1 | !> @file urban_surface_mod.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 2015-2017 Czech Technical University in Prague |
---|
18 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
19 | !--------------------------------------------------------------------------------! |
---|
20 | ! |
---|
21 | ! Current revisions: |
---|
22 | ! ------------------ |
---|
23 | ! |
---|
24 | ! |
---|
25 | ! Former revisions: |
---|
26 | ! ----------------- |
---|
27 | ! $Id: urban_surface_mod.f90 2233 2017-05-30 18:08:54Z suehring $ |
---|
28 | ! |
---|
29 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
30 | ! Adjustments according to new surface-type structure. Remove usm_wall_heat_flux; |
---|
31 | ! insteat, heat fluxes are directly applied in diffusion_s. |
---|
32 | ! |
---|
33 | ! 2213 2017-04-24 15:10:35Z kanani |
---|
34 | ! Removal of output quantities usm_lad and usm_canopy_hr |
---|
35 | ! |
---|
36 | ! 2209 2017-04-19 09:34:46Z kanani |
---|
37 | ! cpp switch __mpi3 removed, |
---|
38 | ! minor formatting, |
---|
39 | ! small bugfix for division by zero (Krc) |
---|
40 | ! |
---|
41 | ! 2113 2017-01-12 13:40:46Z kanani |
---|
42 | ! cpp switch __mpi3 added for MPI-3 standard code (Ketelsen) |
---|
43 | ! |
---|
44 | ! 2071 2016-11-17 11:22:14Z maronga |
---|
45 | ! Small bugfix (Resler) |
---|
46 | ! |
---|
47 | ! 2031 2016-10-21 15:11:58Z knoop |
---|
48 | ! renamed variable rho to rho_ocean |
---|
49 | ! |
---|
50 | ! 2024 2016-10-12 16:42:37Z kanani |
---|
51 | ! Bugfixes in deallocation of array plantt and reading of csf/csfsurf, |
---|
52 | ! optimization of MPI-RMA operations, |
---|
53 | ! declaration of pcbl as integer, |
---|
54 | ! renamed usm_radnet -> usm_rad_net, usm_canopy_khf -> usm_canopy_hr, |
---|
55 | ! splitted arrays svf -> svf & csf, svfsurf -> svfsurf & csfsurf, |
---|
56 | ! use of new control parameter varnamelength, |
---|
57 | ! added output variables usm_rad_ressw, usm_rad_reslw, |
---|
58 | ! minor formatting changes, |
---|
59 | ! minor optimizations. |
---|
60 | ! |
---|
61 | ! 2011 2016-09-19 17:29:57Z kanani |
---|
62 | ! Major reformatting according to PALM coding standard (comments, blanks, |
---|
63 | ! alphabetical ordering, etc.), |
---|
64 | ! removed debug_prints, |
---|
65 | ! removed auxiliary SUBROUTINE get_usm_info, instead, USM flag urban_surface is |
---|
66 | ! defined in MODULE control_parameters (modules.f90) to avoid circular |
---|
67 | ! dependencies, |
---|
68 | ! renamed canopy_heat_flux to pc_heating_rate, as meaning of quantity changed. |
---|
69 | ! |
---|
70 | ! 2007 2016-08-24 15:47:17Z kanani |
---|
71 | ! Initial revision |
---|
72 | ! |
---|
73 | ! |
---|
74 | ! Description: |
---|
75 | ! ------------ |
---|
76 | ! 2016/6/9 - Initial version of the USM (Urban Surface Model) |
---|
77 | ! authors: Jaroslav Resler, Pavel Krc |
---|
78 | ! (Czech Technical University in Prague and Institute of |
---|
79 | ! Computer Science of the Czech Academy of Sciences, Prague) |
---|
80 | ! with contributions: Michal Belda, Nina Benesova, Ondrej Vlcek |
---|
81 | ! partly inspired by PALM LSM (B. Maronga) |
---|
82 | ! parameterizations of Ra checked with TUF3D (E. S. Krayenhoff) |
---|
83 | !> Module for Urban Surface Model (USM) |
---|
84 | !> The module includes: |
---|
85 | !> 1. radiation model with direct/diffuse radiation, shading, reflections |
---|
86 | !> and integration with plant canopy |
---|
87 | !> 2. wall and wall surface model |
---|
88 | !> 3. surface layer energy balance |
---|
89 | !> 4. anthropogenic heat (only from transportation so far) |
---|
90 | !> 5. necessary auxiliary subroutines (reading inputs, writing outputs, |
---|
91 | !> restart simulations, ...) |
---|
92 | !> It also make use of standard radiation and integrates it into |
---|
93 | !> urban surface model. |
---|
94 | !> |
---|
95 | !> Further work: |
---|
96 | !> ------------- |
---|
97 | !> 1. Reduce number of shape view factors by merging factors for distant surfaces |
---|
98 | !> under shallow angles. Idea: Iteratively select the smallest shape view |
---|
99 | !> factor by value (among all sources and targets) which has a similarly |
---|
100 | !> oriented source neighbor (or near enough) SVF and merge them by adding |
---|
101 | !> value of the smaller SVF to the larger one and deleting the smaller one. |
---|
102 | !> This will allow for better scaling at higher resolutions. |
---|
103 | !> |
---|
104 | !> 2. Remove global arrays surfouts, surfoutl and only keep track of radiosity |
---|
105 | !> from surfaces that are visible from local surfaces (i.e. there is a SVF |
---|
106 | !> where target is local). To do that, radiosity will be exchanged after each |
---|
107 | !> reflection step using MPI_Alltoall instead of current MPI_Allgather. |
---|
108 | !> |
---|
109 | !> 3. Temporarily large values of surface heat flux can be observed, up to |
---|
110 | !> 1.2 Km/s, which seem to be not realistic. |
---|
111 | !> |
---|
112 | !> @todo Check optimizations for RMA operations |
---|
113 | !> @todo Alternatives for MPI_WIN_ALLOCATE? (causes problems with openmpi) |
---|
114 | !> @todo Check for load imbalances in CPU measures, e.g. for exchange_horiz_prog |
---|
115 | !> factor 3 between min and max time |
---|
116 | !------------------------------------------------------------------------------! |
---|
117 | MODULE urban_surface_mod |
---|
118 | |
---|
119 | USE arrays_3d, & |
---|
120 | ONLY: zu, pt, pt_1, pt_2, p, u, v, w, hyp, tend |
---|
121 | |
---|
122 | USE cloud_parameters, & |
---|
123 | ONLY: cp, r_d |
---|
124 | |
---|
125 | USE constants, & |
---|
126 | ONLY: pi |
---|
127 | |
---|
128 | USE control_parameters, & |
---|
129 | ONLY: dz, topography, dt_3d, intermediate_timestep_count, & |
---|
130 | initializing_actions, intermediate_timestep_count_max, & |
---|
131 | simulated_time, end_time, timestep_scheme, tsc, & |
---|
132 | coupling_char, io_blocks, io_group, message_string, & |
---|
133 | time_since_reference_point, surface_pressure, & |
---|
134 | g, pt_surface, large_scale_forcing, lsf_surf, & |
---|
135 | time_do3d, dt_do3d, average_count_3d, varnamelength, & |
---|
136 | urban_surface |
---|
137 | |
---|
138 | USE cpulog, & |
---|
139 | ONLY: cpu_log, log_point, log_point_s |
---|
140 | |
---|
141 | USE grid_variables, & |
---|
142 | ONLY: dx, dy, ddx, ddy, ddx2, ddy2 |
---|
143 | |
---|
144 | USE indices, & |
---|
145 | ONLY: nx, ny, nnx, nny, nnz, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, & |
---|
146 | nysg, nzb, nzt, nbgp, wall_flags_0 |
---|
147 | |
---|
148 | USE, INTRINSIC :: iso_c_binding |
---|
149 | |
---|
150 | USE kinds |
---|
151 | |
---|
152 | USE pegrid |
---|
153 | |
---|
154 | USE plant_canopy_model_mod, & |
---|
155 | ONLY: plant_canopy, pch_index, & |
---|
156 | pc_heating_rate, lad_s |
---|
157 | |
---|
158 | USE radiation_model_mod, & |
---|
159 | ONLY: radiation, calc_zenith, zenith, day_init, time_utc_init, & |
---|
160 | rad_net, rad_sw_in, rad_lw_in, rad_sw_out, rad_lw_out, & |
---|
161 | sigma_sb, sun_direction, sun_dir_lat, sun_dir_lon, & |
---|
162 | force_radiation_call |
---|
163 | |
---|
164 | USE statistics, & |
---|
165 | ONLY: hom, statistic_regions |
---|
166 | |
---|
167 | USE surface_mod |
---|
168 | |
---|
169 | |
---|
170 | |
---|
171 | IMPLICIT NONE |
---|
172 | |
---|
173 | !-- configuration parameters (they can be setup in PALM config) |
---|
174 | LOGICAL :: split_diffusion_radiation = .TRUE. !< split direct and diffusion dw radiation |
---|
175 | !< (.F. in case the radiation model already does it) |
---|
176 | LOGICAL :: usm_energy_balance_land = .TRUE. !< flag parameter indicating wheather the energy balance is calculated for land and roofs |
---|
177 | LOGICAL :: usm_energy_balance_wall = .TRUE. !< flag parameter indicating wheather the energy balance is calculated for land and roofs |
---|
178 | LOGICAL :: usm_material_model = .TRUE. !< flag parameter indicating wheather the model of heat in materials is used |
---|
179 | LOGICAL :: usm_anthropogenic_heat = .FALSE. !< flag parameter indicating wheather the anthropogenic heat sources (e.g.transportation) are used |
---|
180 | LOGICAL :: force_radiation_call_l = .FALSE. !< flag parameter for unscheduled radiation model calls |
---|
181 | LOGICAL :: mrt_factors = .FALSE. !< whether to generate MRT factor files during init |
---|
182 | LOGICAL :: write_svf_on_init = .FALSE. |
---|
183 | LOGICAL :: read_svf_on_init = .FALSE. |
---|
184 | LOGICAL :: usm_lad_rma = .TRUE. !< use MPI RMA to access LAD for raytracing (instead of global array) |
---|
185 | |
---|
186 | INTEGER(iwp) :: nrefsteps = 0 !< number of reflection steps to perform |
---|
187 | |
---|
188 | INTEGER(iwp) :: land_category = 2 !< default category for land surface |
---|
189 | INTEGER(iwp) :: wall_category = 2 !< default category for wall surface over pedestrian zone |
---|
190 | INTEGER(iwp) :: pedestrant_category = 2 !< default category for wall surface in pedestrian zone |
---|
191 | INTEGER(iwp) :: roof_category = 2 !< default category for root surface |
---|
192 | REAL(wp) :: roof_height_limit = 4._wp !< height for distinguish between land surfaces and roofs |
---|
193 | |
---|
194 | REAL(wp), PARAMETER :: ext_coef = 0.6_wp !< extinction coefficient (a.k.a. alpha) |
---|
195 | REAL(wp) :: ra_horiz_coef = 5.0_wp !< mysterious coefficient for correction of overestimation |
---|
196 | !< of r_a for horizontal surfaces -> TODO |
---|
197 | |
---|
198 | !-- parameters of urban surface model |
---|
199 | INTEGER(iwp), PARAMETER :: usm_version_len = 10 !< length of identification string of usm version |
---|
200 | CHARACTER(usm_version_len), PARAMETER :: usm_version = 'USM v. 1.0' !< identification of version of binary svf and restart files |
---|
201 | INTEGER(iwp), PARAMETER :: svf_code_len = 15 !< length of code for verification of the end of svf file |
---|
202 | CHARACTER(svf_code_len), PARAMETER :: svf_code = '*** end svf ***' !< code for verification of the end of svf file |
---|
203 | INTEGER(iwp) :: nzu !< number of layers of urban surface (will be calculated) |
---|
204 | INTEGER(iwp) :: nzub,nzut !< bottom and top layer of urban surface (will be calculated) |
---|
205 | INTEGER(iwp), PARAMETER :: nzut_free = 3 !< number of free layers in urban surface layer above top of buildings |
---|
206 | INTEGER(iwp), PARAMETER :: ndsvf = 2 !< number of dimensions of real values in SVF |
---|
207 | INTEGER(iwp), PARAMETER :: idsvf = 2 !< number of dimensions of integer values in SVF |
---|
208 | INTEGER(iwp), PARAMETER :: ndcsf = 2 !< number of dimensions of real values in CSF |
---|
209 | INTEGER(iwp), PARAMETER :: idcsf = 2 !< number of dimensions of integer values in CSF |
---|
210 | INTEGER(iwp), PARAMETER :: kdcsf = 4 !< number of dimensions of integer values in CSF calculation array |
---|
211 | INTEGER(iwp), PARAMETER :: id = 1 !< position of d-index in surfl and surf |
---|
212 | INTEGER(iwp), PARAMETER :: iz = 2 !< position of k-index in surfl and surf |
---|
213 | INTEGER(iwp), PARAMETER :: iy = 3 !< position of j-index in surfl and surf |
---|
214 | INTEGER(iwp), PARAMETER :: ix = 4 !< position of i-index in surfl and surf |
---|
215 | INTEGER(iwp), PARAMETER :: iroof = 0 !< 0 - index of ground or roof |
---|
216 | INTEGER(iwp), PARAMETER :: isouth = 1 !< 1 - index of south facing wall |
---|
217 | INTEGER(iwp), PARAMETER :: inorth = 2 !< 2 - index of north facing wall |
---|
218 | INTEGER(iwp), PARAMETER :: iwest = 3 !< 3 - index of west facing wall |
---|
219 | INTEGER(iwp), PARAMETER :: ieast = 4 !< 4 - index of east facing wall |
---|
220 | INTEGER(iwp), PARAMETER :: isky = 5 !< 5 - index of top border of the urban surface layer ("urban sky") |
---|
221 | INTEGER(iwp), PARAMETER :: inorthb = 6 !< 6 - index of free north border of the domain (south facing) |
---|
222 | INTEGER(iwp), PARAMETER :: isouthb = 7 !< 7 - index of north south border of the domain (north facing) |
---|
223 | INTEGER(iwp), PARAMETER :: ieastb = 8 !< 8 - index of east border of the domain (west facing) |
---|
224 | INTEGER(iwp), PARAMETER :: iwestb = 9 !< 9 - index of wast border of the domain (east facing) |
---|
225 | INTEGER(iwp), DIMENSION(0:9), PARAMETER :: idir = (/0,0,0,-1,1,0,0,0,-1,1/) !< surface normal direction x indices |
---|
226 | INTEGER(iwp), DIMENSION(0:9), PARAMETER :: jdir = (/0,-1,1,0,0,0,-1,1,0,0/) !< surface normal direction y indices |
---|
227 | INTEGER(iwp), DIMENSION(0:9), PARAMETER :: kdir = (/1,0,0,0,0,-1,0,0,0,0/) !< surface normal direction z indices |
---|
228 | REAL(wp), DIMENSION(1:4) :: ddxy2 !< 1/dx^2 or 1/dy^2 (in surface normal direction) |
---|
229 | INTEGER(iwp), DIMENSION(1:4,6:9) :: ijdb !< start and end of the local domain border coordinates (set in code) |
---|
230 | LOGICAL, DIMENSION(6:9) :: isborder !< is PE on the border of the domain in four corresponding directions |
---|
231 | !< parameter but set in the code |
---|
232 | |
---|
233 | !-- indices and sizes of urban surface model |
---|
234 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: surfl !< coordinates of i-th local surface in local grid - surfl[:,k] = [d, z, y, x] |
---|
235 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: surf !< coordinates of i-th surface in grid - surf[:,k] = [d, z, y, x] |
---|
236 | INTEGER(iwp) :: nsurfl !< number of all surfaces in local processor |
---|
237 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nsurfs !< array of number of all surfaces in individual processors |
---|
238 | INTEGER(iwp) :: startsky !< start index of block of sky |
---|
239 | INTEGER(iwp) :: endsky !< end index of block of sky |
---|
240 | INTEGER(iwp) :: nskys !< number of sky surfaces in local processor |
---|
241 | INTEGER(iwp) :: startland !< start index of block of land and roof surfaces |
---|
242 | INTEGER(iwp) :: endland !< end index of block of land and roof surfaces |
---|
243 | INTEGER(iwp) :: nlands !< number of land and roof surfaces in local processor |
---|
244 | INTEGER(iwp) :: startwall !< start index of block of wall surfaces |
---|
245 | INTEGER(iwp) :: endwall !< end index of block of wall surfaces |
---|
246 | INTEGER(iwp) :: nwalls !< number of wall surfaces in local processor |
---|
247 | INTEGER(iwp) :: startenergy !< start index of block of real surfaces (land, walls and roofs) |
---|
248 | INTEGER(iwp) :: endenergy !< end index of block of real surfaces (land, walls and roofs) |
---|
249 | INTEGER(iwp) :: nenergy !< number of real surfaces in local processor |
---|
250 | INTEGER(iwp) :: nsurf !< global number of surfaces in index array of surfaces (nsurf = Σproc nsurfs) |
---|
251 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: surfstart !< starts of blocks of surfaces for individual processors in array surf |
---|
252 | !< respective block for particular processor is surfstart[iproc]+1 : surfstart[iproc+1] |
---|
253 | INTEGER(iwp) :: nsvfl !< number of svf for local processor |
---|
254 | INTEGER(iwp) :: ncsfl !< no. of csf in local processor |
---|
255 | !< needed only during calc_svf but must be here because it is |
---|
256 | !< shared between subroutines usm_calc_svf and usm_raytrace |
---|
257 | |
---|
258 | !-- type for calculation of svf |
---|
259 | TYPE t_svf |
---|
260 | INTEGER(iwp) :: isurflt !< |
---|
261 | INTEGER(iwp) :: isurfs !< |
---|
262 | REAL(wp) :: rsvf !< |
---|
263 | REAL(wp) :: rtransp !< |
---|
264 | END TYPE |
---|
265 | |
---|
266 | !-- type for calculation of csf |
---|
267 | TYPE t_csf |
---|
268 | INTEGER(iwp) :: ip !< |
---|
269 | INTEGER(iwp) :: itx !< |
---|
270 | INTEGER(iwp) :: ity !< |
---|
271 | INTEGER(iwp) :: itz !< |
---|
272 | INTEGER(iwp) :: isurfs !< |
---|
273 | REAL(wp) :: rsvf !< |
---|
274 | REAL(wp) :: rtransp !< |
---|
275 | END TYPE |
---|
276 | ! |
---|
277 | !-- Type for surface temperatures at vertical walls. Is not necessary for horizontal walls. |
---|
278 | TYPE t_surf_vertical |
---|
279 | REAL(wp), DIMENSION(:), ALLOCATABLE :: t |
---|
280 | END TYPE t_surf_vertical |
---|
281 | ! |
---|
282 | !-- Type for wall temperatures at vertical walls. Is not necessary for horizontal walls. |
---|
283 | TYPE t_wall_vertical |
---|
284 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: t |
---|
285 | END TYPE t_wall_vertical |
---|
286 | |
---|
287 | !-- arrays for calculation of svf and csf |
---|
288 | TYPE(t_svf), DIMENSION(:), POINTER :: asvf !< pointer to growing svc array |
---|
289 | TYPE(t_csf), DIMENSION(:), POINTER :: acsf !< pointer to growing csf array |
---|
290 | TYPE(t_svf), DIMENSION(:), ALLOCATABLE, TARGET :: asvf1, asvf2 !< realizations of svf array |
---|
291 | TYPE(t_csf), DIMENSION(:), ALLOCATABLE, TARGET :: acsf1, acsf2 !< realizations of csf array |
---|
292 | INTEGER(iwp) :: nsvfla !< dimmension of array allocated for storage of svf in local processor |
---|
293 | INTEGER(iwp) :: ncsfla !< dimmension of array allocated for storage of csf in local processor |
---|
294 | INTEGER(iwp) :: msvf, mcsf !< mod for swapping the growing array |
---|
295 | INTEGER(iwp), PARAMETER :: gasize = 10000 !< initial size of growing arrays |
---|
296 | !-- temporary arrays for calculation of csf in raytracing |
---|
297 | INTEGER(iwp) :: maxboxesg !< max number of boxes ray can cross in the domain |
---|
298 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: boxes !< coordinates of gridboxes being crossed by ray |
---|
299 | REAL(wp), DIMENSION(:), ALLOCATABLE :: crlens !< array of crossing lengths of ray for particular grid boxes |
---|
300 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: lad_ip !< array of numbers of process where lad is stored |
---|
301 | INTEGER(kind=MPI_ADDRESS_KIND), & |
---|
302 | DIMENSION(:), ALLOCATABLE :: lad_disp !< array of displaycements of lad in local array of proc lad_ip |
---|
303 | REAL(wp), DIMENSION(:), ALLOCATABLE :: lad_s_ray !< array of received lad_s for appropriate gridboxes crossed by ray |
---|
304 | |
---|
305 | !-- arrays storing the values of USM |
---|
306 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: svfsurf !< svfsurf[:,isvf] = index of source and target surface for svf[isvf] |
---|
307 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: svf !< array of shape view factors+direct irradiation factors for local surfaces |
---|
308 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfins !< array of sw radiation falling to local surface after i-th reflection |
---|
309 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinl !< array of lw radiation for local surface after i-th reflection |
---|
310 | |
---|
311 | !< Inward radiation is also valid for virtual surfaces (radiation leaving domain) |
---|
312 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinsw !< array of sw radiation falling to local surface including radiation from reflections |
---|
313 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlw !< array of lw radiation falling to local surface including radiation from reflections |
---|
314 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdir !< array of direct sw radiation falling to local surface |
---|
315 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdif !< array of diffuse sw radiation from sky and model boundary falling to local surface |
---|
316 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwdif !< array of diffuse lw radiation from sky and model boundary falling to local surface |
---|
317 | |
---|
318 | !< Outward radiation is only valid for nonvirtual surfaces |
---|
319 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsl !< array of reflected sw radiation for local surface in i-th reflection |
---|
320 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutll !< array of reflected + emitted lw radiation for local surface in i-th reflection |
---|
321 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfouts !< array of reflected sw radiation for all surfaces in i-th reflection |
---|
322 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutl !< array of reflected + emitted lw radiation for all surfaces in i-th reflection |
---|
323 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsw !< array of total sw radiation outgoing from nonvirtual surfaces surfaces after all reflection |
---|
324 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutlw !< array of total lw radiation outgoing from nonvirtual surfaces surfaces after all reflection |
---|
325 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfhf !< array of total radiation flux incoming to minus outgoing from local surface |
---|
326 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rad_net_l !< local copy of rad_net (net radiation at surface) |
---|
327 | |
---|
328 | !-- arrays for time averages |
---|
329 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rad_net_av !< average of rad_net_l |
---|
330 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinsw_av !< average of sw radiation falling to local surface including radiation from reflections |
---|
331 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlw_av !< average of lw radiation falling to local surface including radiation from reflections |
---|
332 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdir_av !< average of direct sw radiation falling to local surface |
---|
333 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdif_av !< average of diffuse sw radiation from sky and model boundary falling to local surface |
---|
334 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwdif_av !< average of diffuse lw radiation from sky and model boundary falling to local surface |
---|
335 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswref_av !< average of sw radiation falling to surface from reflections |
---|
336 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwref_av !< average of lw radiation falling to surface from reflections |
---|
