count_2d = 0 DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), quant_type ) ) quant_av_k_l(k) = quant_av_k_l(k) + quant(k,j,i) * flag count_2d_l(k) = count_2d_l(k) + INT( flag, KIND = iwp ) ENDDO ENDDO ENDDO #if defined( __parallel ) CALL MPI_ALLREDUCE( quant_av_k_l, quant_av_k, nzt+1 - nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( count_2d_l, count_2d, nzt+1 - nzb+1, MPI_INTEGER, MPI_SUM, comm2d, ierr ) #else quant_av_k = quant_av_k_l count_2d = count_2d_l #endif DO k = nzb+1, nzt+1 quant_av_k(k) = quant_av_k(k) / REAL( count_2d(k), KIND = wp ) ENDDO DO i = nxl, nxr DO j = nys, nyn DO k = nzb+1, nzt+1 std_deviation_l(k) = std_deviation_l(k) & + ( quant(k,j,i) - quant_av_k(k) )**2 & * MERGE( 1.0_wp, 0.0_wp, & BTEST( wall_flags_total_0(k,j,i), quant_type ) ) ENDDO ENDDO ENDDO #if defined( __parallel ) CALL MPI_ALLREDUCE( std_deviation_l, std_deviation, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) #else std_deviation = std_deviation_l #endif DO k = nzb+1, nzt+1 std_deviation(k) = SQRT( std_deviation(k) / REAL( count_2d(k), KIND = wp ) ) ENDDO END SUBROUTINE calc_standard_deviation !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Tests for the position of the maxima of the standard deviation. If the maxima remain at the open !> edges of the model or travel from the open edges into the interior of the domain with increasing !> simulation time, the simulation should be aborted. !--------------------------------------------------------------------------------------------------! SUBROUTINE check_position( position_std_deviation, position_std_deviation_p, & position_std_deviation_pp ) INTEGER(iwp), INTENT(IN) :: position_std_deviation !< position of the maximum of the std INTEGER(iwp), INTENT(IN) :: position_std_deviation_p !< previous position of std-max INTEGER(iwp), INTENT(IN) :: position_std_deviation_pp !< prev. prev. position of std-max IF ( position_std_deviation == nzt .AND. & position_std_deviation_p == nzt .AND. & position_std_deviation_pp == nzt ) THEN message_string = 'The maxima of the standard deviation' // & 'remain at the open edges of the model.' CALL message( 'vdi_standard_differences', 'PA0663', 1, 2, 0, 6, 0 ) ENDIF IF ( position_std_deviation == nzt-2 .AND. & position_std_deviation_p == nzt-1 .AND. & position_std_deviation_pp == nzt ) THEN message_string = 'The maxima of the standard deviation travel ' // & 'from the open edges into the interior ' // & 'of the domain with increasing simulation time.' CALL message( 'vdi_standard_differences', 'PA0664', 1, 2, 0, 6, 0 ) ENDIF END SUBROUTINE check_position !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> In this control it will be checked, if the means of the meteorological variables over the model !> grid are not to exhibit 2 delta t waves or monotonic increase or decrease with increasing !> simulation time. !--------------------------------------------------------------------------------------------------! SUBROUTINE vdi_domain_averages INTEGER(iwp) :: count_time_u = 0 !< counter, so that the waves of u follow each other without gaps INTEGER(iwp) :: count_time_v = 0 !< counter, so that the waves of v follow each other without gaps INTEGER(iwp) :: count_time_w = 0 !< counter, so that the waves of w follow each other without gaps INTEGER(iwp) :: count_time_q = 0 !< counter, so that the waves of q follow each other without gaps INTEGER(iwp) :: count_time_pt = 0 !< counter, so that the waves of pt follow each other without gaps INTEGER(iwp) :: count_wave_u = 0 !< counts the number of consecutive waves of u INTEGER(iwp) :: count_wave_v = 0 !< counts the number of consecutive waves of v INTEGER(iwp) :: count_wave_w = 0 !< counts the number of consecutive waves of w INTEGER(iwp) :: count_wave_q = 0 !< counts the number of consecutive waves of q INTEGER(iwp) :: count_wave_pt = 0 !< counts the number of consecutive waves of pt INTEGER(iwp) :: mono_count_u = 0 !< counter for monotonic decrease or increase of u INTEGER(iwp) :: mono_count_v = 0 !< counter for monotonic decrease or increase of v INTEGER(iwp) :: mono_count_w = 0 !< counter for monotonic decrease or increase of w INTEGER(iwp) :: mono_count_q = 0 !< counter for monotonic decrease or increase of q INTEGER(iwp) :: mono_count_pt = 0 !< counter for monotonic decrease or increase of pt INTEGER(iwp), DIMENSION(4) :: sig_u_arr = (/ 0, 0, 0, 0/) !< indicates an increase(1) or a decrease (0) !< of u in the last four time steps INTEGER(iwp), DIMENSION(4) :: sig_v_arr = (/ 0, 0, 0, 0/) !< indicates an increase(1) or a decrease (0) !< of v in the last four time steps INTEGER(iwp), DIMENSION(4) :: sig_w_arr = (/ 0, 0, 0, 0/) !< indicates an increase(1) or a decrease (0) !< of w in the last four time steps INTEGER(iwp), DIMENSION(4) :: sig_q_arr = (/ 0, 0, 0, 0/) !< indicates an increase(1) or a decrease (0) !< of q in the last four time steps INTEGER(iwp), DIMENSION(4) :: sig_pt_arr = (/ 0, 0, 0, 0/) !< indicates an increase(1) or a decrease (0) !< of pt in the last four time steps REAL(wp) :: pt_av = 0.0_wp !< Mean of pt REAL(wp) :: pt_av_p = 0.0_wp !< Mean of pt at the previous time step REAL(wp) :: q_av = 0.0_wp !< Mean of q REAL(wp) :: q_av_p = 0.0_wp !< Mean of q at the previous time step REAL(wp) :: u_av = 0.0_wp !< Mean of u REAL(wp) :: u_av_p = 0.0_wp !< Mean of u at the previous time step REAL(wp) :: v_av = 0.0_wp !< Mean of v REAL(wp) :: v_av_p = 0.0_wp !< Mean of v at the previous time step REAL(wp) :: w_av = 0.0_wp !< Mean of w REAL(wp) :: w_av_p = 0.0_wp !< Mean of w at the previous time step ! !-- Averaging the meteorological variables over the model grid CALL calc_average( u, u_av, 1 ) CALL calc_average( v, v_av, 2 ) CALL calc_average( w, w_av, 3 ) IF ( .NOT. neutral ) THEN CALL calc_average( pt, pt_av, 0 ) ENDIF IF ( humidity ) THEN CALL calc_average( q, q_av, 0 ) ENDIF ! !