337 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsw_av !< average of total sw radiation outgoing from nonvirtual surfaces surfaces after all reflection |
---|
338 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutlw_av !< average of total lw radiation outgoing from nonvirtual surfaces surfaces after all reflection |
---|
339 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfins_av !< average of array of residua of sw radiation absorbed in surface after last reflection |
---|
340 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinl_av !< average of array of residua of lw radiation absorbed in surface after last reflection |
---|
341 | REAL(wp), DIMENSION(:), ALLOCATABLE :: surfhf_av !< average of total radiation flux incoming to minus outgoing from local surface |
---|
342 | |
---|
343 | !-- block variables needed for calculation of the plant canopy model inside the urban surface model |
---|
344 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: csfsurf !< csfsurf[:,icsf] = index of target surface and csf grid index for csf[icsf] |
---|
345 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: csf !< array of plant canopy sink fators + direct irradiation factors (transparency) |
---|
346 | !< for local surfaces |
---|
347 | INTEGER(wp), DIMENSION(:,:), ALLOCATABLE :: pcbl !< k,j,i coordinates of l-th local plant canopy box pcbl[:,l] = [k, j, i] |
---|
348 | INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: gridpcbl !< index of local pcb[k,j,i] |
---|
349 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinsw !< array of absorbed sw radiation for local plant canopy box |
---|
350 | REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinlw !< array of absorbed lw radiation for local plant canopy box |
---|
351 | INTEGER(iwp) :: npcbl !< number of the plant canopy gridboxes in local processor |
---|
352 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch !< heights of the plant canopy |
---|
353 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pct !< top layer of the plant canopy |
---|
354 | REAL(wp), DIMENSION(:,:,:), POINTER :: usm_lad !< subset of lad_s within urban surface, transformed to plain Z coordinate |
---|
355 | REAL(wp), DIMENSION(:), POINTER :: usm_lad_g !< usm_lad globalized (used to avoid MPI RMA calls in raytracing) |
---|
356 | REAL(wp) :: prototype_lad !< prototype leaf area density for computing effective optical depth |
---|
357 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nzterr, plantt !< temporary global arrays for raytracing |
---|
358 | |
---|
359 | !-- radiation related arrays (it should be better in interface of radiation module of PALM |
---|
360 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_dir !< direct sw radiation |
---|
361 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_diff !< diffusion sw radiation |
---|
362 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_in_diff !< diffusion lw radiation |
---|
363 | |
---|
364 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
365 | !-- anthropogenic heat sources |
---|
366 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
367 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: aheat !< daily average of anthropogenic heat (W/m2) |
---|
368 | REAL(wp), DIMENSION(:), ALLOCATABLE :: aheatprof !< diurnal profile of anthropogenic heat |
---|
369 | |
---|
370 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
371 | !-- wall surface model |
---|
372 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
373 | !-- wall surface model constants |
---|
374 | INTEGER(iwp), PARAMETER :: nzb_wall = 0 !< inner side of the wall model (to be switched) |
---|
375 | INTEGER(iwp), PARAMETER :: nzt_wall = 3 !< outer side of the wall model (to be switched) |
---|
376 | INTEGER(iwp), PARAMETER :: nzw = 4 !< number of wall layers (fixed for now) |
---|
377 | |
---|
378 | REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: zwn_default = (/0.0242_wp, 0.0969_wp, 0.346_wp, 1.0_wp /) |
---|
379 | !< normalized soil, wall and roof layer depths (m/m) |
---|
380 | |
---|
381 | REAL(wp) :: wall_inner_temperature = 296.0_wp !< temperature of the inner wall surface (~23 degrees C) (K) |
---|
382 | REAL(wp) :: roof_inner_temperature = 296.0_wp !< temperature of the inner roof surface (~23 degrees C) (K) |
---|
383 | REAL(wp) :: soil_inner_temperature = 283.0_wp !< temperature of the deep soil (~10 degrees C) (K) |
---|
384 | |
---|
385 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
386 | !-- surface and material model variables for walls, ground, roofs |
---|
387 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
388 | REAL(wp), DIMENSION(:), ALLOCATABLE :: zwn !< normalized wall layer depths (m) |
---|
389 | |
---|
390 | #if defined( __nopointer ) |
---|
391 | REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_h !< wall surface temperature (K) at horizontal walls |
---|
392 | REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_h_p !< progn. wall surface temperature (K) at horizontal walls |
---|
393 | |
---|
394 | TYPE(t_surf_vertical), DIMENSION(0:3), TARGET :: t_surf_v |
---|
395 | TYPE(t_surf_vertical), DIMENSION(0:3), TARGET :: t_surf_v_p |
---|
396 | #else |
---|
397 | REAL(wp), DIMENSION(:), POINTER :: t_surf_h |
---|
398 | REAL(wp), DIMENSION(:), POINTER :: t_surf_h_p |
---|
399 | |
---|
400 | REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_h_1 |
---|
401 | REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_h_2 |
---|
402 | |
---|
403 | TYPE(t_surf_vertical), DIMENSION(:), POINTER :: t_surf_v |
---|
404 | TYPE(t_surf_vertical), DIMENSION(:), POINTER :: t_surf_v_p |
---|
405 | |
---|
406 | TYPE(t_surf_vertical), DIMENSION(0:3), TARGET :: t_surf_v_1 |
---|
407 | TYPE(t_surf_vertical), DIMENSION(0:3), TARGET :: t_surf_v_2 |
---|
408 | #endif |
---|
409 | REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_av !< average of wall surface temperature (K) |
---|
410 | |
---|
411 | !-- Temporal tendencies for time stepping |
---|
412 | REAL(wp), DIMENSION(:), ALLOCATABLE :: tt_surface_m !< surface temperature tendency (K) |
---|
413 | |
---|
414 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
415 | !-- Energy balance variables |
---|
416 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
417 | !-- parameters of the land, roof and wall surfaces |
---|
418 | REAL(wp), DIMENSION(:), ALLOCATABLE :: albedo_surf !< albedo of the surface |
---|
419 | !-- parameters of the wall surfaces |
---|
420 | REAL(wp), DIMENSION(:), ALLOCATABLE :: emiss_surf !< emissivity of the wall surface |
---|
421 | |
---|
422 | #if defined( __nopointer ) |
---|
423 | REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_wall_h !< Wall temperature (K) |
---|
424 | REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_wall_h_av !< Average of t_wall |
---|
425 | REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_wall_h_p !< Prog. wall temperature (K) |
---|
426 | |
---|
427 | TYPE(t_wall_vertical), DIMENSION(0:3), TARGET :: t_wall_v !< Wall temperature (K) |
---|
428 | TYPE(t_wall_vertical), DIMENSION(0:3), TARGET :: t_wall_v_av !< Average of t_wall |
---|
429 | TYPE(t_wall_vertical), DIMENSION(0:3), TARGET :: t_wall_v_p !< Prog. wall temperature (K) |
---|
430 | #else |
---|
431 | REAL(wp), DIMENSION(:,:), POINTER :: t_wall_h, t_wall_h_p |
---|
432 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_wall_h_av, t_wall_h_1, t_wall_h_2 |
---|
433 | |
---|
434 | TYPE(t_wall_vertical), DIMENSION(:), POINTER :: t_wall_v, t_wall_v_p |
---|
435 | TYPE(t_wall_vertical), DIMENSION(0:3), TARGET :: t_wall_v_av, t_wall_v_1, t_wall_v_2 |
---|
436 | #endif |
---|
437 | |
---|
438 | !-- Wall temporal tendencies for time stepping |
---|
439 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tt_wall_m !< t_wall prognostic array |
---|
440 | |
---|
441 | !-- Surface and material parameters classes (surface_type) |
---|
442 | !-- albedo, emissivity, lambda_surf, roughness, thickness, volumetric heat capacity, thermal conductivity |
---|
443 | INTEGER(iwp) :: n_surface_types !< number of the wall type categories |
---|
444 | INTEGER(iwp), PARAMETER :: n_surface_params = 8 !< number of parameters for each type of the wall |
---|
445 | INTEGER(iwp), PARAMETER :: ialbedo = 1 !< albedo of the surface |
---|
446 | INTEGER(iwp), PARAMETER :: iemiss = 2 !< emissivity of the surface |
---|
447 | INTEGER(iwp), PARAMETER :: ilambdas = 3 !< heat conductivity λS between air and surface ( W mâ2 Kâ1 ) |
---|
448 | INTEGER(iwp), PARAMETER :: irough = 4 !< roughness relative to concrete |
---|
449 | INTEGER(iwp), PARAMETER :: icsurf = 5 !< Surface skin layer heat capacity (J mâ2 Kâ1 ) |
---|
450 | INTEGER(iwp), PARAMETER :: ithick = 6 !< thickness of the surface (wall, roof, land) ( m ) |
---|
451 | INTEGER(iwp), PARAMETER :: irhoC = 7 !< volumetric heat capacity rho*C of the material ( J mâ3 Kâ1 ) |
---|
452 | INTEGER(iwp), PARAMETER :: ilambdah = 8 !< thermal conductivity λH of the wall (W mâ1 Kâ1 ) |
---|
453 | CHARACTER(12), DIMENSION(:), ALLOCATABLE :: surface_type_names !< names of wall types (used only for reports) |
---|
454 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: surface_type_codes !< codes of wall types |
---|
455 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: surface_params !< parameters of wall types |
---|
456 | |
---|
457 | CHARACTER(len=*), PARAMETER :: svf_file_name='usm_svf' |
---|
458 | |
---|
459 | !-- interfaces of subroutines accessed from outside of this module |
---|
460 | INTERFACE usm_check_data_output |
---|
461 | MODULE PROCEDURE usm_check_data_output |
---|
462 | END INTERFACE usm_check_data_output |
---|
463 | |
---|
464 | INTERFACE usm_check_parameters |
---|
465 | MODULE PROCEDURE usm_check_parameters |
---|
466 | END INTERFACE usm_check_parameters |
---|
467 | |
---|
468 | INTERFACE usm_data_output_3d |
---|
469 | MODULE PROCEDURE usm_data_output_3d |
---|
470 | END INTERFACE usm_data_output_3d |
---|
471 | |
---|
472 | INTERFACE usm_define_netcdf_grid |
---|
473 | MODULE PROCEDURE usm_define_netcdf_grid |
---|
474 | END INTERFACE usm_define_netcdf_grid |
---|
475 | |
---|
476 | INTERFACE usm_init_urban_surface |
---|
477 | MODULE PROCEDURE usm_init_urban_surface |
---|
478 | END INTERFACE usm_init_urban_surface |
---|
479 | |
---|
480 | INTERFACE usm_material_heat_model |
---|
481 | MODULE PROCEDURE usm_material_heat_model |
---|
482 | END INTERFACE usm_material_heat_model |
---|
483 | |
---|
484 | INTERFACE usm_parin |
---|
485 | MODULE PROCEDURE usm_parin |
---|
486 | END INTERFACE usm_parin |
---|
487 | |
---|
488 | INTERFACE usm_radiation |
---|
489 | MODULE PROCEDURE usm_radiation |
---|
490 | END INTERFACE usm_radiation |
---|
491 | |
---|
492 | INTERFACE usm_read_restart_data |
---|
493 | MODULE PROCEDURE usm_read_restart_data |
---|
494 | END INTERFACE usm_read_restart_data |
---|
495 | |
---|
496 | INTERFACE usm_surface_energy_balance |
---|
497 | MODULE PROCEDURE usm_surface_energy_balance |
---|
498 | END INTERFACE usm_surface_energy_balance |
---|
499 | |
---|
500 | INTERFACE usm_swap_timelevel |
---|
501 | MODULE PROCEDURE usm_swap_timelevel |
---|
502 | END INTERFACE usm_swap_timelevel |
---|
503 | |
---|
504 | INTERFACE usm_write_restart_data |
---|
505 | MODULE PROCEDURE usm_write_restart_data |
---|
506 | END INTERFACE usm_write_restart_data |
---|
507 | |
---|
508 | SAVE |
---|
509 | |
---|
510 | PRIVATE |
---|
511 | |
---|
512 | !-- Public parameters, constants and initial values |
---|
513 | PUBLIC split_diffusion_radiation, & |
---|
514 | usm_anthropogenic_heat, usm_material_model, mrt_factors, & |
---|
515 | usm_check_parameters, & |
---|
516 | usm_energy_balance_land, usm_energy_balance_wall, nrefsteps, & |
---|
517 | usm_init_urban_surface, usm_radiation, usm_read_restart_data, & |
---|
518 | usm_surface_energy_balance, usm_material_heat_model, & |
---|
519 | usm_swap_timelevel, usm_check_data_output, usm_average_3d_data, & |
---|
520 | usm_data_output_3d, usm_define_netcdf_grid, usm_parin, & |
---|
521 | usm_write_restart_data, & |
---|
522 | nzub, nzut, ra_horiz_coef, usm_lad_rma, & |
---|
523 | land_category, pedestrant_category, wall_category, roof_category, & |
---|
524 | write_svf_on_init, read_svf_on_init |
---|
525 | |
---|
526 | |
---|
527 | CONTAINS |
---|
528 | |
---|
529 | |
---|
530 | !------------------------------------------------------------------------------! |
---|
531 | ! Description: |
---|
532 | ! ------------ |
---|
533 | !> This subroutine creates the necessary indices of the urban surfaces |
---|
534 | !> and plant canopy and it allocates the needed arrays for USM |
---|
535 | !------------------------------------------------------------------------------! |
---|
536 | SUBROUTINE usm_allocate_urban_surface |
---|
537 | |
---|
538 | IMPLICIT NONE |
---|
539 | |
---|
540 | INTEGER(iwp) :: i, j, k, d, l, ir, jr, ids, m |
---|
541 | INTEGER(iwp) :: k_topo !< vertical index indicating topography top for given (j,i) |
---|
542 | INTEGER(iwp) :: k_topo2 !< vertical index indicating topography top for given (j,i) |
---|
543 | INTEGER(iwp) :: nzubl, nzutl, isurf, ipcgb |
---|
544 | INTEGER(iwp) :: procid |
---|
545 | |
---|
546 | |
---|
547 | |
---|
548 | |
---|
549 | !-- auxiliary vars |
---|
550 | ddxy2 = (/ddy2,ddy2,ddx2,ddx2/) !< 1/dx^2 or 1/dy^2 (in surface normal direction) |
---|
551 | |
---|
552 | CALL location_message( '', .TRUE. ) |
---|
553 | CALL location_message( ' allocation of needed arrays', .TRUE. ) |
---|
554 | ! |
---|
555 | !-- Find nzub, nzut, nzu via wall_flag_0 array (nzb_s_inner will be |
---|
556 | !-- removed later). The following contruct finds the lowest / largest index |
---|
557 | !-- for any upward-facing wall (see bit 12). |
---|
558 | nzubl = MINVAL( & |
---|
559 | MAXLOC( & |
---|
560 | MERGE( 1, 0, & |
---|
561 | BTEST( wall_flags_0(:,nys:nyn,nxl:nxr), 12 ) & |
---|
562 | ), DIM = 1 & |
---|
563 | ) - 1 & |
---|
564 | ) |
---|
565 | nzutl = MAXVAL( & |
---|
566 | MAXLOC( & |
---|
567 | MERGE( 1, 0, & |
---|
568 | BTEST( wall_flags_0(:,nys:nyn,nxl:nxr), 12 ) & |
---|
569 | ), DIM = 1 & |
---|
570 | ) - 1 & |
---|
571 | ) |
---|
572 | nzubl = max(nzubl,nzb) |
---|
573 | |
---|
574 | |
---|
575 | IF ( plant_canopy ) THEN |
---|
576 | !-- allocate needed arrays |
---|
577 | ALLOCATE( pct(nys:nyn,nxl:nxr) ) |
---|
578 | ALLOCATE( pch(nys:nyn,nxl:nxr) ) |
---|
579 | |
---|
580 | !-- calculate plant canopy height |
---|
581 | npcbl = 0 |
---|
582 | pct = 0.0_wp |
---|
583 | pch = 0.0_wp |
---|
584 | DO i = nxl, nxr |
---|
585 | DO j = nys, nyn |
---|
586 | ! |
---|
587 | !-- Find topography top index |
---|
588 | k_topo = MAXLOC( MERGE( 1, 0, & |
---|
589 | BTEST( wall_flags_0(:,j,i), 12 ) & |
---|
590 | ), DIM = 1 & |
---|
591 | ) - 1 |
---|
592 | DO k = nzt+1, 0, -1 |
---|
593 | IF ( lad_s(k,j,i) /= 0.0_wp ) THEN |
---|
594 | !-- we are at the top of the pcs |
---|
595 | pct(j,i) = k + k_topo |
---|
596 | pch(j,i) = k |
---|
597 | npcbl = npcbl + pch(j,i) |
---|
598 | EXIT |
---|
599 | ENDIF |
---|
600 | ENDDO |
---|
601 | ENDDO |
---|
602 | ENDDO |
---|
603 | |
---|
604 | nzutl = max(nzutl, maxval(pct)) |
---|
605 | !-- code of plant canopy model uses parameter pch_index |
---|
606 | !-- we need to setup it here to right value |
---|
607 | !-- (pch_index, lad_s and other arrays in PCM are defined flat) |
---|
608 | pch_index = maxval(pch) |
---|
609 | |
---|
610 | prototype_lad = maxval(lad_s) * .9_wp !< better be *1.0 if lad is either 0 or maxval(lad) everywhere |
---|
611 | IF ( prototype_lad <= 0._wp ) prototype_lad = .3_wp |
---|
612 | !WRITE(message_string, '(a,f6.3)') 'Precomputing effective box optical ' & |
---|
613 | ! // 'depth using prototype leaf area density = ', prototype_lad |
---|
614 | !CALL message('usm_init_urban_surface', 'PA0520', 0, 0, -1, 6, 0) |
---|
615 | ENDIF |
---|
616 | |
---|
617 | nzutl = min(nzutl+nzut_free, nzt) |
---|
618 | |
---|
619 | #if defined( __parallel ) |
---|
620 | CALL MPI_AllReduce(nzubl,nzub,1,MPI_INTEGER,MPI_MIN,comm2d,ierr); |
---|
621 | CALL MPI_AllReduce(nzutl,nzut,1,MPI_INTEGER,MPI_MAX,comm2d,ierr); |
---|
622 | #else |
---|
623 | nzub = nzubl |
---|
624 | nzut = nzutl |
---|
625 | #endif |
---|
626 | |
---|
627 | !-- global number of urban layers |
---|
628 | nzu = nzut - nzub + 1 |
---|
629 | |
---|
630 | !-- allocate urban surfaces grid |
---|
631 | !-- calc number of surfaces in local proc |
---|
632 | CALL location_message( ' calculation of indices for surfaces', .TRUE. ) |
---|
633 | nsurfl = 0 |
---|
634 | ! |
---|
635 | !-- Number of land- and roof surfaces. Note, since horizontal surface elements |
---|
636 | !-- are already counted in surface_mod, in case be simply reused here. |
---|
637 | startland = 1 |
---|
638 | nsurfl = surf_usm_h%ns |
---|
639 | endland = nsurfl |
---|
640 | nlands = endland-startland+1 |
---|
641 | |
---|
642 | ! |
---|
643 | !-- Number of vertical surfaces. As vertical surfaces are already |
---|
644 | !-- counted in surface mod, it can be reused here. |
---|
645 | startwall = nsurfl+1 |
---|
646 | nsurfl = nsurfl + surf_usm_v(0)%ns + surf_usm_v(1)%ns + & |
---|
647 | surf_usm_v(2)%ns + surf_usm_v(3)%ns |
---|
648 | endwall = nsurfl |
---|
649 | nwalls = endwall-startwall+1 |
---|
650 | |
---|
651 | |
---|
652 | !-- range of energy balance surfaces ! will be treated separately by surf_usm_h and surf_usm_v |
---|
653 | nenergy = 0 |
---|
654 | IF ( usm_energy_balance_land ) THEN |
---|
655 | startenergy = startland |
---|
656 | nenergy = nenergy + nlands |
---|
657 | ELSE |
---|
658 | startenergy = startwall |
---|
659 | ENDIF |
---|
660 | IF ( usm_energy_balance_wall ) THEN |
---|
661 | endenergy = endwall |
---|
662 | nenergy = nenergy + nwalls |
---|
663 | ELSE |
---|
664 | endenergy = endland |
---|
665 | ENDIF |
---|
666 | |
---|
667 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
668 | !-- block of virtual surfaces |
---|
669 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
670 | !-- calculate sky surfaces ! not used so far! |
---|
671 | startsky = nsurfl+1 |
---|
672 | nsurfl = nsurfl+(nxr-nxl+1)*(nyn-nys+1) |
---|
673 | endsky = nsurfl |
---|
674 | nskys = endsky-startsky+1 |
---|
675 | |
---|
676 | !-- border flags |
---|
677 | #if defined( __parallel ) |
---|
678 | isborder = (/ north_border_pe, south_border_pe, right_border_pe, left_border_pe /) |
---|
679 | #else |
---|
680 | isborder = (/.TRUE.,.TRUE.,.TRUE.,.TRUE./) |
---|
681 | #endif |
---|
682 | !-- fill array of the limits of the local domain borders |
---|
683 | ijdb = RESHAPE( (/ nxl,nxr,nyn,nyn,nxl,nxr,nys,nys,nxr,nxr,nys,nyn,nxl,nxl,nys,nyn /), (/4, 4/) ) |
---|
684 | !-- calulation of the free borders of the domain |
---|
685 | DO ids = 6,9 |
---|
686 | IF ( isborder(ids) ) THEN |
---|
687 | !-- free border of the domain in direction ids |
---|
688 | DO i = ijdb(1,ids), ijdb(2,ids) |
---|
689 | DO j = ijdb(3,ids), ijdb(4,ids) |
---|
690 | |
---|
691 | k_topo = MAXLOC( MERGE( 1, 0, & |
---|
692 | BTEST( wall_flags_0(:,j,i), 12 ) & |
---|
693 | ), DIM = 1 & |
---|
694 | ) - 1 |
---|
695 | k_topo2 = MAXLOC( MERGE( 1, 0, & |
---|
696 | BTEST( wall_flags_0(:,j-jdir(ids),i-idir(ids)), 12 ) & |
---|
697 | ), DIM = 1 & |
---|
698 | ) - 1 |
---|
699 | |
---|
700 | k = nzut - MAX( k_topo, k_topo2 ) |
---|
701 | nsurfl = nsurfl + k |
---|
702 | ENDDO |
---|
703 | ENDDO |
---|
704 | ENDIF |
---|
705 | ENDDO |
---|
706 | |
---|
707 | !-- fill gridpcbl and pcbl |
---|
708 | IF ( plant_canopy ) THEN |
---|
709 | ALLOCATE( pcbl(iz:ix, 1:npcbl) ) |
---|
710 | ALLOCATE( gridpcbl(nzub:nzut,nys:nyn,nxl:nxr) ) |
---|
711 | gridpcbl(:,:,:) = 0 |
---|
712 | ipcgb = 0 |
---|
713 | DO i = nxl, nxr |
---|
714 | DO j = nys, nyn |
---|
715 | ! |
---|
716 | !-- Find topography top index |
---|
717 | k_topo = MAXLOC( MERGE( 1, 0, & |
---|
718 | BTEST( wall_flags_0(:,j,i), 12 ) & |
---|
719 | ), DIM = 1 & |
---|
720 | ) - 1 |
---|
721 | DO k = k_topo + 1, pct(j,i) |
---|
722 | ipcgb = ipcgb + 1 |
---|
723 | gridpcbl(k,j,i) = ipcgb |
---|
724 | pcbl(:,ipcgb) = (/ k, j, i /) |
---|
725 | ENDDO |
---|
726 | ENDDO |
---|
727 | ENDDO |
---|
728 | |
---|
729 | ALLOCATE( pcbinsw( 1:npcbl ) ) |
---|
730 | ALLOCATE( pcbinlw( 1:npcbl ) ) |
---|
731 | ENDIF |
---|
732 | |
---|
733 | !-- fill surfl |
---|
734 | ALLOCATE(surfl(5,nsurfl)) |
---|
735 | isurf = 0 |
---|
736 | |
---|
737 | !-- add land surfaces or roofs |
---|
738 | DO i = nxl, nxr |
---|
739 | DO j = nys, nyn |
---|
740 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
741 | k = surf_usm_h%k(m) |
---|
742 | |
---|
743 | isurf = isurf + 1 |
---|
744 | surfl(:,isurf) = (/iroof,k,j,i,m/) |
---|
745 | ENDDO |
---|
746 | ENDDO |
---|
747 | ENDDO |
---|
748 | |
---|
749 | !-- add walls |
---|
750 | DO i = nxl, nxr |
---|
751 | DO j = nys, nyn |
---|
752 | l = 0 |
---|
753 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
754 | k = surf_usm_v(l)%k(m) |
---|
755 | |
---|
756 | isurf = isurf + 1 |
---|
757 | surfl(:,isurf) = (/2,k,j,i,m/) |
---|
758 | ENDDO |
---|
759 | l = 1 |
---|
760 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
761 | k = surf_usm_v(l)%k(m) |
---|
762 | |
---|
763 | isurf = isurf + 1 |
---|
764 | surfl(:,isurf) = (/1,k,j,i,m/) |
---|
765 | ENDDO |
---|
766 | l = 2 |
---|
767 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
768 | k = surf_usm_v(l)%k(m) |
---|
769 | |
---|
770 | isurf = isurf + 1 |
---|
771 | surfl(:,isurf) = (/4,k,j,i,m/) |
---|
772 | ENDDO |
---|
773 | l = 3 |
---|
774 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
775 | k = surf_usm_v(l)%k(m) |
---|
776 | |
---|
777 | isurf = isurf + 1 |
---|
778 | surfl(:,isurf) = (/3,k,j,i,m/) |
---|
779 | ENDDO |
---|
780 | ENDDO |
---|
781 | ENDDO |
---|
782 | |
---|
783 | !-- add sky |
---|
784 | DO i = nxl, nxr |
---|
785 | DO j = nys, nyn |
---|
786 | isurf = isurf + 1 |
---|
787 | k = nzut |
---|
788 | surfl(:,isurf) = (/isky,k,j,i,-1/) |
---|
789 | ENDDO |
---|
790 | ENDDO |