-- Testing the meteorological variables for 2 delta t waves IF ( internal_count > 1 ) THEN CALL testing_2_deltat_wave( u_av_p, u_av, sig_u_arr, count_wave_u, count_time_u ) CALL testing_2_deltat_wave( v_av_p, v_av, sig_v_arr, count_wave_v, count_time_v ) CALL testing_2_deltat_wave( w_av_p, w_av, sig_w_arr, count_wave_w, count_time_w ) IF ( .NOT. neutral ) THEN CALL testing_2_deltat_wave( pt_av_p, pt_av, sig_pt_arr, count_wave_pt, count_time_pt ) ENDIF IF ( humidity ) THEN CALL testing_2_deltat_wave( q_av_p, q_av, sig_q_arr, count_wave_q, count_time_q ) ENDIF ENDIF ! !-- Testing if there is a monotonic increase or decrease with increasing simulation time IF ( sig_u_arr(2) /= sig_u_arr(3) ) THEN mono_count_u = 0 ELSE mono_count_u = mono_count_u + 1 ENDIF IF ( time_since_reference_point >= end_time .AND. & mono_count_u > 0.9_wp * internal_count ) THEN message_string = 'Monotonic decrease or increase with increasing simulation time for u' CALL message( 'vdi_domain_averages', 'PA0665', 0, 1, 0, 6, 0 ) ENDIF IF ( sig_v_arr(2) /= sig_v_arr(3) ) THEN mono_count_v = 0 ELSE mono_count_v = mono_count_v + 1 ENDIF IF ( time_since_reference_point >= end_time .AND. & mono_count_v > 0.9_wp * internal_count ) THEN message_string = 'Monotonic decrease or increase with increasing simulation time for v' CALL message( 'vdi_domain_averages', 'PA0665', 0, 1, 0, 6, 0 ) ENDIF IF ( sig_w_arr(2) /= sig_w_arr(3) ) THEN mono_count_w = 0 ELSE mono_count_w = mono_count_w + 1 ENDIF IF ( time_since_reference_point >= end_time .AND. & mono_count_w > 0.9_wp * internal_count ) THEN message_string = 'Monotonic decrease or increase with increasing simulation time for w' CALL message( 'vdi_domain_averages', 'PA0665', 0, 1, 0, 6, 0 ) ENDIF IF ( .NOT. neutral ) THEN IF ( sig_pt_arr(2) /= sig_pt_arr(3) ) THEN mono_count_pt = 0 ELSE mono_count_pt = mono_count_pt + 1 ENDIF IF ( time_since_reference_point >= end_time .AND. & mono_count_pt > 0.9_wp * internal_count ) THEN message_string = 'Monotonic decrease or increase with increasing simulation time for pt' CALL message( 'vdi_domain_averages', 'PA0665', 0, 1, 0, 6, 0 ) ENDIF ENDIF IF ( humidity ) THEN IF ( sig_q_arr(2) /= sig_q_arr(3) ) THEN mono_count_q = 0 ELSE mono_count_q = mono_count_q + 1 ENDIF IF ( time_since_reference_point >= end_time .AND. & mono_count_q > 0.9_wp * internal_count ) THEN message_string = 'Monotonic decrease or increase with increasing simulation time for q' CALL message( 'vdi_domain_averages', 'PA0665', 0, 1, 0, 6, 0 ) ENDIF ENDIF ! !-- Save the values from the previous time step u_av_p = u_av v_av_p = v_av w_av_p = w_av IF ( .NOT. neutral ) THEN pt_av_p = pt_av ENDIF IF ( humidity ) THEN q_av_p = q_av ENDIF END SUBROUTINE vdi_domain_averages !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculate the average of a quantity 'quant'. !--------------------------------------------------------------------------------------------------! SUBROUTINE calc_average( quant, quant_av, quant_type ) INTEGER(iwp) :: average_count = 0 !< counter for averaging INTEGER(iwp) :: average_count_l = 0 !< counter for averaging (local) INTEGER :: i !< loop index INTEGER :: j !< loop index INTEGER :: k !