---|
791 | |
---|
792 | !-- calulation of the free borders of the domain |
---|
793 | DO ids = 6,9 |
---|
794 | IF ( isborder(ids) ) THEN |
---|
795 | !-- free border of the domain in direction ids |
---|
796 | DO i = ijdb(1,ids), ijdb(2,ids) |
---|
797 | DO j = ijdb(3,ids), ijdb(4,ids) |
---|
798 | k_topo = MAXLOC( MERGE( 1, 0, & |
---|
799 | BTEST( wall_flags_0(:,j,i), 12 ) & |
---|
800 | ), DIM = 1 & |
---|
801 | ) - 1 |
---|
802 | k_topo2 = MAXLOC( MERGE( 1, 0, & |
---|
803 | BTEST( wall_flags_0(:,j-jdir(ids),i-idir(ids)), 12 ) & |
---|
804 | ), DIM = 1 & |
---|
805 | ) - 1 |
---|
806 | DO k = MAX(k_topo,k_topo2)+1, nzut |
---|
807 | isurf = isurf + 1 |
---|
808 | surfl(:,isurf) = (/ids,k,j,i,-1/) |
---|
809 | ENDDO |
---|
810 | ENDDO |
---|
811 | ENDDO |
---|
812 | ENDIF |
---|
813 | ENDDO |
---|
814 | |
---|
815 | !-- global array surf of indices of surfaces and displacement index array surfstart |
---|
816 | ALLOCATE(nsurfs(0:numprocs-1)) |
---|
817 | |
---|
818 | #if defined( __parallel ) |
---|
819 | CALL MPI_Allgather(nsurfl,1,MPI_INTEGER,nsurfs,1,MPI_INTEGER,comm2d,ierr) |
---|
820 | #else |
---|
821 | nsurfs(0) = nsurfl |
---|
822 | #endif |
---|
823 | ALLOCATE(surfstart(0:numprocs)) |
---|
824 | k = 0 |
---|
825 | DO i=0,numprocs-1 |
---|
826 | surfstart(i) = k |
---|
827 | k = k+nsurfs(i) |
---|
828 | ENDDO |
---|
829 | surfstart(numprocs) = k |
---|
830 | nsurf = k |
---|
831 | ALLOCATE(surf(5,nsurf)) |
---|
832 | |
---|
833 | #if defined( __parallel ) |
---|
834 | CALL MPI_AllGatherv(surfl, nsurfl*5, MPI_INTEGER, surf, nsurfs*5, surfstart*5, MPI_INTEGER, comm2d, ierr) |
---|
835 | #else |
---|
836 | surf = surfl |
---|
837 | #endif |
---|
838 | |
---|
839 | !-- |
---|
840 | !-- allocation of the arrays for direct and diffusion radiation |
---|
841 | CALL location_message( ' allocation of radiation arrays', .TRUE. ) |
---|
842 | !-- rad_sw_in, rad_lw_in are computed in radiation model, |
---|
843 | !-- splitting of direct and diffusion part is done |
---|
844 | !-- in usm_calc_diffusion_radiation for now |
---|
845 | ALLOCATE( rad_sw_in_dir(nysg:nyng,nxlg:nxrg) ) |
---|
846 | ALLOCATE( rad_sw_in_diff(nysg:nyng,nxlg:nxrg) ) |
---|
847 | ALLOCATE( rad_lw_in_diff(nysg:nyng,nxlg:nxrg) ) |
---|
848 | |
---|
849 | !-- allocate radiation arrays |
---|
850 | ALLOCATE( surfins(nsurfl) ) |
---|
851 | ALLOCATE( surfinl(nsurfl) ) |
---|
852 | ALLOCATE( surfinsw(nsurfl) ) |
---|
853 | ALLOCATE( surfinlw(nsurfl) ) |
---|
854 | ALLOCATE( surfinswdir(nsurfl) ) |
---|
855 | ALLOCATE( surfinswdif(nsurfl) ) |
---|
856 | ALLOCATE( surfinlwdif(nsurfl) ) |
---|
857 | ALLOCATE( surfoutsl(startenergy:endenergy) ) |
---|
858 | ALLOCATE( surfoutll(startenergy:endenergy) ) |
---|
859 | ALLOCATE( surfoutsw(startenergy:endenergy) ) |
---|
860 | ALLOCATE( surfoutlw(startenergy:endenergy) ) |
---|
861 | ALLOCATE( surfouts(nsurf) ) !TODO: global surfaces without virtual |
---|
862 | ALLOCATE( surfoutl(nsurf) ) !TODO: global surfaces without virtual |
---|
863 | |
---|
864 | |
---|
865 | |
---|
866 | ! |
---|
867 | !-- Allocate radiation arrays which are part of the new data type. |
---|
868 | !-- For horizontal surfaces. |
---|
869 | ALLOCATE( surf_usm_h%surfhf(1:surf_usm_h%ns) ) |
---|
870 | ALLOCATE( surf_usm_h%rad_net_l(1:surf_usm_h%ns) ) |
---|
871 | ! |
---|
872 | !-- New |
---|
873 | ALLOCATE( surf_usm_h%rad_in_sw(1:surf_usm_h%ns) ) |
---|
874 | ALLOCATE( surf_usm_h%rad_out_sw(1:surf_usm_h%ns) ) |
---|
875 | ALLOCATE( surf_usm_h%rad_in_lw(1:surf_usm_h%ns) ) |
---|
876 | ALLOCATE( surf_usm_h%rad_out_lw(1:surf_usm_h%ns) ) |
---|
877 | ! |
---|
878 | !-- For vertical surfaces |
---|
879 | DO l = 0, 3 |
---|
880 | ALLOCATE( surf_usm_v(l)%surfhf(1:surf_usm_v(l)%ns) ) |
---|
881 | ALLOCATE( surf_usm_v(l)%rad_net_l(1:surf_usm_v(l)%ns) ) |
---|
882 | ALLOCATE( surf_usm_v(l)%rad_in_sw(1:surf_usm_v(l)%ns) ) |
---|
883 | ALLOCATE( surf_usm_v(l)%rad_out_sw(1:surf_usm_v(l)%ns) ) |
---|
884 | ALLOCATE( surf_usm_v(l)%rad_in_lw(1:surf_usm_v(l)%ns) ) |
---|
885 | ALLOCATE( surf_usm_v(l)%rad_out_lw(1:surf_usm_v(l)%ns) ) |
---|
886 | ENDDO |
---|
887 | |
---|
888 | !-- Wall surface model |
---|
889 | !-- allocate arrays for wall surface model and define pointers |
---|
890 | |
---|
891 | !-- allocate array of wall types and wall parameters |
---|
892 | ALLOCATE ( surf_usm_h%surface_types(1:surf_usm_h%ns) ) |
---|
893 | DO l = 0, 3 |
---|
894 | ALLOCATE( surf_usm_v(l)%surface_types(1:surf_usm_v(l)%ns) ) |
---|
895 | ENDDO |
---|
896 | |
---|
897 | !-- broadband albedo of the land, roof and wall surface |
---|
898 | !-- for domain border and sky set artifically to 1.0 |
---|
899 | !-- what allows us to calculate heat flux leaving over |
---|
900 | !-- side and top borders of the domain |
---|
901 | ALLOCATE ( albedo_surf(nsurfl) ) |
---|
902 | albedo_surf = 1.0_wp |
---|
903 | ALLOCATE ( surf_usm_h%albedo_surf(1:surf_usm_h%ns) ) |
---|
904 | DO l = 0, 3 |
---|
905 | ALLOCATE( surf_usm_v(l)%albedo_surf(1:surf_usm_v(l)%ns) ) |
---|
906 | ENDDO |
---|
907 | |
---|
908 | !-- wall and roof surface parameters. First for horizontal surfaces |
---|
909 | ALLOCATE ( emiss_surf(startenergy:endenergy) ) |
---|
910 | |
---|
911 | ALLOCATE ( surf_usm_h%isroof_surf(1:surf_usm_h%ns) ) |
---|
912 | ALLOCATE ( surf_usm_h%emiss_surf(1:surf_usm_h%ns) ) |
---|
913 | ALLOCATE ( surf_usm_h%lambda_surf(1:surf_usm_h%ns) ) |
---|
914 | ALLOCATE ( surf_usm_h%c_surface(1:surf_usm_h%ns) ) |
---|
915 | ALLOCATE ( surf_usm_h%roughness_wall(1:surf_usm_h%ns) ) |
---|
916 | ! |
---|
917 | !-- For vertical surfaces. |
---|
918 | DO l = 0, 3 |
---|
919 | ALLOCATE ( surf_usm_v(l)%emiss_surf(1:surf_usm_v(l)%ns) ) |
---|
920 | ALLOCATE ( surf_usm_v(l)%lambda_surf(1:surf_usm_v(l)%ns) ) |
---|
921 | ALLOCATE ( surf_usm_v(l)%c_surface(1:surf_usm_v(l)%ns) ) |
---|
922 | ALLOCATE ( surf_usm_v(l)%roughness_wall(1:surf_usm_v(l)%ns) ) |
---|
923 | ENDDO |
---|
924 | |
---|
925 | !-- allocate wall and roof material parameters. First for horizontal surfaces |
---|
926 | ALLOCATE ( surf_usm_h%thickness_wall(1:surf_usm_h%ns) ) |
---|
927 | ALLOCATE ( surf_usm_h%lambda_h(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) |
---|
928 | ALLOCATE ( surf_usm_h%rho_c_wall(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) |
---|
929 | ! |
---|
930 | !-- For vertical surfaces. |
---|
931 | DO l = 0, 3 |
---|
932 | ALLOCATE ( surf_usm_v(l)%thickness_wall(1:surf_usm_v(l)%ns) ) |
---|
933 | ALLOCATE ( surf_usm_v(l)%lambda_h(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) |
---|
934 | ALLOCATE ( surf_usm_v(l)%rho_c_wall(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) |
---|
935 | ENDDO |
---|
936 | |
---|
937 | !-- allocate wall and roof layers sizes. For horizontal surfaces. |
---|
938 | ALLOCATE ( zwn(nzb_wall:nzt_wall) ) |
---|
939 | ALLOCATE ( surf_usm_h%dz_wall(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
940 | ALLOCATE ( surf_usm_h%ddz_wall(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
941 | ALLOCATE ( surf_usm_h%dz_wall_stag(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) |
---|
942 | ALLOCATE ( surf_usm_h%ddz_wall_stag(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) |
---|
943 | ALLOCATE ( surf_usm_h%zw(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) |
---|
944 | ! |
---|
945 | !-- For vertical surfaces. |
---|
946 | DO l = 0, 3 |
---|
947 | ALLOCATE ( surf_usm_v(l)%dz_wall(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) |
---|
948 | ALLOCATE ( surf_usm_v(l)%ddz_wall(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) |
---|
949 | ALLOCATE ( surf_usm_v(l)%dz_wall_stag(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) |
---|
950 | ALLOCATE ( surf_usm_v(l)%ddz_wall_stag(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) |
---|
951 | ALLOCATE ( surf_usm_v(l)%zw(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) |
---|
952 | ENDDO |
---|
953 | |
---|
954 | !-- allocate wall and roof temperature arrays, for horizontal walls |
---|
955 | #if defined( __nopointer ) |
---|
956 | ALLOCATE ( t_surf_h(1:surf_usm_h%ns) ) |
---|
957 | ALLOCATE ( t_surf_h_p(1:surf_usm_h%ns) ) |
---|
958 | ALLOCATE ( t_wall_h(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
959 | ALLOCATE ( t_wall_h_p(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
960 | |
---|
961 | ALLOCATE ( t_surf_h(1:surf_usm_h%ns) ) |
---|
962 | ALLOCATE ( t_surf_h_p(1:surf_usm_h%ns) ) |
---|
963 | ALLOCATE ( t_wall_h(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
964 | ALLOCATE ( t_wall_h_p(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
965 | #else |
---|
966 | ALLOCATE ( t_surf_h_1(1:surf_usm_h%ns) ) |
---|
967 | ALLOCATE ( t_surf_h_2(1:surf_usm_h%ns) ) |
---|
968 | ALLOCATE ( t_wall_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
969 | ALLOCATE ( t_wall_h_2(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
970 | |
---|
971 | !-- initial assignment of the pointers |
---|
972 | t_wall_h => t_wall_h_1; t_wall_h_p => t_wall_h_2 |
---|
973 | t_surf_h => t_surf_h_1; t_surf_h_p => t_surf_h_2 |
---|
974 | #endif |
---|
975 | |
---|
976 | !-- allocate wall and roof temperature arrays, for vertical walls |
---|
977 | #if defined( __nopointer ) |
---|
978 | DO l = 0, 3 |
---|
979 | ALLOCATE ( t_surf_v(l)%t(1:surf_usm_v(l)%ns) ) |
---|
980 | ALLOCATE ( t_surf_v(l)%t_p(1:surf_usm_v(l)%ns) ) |
---|
981 | ALLOCATE ( t_wall_v(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) |
---|
982 | ALLOCATE ( t_wall_v(l)%t_p(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) |
---|
983 | ENDDO |
---|
984 | #else |
---|
985 | DO l = 0, 3 |
---|
986 | ALLOCATE ( t_surf_v_1(l)%t(1:surf_usm_v(l)%ns) ) |
---|
987 | ALLOCATE ( t_surf_v_2(l)%t(1:surf_usm_v(l)%ns) ) |
---|
988 | ALLOCATE ( t_wall_v_1(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) |
---|
989 | ALLOCATE ( t_wall_v_2(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) |
---|
990 | ENDDO |
---|
991 | ! |
---|
992 | !-- initial assignment of the pointers |
---|
993 | t_wall_v => t_wall_v_1; t_wall_v_p => t_wall_v_2 |
---|
994 | t_surf_v => t_surf_v_1; t_surf_v_p => t_surf_v_2 |
---|
995 | #endif |
---|
996 | ! |
---|
997 | !-- Allocate intermediate timestep arrays. For horizontal surfaces. |
---|
998 | ALLOCATE ( surf_usm_h%tt_surface_m(1:surf_usm_h%ns) ) |
---|
999 | ALLOCATE ( surf_usm_h%tt_wall_m(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
1000 | ! |
---|
1001 | !-- Set inital values for prognostic quantities |
---|
1002 | IF ( ALLOCATED( surf_usm_h%tt_surface_m ) ) surf_usm_h%tt_surface_m = 0.0_wp |
---|
1003 | IF ( ALLOCATED( surf_usm_h%tt_wall_m ) ) surf_usm_h%tt_wall_m = 0.0_wp |
---|
1004 | ! |
---|
1005 | !-- Now, for vertical surfaces |
---|
1006 | DO l = 0, 3 |
---|
1007 | ALLOCATE ( surf_usm_v(l)%tt_surface_m(1:surf_usm_v(l)%ns) ) |
---|
1008 | ALLOCATE ( surf_usm_v(l)%tt_wall_m(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) |
---|
1009 | IF ( ALLOCATED( surf_usm_v(l)%tt_surface_m ) ) surf_usm_v(l)%tt_surface_m = 0.0_wp |
---|
1010 | IF ( ALLOCATED( surf_usm_v(l)%tt_wall_m ) ) surf_usm_v(l)%tt_wall_m = 0.0_wp |
---|
1011 | ENDDO |
---|
1012 | |
---|
1013 | !-- allocate wall heat flux output array and set initial values. For horizontal surfaces |
---|
1014 | ! ALLOCATE ( surf_usm_h%wshf(1:surf_usm_h%ns) ) !can be removed |
---|
1015 | ALLOCATE ( surf_usm_h%wshf_eb(1:surf_usm_h%ns) ) |
---|
1016 | ALLOCATE ( surf_usm_h%wghf_eb(1:surf_usm_h%ns) ) |
---|
1017 | IF ( ALLOCATED( surf_usm_h%wshf ) ) surf_usm_h%wshf = 0.0_wp |
---|
1018 | IF ( ALLOCATED( surf_usm_h%wshf_eb ) ) surf_usm_h%wshf_eb = 0.0_wp |
---|
1019 | IF ( ALLOCATED( surf_usm_h%wghf_eb ) ) surf_usm_h%wghf_eb = 0.0_wp |
---|
1020 | ! |
---|
1021 | !-- Now, for vertical surfaces |
---|
1022 | DO l = 0, 3 |
---|
1023 | ! ALLOCATE ( surf_usm_v(l)%wshf(1:surf_usm_v(l)%ns) ) ! can be removed |
---|
1024 | ALLOCATE ( surf_usm_v(l)%wshf_eb(1:surf_usm_v(l)%ns) ) |
---|
1025 | ALLOCATE ( surf_usm_v(l)%wghf_eb(1:surf_usm_v(l)%ns) ) |
---|
1026 | IF ( ALLOCATED( surf_usm_v(l)%wshf ) ) surf_usm_v(l)%wshf = 0.0_wp |
---|
1027 | IF ( ALLOCATED( surf_usm_v(l)%wshf_eb ) ) surf_usm_v(l)%wshf_eb = 0.0_wp |
---|
1028 | IF ( ALLOCATED( surf_usm_v(l)%wghf_eb ) ) surf_usm_v(l)%wghf_eb = 0.0_wp |
---|
1029 | ENDDO |
---|
1030 | |
---|
1031 | END SUBROUTINE usm_allocate_urban_surface |
---|
1032 | |
---|
1033 | |
---|
1034 | |
---|
1035 | !------------------------------------------------------------------------------! |
---|
1036 | ! Description: |
---|
1037 | ! ------------ |
---|
1038 | !> Sum up and time-average urban surface output quantities as well as allocate |
---|
1039 | !> the array necessary for storing the average. |
---|
1040 | !------------------------------------------------------------------------------! |
---|
1041 | SUBROUTINE usm_average_3d_data( mode, variable ) |
---|
1042 | |
---|
1043 | IMPLICIT NONE |
---|
1044 | |
---|
1045 | CHARACTER (len=*), INTENT(IN) :: mode |
---|
1046 | CHARACTER (len=*), INTENT(IN) :: variable |
---|
1047 | |
---|
1048 | INTEGER(iwp) :: i, j, k, l, m, ids, iwl,istat |
---|
1049 | CHARACTER (len=varnamelength) :: var, surfid |
---|
1050 | INTEGER(iwp), PARAMETER :: nd = 5 |
---|
1051 | CHARACTER(len=6), DIMENSION(0:nd-1), PARAMETER :: dirname = (/ '_roof ', '_south', '_north', '_west ', '_east ' /) |
---|
1052 | |
---|
1053 | !-- find the real name of the variable |
---|
1054 | var = TRIM(variable) |
---|
1055 | DO i = 0, nd-1 |
---|
1056 | k = len(TRIM(var)) |
---|
1057 | j = len(TRIM(dirname(i))) |
---|
1058 | IF ( var(k-j+1:k) == dirname(i) ) THEN |
---|
1059 | ids = i |
---|
1060 | var = var(:k-j) |
---|
1061 | EXIT |
---|
1062 | ENDIF |
---|
1063 | ENDDO |
---|
1064 | IF ( ids == -1 ) THEN |
---|
1065 | var = TRIM(variable) |
---|
1066 | ENDIF |
---|
1067 | IF ( var(1:11) == 'usm_t_wall_' .AND. len(TRIM(var)) >= 12 ) THEN |
---|
1068 | !-- wall layers |
---|
1069 | READ(var(12:12), '(I1)', iostat=istat ) iwl |
---|
1070 | IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN |
---|
1071 | var = var(1:10) |
---|
1072 | ELSE |
---|
1073 | !-- wrong wall layer index |
---|
1074 | RETURN |
---|
1075 | ENDIF |
---|
1076 | ENDIF |
---|
1077 | |
---|
1078 | IF ( mode == 'allocate' ) THEN |
---|
1079 | |
---|
1080 | SELECT CASE ( TRIM( var ) ) |
---|
1081 | |
---|
1082 | CASE ( 'usm_rad_net' ) |
---|
1083 | !-- array of complete radiation balance |
---|
1084 | IF ( .NOT. ALLOCATED(surf_usm_h%rad_net_av) ) THEN |
---|
1085 | ALLOCATE( surf_usm_h%rad_net_av(1:surf_usm_h%ns) ) |
---|
1086 | surf_usm_h%rad_net_av = 0.0_wp |
---|
1087 | ENDIF |
---|
1088 | DO l = 0, 3 |
---|
1089 | IF ( .NOT. ALLOCATED(surf_usm_v(l)%rad_net_av) ) THEN |
---|
1090 | ALLOCATE( surf_usm_v(l)%rad_net_av(1:surf_usm_v(l)%ns) ) |
---|
1091 | surf_usm_v(l)%rad_net_av = 0.0_wp |
---|
1092 | ENDIF |
---|
1093 | ENDDO |
---|
1094 | |
---|
1095 | CASE ( 'usm_rad_insw' ) |
---|
1096 | !-- array of sw radiation falling to surface after i-th reflection |
---|
1097 | IF ( .NOT. ALLOCATED(surf_usm_h%surfinsw_av) ) THEN |
---|
1098 | ALLOCATE( surf_usm_h%surfinsw_av(1:surf_usm_h%ns) ) |
---|
1099 | surf_usm_h%surfinsw_av = 0.0_wp |
---|
1100 | ENDIF |
---|
1101 | DO l = 0, 3 |
---|
1102 | IF ( .NOT. ALLOCATED(surf_usm_v(l)%surfinsw_av) ) THEN |
---|
1103 | ALLOCATE( surf_usm_v(l)%surfinsw_av(1:surf_usm_v(l)%ns) ) |
---|
1104 | surf_usm_v(l)%surfinsw_av = 0.0_wp |
---|
1105 | ENDIF |
---|
1106 | ENDDO |
---|
1107 | |
---|
1108 | CASE ( 'usm_rad_inlw' ) |
---|
1109 | !-- array of lw radiation falling to surface after i-th reflection |
---|
1110 | IF ( .NOT. ALLOCATED(surf_usm_h%surfinlw_av) ) THEN |
---|
1111 | ALLOCATE( surf_usm_h%surfinlw_av(1:surf_usm_h%ns) ) |
---|
1112 | surf_usm_h%surfinlw_av = 0.0_wp |
---|
1113 | ENDIF |
---|
1114 | DO l = 0, 3 |
---|
1115 | IF ( .NOT. ALLOCATED(surf_usm_v(l)%surfinlw_av) ) THEN |
---|
1116 | ALLOCATE( surf_usm_v(l)%surfinlw_av(1:surf_usm_v(l)%ns) ) |
---|
1117 | surf_usm_v(l)%surfinlw_av = 0.0_wp |
---|
1118 | ENDIF |
---|
1119 | ENDDO |
---|
1120 | |
---|
1121 | CASE ( 'usm_rad_inswdir' ) |
---|
1122 | !-- array of direct sw radiation falling to surface from sun |
---|
1123 | IF ( .NOT. ALLOCATED(surfinswdir_av) ) THEN |
---|
1124 | ALLOCATE( surfinswdir_av(startenergy:endenergy) ) |
---|
1125 | surfinswdir_av = 0.0_wp |
---|
1126 | ENDIF |
---|
1127 | |
---|
1128 | CASE ( 'usm_rad_inswdif' ) |
---|
1129 | !-- array of difusion sw radiation falling to surface from sky and borders of the domain |
---|
1130 | IF ( .NOT. ALLOCATED(surfinswdif_av) ) THEN |
---|
1131 | ALLOCATE( surfinswdif_av(startenergy:endenergy) ) |
---|
1132 | surfinswdif_av = 0.0_wp |
---|
1133 | ENDIF |
---|
1134 | |
---|
1135 | CASE ( 'usm_rad_inswref' ) |
---|
1136 | !-- array of sw radiation falling to surface from reflections |
---|
1137 | IF ( .NOT. ALLOCATED(surfinswref_av) ) THEN |
---|
1138 | ALLOCATE( surfinswref_av(startenergy:endenergy) ) |
---|
1139 | surfinswref_av = 0.0_wp |
---|
1140 | ENDIF |
---|
1141 | |
---|
1142 | CASE ( 'usm_rad_inlwdif' ) |
---|
1143 | !-- array of sw radiation falling to surface after i-th reflection |
---|
1144 | IF ( .NOT. ALLOCATED(surfinlwdif_av) ) THEN |
---|
1145 | ALLOCATE( surfinlwdif_av(startenergy:endenergy) ) |
---|
1146 | surfinlwdif_av = 0.0_wp |
---|
1147 | ENDIF |
---|
1148 | |
---|
1149 | CASE ( 'usm_rad_inlwref' ) |
---|
1150 | !-- array of lw radiation falling to surface from reflections |
---|
1151 | IF ( .NOT. ALLOCATED(surfinlwref_av) ) THEN |
---|
1152 | ALLOCATE( surfinlwref_av(startenergy:endenergy) ) |
---|
1153 | surfinlwref_av = 0.0_wp |
---|
1154 | ENDIF |
---|
1155 | |
---|
1156 | CASE ( 'usm_rad_outsw' ) |
---|
1157 | !-- array of sw radiation emitted from surface after i-th reflection |
---|
1158 | IF ( .NOT. ALLOCATED(surfoutsw_av) ) THEN |
---|
1159 | ALLOCATE( surfoutsw_av(startenergy:endenergy) ) |
---|
1160 | surfoutsw_av = 0.0_wp |
---|
1161 | ENDIF |
---|
1162 | |
---|
1163 | CASE ( 'usm_rad_outlw' ) |
---|
1164 | !-- array of lw radiation emitted from surface after i-th reflection |
---|
1165 | IF ( .NOT. ALLOCATED(surfoutlw_av) ) THEN |
---|
1166 | ALLOCATE( surfoutlw_av(startenergy:endenergy) ) |
---|
1167 | surfoutlw_av = 0.0_wp |
---|
1168 | ENDIF |
---|
1169 | CASE ( 'usm_rad_ressw' ) |
---|
1170 | !-- array of residua of sw radiation absorbed in surface after last reflection |
---|
1171 | IF ( .NOT. ALLOCATED(surfins_av) ) THEN |
---|
1172 | ALLOCATE( surfins_av(startenergy:endenergy) ) |
---|
1173 | surfins_av = 0.0_wp |
---|
1174 | ENDIF |
---|
1175 | |
---|
1176 | CASE ( 'usm_rad_reslw' ) |
---|
1177 | !-- array of residua of lw radiation absorbed in surface after last reflection |
---|
1178 | IF ( .NOT. ALLOCATED(surfinl_av) ) THEN |
---|
1179 | ALLOCATE( surfinl_av(startenergy:endenergy) ) |
---|
1180 | surfinl_av = 0.0_wp |
---|
1181 | ENDIF |
---|
1182 | |
---|
1183 | CASE ( 'usm_rad_hf' ) |
---|
1184 | !-- array of heat flux from radiation for surfaces after i-th reflection |
---|
1185 | IF ( .NOT. ALLOCATED(surf_usm_h%surfhf_av) ) THEN |
---|
1186 | ALLOCATE( surf_usm_h%surfhf_av(1:surf_usm_h%ns) ) |
---|
1187 | surf_usm_h%surfhf_av = 0.0_wp |
---|
1188 | ENDIF |
---|
1189 | DO l = 0, 3 |
---|
1190 | IF ( .NOT. ALLOCATED(surf_usm_v(l)%surfhf_av) ) THEN |
---|
1191 | ALLOCATE( surf_usm_v(l)%surfhf_av(1:surf_usm_v(l)%ns) ) |
---|
1192 | surf_usm_v(l)%surfhf_av = 0.0_wp |
---|
1193 | ENDIF |
---|
1194 | ENDDO |
---|
1195 | |
---|
1196 | CASE ( 'usm_wshf' ) |
---|
1197 | !-- array of sensible heat flux from surfaces |
---|
1198 | !-- land surfaces |
---|
1199 | IF ( .NOT. ALLOCATED(surf_usm_h%wshf_eb_av) ) THEN |
---|
1200 | ALLOCATE( surf_usm_h%wshf_eb_av(1:surf_usm_h%ns) ) |
---|
1201 | surf_usm_h%wshf_eb_av = 0.0_wp |
---|
1202 | ENDIF |
---|
1203 | DO l = 0, 3 |
---|
1204 | IF ( .NOT. ALLOCATED(surf_usm_v(l)%wshf_eb_av) ) THEN |
---|
1205 | ALLOCATE( surf_usm_v(l)%wshf_eb_av(1:surf_usm_v(l)%ns) ) |
---|
1206 | surf_usm_v(l)%wshf_eb_av = 0.0_wp |
---|
1207 | ENDIF |
---|
1208 | ENDDO |
---|
1209 | |
---|
1210 | CASE ( 'usm_wghf' ) |
---|
1211 | !-- array of heat flux from ground (wall, roof, land) |
---|
1212 | IF ( .NOT. ALLOCATED(surf_usm_h%wghf_eb_av) ) THEN |
---|
1213 | ALLOCATE( surf_usm_h%wghf_eb_av(1:surf_usm_h%ns) ) |
---|
1214 | surf_usm_h%wghf_eb_av = 0.0_wp |
---|
1215 | ENDIF |
---|
1216 | DO l = 0, 3 |
---|
1217 | IF ( .NOT. ALLOCATED(surf_usm_v(l)%wghf_eb_av) ) THEN |
---|
1218 | ALLOCATE( surf_usm_v(l)%wghf_eb_av(1:surf_usm_v(l)%ns) ) |
---|
1219 | surf_usm_v(l)%wghf_eb_av = 0.0_wp |
---|
1220 | ENDIF |
---|
1221 | ENDDO |
---|
1222 | |
---|
1223 | CASE ( 'usm_t_surf' ) |
---|
1224 | !-- surface temperature for surfaces |
---|
1225 | IF ( .NOT. ALLOCATED(surf_usm_h%t_surf_av) ) THEN |
---|
1226 | ALLOCATE( surf_usm_h%t_surf_av(1:surf_usm_h%ns) ) |
---|
1227 | surf_usm_h%t_surf_av = 0.0_wp |
---|
1228 | ENDIF |
---|
1229 | DO l = 0, 3 |
---|
1230 | IF ( .NOT. ALLOCATED(surf_usm_v(l)%t_surf_av) ) THEN |
---|
1231 | ALLOCATE( surf_usm_v(l)%t_surf_av(1:surf_usm_v(l)%ns) ) |
---|
1232 | surf_usm_v(l)%t_surf_av = 0.0_wp |
---|
1233 | ENDIF |
---|
1234 | ENDDO |
---|
1235 | |
---|
1236 | CASE ( 'usm_t_wall' ) |
---|
1237 | !-- wall temperature for iwl layer of walls and land |
---|
1238 | IF ( .NOT. ALLOCATED(surf_usm_h%t_wall_av) ) THEN |
---|
1239 | ALLOCATE( surf_usm_h%t_wall_av(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) |
---|
1240 | surf_usm_h%t_wall_av = 0.0_wp |
---|
1241 | ENDIF |
---|
1242 | DO l = 0, 3 |
---|
1243 | IF ( .NOT. ALLOCATED(surf_usm_v(l)%t_wall_av) ) THEN |
---|
1244 | ALLOCATE( surf_usm_v(l)%t_wall_av(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) |
---|
1245 | surf_usm_v(l)%t_wall_av = 0.0_wp |
---|
1246 | ENDIF |
---|
1247 | ENDDO |
---|
1248 | |
---|
1249 | CASE DEFAULT |
---|
1250 | CONTINUE |
---|
1251 | |
---|
1252 | END SELECT |
---|
1253 | |
---|
1254 | ELSEIF ( mode == 'sum' ) THEN |
---|
1255 | |
---|
1256 | SELECT CASE ( TRIM( var ) ) |
---|
1257 | |
---|
1258 | CASE ( 'usm_rad_net' ) |
---|
1259 | !-- array of complete radiation balance |
---|
1260 | DO m = 1, surf_usm_h%ns |
---|
1261 | surf_usm_h%rad_net_av(m) = & |
---|
1262 | surf_usm_h%rad_net_av(m) + & |
---|
1263 | surf_usm_h%rad_net_l(m) |
---|
1264 | ENDDO |
---|
1265 | DO l = 0, 3 |
---|
1266 | DO m = 1, surf_usm_v(l)%ns |
---|
1267 | surf_usm_v(l)%rad_net_av(m) = & |
---|
1268 | surf_usm_v(l)%rad_net_av(m) + & |
---|
1269 | surf_usm_v(l)%rad_net_l(m) |
---|
1270 | ENDDO |
---|
1271 | ENDDO |
---|
1272 | |
---|
1273 | CASE ( 'usm_rad_insw' ) |
---|
1274 | !-- array of sw radiation falling to surface after i-th reflection |
---|
1275 | DO l = startenergy, endenergy |
---|
1276 | IF ( surfl(id,l) == ids ) THEN |
---|
1277 | surfinsw_av(l) = surfinsw_av(l) + surfinsw(l) |
---|
1278 | ENDIF |
---|
1279 | ENDDO |
---|
1280 | |
---|
1281 | CASE ( 'usm_rad_inlw' ) |
---|
1282 | !-- array of lw radiation falling to surface after i-th reflection |
---|
1283 | DO l = startenergy, endenergy |
---|
1284 | IF ( surfl(id,l) == ids ) THEN |
---|
1285 | surfinlw_av(l) = surfinlw_av(l) + surfinlw(l) |
---|
1286 | ENDIF |
---|
1287 | ENDDO |
---|
1288 | |
---|
1289 | CASE ( 'usm_rad_inswdir' ) |
---|
1290 | !-- array of direct sw radiation falling to surface from sun |
---|
1291 | DO l = startenergy, endenergy |
---|
1292 | IF ( surfl(id,l) == ids ) THEN |
---|
1293 | surfinswdir_av(l) = surfinswdir_av(l) + surfinswdir(l) |
---|
1294 | ENDIF |
---|
1295 | ENDDO |
---|
1296 | |
---|
1297 | CASE ( 'usm_rad_inswdif' ) |
---|
1298 | !-- array of difusion sw radiation falling to surface from sky and borders of the domain |
---|
1299 | DO l = startenergy, endenergy |
---|
1300 | IF ( surfl(id,l) == ids ) THEN |
---|
1301 | surfinswdif_av(l) = surfinswdif_av(l) + surfinswdif(l) |
---|
1302 | ENDIF |
---|
1303 | ENDDO |
---|
1304 | |
---|
1305 | CASE ( 'usm_rad_inswref' ) |
---|
1306 | !-- array of sw radiation falling to surface from reflections |
---|
1307 | DO l = startenergy, endenergy |
---|
1308 | IF ( surfl(id,l) == ids ) THEN |
---|
1309 | surfinswref_av(l) = surfinswref_av(l) + surfinsw(l) - & |
---|
1310 | surfinswdir(l) - surfinswdif(l) |
---|
1311 | ENDIF |
---|
1312 | ENDDO |
---|
1313 | |
---|
1314 | |
---|
1315 | CASE ( 'usm_rad_inlwdif' ) |
---|
1316 | !-- array of sw radiation falling to surface after i-th reflection |
---|
1317 | DO l = startenergy, endenergy |
---|
1318 | IF ( surfl(id,l) == ids ) THEN |
---|
1319 | surfinswref_av(l) = surfinswref_av(l) + surfinsw(l) - & |
---|
1320 | surfinswdir(l) - surfinswdif(l) |
---|
1321 | ENDIF |
---|
1322 | ENDDO |
---|
1323 | ! |
---|
1324 | CASE ( 'usm_rad_inlwref' ) |
---|
1325 | !-- array of lw radiation falling to surface from reflections |
---|
1326 | DO l = startenergy, endenergy |
---|
1327 | IF ( surfl(id,l) == ids ) THEN |
---|
1328 | surfinlwdif_av(l) = surfinlwdif_av(l) + surfinlwdif(l) |
---|
1329 | ENDIF |
---|
1330 | ENDDO |
---|
1331 | |
---|
1332 | CASE ( 'usm_rad_outsw' ) |
---|
1333 | !-- array of sw radiation emitted from surface after i-th reflection |
---|
1334 | DO l = startenergy, endenergy |
---|
1335 | IF ( surfl(id,l) == ids ) THEN |
---|
1336 | surfinlwref_av(l) = surfinlwref_av(l) + & |
---|
1337 | surfinlw(l) - surfinlwdif(l) |
---|
1338 | ENDIF |
---|
1339 | ENDDO |
---|
1340 | |
---|
1341 | CASE ( 'usm_rad_outlw' ) |
---|
1342 | !-- array of lw radiation emitted from surface after i-th reflection |
---|
1343 | DO l = startenergy, endenergy |
---|
1344 | IF ( surfl(id,l) == ids ) THEN |
---|
1345 | surfoutsw_av(l) = surfoutsw_av(l) + surfoutsw(l) |
---|
1346 | ENDIF |
---|
1347 | ENDDO |
---|
1348 | |
---|
1349 | CASE ( 'usm_rad_ressw' ) |
---|
1350 | !-- array of residua of sw radiation absorbed in surface after last reflection |
---|
1351 | DO l = startenergy, endenergy |
---|
1352 | IF ( surfl(id,l) == ids ) THEN |
---|
1353 | surfoutlw_av(l) = surfoutlw_av(l) + surfoutlw(l) |
---|
1354 | ENDIF |
---|
1355 | ENDDO |
---|
1356 | |
---|
1357 | CASE ( 'usm_rad_reslw' ) |
---|
1358 | !-- array of residua of lw radiation absorbed in surface after last reflection |
---|
1359 | DO l = startenergy, endenergy |
---|
1360 | IF ( surfl(id,l) == ids ) THEN |
---|
1361 | surfins_av(l) = surfins_av(l) + surfins(l) |
---|
1362 | ENDIF |
---|
1363 | ENDDO |
---|
1364 | |
---|
1365 | CASE ( 'usm_rad_hf' ) |
---|
1366 | !-- array of heat flux from radiation for surfaces after i-th reflection |
---|
1367 | DO m = 1, surf_usm_h%ns |
---|
1368 | surf_usm_h%surfhf_av(m) = & |
---|
1369 | surf_usm_h%surfhf_av(m) + & |
---|
1370 | surf_usm_h%surfhf(m) |
---|
1371 | ENDDO |
---|
1372 | DO l = 0, 3 |
---|
1373 | DO m = 1, surf_usm_v(l)%ns |
---|
1374 | surf_usm_v(l)%surfhf_av(m) = & |
---|
1375 | surf_usm_v(l)%surfhf_av(m) + & |
---|
1376 | surf_usm_v(l)%surfhf(m) |
---|
1377 | ENDDO |
---|
1378 | ENDDO |
---|
1379 | |
---|
1380 | CASE ( 'usm_wshf' ) |
---|
1381 | !-- array of sensible heat flux from surfaces (land, roof, wall) |
---|
1382 | DO m = 1, surf_usm_h%ns |
---|
1383 | surf_usm_h%wshf_eb_av(m) = & |
---|
1384 | surf_usm_h%wshf_eb_av(m) + & |
---|
1385 | surf_usm_h%wshf_eb(m) |
---|
1386 | ENDDO |
---|
1387 | DO l = 0, 3 |
---|
1388 | DO m = 1, surf_usm_v(l)%ns |
---|
1389 | surf_usm_v(l)%wshf_eb_av(m) = & |
---|
1390 | surf_usm_v(l)%wshf_eb_av(m) + & |
---|
1391 | surf_usm_v(l)%wshf_eb(m) |
---|
1392 | ENDDO |
---|
1393 | ENDDO |
---|
1394 | |
---|
1395 | CASE ( 'usm_wghf' ) |
---|
1396 | !-- array of heat flux from ground (wall, roof, land) |
---|
1397 | DO m = 1, surf_usm_h%ns |
---|
1398 | surf_usm_h%wghf_eb_av(m) = & |
---|
1399 | surf_usm_h%wghf_eb_av(m) + & |
---|
1400 | surf_usm_h%wghf_eb(m) |
---|
1401 | ENDDO |
---|
1402 | DO l = 0, 3 |
---|
1403 | DO m = 1, surf_usm_v(l)%ns |
---|
1404 | surf_usm_v(l)%wghf_eb_av(m) = & |
---|
1405 | surf_usm_v(l)%wghf_eb_av(m) + & |
---|
1406 | surf_usm_v(l)%wghf_eb(m) |
---|
1407 | ENDDO |
---|
1408 | ENDDO |
---|
1409 | |
---|
1410 | CASE ( 'usm_t_surf' ) |
---|
1411 | !-- surface temperature for surfaces |
---|
1412 | DO m = 1, surf_usm_h%ns |
---|
1413 | surf_usm_h%t_surf_av(m) = & |
---|
1414 | surf_usm_h%t_surf_av(m) + & |
---|
1415 | t_surf_h(m) |
---|
1416 | ENDDO |
---|
1417 | DO l = 0, 3 |
---|
1418 | DO m = 1, surf_usm_v(l)%ns |
---|
1419 | surf_usm_v(l)%t_surf_av(m) = & |
---|
1420 | surf_usm_v(l)%t_surf_av(m) + & |
---|
1421 | t_surf_v(l)%t(m) |
---|
1422 | ENDDO |
---|
1423 | ENDDO |
---|
1424 | |
---|
1425 | CASE ( 'usm_t_wall' ) |
---|
1426 | !-- wall temperature for iwl layer of walls and land |
---|
1427 | DO m = 1, surf_usm_h%ns |
---|
1428 | surf_usm_h%t_wall_av(iwl,m) = & |
---|
1429 | surf_usm_h%t_wall_av(iwl,m) + & |
---|
1430 | t_wall_h(iwl,m) |
---|
1431 | ENDDO |
---|
1432 | DO l = 0, 3 |
---|
1433 | DO m = 1, surf_usm_v(l)%ns |
---|
1434 | surf_usm_v(l)%t_wall_av(iwl,m) = & |
---|
1435 | surf_usm_v(l)%t_wall_av(iwl,m) + & |
---|
1436 | t_wall_v(l)%t(iwl,m) |
---|
1437 | ENDDO |
---|
1438 | ENDDO |
---|
1439 | |
---|
1440 | CASE DEFAULT |
---|
1441 | CONTINUE |
---|
1442 | |
---|
1443 | END SELECT |
---|
1444 | |
---|
1445 | ELSEIF ( mode == 'average' ) THEN |
---|
1446 | |
---|
1447 | SELECT CASE ( TRIM( var ) ) |
---|
1448 | |
---|
1449 | CASE ( 'usm_rad_net' ) |
---|
1450 | !-- array of complete radiation balance |
---|
1451 | DO m = 1, surf_usm_h%ns |
---|
1452 | surf_usm_h%rad_net_av(m) = & |
---|
1453 | surf_usm_h%rad_net_av(m) / & |
---|
1454 | REAL( average_count_3d, kind=wp ) |
---|
1455 | ENDDO |
---|
1456 | DO l = 0, 3 |
---|
1457 | DO m = 1, surf_usm_v(l)%ns |
---|
1458 | surf_usm_v(l)%rad_net_av(m) = & |
---|
1459 | surf_usm_v(l)%rad_net_av(m) / & |
---|
1460 | REAL( average_count_3d, kind=wp ) |
---|
1461 | ENDDO |
---|
1462 | ENDDO |
---|
1463 | |
---|
1464 | CASE ( 'usm_rad_insw' ) |
---|
1465 | !-- array of sw radiation falling to surface after i-th reflection |
---|
1466 | DO l = startenergy, endenergy |
---|
1467 | IF ( surfl(id,l) == ids ) THEN |
---|
1468 | surfinsw_av(l) = surfinsw_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1469 | ENDIF |
---|
1470 | ENDDO |
---|
1471 | |
---|
1472 | CASE ( 'usm_rad_inlw' ) |
---|
1473 | !-- array of lw radiation falling to surface after i-th reflection |
---|
1474 | DO l = startenergy, endenergy |
---|
1475 | IF ( surfl(id,l) == ids ) THEN |
---|
1476 | surfinlw_av(l) = surfinlw_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1477 | ENDIF |
---|
1478 | ENDDO |
---|
1479 | |
---|
1480 | CASE ( 'usm_rad_inswdir' ) |
---|
1481 | !-- array of direct sw radiation falling to surface from sun |
---|
1482 | DO l = startenergy, endenergy |
---|
1483 | IF ( surfl(id,l) == ids ) THEN |
---|
1484 | surfinswdir_av(l) = surfinswdir_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1485 | ENDIF |
---|
1486 | ENDDO |
---|
1487 | |
---|
1488 | CASE ( 'usm_rad_inswdif' ) |
---|
1489 | !-- array of difusion sw radiation falling to surface from sky and borders of the domain |
---|
1490 | DO l = startenergy, endenergy |
---|
1491 | IF ( surfl(id,l) == ids ) THEN |
---|
1492 | surfinswdif_av(l) = surfinswdif_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1493 | ENDIF |
---|
1494 | ENDDO |
---|
1495 | |
---|
1496 | CASE ( 'usm_rad_inswref' ) |
---|
1497 | !-- array of sw radiation falling to surface from reflections |
---|
1498 | DO l = startenergy, endenergy |
---|
1499 | IF ( surfl(id,l) == ids ) THEN |
---|
1500 | surfinswref_av(l) = surfinswref_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1501 | ENDIF |
---|
1502 | ENDDO |
---|
1503 | |
---|
1504 | CASE ( 'usm_rad_inlwdif' ) |
---|
1505 | !-- array of sw radiation falling to surface after i-th reflection |
---|
1506 | DO l = startenergy, endenergy |
---|
1507 | IF ( surfl(id,l) == ids ) THEN |
---|
1508 | surfinlwdif_av(l) = surfinlwdif_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1509 | ENDIF |
---|
1510 | ENDDO |
---|
1511 | |
---|
1512 | CASE ( 'usm_rad_inlwref' ) |
---|
1513 | !-- array of lw radiation falling to surface from reflections |
---|
1514 | DO l = startenergy, endenergy |
---|
1515 | IF ( surfl(id,l) == ids ) THEN |
---|
1516 | surfinlwref_av(l) = surfinlwref_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1517 | ENDIF |
---|
1518 | ENDDO |
---|
1519 | |
---|
1520 | CASE ( 'usm_rad_outsw' ) |
---|
1521 | !-- array of sw radiation emitted from surface after i-th reflection |
---|
1522 | DO l = startenergy, endenergy |
---|
1523 | IF ( surfl(id,l) == ids ) THEN |
---|
1524 | surfoutsw_av(l) = surfoutsw_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1525 | ENDIF |
---|
1526 | ENDDO |
---|
1527 | |
---|
1528 | CASE ( 'usm_rad_outlw' ) |
---|
1529 | !-- array of lw radiation emitted from surface after i-th reflection |
---|
1530 | DO l = startenergy, endenergy |
---|
1531 | IF ( surfl(id,l) == ids ) THEN |
---|
1532 | surfoutlw_av(l) = surfoutlw_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1533 | ENDIF |
---|
1534 | ENDDO |
---|
1535 | |
---|
1536 | CASE ( 'usm_rad_ressw' ) |
---|
1537 | !-- array of residua of sw radiation absorbed in surface after last reflection |
---|
1538 | DO l = startenergy, endenergy |
---|
1539 | IF ( surfl(id,l) == ids ) THEN |
---|
1540 | surfins_av(l) = surfins_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1541 | ENDIF |
---|
1542 | ENDDO |
---|
1543 | |
---|
1544 | CASE ( 'usm_rad_reslw' ) |
---|
1545 | !-- array of residua of lw radiation absorbed in surface after last reflection |
---|
1546 | DO l = startenergy, endenergy |
---|
1547 | IF ( surfl(id,l) == ids ) THEN |
---|
1548 | surfinl_av(l) = surfinl_av(l) / REAL( average_count_3d, kind=wp ) |
---|
1549 | ENDIF |
---|
1550 | ENDDO |
---|
1551 | |
---|
1552 | CASE ( 'usm_rad_hf' ) |
---|
1553 | !-- array of heat flux from radiation for surfaces after i-th reflection |
---|
1554 | DO m = 1, surf_usm_h%ns |
---|
1555 | surf_usm_h%surfhf_av(m) = & |
---|
1556 | surf_usm_h%surfhf_av(m) / & |
---|
1557 | REAL( average_count_3d, kind=wp ) |
---|
1558 | ENDDO |
---|
1559 | DO l = 0, 3 |
---|
1560 | DO m = 1, surf_usm_v(l)%ns |
---|
1561 | surf_usm_v(l)%surfhf_av(m) = & |
---|
1562 | surf_usm_v(l)%surfhf_av(m) / & |
---|
1563 | REAL( average_count_3d, kind=wp ) |
---|
1564 | ENDDO |
---|
1565 | ENDDO |
---|
1566 | |
---|
1567 | CASE ( 'usm_wshf' ) |
---|
1568 | !-- array of sensible heat flux from surfaces (land, roof, wall) |
---|
1569 | DO m = 1, surf_usm_h%ns |
---|
1570 | surf_usm_h%wshf_eb_av(m) = & |
---|
1571 | surf_usm_h%wshf_eb_av(m) / & |
---|
1572 | REAL( average_count_3d, kind=wp ) |
---|
1573 | ENDDO |
---|
1574 | DO l = 0, 3 |
---|
1575 | DO m = 1, surf_usm_v(l)%ns |
---|
1576 | surf_usm_v(l)%wshf_eb_av(m) = & |
---|
1577 | surf_usm_v(l)%wshf_eb_av(m) / & |
---|
1578 | REAL( average_count_3d, kind=wp ) |
---|
1579 | ENDDO |
---|
1580 | ENDDO |
---|
1581 | |
---|
1582 | CASE ( 'usm_wghf' ) |
---|
1583 | !-- array of heat flux from ground (wall, roof, land) |
---|
1584 | DO m = 1, surf_usm_h%ns |
---|
1585 | surf_usm_h%wghf_eb_av(m) = & |
---|
1586 | surf_usm_h%wghf_eb_av(m) / & |
---|
1587 | REAL( average_count_3d, kind=wp ) |
---|
1588 | ENDDO |
---|
1589 | DO l = 0, 3 |
---|
1590 | DO m = 1, surf_usm_v(l)%ns |
---|
1591 | surf_usm_v(l)%wghf_eb_av(m) = & |
---|
1592 | surf_usm_v(l)%wghf_eb_av(m) / & |
---|
1593 | REAL( average_count_3d, kind=wp ) |
---|
1594 | ENDDO |
---|
1595 | ENDDO |
---|
1596 | |
---|
1597 | CASE ( 'usm_t_surf' ) |
---|
1598 | !-- surface temperature for surfaces |
---|
1599 | DO m = 1, surf_usm_h%ns |
---|
1600 | surf_usm_h%t_surf_av(m) = & |
---|
1601 | surf_usm_h%t_surf_av(m) / & |
---|
1602 | REAL( average_count_3d, kind=wp ) |
---|
1603 | ENDDO |
---|
1604 | DO l = 0, 3 |
---|
1605 | DO m = 1, surf_usm_v(l)%ns |
---|
1606 | surf_usm_v(l)%t_surf_av(m) = & |
---|
1607 | surf_usm_v(l)%t_surf_av(m) / & |
---|
1608 | REAL( average_count_3d, kind=wp ) |
---|
1609 | ENDDO |
---|
1610 | ENDDO |
---|
1611 | |
---|
1612 | CASE ( 'usm_t_wall' ) |
---|
1613 | !-- wall temperature for iwl layer of walls and land |
---|
1614 | DO m = 1, surf_usm_h%ns |
---|
1615 | surf_usm_h%t_wall_av(iwl,m) = & |
---|
1616 | surf_usm_h%t_wall_av(iwl,m) / & |
---|
1617 | REAL( average_count_3d, kind=wp ) |
---|
1618 | ENDDO |
---|
1619 | DO l = 0, 3 |
---|
1620 | DO m = 1, surf_usm_v(l)%ns |
---|
1621 | surf_usm_v(l)%t_wall_av(iwl,m) = & |
---|
1622 | surf_usm_v(l)%t_wall_av(iwl,m) / & |
---|
1623 | REAL( average_count_3d, kind=wp ) |
---|
1624 | ENDDO |
---|
1625 | ENDDO |
---|
1626 | |
---|
1627 | END SELECT |
---|
1628 | |
---|
1629 | ENDIF |
---|
1630 | |
---|
1631 | END SUBROUTINE usm_average_3d_data |
---|
1632 | |
---|
1633 | |
---|
1634 | !------------------------------------------------------------------------------! |
---|
1635 | !> Calculates radiation absorbed by box with given size and LAD. |
---|
1636 | !> |
---|
1637 | !> Simulates resol**2 rays (by equally spacing a bounding horizontal square |
---|
1638 | !> conatining all possible rays that would cross the box) and calculates |
---|
1639 | !> average transparency per ray. Returns fraction of absorbed radiation flux |
---|
1640 | !> and area for which this fraction is effective. |
---|
1641 | !------------------------------------------------------------------------------! |
---|
1642 | PURE SUBROUTINE usm_box_absorb(boxsize, resol, dens, uvec, area, absorb) |
---|
1643 | IMPLICIT NONE |
---|
1644 | |
---|
1645 | REAL(wp), DIMENSION(3), INTENT(in) :: & |
---|
1646 | boxsize, & !< z, y, x size of box in m |
---|
1647 | uvec !< z, y, x unit vector of incoming flux |
---|
1648 | INTEGER(iwp), INTENT(in) :: & |
---|
1649 | resol !< No. of rays in x and y dimensions |
---|
1650 | REAL(wp), INTENT(in) :: & |
---|
1651 | dens !< box density (e.g. Leaf Area Density) |
---|
1652 | REAL(wp), INTENT(out) :: & |
---|
1653 | area, & !< horizontal area for flux absorbtion |
---|
1654 | absorb !< fraction of absorbed flux |
---|
1655 | REAL(wp) :: & |
---|
1656 | xshift, yshift, & |
---|
1657 | xmin, xmax, ymin, ymax, & |
---|
1658 | xorig, yorig, & |
---|
1659 | dx1, dy1, dz1, dx2, dy2, dz2, & |
---|
1660 | crdist, & |
---|
1661 | transp |
---|
1662 | INTEGER(iwp) :: & |
---|
1663 | i, j |
---|
1664 | |
---|
1665 | xshift = uvec(3) / uvec(1) * boxsize(1) |
---|
1666 | xmin = min(0._wp, -xshift) |
---|
1667 | xmax = boxsize(3) + max(0._wp, -xshift) |
---|
1668 | yshift = uvec(2) / uvec(1) * boxsize(1) |
---|
1669 | ymin = min(0._wp, -yshift) |
---|
1670 | ymax = boxsize(2) + max(0._wp, -yshift) |
---|
1671 | |
---|
1672 | transp = 0._wp |
---|
1673 | DO i = 1, resol |
---|
1674 | xorig = xmin + (xmax-xmin) * (i-.5_wp) / resol |
---|
1675 | DO j = 1, resol |
---|
1676 | yorig = ymin + (ymax-ymin) * (j-.5_wp) / resol |
---|
1677 | |
---|
1678 | dz1 = 0._wp |
---|
1679 | dz2 = boxsize(1)/uvec(1) |
---|
1680 | |
---|
1681 | IF ( uvec(2) > 0._wp ) THEN |
---|
1682 | dy1 = -yorig / uvec(2) !< crossing with y=0 |
---|
1683 | dy2 = (boxsize(2)-yorig) / uvec(2) !< crossing with y=boxsize(2) |
---|
1684 | ELSE IF ( uvec(2) < 0._wp ) THEN |
---|
1685 | dy1 = (boxsize(2)-yorig) / uvec(2) !< crossing with y=boxsize(2) |
---|
1686 | dy2 = -yorig / uvec(2) !< crossing with y=0 |
---|
1687 | ELSE !uvec(2)==0 |
---|
1688 | dy1 = -huge(1._wp) |
---|
1689 | dy2 = huge(1._wp) |
---|
1690 | ENDIF |
---|
1691 | |
---|
1692 | IF ( uvec(3) > 0._wp ) THEN |
---|
1693 | dx1 = -xorig / uvec(3) !< crossing with x=0 |
---|
1694 | dx2 = (boxsize(3)-xorig) / uvec(3) !< crossing with x=boxsize(3) |
---|
1695 | ELSE IF ( uvec(3) < 0._wp ) THEN |
---|
1696 | dx1 = (boxsize(3)-xorig) / uvec(3) !< crossing with x=boxsize(3) |
---|
1697 | dx2 = -xorig / uvec(3) !< crossing with x=0 |
---|
1698 | ELSE !uvec(1)==0 |
---|
1699 | dx1 = -huge(1._wp) |
---|
1700 | dx2 = huge(1._wp) |
---|
1701 | ENDIF |
---|
1702 | |
---|
1703 | crdist = max(0._wp, (min(dz2, dy2, dx2) - max(dz1, dy1, dx1))) |
---|
1704 | transp = transp + exp(-ext_coef * dens * crdist) |
---|
1705 | ENDDO |
---|
1706 | ENDDO |
---|
1707 | transp = transp / resol**2 |
---|
1708 | area = (boxsize(3)+xshift)*(boxsize(2)+yshift) |
---|
1709 | absorb = 1._wp - transp |
---|
1710 | |
---|
1711 | END SUBROUTINE usm_box_absorb |
---|
1712 | |
---|
1713 | |
---|
1714 | !------------------------------------------------------------------------------! |
---|
1715 | ! Description: |
---|
1716 | ! ------------ |
---|
1717 | !> This subroutine splits direct and diffusion dw radiation |
---|
1718 | !> It sould not be called in case the radiation model already does it |
---|
1719 | !> It follows <CITATION> |
---|
1720 | !------------------------------------------------------------------------------! |
---|
1721 | SUBROUTINE usm_calc_diffusion_radiation |
---|
1722 | |
---|
1723 | REAL(wp), PARAMETER :: sol_const = 1367.0_wp !< solar conbstant |
---|
1724 | REAL(wp), PARAMETER :: lowest_solarUp = 0.1_wp !< limit the sun elevation to protect stability of the calculation |
---|
1725 | INTEGER(iwp) :: i, j |
---|
1726 | REAL(wp), PARAMETER :: year_seconds = 86400._wp * 365._wp |
---|
1727 | REAL(wp) :: year_angle !< angle |
---|
1728 | REAL(wp) :: etr !< extraterestrial radiation |
---|
1729 | REAL(wp) :: corrected_solarUp !< corrected solar up radiation |
---|
1730 | REAL(wp) :: horizontalETR !< horizontal extraterestrial radiation |
---|
1731 | REAL(wp) :: clearnessIndex !< clearness index |
---|
1732 | REAL(wp) :: diff_frac !< diffusion fraction of the radiation |
---|
1733 | |
---|
1734 | |
---|
1735 | !-- Calculate current day and time based on the initial values and simulation time |
---|
1736 | year_angle = ((day_init*86400) + time_utc_init+time_since_reference_point) & |
---|
1737 | / year_seconds * 2.0_wp * pi |
---|
1738 | |
---|
1739 | etr = sol_const * (1.00011_wp + & |
---|
1740 | 0.034221_wp * cos(year_angle) + & |
---|
1741 | 0.001280_wp * sin(year_angle) + & |
---|
1742 | 0.000719_wp * cos(2.0_wp * year_angle) + & |
---|
1743 | 0.000077_wp * sin(2.0_wp * year_angle)) |
---|
1744 | |
---|
1745 | !-- |
---|
1746 | !-- Under a very low angle, we keep extraterestrial radiation at |
---|
1747 | !-- the last small value, therefore the clearness index will be pushed |
---|
1748 | !-- towards 0 while keeping full continuity. |
---|
1749 | !-- |
---|
1750 | IF ( zenith(0) <= lowest_solarUp ) THEN |
---|
1751 | corrected_solarUp = lowest_solarUp |
---|
1752 | ELSE |
---|
1753 | corrected_solarUp = zenith(0) |
---|
1754 | ENDIF |
---|
1755 | |
---|
1756 | horizontalETR = etr * corrected_solarUp |
---|
1757 | |
---|
1758 | DO i = nxlg, nxrg |
---|
1759 | DO j = nysg, nyng |
---|
1760 | clearnessIndex = rad_sw_in(0,j,i) / horizontalETR |
---|
1761 | diff_frac = 1.0_wp / (1.0_wp + exp(-5.0033_wp + 8.6025_wp * clearnessIndex)) |
---|
1762 | rad_sw_in_diff(j,i) = rad_sw_in(0,j,i) * diff_frac |
---|
1763 | rad_sw_in_dir(j,i) = rad_sw_in(0,j,i) * (1.0_wp - diff_frac) |
---|
1764 | rad_lw_in_diff(j,i) = rad_lw_in(0,j,i) |
---|
1765 | ENDDO |
---|
1766 | ENDDO |
---|
1767 | |
---|
1768 | END SUBROUTINE usm_calc_diffusion_radiation |
---|
1769 | |
---|
1770 | |
---|
1771 | !------------------------------------------------------------------------------! |
---|
1772 | ! Description: |
---|
1773 | ! ------------ |
---|
1774 | !> Calculates shape view factors SVF and plant sink canopy factors PSCF |
---|
1775 | !> !!!!!DESCRIPTION!!!!!!!!!! |
---|
1776 | !------------------------------------------------------------------------------! |
---|
1777 | SUBROUTINE usm_calc_svf |
---|
1778 | |
---|
1779 | IMPLICIT NONE |
---|
1780 | |
---|
1781 | INTEGER(iwp) :: i, j, k, l, d, ip, jp |
---|
1782 | INTEGER(iwp) :: isvf, ksvf, icsf, kcsf, npcsfl, isvf_surflt, imrtt, imrtf |
---|
1783 | INTEGER(iwp) :: sd, td, ioln, iproc |
---|
1784 | REAL(wp), DIMENSION(0:9) :: facearea |
---|
1785 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nzterrl, planthl |
---|
1786 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: csflt, pcsflt |