< loop index INTEGER(iwp) :: quant_type !< bit position (1 for u, 2 for v, 3 for w and 0 for scalar) REAL(wp) :: flag !< flag indicating atmosphere (1) or wall (0) grid point REAL(wp) :: quant_av !< average of the quantity quant REAL(wp) :: quant_av_l = 0.0_wp !< average of the quantity quant (local) REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: quant !< ! !-- Averaging the quantity over the model grid average_count_l = 0 quant_av_l = 0.0_wp DO i = nxl, nxr DO j = nys, nyn DO k = nzb, nzt+1 flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), quant_type ) ) quant_av_l = quant_av_l + quant(k,j,i) * flag average_count_l = average_count_l + INT( flag, KIND = iwp ) ENDDO ENDDO ENDDO #if defined( __parallel ) CALL MPI_ALLREDUCE( quant_av_l, quant_av, 1, MPI_REAL, MPI_SUM, comm2d, ierr ) CALL MPI_ALLREDUCE( average_count_l, average_count, 1, MPI_INTEGER, MPI_SUM, comm2d, ierr ) #else quant_av = quant_av_l average_count = average_count_l #endif quant_av = quant_av / REAL( average_count, KIND(wp) ) END SUBROUTINE calc_average !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> Testing for conservation of mass. !--------------------------------------------------------------------------------------------------! SUBROUTINE vdi_conservation_of_mass INTEGER(iwp) :: i !< loop index INTEGER(iwp) :: j !< loop index INTEGER(iwp) :: k !< loop index REAL(wp) :: sum_mass_flux !< sum of the mass flow REAL(wp), DIMENSION(1:3) :: volume_flow !< volume flow REAL(wp), DIMENSION(1:3) :: volume_flow_l !< volume flow (local) volume_flow = 0.0_wp volume_flow_l = 0.0_wp ! !-- Left/right: !-- Sum up the volume flow through the left boundary IF ( nxl == 0 ) THEN i = 0 DO j = nys, nyn DO k = nzb+1, nzt volume_flow_l(1) = volume_flow_l(1) + u(k,j,i) * dzw(k) * dy & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 1 ) ) ENDDO ENDDO ENDIF ! !-- Sum up the volume flow through the right boundary IF ( nxr == nx ) THEN i = nx+1 DO j = nys, nyn DO k = nzb+1, nzt volume_flow_l(1) = volume_flow_l(1) - u(k,j,i) * dzw(k) * dy & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 1 ) ) ENDDO ENDDO ENDIF ! !-- South/north: !-- Sum up the volume flow through the south boundary IF ( nys == 0 ) THEN j = 0 DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_l(2) = volume_flow_l(2) + v(k,j,i) * dzw(k) * dx & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 2 ) ) ENDDO ENDDO ENDIF ! !-- Sum up the volume flow through the north boundary IF ( nyn == ny ) THEN j = ny+1 DO i = nxl, nxr DO k = nzb+1, nzt volume_flow_l(2) = volume_flow_l(2) - v(k,j,i) * dzw(k) * dx & * MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 2 ) ) ENDDO ENDDO ENDIF ! !-- Top boundary k = nzt DO i = nxl, nxr DO j = nys, nyn volume_flow_l(3) = volume_flow_l(3) - w(k,j,i) * dx * dy ENDDO ENDDO #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( volume_flow_l, volume_flow, 3, MPI_REAL, MPI_SUM, comm2d, ierr ) #else volume_flow = volume_flow_l #endif sum_mass_flux = SUM( volume_flow ) / ( ( nx + 1 ) * dx * ( ny + 1 ) * dy ) IF ( ABS( sum_mass_flux ) > 0.001 ) THEN message_string = 'The mass is not conserved. ' CALL message( 'vdi_conservation_of_mass', 'PA0666', 1, 2, 0, 6, 0 ) ENDIF END SUBROUTINE vdi_conservation_of_mass !