---|
1787 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: kcsflt,kpcsflt |
---|
1788 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: icsflt,dcsflt,ipcsflt,dpcsflt |
---|
1789 | REAL(wp), DIMENSION(3) :: uv |
---|
1790 | LOGICAL :: visible |
---|
1791 | REAL(wp), DIMENSION(3) :: sa, ta !< real coordinates z,y,x of source and target |
---|
1792 | REAL(wp) :: transparency, rirrf, sqdist, svfsum |
---|
1793 | INTEGER(iwp) :: isurflt, isurfs, isurflt_prev |
---|
1794 | INTEGER(iwp) :: itx, ity, itz |
---|
1795 | CHARACTER(len=7) :: pid_char = '' |
---|
1796 | INTEGER(iwp) :: win_lad, minfo |
---|
1797 | REAL(wp), DIMENSION(:,:,:), POINTER :: lad_s_rma !< fortran pointer, but lower bounds are 1 |
---|
1798 | TYPE(c_ptr) :: lad_s_rma_p !< allocated c pointer |
---|
1799 | INTEGER(kind=MPI_ADDRESS_KIND) :: size_lad_rma |
---|
1800 | ! |
---|
1801 | !-- calculation of the SVF |
---|
1802 | CALL location_message( ' calculation of SVF and CSF', .TRUE. ) |
---|
1803 | ! |
---|
1804 | !-- precalculate face areas for different face directions using normal vector |
---|
1805 | DO d = 0, 9 |
---|
1806 | facearea(d) = 1._wp |
---|
1807 | IF ( idir(d) == 0 ) facearea(d) = facearea(d) * dx |
---|
1808 | IF ( jdir(d) == 0 ) facearea(d) = facearea(d) * dy |
---|
1809 | IF ( kdir(d) == 0 ) facearea(d) = facearea(d) * dz |
---|
1810 | ENDDO |
---|
1811 | |
---|
1812 | !-- initialize variables and temporary arrays for calculation of svf and csf |
---|
1813 | nsvfl = 0 |
---|
1814 | ncsfl = 0 |
---|
1815 | nsvfla = gasize |
---|
1816 | msvf = 1 |
---|
1817 | ALLOCATE( asvf1(nsvfla) ) |
---|
1818 | asvf => asvf1 |
---|
1819 | IF ( plant_canopy ) THEN |
---|
1820 | ncsfla = gasize |
---|
1821 | mcsf = 1 |
---|
1822 | ALLOCATE( acsf1(ncsfla) ) |
---|
1823 | acsf => acsf1 |
---|
1824 | ENDIF |
---|
1825 | |
---|
1826 | !-- initialize temporary terrain and plant canopy height arrays (global 2D array!) |
---|
1827 | ALLOCATE( nzterr(0:(nx+1)*(ny+1)-1) ) |
---|
1828 | #if defined( __parallel ) |
---|
1829 | ALLOCATE( nzterrl(nys:nyn,nxl:nxr) ) |
---|
1830 | nzterrl = MAXLOC( & |
---|
1831 | MERGE( 1, 0, & |
---|
1832 | BTEST( wall_flags_0(:,nys:nyn,nxl:nxr), 12 ) & |
---|
1833 | ), DIM = 1 & |
---|
1834 | ) - 1 ! = nzb_s_inner(nys:nyn,nxl:nxr) |
---|
1835 | CALL MPI_AllGather( nzterrl, nnx*nny, MPI_INTEGER, & |
---|
1836 | nzterr, nnx*nny, MPI_INTEGER, comm2d, ierr ) |
---|
1837 | DEALLOCATE(nzterrl) |
---|
1838 | #else |
---|
1839 | nzterr = RESHAPE( MAXLOC( & |
---|
1840 | MERGE( 1, 0, & |
---|
1841 | BTEST( wall_flags_0(:,nys:nyn,nxl:nxr), 12 ) & |
---|
1842 | ), DIM = 1 & |
---|
1843 | ) - 1, & |
---|
1844 | (/(nx+1)*(ny+1)/) & |
---|
1845 | ) |
---|
1846 | #endif |
---|
1847 | IF ( plant_canopy ) THEN |
---|
1848 | ALLOCATE( plantt(0:(nx+1)*(ny+1)-1) ) |
---|
1849 | maxboxesg = nx + ny + nzu + 1 |
---|
1850 | !-- temporary arrays storing values for csf calculation during raytracing |
---|
1851 | ALLOCATE( boxes(3, maxboxesg) ) |
---|
1852 | ALLOCATE( crlens(maxboxesg) ) |
---|
1853 | |
---|
1854 | #if defined( __parallel ) |
---|
1855 | ALLOCATE( planthl(nys:nyn,nxl:nxr) ) |
---|
1856 | planthl = pch(nys:nyn,nxl:nxr) |
---|
1857 | |
---|
1858 | CALL MPI_AllGather( planthl, nnx*nny, MPI_INTEGER, & |
---|
1859 | plantt, nnx*nny, MPI_INTEGER, comm2d, ierr ) |
---|
1860 | DEALLOCATE( planthl ) |
---|
1861 | |
---|
1862 | !-- temporary arrays storing values for csf calculation during raytracing |
---|
1863 | ALLOCATE( lad_ip(maxboxesg) ) |
---|
1864 | ALLOCATE( lad_disp(maxboxesg) ) |
---|
1865 | |
---|
1866 | IF ( usm_lad_rma ) THEN |
---|
1867 | ALLOCATE( lad_s_ray(maxboxesg) ) |
---|
1868 | |
---|
1869 | ! set conditions for RMA communication |
---|
1870 | CALL MPI_Info_create(minfo, ierr) |
---|
1871 | CALL MPI_Info_set(minfo, 'accumulate_ordering', '', ierr) |
---|
1872 | CALL MPI_Info_set(minfo, 'accumulate_ops', 'same_op', ierr) |
---|
1873 | CALL MPI_Info_set(minfo, 'same_size', 'true', ierr) |
---|
1874 | CALL MPI_Info_set(minfo, 'same_disp_unit', 'true', ierr) |
---|
1875 | |
---|
1876 | !-- Allocate and initialize the MPI RMA window |
---|
1877 | !-- must be in accordance with allocation of lad_s in plant_canopy_model |
---|
1878 | !-- optimization of memory should be done |
---|
1879 | !-- Argument X of function c_sizeof(X) needs arbitrary REAL(wp) value, set to 1.0_wp for now |
---|
1880 | size_lad_rma = c_sizeof(1.0_wp)*nnx*nny*nzu |
---|
1881 | CALL MPI_Win_allocate(size_lad_rma, c_sizeof(1.0_wp), minfo, comm2d, & |
---|
1882 | lad_s_rma_p, win_lad, ierr) |
---|
1883 | CALL c_f_pointer(lad_s_rma_p, lad_s_rma, (/ nzu, nny, nnx /)) |
---|
1884 | usm_lad(nzub:, nys:, nxl:) => lad_s_rma(:,:,:) |
---|
1885 | ELSE |
---|
1886 | ALLOCATE(usm_lad(nzub:nzut, nys:nyn, nxl:nxr)) |
---|
1887 | ENDIF |
---|
1888 | #else |
---|
1889 | plantt = RESHAPE( pct(nys:nyn,nxl:nxr), (/(nx+1)*(ny+1)/) ) |
---|
1890 | ALLOCATE(usm_lad(nzub:nzut, nys:nyn, nxl:nxr)) |
---|
1891 | #endif |
---|
1892 | usm_lad(:,:,:) = 0._wp |
---|
1893 | DO i = nxl, nxr |
---|
1894 | DO j = nys, nyn |
---|
1895 | k = MAXLOC( & |
---|
1896 | MERGE( 1, 0, & |
---|
1897 | BTEST( wall_flags_0(:,j,i), 12 ) & |
---|
1898 | ), DIM = 1 & |
---|
1899 | ) - 1 |
---|
1900 | |
---|
1901 | usm_lad(k:nzut, j, i) = lad_s(0:nzut-k, j, i) |
---|
1902 | ENDDO |
---|
1903 | ENDDO |
---|
1904 | |
---|
1905 | #if defined( __parallel ) |
---|
1906 | IF ( usm_lad_rma ) THEN |
---|
1907 | CALL MPI_Info_free(minfo, ierr) |
---|
1908 | CALL MPI_Win_lock_all(0, win_lad, ierr) |
---|
1909 | ELSE |
---|
1910 | ALLOCATE( usm_lad_g(0:(nx+1)*(ny+1)*nzu-1) ) |
---|
1911 | CALL MPI_AllGather( usm_lad, nnx*nny*nzu, MPI_REAL, & |
---|
1912 | usm_lad_g, nnx*nny*nzu, MPI_REAL, comm2d, ierr ) |
---|
1913 | ENDIF |
---|
1914 | #endif |
---|
1915 | ENDIF |
---|
1916 | |
---|
1917 | IF ( mrt_factors ) THEN |
---|
1918 | OPEN(153, file='MRT_TARGETS', access='SEQUENTIAL', & |
---|
1919 | action='READ', status='OLD', form='FORMATTED', err=524) |
---|
1920 | OPEN(154, file='MRT_FACTORS'//myid_char, access='DIRECT', recl=(5*4+2*8), & |
---|
1921 | action='WRITE', status='REPLACE', form='UNFORMATTED', err=525) |
---|
1922 | imrtf = 1 |
---|
1923 | DO |
---|
1924 | READ(153, *, end=526, err=524) imrtt, i, j, k |
---|
1925 | IF ( i < nxl .OR. i > nxr & |
---|
1926 | .OR. j < nys .OR. j > nyn ) CYCLE |
---|
1927 | ta = (/ REAL(k), REAL(j), REAL(i) /) |
---|
1928 | |
---|
1929 | DO isurfs = 1, nsurf |
---|
1930 | IF ( .NOT. usm_facing(i, j, k, -1, & |
---|
1931 | surf(ix, isurfs), surf(iy, isurfs), & |
---|
1932 | surf(iz, isurfs), surf(id, isurfs)) ) THEN |
---|
1933 | CYCLE |
---|
1934 | ENDIF |
---|
1935 | |
---|
1936 | sd = surf(id, isurfs) |
---|
1937 | sa = (/ REAL(surf(iz, isurfs), wp) - 0.5_wp * kdir(sd), & |
---|
1938 | REAL(surf(iy, isurfs), wp) - 0.5_wp * jdir(sd), & |
---|
1939 | REAL(surf(ix, isurfs), wp) - 0.5_wp * idir(sd) /) |
---|
1940 | |
---|
1941 | !-- unit vector source -> target |
---|
1942 | uv = (/ (ta(1)-sa(1))*dz, (ta(2)-sa(2))*dy, (ta(3)-sa(3))*dx /) |
---|
1943 | sqdist = SUM(uv(:)**2) |
---|
1944 | uv = uv / SQRT(sqdist) |
---|
1945 | |
---|
1946 | !-- irradiance factor - see svf. Here we consider that target face is always normal, |
---|
1947 | !-- i.e. the second dot product equals 1 |
---|
1948 | rirrf = dot_product((/ kdir(sd), jdir(sd), idir(sd) /), uv) & |
---|
1949 | / (pi * sqdist) * facearea(sd) |
---|
1950 | |
---|
1951 | !-- raytrace while not creating any canopy sink factors |
---|
1952 | CALL usm_raytrace(sa, ta, isurfs, rirrf, 1._wp, .FALSE., & |
---|
1953 | visible, transparency, win_lad) |
---|
1954 | IF ( .NOT. visible ) CYCLE |
---|
1955 | |
---|
1956 | !rsvf = rirrf * transparency |
---|
1957 | WRITE(154, rec=imrtf, err=525) INT(imrtt, kind=4), & |
---|
1958 | INT(surf(id, isurfs), kind=4), & |
---|
1959 | INT(surf(iz, isurfs), kind=4), & |
---|
1960 | INT(surf(iy, isurfs), kind=4), & |
---|
1961 | INT(surf(ix, isurfs), kind=4), & |
---|
1962 | REAL(rirrf, kind=8), REAL(transparency, kind=8) |
---|
1963 | imrtf = imrtf + 1 |
---|
1964 | |
---|
1965 | ENDDO !< isurfs |
---|
1966 | ENDDO !< MRT_TARGETS record |
---|
1967 | |
---|
1968 | 524 message_string = 'error reading file MRT_TARGETS' |
---|
1969 | CALL message( 'usm_calc_svf', 'PA0524', 1, 2, 0, 6, 0 ) |
---|
1970 | |
---|
1971 | 525 message_string = 'error writing file MRT_FACTORS'//myid_char |
---|
1972 | CALL message( 'usm_calc_svf', 'PA0525', 1, 2, 0, 6, 0 ) |
---|
1973 | |
---|
1974 | 526 CLOSE(153) |
---|
1975 | CLOSE(154) |
---|
1976 | ENDIF !< mrt_factors |
---|
1977 | |
---|
1978 | |
---|
1979 | DO isurflt = 1, nsurfl |
---|
1980 | !-- determine face centers |
---|
1981 | td = surfl(id, isurflt) |
---|
1982 | IF ( td >= isky .AND. .NOT. plant_canopy ) CYCLE |
---|
1983 | ta = (/ REAL(surfl(iz, isurflt), wp) - 0.5_wp * kdir(td), & |
---|
1984 | REAL(surfl(iy, isurflt), wp) - 0.5_wp * jdir(td), & |
---|
1985 | REAL(surfl(ix, isurflt), wp) - 0.5_wp * idir(td) /) |
---|
1986 | DO isurfs = 1, nsurf |
---|
1987 | IF ( .NOT. usm_facing(surfl(ix, isurflt), surfl(iy, isurflt), & |
---|
1988 | surfl(iz, isurflt), surfl(id, isurflt), & |
---|
1989 | surf(ix, isurfs), surf(iy, isurfs), & |
---|
1990 | surf(iz, isurfs), surf(id, isurfs)) ) THEN |
---|
1991 | CYCLE |
---|
1992 | ENDIF |
---|
1993 | |
---|
1994 | sd = surf(id, isurfs) |
---|
1995 | sa = (/ REAL(surf(iz, isurfs), wp) - 0.5_wp * kdir(sd), & |
---|
1996 | REAL(surf(iy, isurfs), wp) - 0.5_wp * jdir(sd), & |
---|
1997 | REAL(surf(ix, isurfs), wp) - 0.5_wp * idir(sd) /) |
---|
1998 | |
---|
1999 | !-- unit vector source -> target |
---|
2000 | uv = (/ (ta(1)-sa(1))*dz, (ta(2)-sa(2))*dy, (ta(3)-sa(3))*dx /) |
---|
2001 | sqdist = SUM(uv(:)**2) |
---|
2002 | uv = uv / SQRT(sqdist) |
---|
2003 | |
---|
2004 | !-- irradiance factor (our unshaded shape view factor) = view factor per differential target area * source area |
---|
2005 | rirrf = dot_product((/ kdir(sd), jdir(sd), idir(sd) /), uv) & ! cosine of source normal and direction |
---|
2006 | * dot_product((/ kdir(td), jdir(td), idir(td) /), -uv) & ! cosine of target normal and reverse direction |
---|
2007 | / (pi * sqdist) & ! square of distance between centers |
---|
2008 | * facearea(sd) |
---|
2009 | |
---|
2010 | !-- raytrace + process plant canopy sinks within |
---|
2011 | CALL usm_raytrace(sa, ta, isurfs, rirrf, facearea(td), .TRUE., & |
---|
2012 | visible, transparency, win_lad) |
---|
2013 | |
---|
2014 | IF ( .NOT. visible ) CYCLE |
---|
2015 | IF ( td >= isky ) CYCLE !< we calculated these only for raytracing |
---|
2016 | !< to find plant canopy sinks, we don't need svf for them |
---|
2017 | ! rsvf = rirrf * transparency |
---|
2018 | |
---|
2019 | !-- write to the svf array |
---|
2020 | nsvfl = nsvfl + 1 |
---|
2021 | !-- check dimmension of asvf array and enlarge it if needed |
---|
2022 | IF ( nsvfla < nsvfl ) THEN |
---|
2023 | k = nsvfla * 2 |
---|
2024 | IF ( msvf == 0 ) THEN |
---|
2025 | msvf = 1 |
---|
2026 | ALLOCATE( asvf1(k) ) |
---|
2027 | asvf => asvf1 |
---|
2028 | asvf1(1:nsvfla) = asvf2 |
---|
2029 | DEALLOCATE( asvf2 ) |
---|
2030 | ELSE |
---|
2031 | msvf = 0 |
---|
2032 | ALLOCATE( asvf2(k) ) |
---|
2033 | asvf => asvf2 |
---|
2034 | asvf2(1:nsvfla) = asvf1 |
---|
2035 | DEALLOCATE( asvf1 ) |
---|
2036 | ENDIF |
---|
2037 | nsvfla = k |
---|
2038 | ENDIF |
---|
2039 | !-- write svf values into the array |
---|
2040 | asvf(nsvfl)%isurflt = isurflt |
---|
2041 | asvf(nsvfl)%isurfs = isurfs |
---|
2042 | asvf(nsvfl)%rsvf = rirrf !we postopne multiplication by transparency |
---|
2043 | asvf(nsvfl)%rtransp = transparency !a.k.a. Direct Irradiance Factor |
---|
2044 | ENDDO |
---|
2045 | ENDDO |
---|
2046 | |
---|
2047 | CALL location_message( ' waiting for completion of SVF and CSF calculation in all processes', .TRUE. ) |
---|
2048 | !-- deallocate temporary global arrays |
---|
2049 | DEALLOCATE(nzterr) |
---|
2050 | |
---|
2051 | IF ( plant_canopy ) THEN |
---|
2052 | !-- finalize mpi_rma communication and deallocate temporary arrays |
---|
2053 | #if defined( __parallel ) |
---|
2054 | IF ( usm_lad_rma ) THEN |
---|
2055 | CALL MPI_Win_flush_all(win_lad, ierr) |
---|
2056 | !-- unlock MPI window |
---|
2057 | CALL MPI_Win_unlock_all(win_lad, ierr) |
---|
2058 | !-- free MPI window |
---|
2059 | CALL MPI_Win_free(win_lad, ierr) |
---|
2060 | |
---|
2061 | !-- deallocate temporary arrays storing values for csf calculation during raytracing |
---|
2062 | DEALLOCATE( lad_s_ray ) |
---|
2063 | !-- usm_lad is the pointer to lad_s_rma in case of usm_lad_rma |
---|
2064 | !-- and must not be deallocated here |
---|
2065 | ELSE |
---|
2066 | DEALLOCATE(usm_lad) |
---|
2067 | DEALLOCATE(usm_lad_g) |
---|
2068 | ENDIF |
---|
2069 | #else |
---|
2070 | DEALLOCATE(usm_lad) |
---|
2071 | #endif |
---|
2072 | DEALLOCATE( boxes ) |
---|
2073 | DEALLOCATE( crlens ) |
---|
2074 | DEALLOCATE( plantt ) |
---|
2075 | ENDIF |
---|
2076 | |
---|
2077 | CALL location_message( ' calculation of the complete SVF array', .TRUE. ) |
---|
2078 | |
---|
2079 | !-- sort svf ( a version of quicksort ) |
---|
2080 | CALL quicksort_svf(asvf,1,nsvfl) |
---|
2081 | |
---|
2082 | ALLOCATE( svf(ndsvf,nsvfl) ) |
---|
2083 | ALLOCATE( svfsurf(idsvf,nsvfl) ) |
---|
2084 | |
---|
2085 | !< load svf from the structure array to plain arrays |
---|
2086 | isurflt_prev = -1 |
---|
2087 | ksvf = 1 |
---|
2088 | svfsum = 0._wp |
---|
2089 | DO isvf = 1, nsvfl |
---|
2090 | !-- normalize svf per target face |
---|
2091 | IF ( asvf(ksvf)%isurflt /= isurflt_prev ) THEN |
---|
2092 | IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN |
---|
2093 | !-- TODO detect and log when normalization differs too much from 1 |
---|
2094 | svf(1, isvf_surflt:isvf-1) = svf(1, isvf_surflt:isvf-1) / svfsum |
---|
2095 | ENDIF |
---|
2096 | isurflt_prev = asvf(ksvf)%isurflt |
---|
2097 | isvf_surflt = isvf |
---|
2098 | svfsum = asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp |
---|
2099 | ELSE |
---|
2100 | svfsum = svfsum + asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp |
---|
2101 | ENDIF |
---|
2102 | |
---|
2103 | svf(:, isvf) = (/ asvf(ksvf)%rsvf, asvf(ksvf)%rtransp /) |
---|
2104 | svfsurf(:, isvf) = (/ asvf(ksvf)%isurflt, asvf(ksvf)%isurfs /) |
---|
2105 | |
---|
2106 | !-- next element |
---|
2107 | ksvf = ksvf + 1 |
---|
2108 | ENDDO |
---|
2109 | |
---|
2110 | IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN |
---|
2111 | !-- TODO detect and log when normalization differs too much from 1 |
---|
2112 | svf(1, isvf_surflt:nsvfl) = svf(1, isvf_surflt:nsvfl) / svfsum |
---|
2113 | ENDIF |
---|
2114 | |
---|
2115 | !-- deallocate temporary asvf array |
---|
2116 | !-- DEALLOCATE(asvf) - ifort has a problem with deallocation of allocatable target |
---|
2117 | !-- via pointing pointer - we need to test original targets |
---|
2118 | IF ( ALLOCATED(asvf1) ) THEN |
---|
2119 | DEALLOCATE(asvf1) |
---|
2120 | ENDIF |
---|
2121 | IF ( ALLOCATED(asvf2) ) THEN |
---|
2122 | DEALLOCATE(asvf2) |
---|
2123 | ENDIF |
---|
2124 | |
---|
2125 | npcsfl = 0 |
---|
2126 | IF ( plant_canopy ) THEN |
---|
2127 | |
---|
2128 | CALL location_message( ' calculation of the complete CSF array', .TRUE. ) |
---|
2129 | |
---|
2130 | !-- sort and merge csf for the last time, keeping the array size to minimum |
---|
2131 | CALL usm_merge_and_grow_csf(-1) |
---|
2132 | |
---|
2133 | !-- aggregate csb among processors |
---|
2134 | !-- allocate necessary arrays |
---|
2135 | ALLOCATE( csflt(ndcsf,max(ncsfl,ndcsf)) ) |
---|
2136 | ALLOCATE( kcsflt(kdcsf,max(ncsfl,kdcsf)) ) |
---|
2137 | ALLOCATE( icsflt(0:numprocs-1) ) |
---|
2138 | ALLOCATE( dcsflt(0:numprocs-1) ) |
---|
2139 | ALLOCATE( ipcsflt(0:numprocs-1) ) |
---|
2140 | ALLOCATE( dpcsflt(0:numprocs-1) ) |
---|
2141 | |
---|
2142 | !-- fill out arrays of csf values and |
---|
2143 | !-- arrays of number of elements and displacements |
---|
2144 | !-- for particular precessors |
---|
2145 | icsflt = 0 |
---|
2146 | dcsflt = 0 |
---|
2147 | ip = -1 |
---|
2148 | j = -1 |
---|
2149 | d = 0 |
---|
2150 | DO kcsf = 1, ncsfl |
---|
2151 | j = j+1 |
---|
2152 | IF ( acsf(kcsf)%ip /= ip ) THEN |
---|
2153 | !-- new block of the processor |
---|
2154 | !-- number of elements of previous block |
---|
2155 | IF ( ip>=0) icsflt(ip) = j |
---|
2156 | d = d+j |
---|
2157 | !-- blank blocks |
---|
2158 | DO jp = ip+1, acsf(kcsf)%ip-1 |
---|
2159 | !-- number of elements is zero, displacement is equal to previous |
---|
2160 | icsflt(jp) = 0 |
---|
2161 | dcsflt(jp) = d |
---|
2162 | ENDDO |
---|
2163 | !-- the actual block |
---|
2164 | ip = acsf(kcsf)%ip |
---|
2165 | dcsflt(ip) = d |
---|
2166 | j = 0 |
---|
2167 | ENDIF |
---|
2168 | !-- fill out real values of rsvf, rtransp |
---|
2169 | csflt(1,kcsf) = acsf(kcsf)%rsvf |
---|
2170 | csflt(2,kcsf) = acsf(kcsf)%rtransp |
---|
2171 | !-- fill out integer values of itz,ity,itx,isurfs |
---|
2172 | kcsflt(1,kcsf) = acsf(kcsf)%itz |
---|
2173 | kcsflt(2,kcsf) = acsf(kcsf)%ity |
---|
2174 | kcsflt(3,kcsf) = acsf(kcsf)%itx |
---|
2175 | kcsflt(4,kcsf) = acsf(kcsf)%isurfs |
---|
2176 | ENDDO |
---|
2177 | !-- last blank blocks at the end of array |
---|
2178 | j = j+1 |
---|
2179 | IF ( ip>=0 ) icsflt(ip) = j |
---|
2180 | d = d+j |
---|
2181 | DO jp = ip+1, numprocs-1 |
---|
2182 | !-- number of elements is zero, displacement is equal to previous |
---|
2183 | icsflt(jp) = 0 |
---|
2184 | dcsflt(jp) = d |
---|
2185 | ENDDO |
---|
2186 | |
---|
2187 | !-- deallocate temporary acsf array |
---|
2188 | !-- DEALLOCATE(acsf) - ifort has a problem with deallocation of allocatable target |
---|
2189 | !-- via pointing pointer - we need to test original targets |
---|
2190 | IF ( ALLOCATED(acsf1) ) THEN |
---|
2191 | DEALLOCATE(acsf1) |
---|
2192 | ENDIF |
---|
2193 | IF ( ALLOCATED(acsf2) ) THEN |
---|
2194 | DEALLOCATE(acsf2) |
---|
2195 | ENDIF |
---|
2196 | |
---|
2197 | #if defined( __parallel ) |
---|
2198 | !-- scatter and gather the number of elements to and from all processor |
---|
2199 | !-- and calculate displacements |
---|
2200 | CALL MPI_AlltoAll(icsflt,1,MPI_INTEGER,ipcsflt,1,MPI_INTEGER,comm2d, ierr) |
---|
2201 | |
---|
2202 | npcsfl = SUM(ipcsflt) |
---|
2203 | d = 0 |
---|
2204 | DO i = 0, numprocs-1 |
---|
2205 | dpcsflt(i) = d |
---|
2206 | d = d + ipcsflt(i) |
---|
2207 | ENDDO |
---|
2208 | |
---|
2209 | !-- exchange csf fields between processors |
---|
2210 | ALLOCATE( pcsflt(ndcsf,max(npcsfl,ndcsf)) ) |
---|
2211 | ALLOCATE( kpcsflt(kdcsf,max(npcsfl,kdcsf)) ) |
---|
2212 | CALL MPI_AlltoAllv(csflt, ndcsf*icsflt, ndcsf*dcsflt, MPI_REAL, & |
---|
2213 | pcsflt, ndcsf*ipcsflt, ndcsf*dpcsflt, MPI_REAL, comm2d, ierr) |
---|
2214 | CALL MPI_AlltoAllv(kcsflt, kdcsf*icsflt, kdcsf*dcsflt, MPI_INTEGER, & |
---|
2215 | kpcsflt, kdcsf*ipcsflt, kdcsf*dpcsflt, MPI_INTEGER, comm2d, ierr) |
---|
2216 | |
---|
2217 | #else |
---|
2218 | npcsfl = ncsfl |
---|
2219 | ALLOCATE( pcsflt(ndcsf,max(npcsfl,ndcsf)) ) |
---|
2220 | ALLOCATE( kpcsflt(kdcsf,max(npcsfl,kdcsf)) ) |
---|
2221 | pcsflt = csflt |
---|
2222 | kpcsflt = kcsflt |
---|
2223 | #endif |
---|
2224 | |
---|
2225 | !-- deallocate temporary arrays |
---|
2226 | DEALLOCATE( csflt ) |
---|
2227 | DEALLOCATE( kcsflt ) |
---|
2228 | DEALLOCATE( icsflt ) |
---|
2229 | DEALLOCATE( dcsflt ) |
---|
2230 | DEALLOCATE( ipcsflt ) |
---|
2231 | DEALLOCATE( dpcsflt ) |
---|
2232 | |
---|
2233 | !-- sort csf ( a version of quicksort ) |
---|
2234 | CALL quicksort_csf2(kpcsflt, pcsflt, 1, npcsfl) |
---|
2235 | |
---|
2236 | !-- aggregate canopy sink factor records with identical box & source |
---|
2237 | !-- againg across all values from all processors |
---|
2238 | IF ( npcsfl > 0 ) THEN |
---|
2239 | icsf = 1 !< reading index |
---|
2240 | kcsf = 1 !< writing index |
---|
2241 | DO while (icsf < npcsfl) |
---|
2242 | !-- here kpcsf(kcsf) already has values from kpcsf(icsf) |
---|
2243 | IF ( kpcsflt(3,icsf) == kpcsflt(3,icsf+1) .AND. & |
---|
2244 | kpcsflt(2,icsf) == kpcsflt(2,icsf+1) .AND. & |
---|
2245 | kpcsflt(1,icsf) == kpcsflt(1,icsf+1) .AND. & |
---|
2246 | kpcsflt(4,icsf) == kpcsflt(4,icsf+1) ) THEN |
---|
2247 | !-- We could simply take either first or second rtransp, both are valid. As a very simple heuristic about which ray |
---|
2248 | !-- probably passes nearer the center of the target box, we choose DIF from the entry with greater CSF, since that |
---|
2249 | !-- might mean that the traced beam passes longer through the canopy box. |
---|
2250 | IF ( pcsflt(1,kcsf) < pcsflt(1,icsf+1) ) THEN |
---|
2251 | pcsflt(2,kcsf) = pcsflt(2,icsf+1) |
---|
2252 | ENDIF |
---|
2253 | pcsflt(1,kcsf) = pcsflt(1,kcsf) + pcsflt(1,icsf+1) |
---|
2254 | |
---|
2255 | !-- advance reading index, keep writing index |
---|
2256 | icsf = icsf + 1 |
---|
2257 | ELSE |
---|
2258 | !-- not identical, just advance and copy |
---|
2259 | icsf = icsf + 1 |
---|
2260 | kcsf = kcsf + 1 |
---|
2261 | kpcsflt(:,kcsf) = kpcsflt(:,icsf) |
---|
2262 | pcsflt(:,kcsf) = pcsflt(:,icsf) |
---|
2263 | ENDIF |
---|
2264 | ENDDO |
---|
2265 | !-- last written item is now also the last item in valid part of array |
---|
2266 | npcsfl = kcsf |
---|
2267 | ENDIF |
---|
2268 | |
---|
2269 | ncsfl = npcsfl |
---|
2270 | IF ( ncsfl > 0 ) THEN |
---|
2271 | ALLOCATE( csf(ndcsf,ncsfl) ) |
---|
2272 | ALLOCATE( csfsurf(idcsf,ncsfl) ) |
---|
2273 | DO icsf = 1, ncsfl |
---|
2274 | csf(:,icsf) = pcsflt(:,icsf) |
---|
2275 | csfsurf(1,icsf) = gridpcbl(kpcsflt(1,icsf),kpcsflt(2,icsf),kpcsflt(3,icsf)) |
---|
2276 | csfsurf(2,icsf) = kpcsflt(4,icsf) |
---|
2277 | ENDDO |
---|
2278 | ENDIF |
---|
2279 | |
---|
2280 | !-- deallocation of temporary arrays |
---|
2281 | DEALLOCATE( pcsflt ) |
---|
2282 | DEALLOCATE( kpcsflt ) |
---|
2283 | |
---|
2284 | ENDIF |
---|
2285 | |
---|
2286 | RETURN |
---|
2287 | |
---|
2288 | 301 WRITE( message_string, * ) & |
---|