--------------------------------------------------------------------------------------------------! ! Description: ! ------------ !> The results will be checked for exceedance of the specified limits. The controls are performed at !> every time step and at every grid point. No wind component is allowed to have a magnitude greater !> than ten times the maximum wind velocity at the approach flow profile (Vdi 3783 part 9). !> Note, that the supersaturation can not be higher than 10%. Therefore, no test is required. !--------------------------------------------------------------------------------------------------! SUBROUTINE vdi_plausible_values INTEGER(iwp) :: i !< loop index INTEGER(iwp) :: j !< loop index INTEGER(iwp) :: k !< loop index REAL(wp) :: max_uv !< maximum speed of all edges REAL(wp) :: max_uv_l_l !< maximum speed at the left edge (local) REAL(wp) :: max_uv_l !< maximum speed at the left edge REAL(wp) :: max_uv_n_l !< maximum speed at the north edge (local) REAL(wp) :: max_uv_n !< maximum speed at the north edge REAL(wp) :: max_uv_r_l !< maximum speed at the right edge (local) REAL(wp) :: max_uv_r !< maximum speed at the right edge REAL(wp) :: max_uv_s_l !< maximum speed at the south edge (local) REAL(wp) :: max_uv_s !< maximum speed at the south edge REAL(wp), DIMENSION(4) :: max_arr !< REAL(wp), DIMENSION(:), ALLOCATABLE :: uv !< wind velocity at the approach flow REAL(wp), DIMENSION(:), ALLOCATABLE :: uv_l !< wind velocity at the approach flow (local) REAL(wp), DIMENSION(nzb:nzt+1,nys:nyn) :: uv_l_nest !< wind profile at the left edge (nesting) REAL(wp), DIMENSION(nzb:nzt+1,nys:nyn) :: uv_r_nest !< wind profile at the right edge (nesting) REAL(wp), DIMENSION(nzb:nzt+1,nxl:nxr) :: uv_s_nest !< wind profile at the south edge (nesting) REAL(wp), DIMENSION(nzb:nzt+1,nxl:nxr) :: uv_n_nest !< wind profile at the north edge (nesting) IF ( .NOT. ALLOCATED( uv ) ) THEN ALLOCATE( uv(nzb:nzt+1) ) ALLOCATE( uv_l(nzb:nzt+1) ) uv = 0.0_wp uv_l = 0.0_wp ENDIF ! !-- Determination of the approach flow profile IF ( nested_run ) THEN uv_l_nest = 0.0_wp uv_r_nest = 0.0_wp uv_s_nest = 0.0_wp uv_n_nest = 0.0_wp ! !-- Left boundary IF ( nxl == 0 ) THEN i = nxl DO j = nys, nyn DO k = nzb, nzt+1 uv_l_nest(k,j) = SQRT( ( 0.5_wp * ( u(k,j,i-1) + u(k,j,i) ) )**2 & + ( 0.5_wp * ( v(k,j-1,i) + v(k,j,i) ) )**2 ) ENDDO ENDDO max_uv_l_l = MAXVAL(uv_l_nest) ENDIF ! !-- Right boundary IF ( nxr == nx ) THEN i = nxr DO j = nys, nyn DO k = nzb, nzt+1 uv_r_nest(k,j) = SQRT( ( 0.5_wp * ( u(k,j,i-1) + u(k,j,i) ) )**2 & + ( 0.5_wp * ( v(k,j-1,i) + v(k,j,i) ) )**2 ) ENDDO ENDDO max_uv_r_l = MAXVAL(uv_r_nest) ENDIF ! !-- South boundary IF ( nys == 0 ) THEN j = nys DO i = nxl, nxr DO k = nzb, nzt+1 uv_s_nest(k,i) = SQRT( ( 0.5_wp * ( u(k,j,i-1) + u(k,j,i) ) )**2 & + ( 0.5_wp * ( v(k,j-1,i) + v(k,j,i) ) )**2 ) ENDDO ENDDO max_uv_s_l = MAXVAL(uv_s_nest) ENDIF ! !