2289 | 'I/O error when processing shape view factors / ', & |
---|
2290 | 'plant canopy sink factors / direct irradiance factors.' |
---|
2291 | CALL message( 'init_urban_surface', 'PA0502', 2, 2, 0, 6, 0 ) |
---|
2292 | |
---|
2293 | END SUBROUTINE usm_calc_svf |
---|
2294 | |
---|
2295 | |
---|
2296 | !------------------------------------------------------------------------------! |
---|
2297 | ! |
---|
2298 | ! Description: |
---|
2299 | ! ------------ |
---|
2300 | !> Subroutine checks variables and assigns units. |
---|
2301 | !> It is caaled out from subroutine check_parameters. |
---|
2302 | !------------------------------------------------------------------------------! |
---|
2303 | SUBROUTINE usm_check_data_output( variable, unit ) |
---|
2304 | |
---|
2305 | IMPLICIT NONE |
---|
2306 | |
---|
2307 | CHARACTER (len=*),INTENT(IN) :: variable !: |
---|
2308 | CHARACTER (len=*),INTENT(OUT) :: unit !: |
---|
2309 | |
---|
2310 | CHARACTER (len=varnamelength) :: var |
---|
2311 | |
---|
2312 | var = TRIM(variable) |
---|
2313 | IF ( var(1:12) == 'usm_rad_net_' .OR. var(1:13) == 'usm_rad_insw_' .OR. & |
---|
2314 | var(1:13) == 'usm_rad_inlw_' .OR. var(1:16) == 'usm_rad_inswdir_' .OR. & |
---|
2315 | var(1:16) == 'usm_rad_inswdif_' .OR. var(1:16) == 'usm_rad_inswref_' .OR. & |
---|
2316 | var(1:16) == 'usm_rad_inlwdif_' .OR. var(1:16) == 'usm_rad_inlwref_' .OR. & |
---|
2317 | var(1:14) == 'usm_rad_outsw_' .OR. var(1:14) == 'usm_rad_outlw_' .OR. & |
---|
2318 | var(1:14) == 'usm_rad_ressw_' .OR. var(1:14) == 'usm_rad_reslw_' .OR. & |
---|
2319 | var(1:11) == 'usm_rad_hf_' .OR. & |
---|
2320 | var(1:9) == 'usm_wshf_' .OR. var(1:9) == 'usm_wghf_' ) THEN |
---|
2321 | unit = 'W/m2' |
---|
2322 | ELSE IF ( var(1:10) == 'usm_t_surf' .OR. var(1:10) == 'usm_t_wall' ) THEN |
---|
2323 | unit = 'K' |
---|
2324 | ELSE IF ( var(1:9) == 'usm_surfz' .OR. var(1:7) == 'usm_svf' .OR. & |
---|
2325 | var(1:7) == 'usm_dif' .OR. var(1:11) == 'usm_surfcat' .OR. & |
---|
2326 | var(1:11) == 'usm_surfalb' .OR. var(1:12) == 'usm_surfemis') THEN |
---|
2327 | unit = '1' |
---|
2328 | ELSE |
---|
2329 | unit = 'illegal' |
---|
2330 | ENDIF |
---|
2331 | |
---|
2332 | END SUBROUTINE usm_check_data_output |
---|
2333 | |
---|
2334 | |
---|
2335 | !------------------------------------------------------------------------------! |
---|
2336 | ! Description: |
---|
2337 | ! ------------ |
---|
2338 | !> Check parameters routine for urban surface model |
---|
2339 | !------------------------------------------------------------------------------! |
---|
2340 | SUBROUTINE usm_check_parameters |
---|
2341 | |
---|
2342 | USE control_parameters, & |
---|
2343 | ONLY: bc_pt_b, bc_q_b, constant_flux_layer, large_scale_forcing, & |
---|
2344 | lsf_surf, topography |
---|
2345 | |
---|
2346 | ! |
---|
2347 | !-- Dirichlet boundary conditions are required as the surface fluxes are |
---|
2348 | !-- calculated from the temperature/humidity gradients in the urban surface |
---|
2349 | !-- model |
---|
2350 | IF ( bc_pt_b == 'neumann' .OR. bc_q_b == 'neumann' ) THEN |
---|
2351 | message_string = 'urban surface model requires setting of '// & |
---|
2352 | 'bc_pt_b = "dirichlet" and '// & |
---|
2353 | 'bc_q_b = "dirichlet"' |
---|
2354 | CALL message( 'check_parameters', 'PA0590', 1, 2, 0, 6, 0 ) |
---|
2355 | ENDIF |
---|
2356 | |
---|
2357 | IF ( .NOT. constant_flux_layer ) THEN |
---|
2358 | message_string = 'urban surface model requires '// & |
---|
2359 | 'constant_flux_layer = .T.' |
---|
2360 | CALL message( 'check_parameters', 'PA0591', 1, 2, 0, 6, 0 ) |
---|
2361 | ENDIF |
---|
2362 | ! |
---|
2363 | !-- Surface forcing has to be disabled for LSF in case of enabled |
---|
2364 | !-- urban surface module |
---|
2365 | IF ( large_scale_forcing ) THEN |
---|
2366 | lsf_surf = .FALSE. |
---|
2367 | ENDIF |
---|
2368 | ! |
---|
2369 | !-- Topography |
---|
2370 | IF ( topography == 'flat' ) THEN |
---|
2371 | message_string = 'topography /= "flat" is required '// & |
---|
2372 | 'when using the urban surface model' |
---|
2373 | CALL message( 'check_parameters', 'PA0592', 1, 2, 0, 6, 0 ) |
---|
2374 | ENDIF |
---|
2375 | |
---|
2376 | |
---|
2377 | END SUBROUTINE usm_check_parameters |
---|
2378 | |
---|
2379 | |
---|
2380 | !------------------------------------------------------------------------------! |
---|
2381 | ! |
---|
2382 | ! Description: |
---|
2383 | ! ------------ |
---|
2384 | !> Output of the 3D-arrays in netCDF and/or AVS format |
---|
2385 | !> for variables of urban_surface model. |
---|
2386 | !> It resorts the urban surface module output quantities from surf style |
---|
2387 | !> indexing into temporary 3D array with indices (i,j,k). |
---|
2388 | !> It is called from subroutine data_output_3d. |
---|
2389 | !------------------------------------------------------------------------------! |
---|
2390 | SUBROUTINE usm_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do ) |
---|
2391 | |
---|
2392 | IMPLICIT NONE |
---|
2393 | |
---|
2394 | INTEGER(iwp), INTENT(IN) :: av !< |
---|
2395 | CHARACTER (len=*), INTENT(IN) :: variable !< |
---|
2396 | INTEGER(iwp), INTENT(IN) :: nzb_do !< lower limit of the data output (usually 0) |
---|
2397 | INTEGER(iwp), INTENT(IN) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
2398 | LOGICAL, INTENT(OUT) :: found !< |
---|
2399 | REAL(sp), DIMENSION(nxlg:nxrg,nysg:nyng,nzb_do:nzt_do) :: local_pf !< sp - it has to correspond to module data_output_3d |
---|
2400 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: temp_pf !< temp array for urban surface output procedure |
---|
2401 | |
---|
2402 | CHARACTER (len=varnamelength) :: var, surfid |
---|
2403 | INTEGER(iwp), PARAMETER :: nd = 5 |
---|
2404 | CHARACTER(len=6), DIMENSION(0:nd-1), PARAMETER :: dirname = (/ '_roof ', '_south', '_north', '_west ', '_east ' /) |
---|
2405 | INTEGER(iwp), DIMENSION(0:nd-1), PARAMETER :: dirint = (/ iroof, isouth, inorth, iwest, ieast /) |
---|
2406 | INTEGER(iwp), DIMENSION(0:nd-1) :: dirstart |
---|
2407 | INTEGER(iwp), DIMENSION(0:nd-1) :: dirend |
---|
2408 | INTEGER(iwp) :: ids,isurf,isvf,isurfs,isurflt |
---|
2409 | INTEGER(iwp) :: is,js,ks,i,j,k,iwl,istat, l, m |
---|
2410 | INTEGER(iwp) :: k_topo !< topography top index |
---|
2411 | |
---|
2412 | dirstart = (/ startland, startwall, startwall, startwall, startwall /) |
---|
2413 | dirend = (/ endland, endwall, endwall, endwall, endwall /) |
---|
2414 | |
---|
2415 | found = .TRUE. |
---|
2416 | temp_pf = -1._wp |
---|
2417 | |
---|
2418 | ids = -1 |
---|
2419 | var = TRIM(variable) |
---|
2420 | DO i = 0, nd-1 |
---|
2421 | k = len(TRIM(var)) |
---|
2422 | j = len(TRIM(dirname(i))) |
---|
2423 | IF ( var(k-j+1:k) == dirname(i) ) THEN |
---|
2424 | ids = i |
---|
2425 | var = var(:k-j) |
---|
2426 | EXIT |
---|
2427 | ENDIF |
---|
2428 | ENDDO |
---|
2429 | IF ( ids == -1 ) THEN |
---|
2430 | var = TRIM(variable) |
---|
2431 | ENDIF |
---|
2432 | IF ( var(1:11) == 'usm_t_wall_' .AND. len(TRIM(var)) >= 12 ) THEN |
---|
2433 | !-- wall layers |
---|
2434 | READ(var(12:12), '(I1)', iostat=istat ) iwl |
---|
2435 | IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN |
---|
2436 | var = var(1:10) |
---|
2437 | ENDIF |
---|
2438 | ENDIF |
---|
2439 | IF ( (var(1:8) == 'usm_svf_' .OR. var(1:8) == 'usm_dif_') .AND. len(TRIM(var)) >= 13 ) THEN |
---|
2440 | !-- svf values to particular surface |
---|
2441 | surfid = var(9:) |
---|
2442 | i = index(surfid,'_') |
---|
2443 | j = index(surfid(i+1:),'_') |
---|
2444 | READ(surfid(1:i-1),*, iostat=istat ) is |
---|
2445 | IF ( istat == 0 ) THEN |
---|
2446 | READ(surfid(i+1:i+j-1),*, iostat=istat ) js |
---|
2447 | ENDIF |
---|
2448 | IF ( istat == 0 ) THEN |
---|
2449 | READ(surfid(i+j+1:),*, iostat=istat ) ks |
---|
2450 | ENDIF |
---|
2451 | IF ( istat == 0 ) THEN |
---|
2452 | var = var(1:7) |
---|
2453 | ENDIF |
---|
2454 | ENDIF |
---|
2455 | |
---|
2456 | SELECT CASE ( TRIM(var) ) |
---|
2457 | |
---|
2458 | CASE ( 'usm_surfz' ) |
---|
2459 | !-- array of lw radiation falling to local surface after i-th reflection |
---|
2460 | DO m = 1, surf_usm_h%ns |
---|
2461 | i = surf_usm_h%i(m) |
---|
2462 | j = surf_usm_h%j(m) |
---|
2463 | k = surf_usm_h%k(m) |
---|
2464 | temp_pf(0,j,i) = MAX( temp_pf(0,j,i), REAL( k, kind=wp) ) |
---|
2465 | ENDDO |
---|
2466 | DO l = 0, 3 |
---|
2467 | DO m = 1, surf_usm_v(l)%ns |
---|
2468 | i = surf_usm_v(l)%i(m) |
---|
2469 | j = surf_usm_v(l)%j(m) |
---|
2470 | k = surf_usm_v(l)%k(m) |
---|
2471 | temp_pf(0,j,i) = MAX( temp_pf(0,j,i), REAL( k, kind=wp) + 1.0_wp ) |
---|
2472 | ENDDO |
---|
2473 | ENDDO |
---|
2474 | |
---|
2475 | CASE ( 'usm_surfcat' ) |
---|
2476 | !-- surface category |
---|
2477 | DO m = 1, surf_usm_h%ns |
---|
2478 | i = surf_usm_h%i(m) |
---|
2479 | j = surf_usm_h%j(m) |
---|
2480 | k = surf_usm_h%k(m) |
---|
2481 | temp_pf(k,j,i) = surf_usm_h%surface_types(m) |
---|
2482 | ENDDO |
---|
2483 | DO l = 0, 3 |
---|
2484 | DO m = 1, surf_usm_v(l)%ns |
---|
2485 | i = surf_usm_v(l)%i(m) |
---|
2486 | j = surf_usm_v(l)%j(m) |
---|
2487 | k = surf_usm_v(l)%k(m) |
---|
2488 | temp_pf(k,j,i) = surf_usm_v(l)%surface_types(m) |
---|
2489 | ENDDO |
---|
2490 | ENDDO |
---|
2491 | |
---|
2492 | CASE ( 'usm_surfalb' ) |
---|
2493 | !-- surface albedo |
---|
2494 | DO m = 1, surf_usm_h%ns |
---|
2495 | i = surf_usm_h%i(m) |
---|
2496 | j = surf_usm_h%j(m) |
---|
2497 | k = surf_usm_h%k(m) |
---|
2498 | temp_pf(k,j,i) = surf_usm_h%albedo_surf(m) |
---|
2499 | ENDDO |
---|
2500 | DO l = 0, 3 |
---|
2501 | DO m = 1, surf_usm_v(l)%ns |
---|
2502 | i = surf_usm_v(l)%i(m) |
---|
2503 | j = surf_usm_v(l)%j(m) |
---|
2504 | k = surf_usm_v(l)%k(m) |
---|
2505 | temp_pf(k,j,i) = surf_usm_v(l)%albedo_surf(m) |
---|
2506 | ENDDO |
---|
2507 | ENDDO |
---|
2508 | |
---|
2509 | CASE ( 'usm_surfemis' ) |
---|
2510 | !-- surface albedo |
---|
2511 | DO m = 1, surf_usm_h%ns |
---|
2512 | i = surf_usm_h%i(m) |
---|
2513 | j = surf_usm_h%j(m) |
---|
2514 | k = surf_usm_h%k(m) |
---|
2515 | temp_pf(k,j,i) = surf_usm_h%emiss_surf(m) |
---|
2516 | ENDDO |
---|
2517 | DO l = 0, 3 |
---|
2518 | DO m = 1, surf_usm_v(l)%ns |
---|
2519 | i = surf_usm_v(l)%i(m) |
---|
2520 | j = surf_usm_v(l)%j(m) |
---|
2521 | k = surf_usm_v(l)%k(m) |
---|
2522 | temp_pf(k,j,i) = surf_usm_v(l)%emiss_surf(m) |
---|
2523 | ENDDO |
---|
2524 | ENDDO |
---|
2525 | ! |
---|
2526 | !-- Not adjusted so far |
---|
2527 | CASE ( 'usm_svf', 'usm_dif' ) |
---|
2528 | !-- shape view factors or iradiance factors to selected surface |
---|
2529 | IF ( TRIM(var)=='usm_svf' ) THEN |
---|
2530 | k = 1 |
---|
2531 | ELSE |
---|
2532 | k = 2 |
---|
2533 | ENDIF |
---|
2534 | DO isvf = 1, nsvfl |
---|
2535 | isurflt = svfsurf(1, isvf) |
---|
2536 | isurfs = svfsurf(2, isvf) |
---|
2537 | |
---|
2538 | IF ( surf(ix,isurfs) == is .AND. surf(iy,isurfs) == js .AND. & |
---|
2539 | surf(iz,isurfs) == ks .AND. surf(id,isurfs) == ids ) THEN |
---|
2540 | !-- correct source surface |
---|
2541 | temp_pf(surfl(iz,isurflt),surfl(iy,isurflt),surfl(ix,isurflt)) = svf(k,isvf) |
---|
2542 | ENDIF |
---|
2543 | ENDDO |
---|
2544 | |
---|
2545 | CASE ( 'usm_rad_net' ) |
---|
2546 | !-- array of complete radiation balance |
---|
2547 | IF ( av == 0 ) THEN |
---|
2548 | DO m = 1, surf_usm_h%ns |
---|
2549 | i = surf_usm_h%i(m) |
---|
2550 | j = surf_usm_h%j(m) |
---|
2551 | k = surf_usm_h%k(m) |
---|
2552 | temp_pf(k,j,i) = surf_usm_h%rad_net_l(m) |
---|
2553 | ENDDO |
---|
2554 | DO l = 0, 3 |
---|
2555 | DO m = 1, surf_usm_v(l)%ns |
---|
2556 | i = surf_usm_v(l)%i(m) |
---|
2557 | j = surf_usm_v(l)%j(m) |
---|
2558 | k = surf_usm_v(l)%k(m) |
---|
2559 | temp_pf(k,j,i) = surf_usm_v(l)%rad_net_l(m) |
---|
2560 | ENDDO |
---|
2561 | ENDDO |
---|
2562 | ELSE |
---|
2563 | DO m = 1, surf_usm_h%ns |
---|
2564 | i = surf_usm_h%i(m) |
---|
2565 | j = surf_usm_h%j(m) |
---|
2566 | k = surf_usm_h%k(m) |
---|
2567 | temp_pf(k,j,i) = surf_usm_h%rad_net_av(m) |
---|
2568 | ENDDO |
---|
2569 | DO l = 0, 3 |
---|
2570 | DO m = 1, surf_usm_v(l)%ns |
---|
2571 | i = surf_usm_v(l)%i(m) |
---|
2572 | j = surf_usm_v(l)%j(m) |
---|
2573 | k = surf_usm_v(l)%k(m) |
---|
2574 | temp_pf(k,j,i) = surf_usm_v(l)%rad_net_av(m) |
---|
2575 | ENDDO |
---|
2576 | ENDDO |
---|
2577 | ENDIF |
---|
2578 | |
---|
2579 | CASE ( 'usm_rad_insw' ) |
---|
2580 | !-- array of sw radiation falling to surface after i-th reflection |
---|
2581 | DO isurf = dirstart(ids), dirend(ids) |
---|
2582 | IF ( surfl(id,isurf) == ids ) THEN |
---|
2583 | IF ( av == 0 ) THEN |
---|
2584 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinsw(isurf) |
---|
2585 | ELSE |
---|
2586 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinsw_av(isurf) |
---|
2587 | ENDIF |
---|
2588 | ENDIF |
---|
2589 | ENDDO |
---|
2590 | |
---|
2591 | CASE ( 'usm_rad_inlw' ) |
---|
2592 | !-- array of lw radiation falling to surface after i-th reflection |
---|
2593 | DO isurf = dirstart(ids), dirend(ids) |
---|
2594 | IF ( surfl(id,isurf) == ids ) THEN |
---|
2595 | IF ( av == 0 ) THEN |
---|
2596 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlw(isurf) |
---|
2597 | ELSE |
---|
2598 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlw_av(isurf) |
---|
2599 | ENDIF |
---|
2600 | ENDIF |
---|
2601 | ENDDO |
---|
2602 | |
---|
2603 | CASE ( 'usm_rad_inswdir' ) |
---|
2604 | !-- array of direct sw radiation falling to surface from sun |
---|
2605 | DO isurf = dirstart(ids), dirend(ids) |
---|
2606 | IF ( surfl(id,isurf) == ids ) THEN |
---|
2607 | IF ( av == 0 ) THEN |
---|
2608 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdir(isurf) |
---|
2609 | ELSE |
---|
2610 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdir_av(isurf) |
---|
2611 | ENDIF |
---|
2612 | ENDIF |
---|
2613 | ENDDO |
---|
2614 | |
---|
2615 | CASE ( 'usm_rad_inswdif' ) |
---|
2616 | !-- array of difusion sw radiation falling to surface from sky and borders of the domain |
---|
2617 | DO isurf = dirstart(ids), dirend(ids) |
---|
2618 | IF ( surfl(id,isurf) == ids ) THEN |
---|
2619 | IF ( av == 0 ) THEN |
---|
2620 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdif(isurf) |
---|
2621 | ELSE |
---|
2622 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdif_av(isurf) |
---|
2623 | ENDIF |
---|
2624 | ENDIF |
---|
2625 | ENDDO |
---|
2626 | |
---|
2627 | CASE ( 'usm_rad_inswref' ) |
---|
2628 | !-- array of sw radiation falling to surface from reflections |
---|
2629 | DO isurf = dirstart(ids), dirend(ids) |
---|
2630 | IF ( surfl(id,isurf) == ids ) THEN |
---|
2631 | IF ( av == 0 ) THEN |
---|
2632 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = & |
---|
2633 | surfinsw(isurf) - surfinswdir(isurf) - surfinswdif(isurf) |
---|
2634 | ELSE |
---|
2635 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswref_av(isurf) |
---|
2636 | ENDIF |
---|
2637 | ENDIF |
---|
2638 | ENDDO |
---|
2639 | |
---|
2640 | CASE ( 'usm_rad_inlwref' ) |
---|
2641 | !-- array of lw radiation falling to surface from reflections |
---|
2642 | DO isurf = dirstart(ids), dirend(ids) |
---|
2643 | IF ( surfl(id,isurf) == ids ) THEN |
---|
2644 | IF ( av == 0 ) THEN |
---|
2645 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlw(isurf) - surfinlwdif(isurf) |
---|
2646 | ELSE |
---|
2647 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlwref_av(isurf) |
---|
2648 | ENDIF |
---|
2649 | ENDIF |
---|
2650 | ENDDO |
---|
2651 | |
---|
2652 | CASE ( 'usm_rad_outsw' ) |
---|
2653 | !-- array of sw radiation emitted from surface after i-th reflection |
---|
2654 | DO isurf = dirstart(ids), dirend(ids) |
---|
2655 | IF ( surfl(id,isurf) == ids ) THEN |
---|
2656 | IF ( av == 0 ) THEN |
---|
2657 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutsw(isurf) |
---|
2658 | ELSE |
---|
2659 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutsw_av(isurf) |
---|
2660 | ENDIF |
---|
2661 | ENDIF |
---|
2662 | ENDDO |
---|
2663 | |
---|
2664 | CASE ( 'usm_rad_outlw' ) |
---|
2665 | !-- array of lw radiation emitted from surface after i-th reflection |
---|
2666 | DO isurf = dirstart(ids), dirend(ids) |
---|
2667 | IF ( surfl(id,isurf) == ids ) THEN |
---|
2668 | IF ( av == 0 ) THEN |
---|
2669 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutlw(isurf) |
---|
2670 | ELSE |
---|
2671 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutlw_av(isurf) |
---|
2672 | ENDIF |
---|
2673 | ENDIF |
---|
2674 | ENDDO |
---|
2675 | |
---|
2676 | CASE ( 'usm_rad_ressw' ) |
---|
2677 | !-- average of array of residua of sw radiation absorbed in surface after last reflection |
---|
2678 | DO isurf = dirstart(ids), dirend(ids) |
---|
2679 | IF ( surfl(id,isurf) == ids ) THEN |
---|
2680 | IF ( av == 0 ) THEN |
---|
2681 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfins(isurf) |
---|
2682 | ELSE |
---|
2683 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfins_av(isurf) |
---|
2684 | ENDIF |
---|
2685 | ENDIF |
---|
2686 | ENDDO |
---|
2687 | |
---|
2688 | CASE ( 'usm_rad_reslw' ) |
---|
2689 | !-- average of array of residua of lw radiation absorbed in surface after last reflection |
---|
2690 | DO isurf = dirstart(ids), dirend(ids) |
---|
2691 | IF ( surfl(id,isurf) == ids ) THEN |
---|
2692 | IF ( av == 0 ) THEN |
---|
2693 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinl(isurf) |
---|
2694 | ELSE |
---|
2695 | temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinl_av(isurf) |
---|
2696 | ENDIF |
---|
2697 | ENDIF |
---|
2698 | ENDDO |
---|
2699 | |
---|
2700 | CASE ( 'usm_rad_hf' ) |
---|
2701 | !-- array of heat flux from radiation for surfaces after all reflections |
---|
2702 | IF ( av == 0 ) THEN |
---|
2703 | DO m = 1, surf_usm_h%ns |
---|
2704 | i = surf_usm_h%i(m) |
---|
2705 | j = surf_usm_h%j(m) |
---|
2706 | k = surf_usm_h%k(m) |
---|
2707 | temp_pf(k,j,i) = surf_usm_h%surfhf(m) |
---|
2708 | ENDDO |
---|
2709 | DO l = 0, 3 |
---|
2710 | DO m = 1, surf_usm_v(l)%ns |
---|
2711 | i = surf_usm_v(l)%i(m) |
---|
2712 | j = surf_usm_v(l)%j(m) |
---|
2713 | k = surf_usm_v(l)%k(m) |
---|
2714 | temp_pf(k,j,i) = surf_usm_v(l)%surfhf(m) |
---|
2715 | ENDDO |
---|
2716 | ENDDO |
---|
2717 | ELSE |
---|
2718 | DO m = 1, surf_usm_h%ns |
---|
2719 | i = surf_usm_h%i(m) |
---|
2720 | j = surf_usm_h%j(m) |
---|
2721 | k = surf_usm_h%k(m) |
---|
2722 | temp_pf(k,j,i) = surf_usm_h%surfhf_av(m) |
---|
2723 | ENDDO |
---|
2724 | DO l = 0, 3 |
---|
2725 | DO m = 1, surf_usm_v(l)%ns |
---|
2726 | i = surf_usm_v(l)%i(m) |
---|
2727 | j = surf_usm_v(l)%j(m) |
---|
2728 | k = surf_usm_v(l)%k(m) |
---|
2729 | temp_pf(k,j,i) = surf_usm_v(l)%surfhf_av(m) |
---|
2730 | ENDDO |
---|
2731 | ENDDO |
---|
2732 | ENDIF |
---|
2733 | |
---|
2734 | CASE ( 'usm_wshf' ) |
---|
2735 | !-- array of sensible heat flux from surfaces |
---|
2736 | IF ( av == 0 ) THEN |
---|
2737 | DO m = 1, surf_usm_h%ns |
---|
2738 | i = surf_usm_h%i(m) |
---|
2739 | j = surf_usm_h%j(m) |
---|
2740 | k = surf_usm_h%k(m) |
---|
2741 | temp_pf(k,j,i) = surf_usm_h%wshf_eb(m) |
---|
2742 | ENDDO |
---|
2743 | DO l = 0, 3 |
---|
2744 | DO m = 1, surf_usm_v(l)%ns |
---|
2745 | i = surf_usm_v(l)%i(m) |
---|
2746 | j = surf_usm_v(l)%j(m) |
---|
2747 | k = surf_usm_v(l)%k(m) |
---|
2748 | temp_pf(k,j,i) = surf_usm_v(l)%wshf_eb(m) |
---|
2749 | ENDDO |
---|
2750 | ENDDO |
---|
2751 | ELSE |
---|
2752 | DO m = 1, surf_usm_h%ns |
---|
2753 | i = surf_usm_h%i(m) |
---|
2754 | j = surf_usm_h%j(m) |
---|
2755 | k = surf_usm_h%k(m) |
---|
2756 | temp_pf(k,j,i) = surf_usm_h%wshf_eb_av(m) |
---|
2757 | ENDDO |
---|
2758 | DO l = 0, 3 |
---|
2759 | DO m = 1, surf_usm_v(l)%ns |
---|
2760 | i = surf_usm_v(l)%i(m) |
---|
2761 | j = surf_usm_v(l)%j(m) |
---|
2762 | k = surf_usm_v(l)%k(m) |
---|
2763 | temp_pf(k,j,i) = surf_usm_v(l)%wshf_eb_av(m) |
---|
2764 | ENDDO |
---|
2765 | ENDDO |
---|
2766 | ENDIF |
---|
2767 | |
---|
2768 | |
---|
2769 | CASE ( 'usm_wghf' ) |
---|
2770 | !-- array of heat flux from ground (land, wall, roof) |
---|
2771 | IF ( av == 0 ) THEN |
---|
2772 | DO m = 1, surf_usm_h%ns |
---|
2773 | i = surf_usm_h%i(m) |
---|
2774 | j = surf_usm_h%j(m) |
---|
2775 | k = surf_usm_h%k(m) |
---|
2776 | temp_pf(k,j,i) = surf_usm_h%wghf_eb(m) |
---|
2777 | ENDDO |
---|
2778 | DO l = 0, 3 |
---|
2779 | DO m = 1, surf_usm_v(l)%ns |
---|
2780 | i = surf_usm_v(l)%i(m) |
---|
2781 | j = surf_usm_v(l)%j(m) |
---|
2782 | k = surf_usm_v(l)%k(m) |
---|
2783 | temp_pf(k,j,i) = surf_usm_v(l)%wghf_eb(m) |
---|
2784 | ENDDO |
---|
2785 | ENDDO |
---|
2786 | ELSE |
---|
2787 | DO m = 1, surf_usm_h%ns |
---|
2788 | i = surf_usm_h%i(m) |
---|
2789 | j = surf_usm_h%j(m) |
---|
2790 | k = surf_usm_h%k(m) |
---|
2791 | temp_pf(k,j,i) = surf_usm_h%wghf_eb_av(m) |
---|
2792 | ENDDO |
---|
2793 | DO l = 0, 3 |
---|
2794 | DO m = 1, surf_usm_v(l)%ns |
---|
2795 | i = surf_usm_v(l)%i(m) |
---|
2796 | j = surf_usm_v(l)%j(m) |
---|
2797 | k = surf_usm_v(l)%k(m) |
---|
2798 | temp_pf(k,j,i) = surf_usm_v(l)%wghf_eb_av(m) |
---|
2799 | ENDDO |
---|
2800 | ENDDO |
---|
2801 | ENDIF |
---|
2802 | |
---|
2803 | CASE ( 'usm_t_surf' ) |
---|
2804 | !-- surface temperature for surfaces |
---|
2805 | IF ( av == 0 ) THEN |
---|
2806 | DO m = 1, surf_usm_h%ns |
---|
2807 | i = surf_usm_h%i(m) |
---|
2808 | j = surf_usm_h%j(m) |
---|
2809 | k = surf_usm_h%k(m) |
---|
2810 | temp_pf(k,j,i) = t_surf_h(m) |
---|
2811 | ENDDO |
---|
2812 | DO l = 0, 3 |
---|
2813 | DO m = 1, surf_usm_v(l)%ns |
---|
2814 | i = surf_usm_v(l)%i(m) |
---|
2815 | j = surf_usm_v(l)%j(m) |
---|
2816 | k = surf_usm_v(l)%k(m) |
---|
2817 | temp_pf(k,j,i) = t_surf_v(l)%t(m) |
---|
2818 | ENDDO |
---|
2819 | ENDDO |
---|
2820 | ELSE |
---|
2821 | DO m = 1, surf_usm_h%ns |
---|
2822 | i = surf_usm_h%i(m) |
---|
2823 | j = surf_usm_h%j(m) |
---|
2824 | k = surf_usm_h%k(m) |
---|
2825 | temp_pf(k,j,i) = surf_usm_h%t_surf_av(m) |
---|
2826 | ENDDO |
---|
2827 | DO l = 0, 3 |
---|
2828 | DO m = 1, surf_usm_v(l)%ns |
---|
2829 | i = surf_usm_v(l)%i(m) |
---|
2830 | j = surf_usm_v(l)%j(m) |
---|
2831 | k = surf_usm_v(l)%k(m) |
---|
2832 | temp_pf(k,j,i) = surf_usm_v(l)%t_surf_av(m) |
---|
2833 | ENDDO |
---|
2834 | ENDDO |
---|
2835 | ENDIF |
---|
2836 | |
---|
2837 | CASE ( 'usm_t_wall' ) |
---|
2838 | !-- wall temperature for iwl layer of walls and land |
---|
2839 | IF ( av == 0 ) THEN |
---|
2840 | DO m = 1, surf_usm_h%ns |
---|
2841 | i = surf_usm_h%i(m) |
---|
2842 | j = surf_usm_h%j(m) |
---|
2843 | k = surf_usm_h%k(m) |
---|
2844 | temp_pf(k,j,i) = t_wall_h(iwl,m) |
---|
2845 | ENDDO |
---|
2846 | DO l = 0, 3 |
---|
2847 | DO m = 1, surf_usm_v(l)%ns |
---|
2848 | i = surf_usm_v(l)%i(m) |
---|
2849 | j = surf_usm_v(l)%j(m) |
---|
2850 | k = surf_usm_v(l)%k(m) |
---|
2851 | temp_pf(k,j,i) = t_wall_v(l)%t(iwl,m) |
---|
2852 | ENDDO |
---|
2853 | ENDDO |
---|
2854 | ELSE |
---|
2855 | DO m = 1, surf_usm_h%ns |
---|
2856 | i = surf_usm_h%i(m) |
---|
2857 | j = surf_usm_h%j(m) |
---|
2858 | k = surf_usm_h%k(m) |
---|
2859 | temp_pf(k,j,i) = surf_usm_h%t_wall_av(iwl,m) |
---|
2860 | ENDDO |
---|
2861 | DO l = 0, 3 |
---|
2862 | DO m = 1, surf_usm_v(l)%ns |
---|
2863 | i = surf_usm_v(l)%i(m) |
---|
2864 | j = surf_usm_v(l)%j(m) |
---|
2865 | k = surf_usm_v(l)%k(m) |
---|
2866 | temp_pf(k,j,i) = surf_usm_v(l)%t_wall_av(iwl,m) |
---|
2867 | ENDDO |
---|
2868 | ENDDO |
---|
2869 | ENDIF |
---|
2870 | |
---|
2871 | CASE DEFAULT |
---|
2872 | found = .FALSE. |
---|
2873 | |
---|
2874 | END SELECT |
---|
2875 | |
---|
2876 | !-- fill out array local_pf which is subsequently treated by data_output_3d |
---|
2877 | CALL exchange_horiz( temp_pf, nbgp ) |
---|
2878 | ! |
---|
2879 | !-- To Do: why reversed loop order |
---|
2880 | DO j = nysg,nyng |
---|
2881 | DO i = nxlg,nxrg |
---|
2882 | DO k = nzb_do, nzt_do |
---|
2883 | local_pf(i,j,k) = temp_pf(k,j,i) |
---|
2884 | ENDDO |
---|
2885 | ENDDO |
---|
2886 | ENDDO |
---|
2887 | |
---|
2888 | END SUBROUTINE usm_data_output_3d |
---|
2889 | |
---|
2890 | |
---|
2891 | !------------------------------------------------------------------------------! |
---|
2892 | ! |
---|
2893 | ! Description: |
---|
2894 | ! ------------ |
---|
2895 | !> Soubroutine defines appropriate grid for netcdf variables. |
---|
2896 | !> It is called out from subroutine netcdf. |
---|
2897 | !------------------------------------------------------------------------------! |
---|
2898 | SUBROUTINE usm_define_netcdf_grid( variable, found, grid_x, grid_y, grid_z ) |
---|
2899 | |
---|
2900 | IMPLICIT NONE |
---|
2901 | |
---|
2902 | CHARACTER (len=*), INTENT(IN) :: variable !< |
---|
2903 | LOGICAL, INTENT(OUT) :: found !< |
---|
2904 | CHARACTER (len=*), INTENT(OUT) :: grid_x !< |
---|
2905 | CHARACTER (len=*), INTENT(OUT) :: grid_y !< |
---|
2906 | CHARACTER (len=*), INTENT(OUT) :: grid_z !< |
---|
2907 | |
---|
2908 | CHARACTER (len=varnamelength) :: var |
---|
2909 | |
---|
2910 | var = TRIM(variable) |
---|
2911 | IF ( var(1:12) == 'usm_rad_net_' .OR. var(1:13) == 'usm_rad_insw_' .OR. & |
---|
2912 | var(1:13) == 'usm_rad_inlw_' .OR. var(1:16) == 'usm_rad_inswdir_' .OR. & |
---|
2913 | var(1:16) == 'usm_rad_inswdif_' .OR. var(1:16) == 'usm_rad_inswref_' .OR. & |
---|
2914 | var(1:16) == 'usm_rad_inlwdif_' .OR. var(1:16) == 'usm_rad_inlwref_' .OR. & |
---|
2915 | var(1:14) == 'usm_rad_outsw_' .OR. var(1:14) == 'usm_rad_outlw_' .OR. & |
---|
2916 | var(1:14) == 'usm_rad_ressw_' .OR. var(1:14) == 'usm_rad_reslw_' .OR. & |
---|
2917 | var(1:11) == 'usm_rad_hf_' .OR. & |
---|
2918 | var(1:9) == 'usm_wshf_' .OR. var(1:9) == 'usm_wghf_' .OR. & |
---|
2919 | var(1:10) == 'usm_t_surf' .OR. var(1:10) == 'usm_t_wall' .OR. & |
---|
2920 | var(1:9) == 'usm_surfz' .OR. var(1:7) == 'usm_svf' .OR. & |
---|
2921 | var(1:7) == 'usm_dif' .OR. var(1:11) == 'usm_surfcat' .OR. & |
---|
2922 | var(1:11) == 'usm_surfalb' .OR. var(1:12) == 'usm_surfemis' ) THEN |
---|
2923 | |
---|
2924 | found = .TRUE. |
---|
2925 | grid_x = 'x' |
---|
2926 | grid_y = 'y' |
---|
2927 | grid_z = 'zu' |
---|
2928 | ELSE |
---|
2929 | found = .FALSE. |
---|
2930 | grid_x = 'none' |
---|
2931 | grid_y = 'none' |
---|
2932 | grid_z = 'none' |
---|
2933 | ENDIF |
---|
2934 | |
---|
2935 | END SUBROUTINE usm_define_netcdf_grid |
---|
2936 | |
---|
2937 | |
---|
2938 | !------------------------------------------------------------------------------! |
---|
2939 | !> Finds first model boundary crossed by a ray |
---|
2940 | !------------------------------------------------------------------------------! |
---|
2941 | PURE SUBROUTINE usm_find_boundary_face(origin, uvect, bdycross) |
---|
2942 | |
---|
2943 | IMPLICIT NONE |
---|
2944 | |
---|
2945 | INTEGER(iwp) :: d !< |
---|
2946 | INTEGER(iwp) :: seldim !< found fist crossing index |
---|
2947 | |
---|
2948 | INTEGER(iwp), DIMENSION(3) :: bdyd !< boundary direction |
---|
2949 | INTEGER(iwp), DIMENSION(4), INTENT(out) :: bdycross !< found boundary crossing (d, z, y, x) |
---|
2950 | |
---|
2951 | REAL(wp) :: bdydim !< |
---|
2952 | REAL(wp) :: dist !< |
---|
2953 | |
---|
2954 | REAL(wp), DIMENSION(3) :: crossdist !< crossing distance |
---|
2955 | REAL(wp), DIMENSION(3), INTENT(in) :: origin !< ray origin |
---|
2956 | REAL(wp), DIMENSION(3), INTENT(in) :: uvect !< ray unit vector |
---|
2957 | |
---|
2958 | |
---|
2959 | bdydim = nzut + .5_wp !< top boundary |
---|
2960 | bdyd(1) = isky |
---|
2961 | crossdist(1) = ( bdydim - origin(1) ) / uvect(1) !< subroutine called only when uvect(1)>0 |
---|
2962 | |
---|
2963 | IF ( uvect(2) == 0._wp ) THEN |
---|
2964 | crossdist(2) = huge(1._wp) |
---|
2965 | ELSE |
---|
2966 | IF ( uvect(2) >= 0._wp ) THEN |
---|
2967 | bdydim = ny + .5_wp !< north global boundary |
---|
2968 | bdyd(2) = inorthb |
---|
2969 | ELSE |
---|
2970 | bdydim = -.5_wp !< south global boundary |
---|
2971 | bdyd(2) = isouthb |
---|
2972 | ENDIF |
---|
2973 | crossdist(2) = ( bdydim - origin(2) ) / uvect(2) |
---|
2974 | ENDIF |
---|
2975 | |
---|
2976 | IF ( uvect(3) == 0._wp ) THEN |
---|
2977 | crossdist(3) = huge(1._wp) |
---|
2978 | ELSE |
---|
2979 | IF ( uvect(3) >= 0._wp ) THEN |
---|
2980 | bdydim = nx + .5_wp !< east global boundary |
---|
2981 | bdyd(3) = ieastb |
---|
2982 | ELSE |
---|
2983 | bdydim = -.5_wp !< west global boundary |
---|
2984 | bdyd(3) = iwestb |
---|
2985 | ENDIF |
---|
2986 | crossdist(3) = ( bdydim - origin(3) ) / uvect(3) |
---|
2987 | ENDIF |
---|
2988 | |
---|
2989 | seldim = minloc(crossdist, 1) |
---|
2990 | dist = crossdist(seldim) |
---|
2991 | d = bdyd(seldim) |
---|
2992 | |
---|
2993 | bdycross(1) = d |
---|
2994 | bdycross(2:4) = NINT( origin(:) + uvect(:) * dist & |
---|
2995 | + .5_wp * (/ kdir(d), jdir(d), idir(d) /) ) |
---|
2996 | |
---|
2997 | END SUBROUTINE |
---|
2998 | |
---|
2999 | |
---|
3000 | !------------------------------------------------------------------------------! |
---|
3001 | !> Determines whether two faces are oriented towards each other |
---|
3002 | !------------------------------------------------------------------------------! |
---|
3003 | PURE LOGICAL FUNCTION usm_facing(x, y, z, d, x2, y2, z2, d2) |
---|
3004 | IMPLICIT NONE |
---|
3005 | INTEGER(iwp), INTENT(in) :: x, y, z, d, x2, y2, z2, d2 |
---|
3006 | |
---|
3007 | usm_facing = .FALSE. |
---|
3008 | IF ( d==iroof .AND. d2==iroof ) RETURN |
---|
3009 | IF ( d==isky .AND. d2==isky ) RETURN |
---|
3010 | IF ( (d==isouth .OR. d==inorthb) .AND. (d2==isouth.OR.d2==inorthb) ) RETURN |
---|
3011 | IF ( (d==inorth .OR. d==isouthb) .AND. (d2==inorth.OR.d2==isouthb) ) RETURN |
---|
3012 | IF ( (d==iwest .OR. d==ieastb) .AND. (d2==iwest.OR.d2==ieastb) ) RETURN |
---|
3013 | IF ( (d==ieast .OR. d==iwestb) .AND. (d2==ieast.OR.d2==iwestb) ) RETURN |
---|
3014 | |
---|
3015 | SELECT CASE (d) |
---|
3016 | CASE (iroof) !< ground, roof |
---|
3017 | IF ( z2 < z ) RETURN |
---|
3018 | CASE (isky) !< sky |
---|
3019 | IF ( z2 > z ) RETURN |
---|
3020 | CASE (isouth, inorthb) !< south facing |
---|
3021 | IF ( y2 > y ) RETURN |
---|
3022 | CASE (inorth, isouthb) !< north facing |
---|
3023 | IF ( y2 < y ) RETURN |
---|
3024 | CASE (iwest, ieastb) !< west facing |
---|
3025 | IF ( x2 > x ) RETURN |
---|
3026 | CASE (ieast, iwestb) !< east facing |
---|
3027 | IF ( x2 < x ) RETURN |
---|
3028 | END SELECT |
---|
3029 | |
---|
3030 | SELECT CASE (d2) |
---|
3031 | CASE (iroof) !< ground, roof |
---|
3032 | IF ( z < z2 ) RETURN |
---|
3033 | CASE (isky) !< sky |
---|
3034 | IF ( z > z2 ) RETURN |
---|
3035 | CASE (isouth, inorthb) !< south facing |
---|
3036 | IF ( y > y2 ) RETURN |
---|
3037 | CASE (inorth, isouthb) !< north facing |
---|
3038 | IF ( y < y2 ) RETURN |
---|
3039 | CASE (iwest, ieastb) !< west facing |
---|
3040 | IF ( x > x2 ) RETURN |
---|
3041 | CASE (ieast, iwestb) !< east facing |
---|
3042 | IF ( x < x2 ) RETURN |
---|
3043 | CASE (-1) |
---|
3044 | CONTINUE |
---|
3045 | END SELECT |
---|
3046 | |
---|
3047 | usm_facing = .TRUE. |
---|
3048 | |
---|
3049 | END FUNCTION usm_facing |
---|
3050 | |
---|
3051 | |
---|
3052 | !------------------------------------------------------------------------------! |
---|
3053 | ! Description: |
---|
3054 | ! ------------ |
---|
3055 | !> Initialization of the wall surface model |
---|
3056 | !------------------------------------------------------------------------------! |
---|
3057 | SUBROUTINE usm_init_material_model |
---|
3058 | |
---|
3059 | IMPLICIT NONE |
---|
3060 | |
---|
3061 | INTEGER(iwp) :: k, l, m !< running indices |
---|
3062 | |
---|
3063 | CALL location_message( ' initialization of wall surface model', .TRUE. ) |
---|
3064 | |
---|
3065 | !-- Calculate wall grid spacings. |
---|
3066 | !-- Temperature is defined at the center of the wall layers, |
---|
3067 | !-- whereas gradients/fluxes are defined at the edges (_stag) |
---|
3068 | DO k = nzb_wall, nzt_wall |
---|
3069 | zwn(k) = zwn_default(k) |
---|
3070 | ENDDO |
---|
3071 | ! |
---|
3072 | !-- apply for all particular surface grids. First for horizontal surfaces |
---|
3073 | DO m = 1, surf_usm_h%ns |
---|
3074 | surf_usm_h%zw(:,m) = zwn(:) * & |
---|
3075 | surf_usm_h%thickness_wall(m) |
---|
3076 | surf_usm_h%dz_wall(nzb_wall,m) = surf_usm_h%zw(nzb_wall,m) |
---|
3077 | DO k = nzb_wall+1, nzt_wall |
---|
3078 | surf_usm_h%dz_wall(k,m) = surf_usm_h%zw(k,m) - & |
---|
3079 | surf_usm_h%zw(k-1,m) |
---|
3080 | ENDDO |
---|
3081 | |
---|
3082 | surf_usm_h%dz_wall(nzt_wall+1,m) = surf_usm_h%dz_wall(nzt_wall,m) |
---|
3083 | |
---|
3084 | DO k = nzb_wall, nzt_wall-1 |
---|
3085 | surf_usm_h%dz_wall_stag(k,m) = 0.5 * ( & |
---|
3086 | surf_usm_h%dz_wall(k+1,m) + surf_usm_h%dz_wall(k,m) ) |
---|
3087 | ENDDO |
---|
3088 | surf_usm_h%dz_wall_stag(nzt_wall,m) = surf_usm_h%dz_wall(nzt_wall,m) |
---|
3089 | ENDDO |
---|
3090 | surf_usm_h%ddz_wall = 1.0_wp / surf_usm_h%dz_wall |
---|
3091 | surf_usm_h%ddz_wall_stag = 1.0_wp / surf_usm_h%dz_wall_stag |
---|
3092 | ! |
---|
3093 | !-- For vertical surfaces |
---|
3094 | DO l = 0, 3 |
---|
3095 | DO m = 1, surf_usm_v(l)%ns |
---|
3096 | surf_usm_v(l)%zw(:,m) = zwn(:) * & |
---|
3097 | surf_usm_v(l)%thickness_wall(m) |
---|
3098 | surf_usm_v(l)%dz_wall(nzb_wall,m) = surf_usm_v(l)%zw(nzb_wall,m) |
---|
3099 | DO k = nzb_wall+1, nzt_wall |
---|
3100 | surf_usm_v(l)%dz_wall(k,m) = surf_usm_v(l)%zw(k,m) - & |
---|
3101 | surf_usm_v(l)%zw(k-1,m) |
---|
3102 | ENDDO |
---|
3103 | |
---|
3104 | surf_usm_v(l)%dz_wall(nzt_wall+1,m) = & |
---|
3105 | surf_usm_v(l)%dz_wall(nzt_wall,m) |
---|
3106 | |
---|
3107 | DO k = nzb_wall, nzt_wall-1 |
---|
3108 | surf_usm_v(l)%dz_wall_stag(k,m) = 0.5 * ( & |
---|
3109 | surf_usm_v(l)%dz_wall(k+1,m) + & |
---|
3110 | surf_usm_v(l)%dz_wall(k,m) ) |
---|
3111 | ENDDO |
---|
3112 | surf_usm_v(l)%dz_wall_stag(nzt_wall,m) = & |
---|
3113 | surf_usm_v(l)%dz_wall(nzt_wall,m) |
---|
3114 | ENDDO |
---|
3115 | surf_usm_v(l)%ddz_wall = 1.0_wp / surf_usm_v(l)%dz_wall |
---|
3116 | surf_usm_v(l)%ddz_wall_stag = 1.0_wp / surf_usm_v(l)%dz_wall_stag |
---|
3117 | ENDDO |
---|
3118 | |
---|
3119 | |
---|
3120 | CALL location_message( ' wall structures filed out', .TRUE. ) |
---|
3121 | |
---|
3122 | CALL location_message( ' initialization of wall surface model finished', .TRUE. ) |
---|
3123 | |
---|
3124 | END SUBROUTINE usm_init_material_model |
---|
3125 | |
---|
3126 | |
---|
3127 | !------------------------------------------------------------------------------! |
---|
3128 | ! Description: |
---|
3129 | ! ------------ |
---|
3130 | !> Initialization of the urban surface model |
---|
3131 | !------------------------------------------------------------------------------! |
---|
3132 | SUBROUTINE usm_init_urban_surface |
---|
3133 | |
---|
3134 | IMPLICIT NONE |
---|
3135 | |
---|
3136 | INTEGER(iwp) :: i, j, k, l, m !< running indices |
---|
3137 | REAL(wp) :: c, d, tin, exn |
---|
3138 | |
---|
3139 | |
---|
3140 | CALL cpu_log( log_point_s(78), 'usm_init', 'start' ) |
---|
3141 | !-- surface forcing have to be disabled for LSF |
---|
3142 | !-- in case of enabled urban surface module |
---|
3143 | IF ( large_scale_forcing ) THEN |
---|
3144 | lsf_surf = .FALSE. |
---|
3145 | ENDIF |
---|
3146 | |
---|
3147 | !-- init anthropogenic sources of heat |
---|
3148 | CALL usm_allocate_urban_surface() |
---|
3149 | |
---|
3150 | !-- read the surface_types array somewhere |
---|
3151 | CALL usm_read_urban_surface_types() |
---|
3152 | |
---|
3153 | !-- init material heat model |
---|
3154 | CALL usm_init_material_model() |
---|
3155 | |
---|
3156 | IF ( usm_anthropogenic_heat ) THEN |
---|
3157 | !-- init anthropogenic sources of heat (from transportation for now) |
---|
3158 | CALL usm_read_anthropogenic_heat() |
---|
3159 | ENDIF |
---|
3160 | |
---|
3161 | IF ( read_svf_on_init ) THEN |
---|
3162 | !-- read svf, csf, svfsurf and csfsurf data from file |
---|
3163 | CALL location_message( ' Start reading SVF from file', .TRUE. ) |
---|
3164 | CALL usm_read_svf_from_file() |
---|
3165 | CALL location_message( ' Reading SVF from file has finished', .TRUE. ) |
---|
3166 | ELSE |
---|
3167 | !-- calculate SFV and CSF |
---|
3168 | CALL location_message( ' Start calculation of SVF', .TRUE. ) |
---|
3169 | CALL cpu_log( log_point_s(79), 'usm_calc_svf', 'start' ) |
---|
3170 | CALL usm_calc_svf() |
---|
3171 | CALL cpu_log( log_point_s(79), 'usm_calc_svf', 'stop' ) |
---|
3172 | CALL location_message( ' Calculation of SVF has finished', .TRUE. ) |
---|
3173 | ENDIF |
---|
3174 | |
---|
3175 | IF ( write_svf_on_init ) THEN |
---|
3176 | !-- write svf, csf svfsurf and csfsurf data to file |
---|
3177 | CALL location_message( ' Store SVF and CSF to file', .TRUE. ) |
---|
3178 | CALL usm_write_svf_to_file() |
---|
3179 | ENDIF |
---|
3180 | |
---|
3181 | IF ( plant_canopy ) THEN |
---|
3182 | !-- gridpcbl was only necessary for initialization |
---|
3183 | DEALLOCATE( gridpcbl ) |
---|
3184 | IF ( .NOT. ALLOCATED(pc_heating_rate) ) THEN |
---|
3185 | !-- then pc_heating_rate is allocated in init_plant_canopy |
---|
3186 | !-- in case of cthf /= 0 => we need to allocate it for our use here |
---|
3187 | ALLOCATE( pc_heating_rate(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
3188 | ENDIF |
---|
3189 | ENDIF |
---|
3190 | |
---|
3191 | !-- Intitialization of the surface and wall/ground/roof temperature |
---|
3192 | |
---|
3193 | !-- Initialization for restart runs |
---|
3194 | IF ( TRIM( initializing_actions ) == 'read_restart_data' ) THEN |
---|
3195 | |
---|
3196 | !-- restore data from restart file |
---|
3197 | CALL usm_read_restart_data() |
---|
3198 | ELSE |
---|
3199 | |
---|
3200 | !-- Calculate initial surface temperature from pt of adjacent gridbox |
---|
3201 | exn = ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
3202 | |
---|
3203 | ! |
---|
3204 | !-- At horizontal surfaces. Please note, t_surf_h is defined on a |
---|
3205 | !-- different data type, but with the same dimension. |
---|
3206 | DO m = 1, surf_usm_h%ns |
---|
3207 | i = surf_usm_h%i(m) |
---|
3208 | j = surf_usm_h%j(m) |
---|
3209 | k = surf_usm_h%k(m) |
---|
3210 | |
---|
3211 | t_surf_h(m) = pt(k,j,i) * exn |
---|
3212 | ENDDO |
---|
3213 | ! |
---|
3214 | !-- At vertical surfaces. |
---|
3215 | DO l = 0, 3 |
---|
3216 | DO m = 1, surf_usm_v(l)%ns |
---|
3217 | i = surf_usm_v(l)%i(m) |
---|
3218 | j = surf_usm_v(l)%j(m) |
---|
3219 | k = surf_usm_v(l)%k(m) |
---|
3220 | |
---|
3221 | t_surf_v(l)%t(m) = pt(k,j,i) * exn |
---|
3222 | ENDDO |
---|
3223 | ENDDO |
---|
3224 | |
---|
3225 | |
---|
3226 | !-- initial values for t_wall |
---|
3227 | !-- outer value is set to surface temperature |
---|
3228 | !-- inner value is set to wall_inner_temperature |
---|
3229 | !-- and profile is logaritmic (linear in nz). |
---|
3230 | !-- Horizontal surfaces |
---|
3231 | DO m = 1, surf_usm_h%ns |
---|
3232 | ! |
---|
3233 | !-- Roof |
---|
3234 | IF ( surf_usm_h%isroof_surf(m) ) THEN |
---|
3235 | tin = roof_inner_temperature |
---|
3236 | ! |
---|
3237 | !-- Normal land surface |
---|
3238 | ELSE |
---|
3239 | tin = soil_inner_temperature |
---|
3240 | ENDIF |
---|
3241 | |
---|
3242 | DO k = nzb_wall, nzt_wall+1 |
---|
3243 | c = REAL( k - nzb_wall, wp ) / & |
---|
3244 | REAL( nzt_wall + 1 - nzb_wall , wp ) |
---|
3245 | |
---|
3246 | t_wall_h(k,m) = ( 1.0_wp - c ) * t_surf_h(m) + c * tin |
---|
3247 | ENDDO |
---|
3248 | ENDDO |
---|
3249 | ! |
---|
3250 | !-- Vertical surfaces |
---|
3251 | DO l = 0, 3 |
---|
3252 | DO m = 1, surf_usm_v(l)%ns |
---|
3253 | ! |
---|
3254 | !-- Inner wall |
---|
3255 | tin = wall_inner_temperature |
---|
3256 | |
---|
3257 | DO k = nzb_wall, nzt_wall+1 |
---|
3258 | c = REAL( k - nzb_wall, wp ) / & |
---|
3259 | REAL( nzt_wall + 1 - nzb_wall , wp ) |
---|
3260 | |
---|
3261 | t_wall_v(l)%t(k,m) = ( 1.0_wp - c ) * t_surf_v(l)%t(m) + & |
---|
3262 | c * tin |
---|
3263 | ENDDO |
---|
3264 | ENDDO |
---|
3265 | ENDDO |
---|
3266 | |
---|
3267 | ENDIF |
---|
3268 | |
---|
3269 | !-- |
---|
3270 | !-- Possibly DO user-defined actions (e.g. define heterogeneous wall surface) |
---|
3271 | CALL user_init_urban_surface |
---|
3272 | |
---|
3273 | !-- initialize prognostic values for the first timestep |
---|
3274 | t_surf_h_p = t_surf_h |
---|
3275 | t_surf_v_p = t_surf_v |
---|
3276 | |
---|
3277 | t_wall_h_p = t_wall_h |
---|
3278 | t_wall_v_p = t_wall_v |
---|
3279 | |
---|
3280 | !-- Adjust radiative fluxes for urban surface at model start |
---|
3281 | CALL usm_radiation |
---|
3282 | |
---|
3283 | CALL cpu_log( log_point_s(78), 'usm_init', 'stop' ) |
---|
3284 | |
---|
3285 | |
---|
3286 | END SUBROUTINE usm_init_urban_surface |
---|
3287 | |
---|
3288 | |
---|
3289 | !------------------------------------------------------------------------------! |
---|
3290 | ! Description: |
---|
3291 | ! ------------ |
---|
3292 | ! |
---|
3293 | !> Wall model as part of the urban surface model. The model predicts wall |
---|
3294 | !> temperature. |
---|
3295 | !------------------------------------------------------------------------------! |
---|
3296 | SUBROUTINE usm_material_heat_model |
---|
3297 | |
---|
3298 | |
---|
3299 | IMPLICIT NONE |
---|
3300 | |
---|
3301 | INTEGER(iwp) :: i,j,k,l,kw, m !< running indices |
---|
3302 | |
---|
3303 | REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: wtend !< tendency |
---|
3304 | |
---|
3305 | ! |
---|
3306 | !-- For horizontal surfaces |
---|
3307 | DO m = 1, surf_usm_h%ns |
---|
3308 | ! |
---|
3309 | !-- Obtain indices |
---|
3310 | i = surf_usm_h%i(m) |
---|
3311 | j = surf_usm_h%j(m) |
---|
3312 | k = surf_usm_h%k(m) |
---|
3313 | ! |
---|
3314 | !-- prognostic equation for ground/roof temperature t_wall_h |
---|
3315 | wtend(:) = 0.0_wp |
---|
3316 | wtend(nzb_wall) = (1.0_wp / surf_usm_h%rho_c_wall(nzb_wall,m)) * & |
---|
3317 | ( surf_usm_h%lambda_h(nzb_wall,m) * & |
---|
3318 | ( t_wall_h(nzb_wall+1,m) & |
---|
3319 | - t_wall_h(nzb_wall,m) ) * & |
---|
3320 | surf_usm_h%ddz_wall(nzb_wall+1,m) & |
---|
3321 | + surf_usm_h%wghf_eb(m) ) * & |
---|
3322 | surf_usm_h%ddz_wall_stag(nzb_wall,m) |
---|
3323 | |
---|
3324 | DO kw = nzb_wall+1, nzt_wall |
---|
3325 | wtend(kw) = (1.0_wp / surf_usm_h%rho_c_wall(kw,m)) & |
---|
3326 | * ( surf_usm_h%lambda_h(kw,m) & |
---|
3327 | * ( t_wall_h(kw+1,m) - t_wall_h(kw,m) ) & |
---|
3328 | * surf_usm_h%ddz_wall(kw+1,m) & |
---|
3329 | - surf_usm_h%lambda_h(kw-1,m) & |
---|
3330 | * ( t_wall_h(kw,m) - t_wall_h(kw-1,m) ) & |
---|
3331 | * surf_usm_h%ddz_wall(kw,m) & |
---|
3332 | ) * surf_usm_h%ddz_wall_stag(kw,m) |
---|
3333 | ENDDO |
---|
3334 | |
---|
3335 | t_wall_h_p(nzb_wall:nzt_wall,m) = t_wall_h(nzb_wall:nzt_wall,m) & |
---|
3336 | + dt_3d * ( tsc(2) & |
---|
3337 | * wtend(nzb_wall:nzt_wall) + tsc(3) & |
---|
3338 | * surf_usm_h%tt_wall_m(nzb_wall:nzt_wall,m) ) |
---|
3339 | |
---|
3340 | ! |
---|
3341 | !-- calculate t_wall tendencies for the next Runge-Kutta step |
---|
3342 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
3343 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
3344 | DO kw = nzb_wall, nzt_wall |
---|
3345 | surf_usm_h%tt_wall_m(kw,m) = wtend(kw) |
---|
3346 | ENDDO |
---|
3347 | ELSEIF ( intermediate_timestep_count < & |
---|
3348 | intermediate_timestep_count_max ) THEN |
---|
3349 | DO kw = nzb_wall, nzt_wall |
---|
3350 | surf_usm_h%tt_wall_m(kw,m) = -9.5625_wp * wtend(kw) + & |
---|
3351 | 5.3125_wp * surf_usm_h%tt_wall_m(kw,m) |
---|
3352 | ENDDO |
---|
3353 | ENDIF |
---|
3354 | ENDIF |
---|
3355 | ENDDO |
---|
3356 | ! |
---|
3357 | !-- For vertical surfaces |
---|
3358 | DO l = 0, 3 |
---|
3359 | DO m = 1, surf_usm_v(l)%ns |
---|
3360 | ! |
---|
3361 | !-- Obtain indices |
---|
3362 | i = surf_usm_v(l)%i(m) |
---|
3363 | j = surf_usm_v(l)%j(m) |
---|
3364 | k = surf_usm_v(l)%k(m) |
---|
3365 | ! |
---|
3366 | !-- prognostic equation for wall temperature t_wall_v |
---|
3367 | wtend(:) = 0.0_wp |
---|
3368 | wtend(nzb_wall) = (1.0_wp / surf_usm_v(l)%rho_c_wall(nzb_wall,m)) * & |