-- North boundary IF ( nyn == ny ) THEN j = nyn DO i = nxl, nxr DO k = nzb, nzt+1 uv_n_nest(k,i) = SQRT( ( 0.5_wp * ( u(k,j,i-1) + u(k,j,i) ) )**2 & + ( 0.5_wp * ( v(k,j-1,i) + v(k,j,i) ) )**2 ) ENDDO ENDDO max_uv_n_l = MAXVAL(uv_n_nest) ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( max_uv_l_l, max_uv_l, 1, MPI_REAL, MPI_MAX, comm2d, ierr ) CALL MPI_ALLREDUCE( max_uv_r_l, max_uv_r, 1, MPI_REAL, MPI_MAX, comm2d, ierr ) CALL MPI_ALLREDUCE( max_uv_s_l, max_uv_s, 1, MPI_REAL, MPI_MAX, comm2d, ierr ) CALL MPI_ALLREDUCE( max_uv_n_l, max_uv_n, 1, MPI_REAL, MPI_MAX, comm2d, ierr ) #else max_uv_l = max_uv_l_l max_uv_r = max_uv_r_l max_uv_s = max_uv_s_l max_uv_n = max_uv_n_l #endif max_arr = (/ max_uv_r, max_uv_l, max_uv_s, max_uv_n /) max_uv = MAXVAl( max_arr ) ELSE ! non-nested run IF ( bc_lr_cyc .AND. bc_ns_cyc ) THEN IF ( nxl == 0 .AND. nys == 0 ) THEN DO k = nzb, nzt+1 uv_l(k) = SQRT( ( 0.5_wp * ( u(k,0,-1) + u(k,0,0) ) )**2 & + ( 0.5_wp * ( v(k,-1,0) + v(k,0,0) ) )**2 ) ENDDO ENDIF ENDIF IF ( bc_dirichlet_l ) THEN IF ( nxl == 0 .AND. nys == 0 ) THEN DO k = nzb, nzt+1 uv_l(k) = SQRT( ( 0.5_wp * ( u(k,0,-1) + u(k,0,0) ) )**2 & + ( 0.5_wp * ( v(k,-1,0) + v(k,0,0) ) )**2 ) ENDDO ENDIF ELSEIF (bc_dirichlet_r ) THEN IF ( nxr == nx .AND. nys == 0 ) THEN DO k = nzb, nzt+1 uv_l(k) = SQRT( ( 0.5_wp * ( u(k,0,nxr) + u(k,0,nxr+1) ) )**2 & + ( 0.5_wp * ( v(k,-1,nxr) + v(k,0,nxr) ) )**2 ) ENDDO ENDIF ENDIF IF ( bc_dirichlet_n ) THEN IF ( nxl == 0 .AND. nyn == ny ) THEN DO k = nzb, nzt+1 uv_l(k) = SQRT( ( 0.5_wp * ( u(k,nyn,-1) + u(k,nyn,0) ) )**2 & + ( 0.5_wp * ( v(k,nyn+1,0) + v(k,nyn,0) ) )**2 ) ENDDO ENDIF ELSEIF ( bc_dirichlet_s ) THEN IF ( nxl == 0 .AND. nys == 0 ) THEN DO k = nzb, nzt+1 uv_l(k) = SQRT( ( 0.5_wp * ( u(k,0,-1) + u(k,0,0) ) )**2 & + ( 0.5_wp * ( v(k,-1,0) + v(k,0,0) ) )**2 ) ENDDO ENDIF ENDIF #if defined( __parallel ) CALL MPI_ALLREDUCE( uv_l, uv, nzt+1-nzb+1, MPI_REAL, MPI_MAX, comm2d, ierr ) #else uv = uv_l #endif max_uv = MAXVAL( uv ) ENDIF ! !-- Test for exceedance of the specified limits message_string = 'A wind component have a magnitude greater than ten times the maximum' // & 'wind velocity at the approach flow profile.' IF ( MAXVAL( ABS( u ) ) > 10.0_wp * max_uv ) THEN CALL message( 'vdi_plausible_values', 'PA0667', 2, 2, myid, 6, 0 ) ENDIF IF ( MAXVAL( ABS( v ) ) > 10.0_wp * max_uv ) THEN CALL message( 'vdi_plausible_values', 'PA0667', 2, 2, myid, 6, 0 ) ENDIF IF ( MAXVAL( ABS( w ) ) > 10.0_wp * max_uv ) THEN CALL message( 'vdi_plausible_values', 'PA0667', 2, 2, myid, 6, 0 ) ENDIF ! !-- Test if the potential temperature lies between 220 K and 330 K IF ( MAXVAL( pt ) > 330.0_wp .OR. MAXVAL( pt ) < 220.0_wp ) THEN message_string = 'The potential temperature does not lie between 220 K and 330 K.' CALL message( 'vdi_plausible_values', 'PA0668', 2, 2, myid, 6, 0 ) ENDIF END SUBROUTINE vdi_plausible_values END MODULE vdi_internal_controls