---|
3369 | ( surf_usm_v(l)%lambda_h(nzb_wall,m) * & |
---|
3370 | ( t_wall_v(l)%t(nzb_wall+1,m) & |
---|
3371 | - t_wall_v(l)%t(nzb_wall,m) ) * & |
---|
3372 | surf_usm_v(l)%ddz_wall(nzb_wall+1,m) & |
---|
3373 | + surf_usm_v(l)%wghf_eb(m) ) * & |
---|
3374 | surf_usm_v(l)%ddz_wall_stag(nzb_wall,m) |
---|
3375 | |
---|
3376 | DO kw = nzb_wall+1, nzt_wall |
---|
3377 | wtend(kw) = (1.0_wp / surf_usm_v(l)%rho_c_wall(kw,m)) & |
---|
3378 | * ( surf_usm_v(l)%lambda_h(kw,m) & |
---|
3379 | * ( t_wall_v(l)%t(kw+1,m) - t_wall_v(l)%t(kw,m) )& |
---|
3380 | * surf_usm_v(l)%ddz_wall(kw+1,m) & |
---|
3381 | - surf_usm_v(l)%lambda_h(kw-1,m) & |
---|
3382 | * ( t_wall_v(l)%t(kw,m) - t_wall_v(l)%t(kw-1,m) )& |
---|
3383 | * surf_usm_v(l)%ddz_wall(kw,m) & |
---|
3384 | ) * surf_usm_v(l)%ddz_wall_stag(kw,m) |
---|
3385 | ENDDO |
---|
3386 | |
---|
3387 | t_wall_v_p(l)%t(nzb_wall:nzt_wall,m) = & |
---|
3388 | t_wall_v(l)%t(nzb_wall:nzt_wall,m) & |
---|
3389 | + dt_3d * ( tsc(2) & |
---|
3390 | * wtend(nzb_wall:nzt_wall) + tsc(3) & |
---|
3391 | * surf_usm_v(l)%tt_wall_m(nzb_wall:nzt_wall,m) ) |
---|
3392 | |
---|
3393 | ! |
---|
3394 | !-- calculate t_wall tendencies for the next Runge-Kutta step |
---|
3395 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
3396 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
3397 | DO kw = nzb_wall, nzt_wall |
---|
3398 | surf_usm_v(l)%tt_wall_m(kw,m) = wtend(kw) |
---|
3399 | ENDDO |
---|
3400 | ELSEIF ( intermediate_timestep_count < & |
---|
3401 | intermediate_timestep_count_max ) THEN |
---|
3402 | DO kw = nzb_wall, nzt_wall |
---|
3403 | surf_usm_v(l)%tt_wall_m(kw,m) = & |
---|
3404 | - 9.5625_wp * wtend(kw) + & |
---|
3405 | 5.3125_wp * surf_usm_v(l)%tt_wall_m(kw,m) |
---|
3406 | ENDDO |
---|
3407 | ENDIF |
---|
3408 | ENDIF |
---|
3409 | ENDDO |
---|
3410 | ENDDO |
---|
3411 | |
---|
3412 | END SUBROUTINE usm_material_heat_model |
---|
3413 | |
---|
3414 | |
---|
3415 | !------------------------------------------------------------------------------! |
---|
3416 | ! Description: |
---|
3417 | ! ------------ |
---|
3418 | !> Parin for &usm_par for urban surface model |
---|
3419 | !------------------------------------------------------------------------------! |
---|
3420 | SUBROUTINE usm_parin |
---|
3421 | |
---|
3422 | IMPLICIT NONE |
---|
3423 | |
---|
3424 | CHARACTER (LEN=80) :: line !< string containing current line of file PARIN |
---|
3425 | |
---|
3426 | NAMELIST /urban_surface_par/ & |
---|
3427 | land_category, & |
---|
3428 | mrt_factors, & |
---|
3429 | nrefsteps, & |
---|
3430 | pedestrant_category, & |
---|
3431 | ra_horiz_coef, & |
---|
3432 | read_svf_on_init, & |
---|
3433 | roof_category, & |
---|
3434 | split_diffusion_radiation, & |
---|
3435 | urban_surface, & |
---|
3436 | usm_anthropogenic_heat, & |
---|
3437 | usm_energy_balance_land, & |
---|
3438 | usm_energy_balance_wall, & |
---|
3439 | usm_material_model, & |
---|
3440 | usm_lad_rma, & |
---|
3441 | wall_category, & |
---|
3442 | write_svf_on_init |
---|
3443 | |
---|
3444 | line = ' ' |
---|
3445 | |
---|
3446 | ! |
---|
3447 | !-- Try to find urban surface model package |
---|
3448 | REWIND ( 11 ) |
---|
3449 | line = ' ' |
---|
3450 | DO WHILE ( INDEX( line, '&urban_surface_par' ) == 0 ) |
---|
3451 | READ ( 11, '(A)', END=10 ) line |
---|
3452 | ENDDO |
---|
3453 | BACKSPACE ( 11 ) |
---|
3454 | |
---|
3455 | ! |
---|
3456 | !-- Read user-defined namelist |
---|
3457 | READ ( 11, urban_surface_par ) |
---|
3458 | ! |
---|
3459 | !-- Set flag that indicates that the land surface model is switched on |
---|
3460 | urban_surface = .TRUE. |
---|
3461 | |
---|
3462 | 10 CONTINUE |
---|
3463 | |
---|
3464 | END SUBROUTINE usm_parin |
---|
3465 | |
---|
3466 | |
---|
3467 | !------------------------------------------------------------------------------! |
---|
3468 | ! Description: |
---|
3469 | ! ------------ |
---|
3470 | !> This subroutine calculates interaction of the solar radiation |
---|
3471 | !> with urban surface and updates surface, roofs and walls heatfluxes. |
---|
3472 | !> It also updates rad_sw_out and rad_lw_out. |
---|
3473 | !------------------------------------------------------------------------------! |
---|
3474 | SUBROUTINE usm_radiation |
---|
3475 | |
---|
3476 | IMPLICIT NONE |
---|
3477 | |
---|
3478 | INTEGER(iwp) :: i, j, k, kk, is, js, d, ku, refstep, m, mm, l, ll |
---|
3479 | INTEGER(iwp) :: nzubl, nzutl, isurf, isurfsrc, isurf1, isvf, icsf, ipcgb |
---|
3480 | INTEGER(iwp), DIMENSION(4) :: bdycross |
---|
3481 | REAL(wp), DIMENSION(3,3) :: mrot !< grid rotation matrix (xyz) |
---|
3482 | REAL(wp), DIMENSION(3,0:9) :: vnorm !< face direction normal vectors (xyz) |
---|
3483 | REAL(wp), DIMENSION(3) :: sunorig !< grid rotated solar direction unit vector (xyz) |
---|
3484 | REAL(wp), DIMENSION(3) :: sunorig_grid !< grid squashed solar direction unit vector (zyx) |
---|
3485 | REAL(wp), DIMENSION(0:9) :: costheta !< direct irradiance factor of solar angle |
---|
3486 | REAL(wp), DIMENSION(nzub:nzut) :: pchf_prep !< precalculated factor for canopy temp tendency |
---|
3487 | REAL(wp), PARAMETER :: alpha = 0._wp !< grid rotation (TODO: add to namelist or remove) |
---|
3488 | REAL(wp) :: rx, ry, rz |
---|
3489 | REAL(wp) :: pc_box_area, pc_abs_frac, pc_abs_eff |
---|
3490 | INTEGER(iwp) :: pc_box_dimshift !< transform for best accuracy |
---|
3491 | INTEGER(iwp), DIMENSION(0:3) :: reorder = (/ 1, 0, 3, 2 /) |
---|
3492 | |
---|
3493 | |
---|
3494 | IF ( plant_canopy ) THEN |
---|
3495 | pchf_prep(:) = r_d * (hyp(nzub:nzut) / 100000.0_wp)**0.286_wp & |
---|
3496 | / (cp * hyp(nzub:nzut) * dx*dy*dz) !< equals to 1 / (rho * c_p * Vbox * T) |
---|
3497 | ENDIF |
---|
3498 | |
---|
3499 | sun_direction = .TRUE. |
---|
3500 | CALL calc_zenith !< required also for diffusion radiation |
---|
3501 | |
---|
3502 | !-- prepare rotated normal vectors and irradiance factor |
---|
3503 | vnorm(1,:) = idir(:) |
---|
3504 | vnorm(2,:) = jdir(:) |
---|
3505 | vnorm(3,:) = kdir(:) |
---|
3506 | mrot(1, :) = (/ cos(alpha), -sin(alpha), 0._wp /) |
---|
3507 | mrot(2, :) = (/ sin(alpha), cos(alpha), 0._wp /) |
---|
3508 | mrot(3, :) = (/ 0._wp, 0._wp, 1._wp /) |
---|
3509 | sunorig = (/ sun_dir_lon, sun_dir_lat, zenith(0) /) |
---|
3510 | sunorig = matmul(mrot, sunorig) |
---|
3511 | DO d = 0, 9 |
---|
3512 | costheta(d) = dot_product(sunorig, vnorm(:,d)) |
---|
3513 | ENDDO |
---|
3514 | |
---|
3515 | IF ( zenith(0) > 0 ) THEN |
---|
3516 | !-- now we will "squash" the sunorig vector by grid box size in |
---|
3517 | !-- each dimension, so that this new direction vector will allow us |
---|
3518 | !-- to traverse the ray path within grid coordinates directly |
---|
3519 | sunorig_grid = (/ sunorig(3)/dz, sunorig(2)/dy, sunorig(1)/dx /) |
---|
3520 | !-- sunorig_grid = sunorig_grid / norm2(sunorig_grid) |
---|
3521 | sunorig_grid = sunorig_grid / SQRT(SUM(sunorig_grid**2)) |
---|
3522 | |
---|
3523 | IF ( plant_canopy ) THEN |
---|
3524 | !-- precompute effective box depth with prototype Leaf Area Density |
---|
3525 | pc_box_dimshift = maxloc(sunorig, 1) - 1 |
---|
3526 | CALL usm_box_absorb(cshift((/dx,dy,dz/), pc_box_dimshift), & |
---|
3527 | 60, prototype_lad, & |
---|
3528 | cshift(sunorig, pc_box_dimshift), & |
---|
3529 | pc_box_area, pc_abs_frac) |
---|
3530 | pc_box_area = pc_box_area * sunorig(pc_box_dimshift+1) / sunorig(3) |
---|
3531 | pc_abs_eff = log(1._wp - pc_abs_frac) / prototype_lad |
---|
3532 | ENDIF |
---|
3533 | ENDIF |
---|
3534 | |
---|
3535 | !-- split diffusion and direct part of the solar downward radiation |
---|
3536 | !-- comming from radiation model and store it in 2D arrays |
---|
3537 | !-- rad_sw_in_diff, rad_sw_in_dir and rad_lw_in_diff |
---|
3538 | IF ( split_diffusion_radiation ) THEN |
---|
3539 | CALL usm_calc_diffusion_radiation |
---|
3540 | ELSE |
---|
3541 | rad_sw_in_diff = 0.0_wp |
---|
3542 | rad_sw_in_dir(:,:) = rad_sw_in(0,:,:) |
---|
3543 | rad_lw_in_diff(:,:) = rad_lw_in(0,:,:) |
---|
3544 | ENDIF |
---|
3545 | |
---|
3546 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
3547 | !-- First pass: direct + diffuse irradiance |
---|
3548 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
3549 | surfinswdir = 0._wp !nsurfl |
---|
3550 | surfinswdif = 0._wp !nsurfl |
---|
3551 | surfinlwdif = 0._wp !nsurfl |
---|
3552 | surfins = 0._wp !nsurfl |
---|
3553 | surfinl = 0._wp !nsurfl |
---|
3554 | surfoutsl(:) = 0.0_wp !start-end |
---|
3555 | surfoutll(:) = 0.0_wp !start-end |
---|
3556 | |
---|
3557 | !-- Set up thermal radiation from surfaces |
---|
3558 | !-- emiss_surf is defined only for surfaces for which energy balance is calculated |
---|
3559 | !-- Workaround: reorder surface data type back on 1D array including all surfaces, |
---|
3560 | !-- which implies to reorder horizontal and vertical surfaces |
---|
3561 | ! |
---|
3562 | !-- Horizontal walls |
---|
3563 | mm = 1 |
---|
3564 | DO i = nxl, nxr |
---|
3565 | DO j = nys, nyn |
---|
3566 | |
---|
3567 | DO m = surf_usm_h%start_index(j,i), surf_usm_h%end_index(j,i) |
---|
3568 | surfoutll(mm) = surf_usm_h%emiss_surf(m) * sigma_sb & |
---|
3569 | * t_surf_h(m)**4 |
---|
3570 | albedo_surf(mm) = surf_usm_h%albedo_surf(m) |
---|
3571 | emiss_surf(mm) = surf_usm_h%emiss_surf(m) |
---|
3572 | mm = mm + 1 |
---|
3573 | ENDDO |
---|
3574 | ENDDO |
---|
3575 | ENDDO |
---|
3576 | ! |
---|
3577 | !-- Vertical walls |
---|
3578 | DO i = nxl, nxr |
---|
3579 | DO j = nys, nyn |
---|
3580 | DO ll = 0, 3 |
---|
3581 | l = reorder(ll) |
---|
3582 | DO m = surf_usm_v(l)%start_index(j,i), surf_usm_v(l)%end_index(j,i) |
---|
3583 | surfoutll(mm) = surf_usm_v(l)%emiss_surf(m) * sigma_sb & |
---|
3584 | * t_surf_v(l)%t(m)**4 |
---|
3585 | albedo_surf(mm) = surf_usm_v(l)%albedo_surf(m) |
---|
3586 | emiss_surf(mm) = surf_usm_v(l)%emiss_surf(m) |
---|
3587 | mm = mm + 1 |
---|
3588 | ENDDO |
---|
3589 | ENDDO |
---|
3590 | ENDDO |
---|
3591 | ENDDO |
---|
3592 | |
---|
3593 | #if defined( __parallel ) |
---|
3594 | !-- might be optimized and gather only values relevant for current processor |
---|
3595 | |
---|
3596 | CALL MPI_AllGatherv(surfoutll, nenergy, MPI_REAL, & |
---|
3597 | surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr) !nsurf global |
---|
3598 | #else |
---|
3599 | surfoutl(:) = surfoutll(:) !nsurf global |
---|
3600 | #endif |
---|
3601 | |
---|
3602 | isurf1 = -1 !< previous processed surface |
---|
3603 | DO isvf = 1, nsvfl |
---|
3604 | isurf = svfsurf(1, isvf) |
---|
3605 | k = surfl(iz, isurf) |
---|
3606 | j = surfl(iy, isurf) |
---|
3607 | i = surfl(ix, isurf) |
---|
3608 | isurfsrc = svfsurf(2, isvf) |
---|
3609 | IF ( zenith(0) > 0 .AND. isurf /= isurf1 ) THEN |
---|
3610 | !-- locate the virtual surface where the direct solar ray crosses domain boundary |
---|
3611 | !-- (once per target surface) |
---|
3612 | d = surfl(id, isurf) |
---|
3613 | rz = REAL(k, wp) - 0.5_wp * kdir(d) |
---|
3614 | ry = REAL(j, wp) - 0.5_wp * jdir(d) |
---|
3615 | rx = REAL(i, wp) - 0.5_wp * idir(d) |
---|
3616 | |
---|
3617 | CALL usm_find_boundary_face( (/ rz, ry, rx /), sunorig_grid, bdycross) |
---|
3618 | |
---|
3619 | isurf1 = isurf |
---|
3620 | ENDIF |
---|
3621 | |
---|
3622 | IF ( surf(id, isurfsrc) >= isky ) THEN |
---|
3623 | !-- diffuse rad from boundary surfaces. Since it is a simply |
---|
3624 | !-- calculated value, it is not assigned to surfref(s/l), |
---|
3625 | !-- instead it is used directly here |
---|
3626 | !-- we consider the radiation from the radiation model falling on surface |
---|
3627 | !-- as the radiation falling on the top of urban layer into the place of the source surface |
---|
3628 | !-- we consider it as a very reasonable simplification which allow as avoid |
---|
3629 | !-- necessity of other global range arrays and some all to all mpi communication |
---|
3630 | surfinswdif(isurf) = surfinswdif(isurf) + rad_sw_in_diff(j,i) * svf(1,isvf) * svf(2,isvf) |
---|
3631 | !< canopy shading is applied only to shortwave |
---|
3632 | surfinlwdif(isurf) = surfinlwdif(isurf) + rad_lw_in_diff(j,i) * svf(1,isvf) |
---|
3633 | ELSE |
---|
3634 | !-- for surface-to-surface factors we calculate thermal radiation in 1st pass |
---|
3635 | surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc) |
---|
3636 | ENDIF |
---|
3637 | |
---|
3638 | IF ( zenith(0) > 0 .AND. all( surf(1:4,isurfsrc) == bdycross ) ) THEN |
---|
3639 | !-- found svf between model boundary and the face => face isn't shaded |
---|
3640 | surfinswdir(isurf) = rad_sw_in_dir(j,i) & |
---|
3641 | * costheta(surfl(id, isurf)) * svf(2,isvf) / zenith(0) |
---|
3642 | |
---|
3643 | ENDIF |
---|
3644 | ENDDO |
---|
3645 | |
---|
3646 | IF ( plant_canopy ) THEN |
---|
3647 | |
---|
3648 | pcbinsw(:) = 0._wp |
---|
3649 | pcbinlw(:) = 0._wp !< will stay always 0 since we don't absorb lw anymore |
---|
3650 | ! |
---|
3651 | !-- pcsf first pass |
---|
3652 | isurf1 = -1 !< previous processed pcgb |
---|
3653 | DO icsf = 1, ncsfl |
---|
3654 | ipcgb = csfsurf(1, icsf) |
---|
3655 | i = pcbl(ix,ipcgb) |
---|
3656 | j = pcbl(iy,ipcgb) |
---|
3657 | k = pcbl(iz,ipcgb) |
---|
3658 | isurfsrc = csfsurf(2, icsf) |
---|
3659 | |
---|
3660 | IF ( zenith(0) > 0 .AND. ipcgb /= isurf1 ) THEN |
---|
3661 | !-- locate the virtual surface where the direct solar ray crosses domain boundary |
---|
3662 | !-- (once per target PC gridbox) |
---|
3663 | rz = REAL(k, wp) |
---|
3664 | ry = REAL(j, wp) |
---|
3665 | rx = REAL(i, wp) |
---|
3666 | CALL usm_find_boundary_face( (/ rz, ry, rx /), & |
---|
3667 | sunorig_grid, bdycross) |
---|
3668 | |
---|
3669 | isurf1 = ipcgb |
---|
3670 | ENDIF |
---|
3671 | |
---|
3672 | IF ( surf(id, isurfsrc) >= isky ) THEN |
---|
3673 | !-- Diffuse rad from boundary surfaces. See comments for svf above. |
---|
3674 | pcbinsw(ipcgb) = pcbinsw(ipcgb) + csf(1,icsf) * csf(2,icsf) * rad_sw_in_diff(j,i) |
---|
3675 | !-- canopy shading is applied only to shortwave, therefore no absorbtion for lw |
---|
3676 | !-- pcbinlw(ipcgb) = pcbinlw(ipcgb) + svf(1,isvf) * rad_lw_in_diff(j,i) |
---|
3677 | !ELSE |
---|
3678 | !-- Thermal radiation in 1st pass |
---|
3679 | !-- pcbinlw(ipcgb) = pcbinlw(ipcgb) + svf(1,isvf) * surfoutl(isurfsrc) |
---|
3680 | ENDIF |
---|
3681 | |
---|
3682 | IF ( zenith(0) > 0 .AND. all( surf(1:4,isurfsrc) == bdycross ) ) THEN |
---|
3683 | !-- found svf between model boundary and the pcgb => pcgb isn't shaded |
---|
3684 | pc_abs_frac = 1._wp - exp(pc_abs_eff * lad_s(k,j,i)) |
---|
3685 | pcbinsw(ipcgb) = pcbinsw(ipcgb) & |
---|
3686 | + rad_sw_in_dir(j, i) * pc_box_area * csf(2,icsf) * pc_abs_frac |
---|
3687 | ENDIF |
---|
3688 | ENDDO |
---|
3689 | ENDIF |
---|
3690 | |
---|
3691 | surfins(startenergy:endenergy) = surfinswdir(startenergy:endenergy) + surfinswdif(startenergy:endenergy) |
---|
3692 | surfinl(startenergy:endenergy) = surfinl(startenergy:endenergy) + surfinlwdif(startenergy:endenergy) |
---|
3693 | surfinsw(:) = surfins(:) |
---|
3694 | surfinlw(:) = surfinl(:) |
---|
3695 | surfoutsw(:) = 0.0_wp |
---|
3696 | surfoutlw(:) = surfoutll(:) |
---|
3697 | ! surfhf(startenergy:endenergy) = surfinsw(startenergy:endenergy) + surfinlw(startenergy:endenergy) & |
---|
3698 | ! - surfoutsw(startenergy:endenergy) - surfoutlw(startenergy:endenergy) |
---|
3699 | |
---|
3700 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
3701 | !-- Next passes - reflections |
---|
3702 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
3703 | DO refstep = 1, nrefsteps |
---|
3704 | |
---|
3705 | surfoutsl(startenergy:endenergy) = albedo_surf(startenergy:endenergy) * surfins(startenergy:endenergy) |
---|
3706 | !-- for non-transparent surfaces, longwave albedo is 1 - emissivity |
---|
3707 | surfoutll(startenergy:endenergy) = (1._wp - emiss_surf(startenergy:endenergy)) * surfinl(startenergy:endenergy) |
---|
3708 | |
---|
3709 | #if defined( __parallel ) |
---|
3710 | CALL MPI_AllGatherv(surfoutsl, nsurfl, MPI_REAL, & |
---|
3711 | surfouts, nsurfs, surfstart, MPI_REAL, comm2d, ierr) |
---|
3712 | CALL MPI_AllGatherv(surfoutll, nsurfl, MPI_REAL, & |
---|
3713 | surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr) |
---|
3714 | #else |
---|
3715 | surfouts(:) = surfoutsl(:) |
---|
3716 | surfoutl(:) = surfoutll(:) |
---|
3717 | #endif |
---|
3718 | |
---|
3719 | !-- reset for next pass input |
---|
3720 | surfins(:) = 0._wp |
---|
3721 | surfinl(:) = 0._wp |
---|
3722 | |
---|
3723 | !-- reflected radiation |
---|
3724 | DO isvf = 1, nsvfl |
---|
3725 | isurf = svfsurf(1, isvf) |
---|
3726 | isurfsrc = svfsurf(2, isvf) |
---|
3727 | |
---|
3728 | !-- TODO: to remove if, use start+end for isvf |
---|
3729 | IF ( surf(id, isurfsrc) < isky ) THEN |
---|
3730 | surfins(isurf) = surfins(isurf) + svf(1,isvf) * svf(2,isvf) * surfouts(isurfsrc) |
---|
3731 | surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc) |
---|
3732 | ENDIF |
---|
3733 | ENDDO |
---|
3734 | |
---|
3735 | !-- radiation absorbed by plant canopy |
---|
3736 | DO icsf = 1, ncsfl |
---|
3737 | ipcgb = csfsurf(1, icsf) |
---|
3738 | isurfsrc = csfsurf(2, icsf) |
---|
3739 | |
---|
3740 | IF ( surf(id, isurfsrc) < isky ) THEN |
---|
3741 | pcbinsw(ipcgb) = pcbinsw(ipcgb) + csf(1,icsf) * csf(2,icsf) * surfouts(isurfsrc) |
---|
3742 | !-- pcbinlw(ipcgb) = pcbinlw(ipcgb) + csf(1,icsf) * surfoutl(isurfsrc) |
---|
3743 | ENDIF |
---|
3744 | ENDDO |
---|
3745 | |
---|
3746 | surfinsw(:) = surfinsw(:) + surfins(:) |
---|
3747 | surfinlw(:) = surfinlw(:) + surfinl(:) |
---|
3748 | surfoutsw(startenergy:endenergy) = surfoutsw(startenergy:endenergy) + surfoutsl(startenergy:endenergy) |
---|
3749 | surfoutlw(startenergy:endenergy) = surfoutlw(startenergy:endenergy) + surfoutll(startenergy:endenergy) |
---|
3750 | ! surfhf(startenergy:endenergy) = surfinsw(startenergy:endenergy) + surfinlw(startenergy:endenergy) & |
---|
3751 | ! - surfoutsw(startenergy:endenergy) - surfoutlw(startenergy:endenergy) |
---|
3752 | |
---|
3753 | ENDDO |
---|
3754 | |
---|
3755 | !-- push heat flux absorbed by plant canopy to respective 3D arrays |
---|
3756 | IF ( plant_canopy ) THEN |
---|
3757 | pc_heating_rate(:,:,:) = 0._wp |
---|
3758 | DO ipcgb = 1, npcbl |
---|
3759 | j = pcbl(iy, ipcgb) |
---|
3760 | i = pcbl(ix, ipcgb) |
---|
3761 | k = pcbl(iz, ipcgb) |
---|
3762 | kk = k - MAXLOC( & |
---|
3763 | MERGE( 1, 0, & |
---|
3764 | BTEST( wall_flags_0(:,j,i), 12 ) & |
---|
3765 | ), DIM = 1 & |
---|
3766 | ) - 1 ! kk = k - nzb_s_inner(j,i) !- lad arrays are defined flat |
---|
3767 | pc_heating_rate(kk, j, i) = (pcbinsw(ipcgb) + pcbinlw(ipcgb)) & |
---|
3768 | * pchf_prep(k) * pt(k, j, i) !-- = dT/dt |
---|
3769 | ENDDO |
---|
3770 | ENDIF |
---|
3771 | ! |
---|
3772 | !-- Transfer radiation arrays required for energy balance to the respective data types |
---|
3773 | DO i = startenergy, endenergy |
---|
3774 | m = surfl(5,i) |
---|
3775 | ! |
---|
3776 | !-- upward-facing |
---|
3777 | IF ( surfl(1,i) == 0 ) THEN |
---|
3778 | surf_usm_h%rad_in_sw(m) = surfinsw(i) |
---|
3779 | surf_usm_h%rad_out_sw(m) = surfoutsw(i) |
---|
3780 | surf_usm_h%rad_in_lw(m) = surfinlw(i) |
---|
3781 | surf_usm_h%rad_out_lw(m) = surfoutlw(i) |
---|
3782 | ! |
---|
3783 | !-- southward-facding |
---|
3784 | ELSEIF ( surfl(1,i) == 1 ) THEN |
---|
3785 | surf_usm_v(1)%rad_in_sw(m) = surfinsw(i) |
---|
3786 | surf_usm_v(1)%rad_out_sw(m) = surfoutsw(i) |
---|
3787 | surf_usm_v(1)%rad_in_lw(m) = surfinlw(i) |
---|
3788 | surf_usm_v(1)%rad_out_lw(m) = surfoutlw(i) |
---|
3789 | ! |
---|
3790 | !-- northward-facding |
---|
3791 | ELSEIF ( surfl(1,i) == 2 ) THEN |
---|
3792 | surf_usm_v(0)%rad_in_sw(m) = surfinsw(i) |
---|
3793 | surf_usm_v(0)%rad_out_sw(m) = surfoutsw(i) |
---|
3794 | surf_usm_v(0)%rad_in_lw(m) = surfinlw(i) |
---|
3795 | surf_usm_v(0)%rad_out_lw(m) = surfoutlw(i) |
---|
3796 | ! |
---|
3797 | !-- westward-facding |
---|
3798 | ELSEIF ( surfl(1,i) == 3 ) THEN |
---|
3799 | surf_usm_v(3)%rad_in_sw(m) = surfinsw(i) |
---|
3800 | surf_usm_v(3)%rad_out_sw(m) = surfoutsw(i) |
---|
3801 | surf_usm_v(3)%rad_in_lw(m) = surfinlw(i) |
---|
3802 | surf_usm_v(3)%rad_out_lw(m) = surfoutlw(i) |
---|
3803 | ! |
---|
3804 | !-- eastward-facing |
---|
3805 | ELSEIF ( surfl(1,i) == 4 ) THEN |
---|
3806 | surf_usm_v(2)%rad_in_sw(m) = surfinsw(i) |
---|
3807 | surf_usm_v(2)%rad_out_sw(m) = surfoutsw(i) |
---|
3808 | surf_usm_v(2)%rad_in_lw(m) = surfinlw(i) |
---|
3809 | surf_usm_v(2)%rad_out_lw(m) = surfoutlw(i) |
---|
3810 | ENDIF |
---|
3811 | |
---|
3812 | ENDDO |
---|
3813 | |
---|
3814 | |
---|
3815 | DO m = 1, surf_usm_h%ns |
---|
3816 | surf_usm_h%surfhf(m) = surf_usm_h%rad_in_sw(m) + & |
---|
3817 | surf_usm_h%rad_in_lw(m) - & |
---|
3818 | surf_usm_h%rad_out_sw(m) - & |
---|
3819 | surf_usm_h%rad_out_lw(m) |
---|
3820 | ENDDO |
---|
3821 | |
---|
3822 | DO l = 0, 3 |
---|
3823 | DO m = 1, surf_usm_v(l)%ns |
---|
3824 | surf_usm_v(l)%surfhf(m) = surf_usm_v(l)%rad_in_sw(m) + & |
---|
3825 | surf_usm_v(l)%rad_in_lw(m) - & |
---|
3826 | surf_usm_v(l)%rad_out_sw(m) - & |
---|
3827 | surf_usm_v(l)%rad_out_lw(m) |
---|
3828 | ENDDO |
---|
3829 | ENDDO |
---|
3830 | |
---|
3831 | !-- return surface radiation to horizontal surfaces |
---|
3832 | !-- to rad_sw_in, rad_lw_in and rad_net for outputs |
---|
3833 | !!!!!!!!!! |
---|
3834 | !-- we need the original radiation on urban top layer |
---|
3835 | !-- for calculation of MRT so we can't do adjustment here for now |
---|
3836 | !!!!!!!!!! |
---|
3837 | !!!DO isurf = 1, nsurfl |
---|
3838 | !!! i = surfl(ix,isurf) |
---|
3839 | !!! j = surfl(iy,isurf) |
---|
3840 | !!! k = surfl(iz,isurf) |
---|
3841 | !!! d = surfl(id,isurf) |
---|
3842 | !!! IF ( d==iroof ) THEN |
---|
3843 | !!! rad_sw_in(:,j,i) = surfinsw(isurf) |
---|
3844 | !!! rad_lw_in(:,j,i) = surfinlw(isurf) |
---|
3845 | !!! rad_net(j,i) = rad_sw_in(k,j,i) - rad_sw_out(k,j,i) + rad_lw_in(k,j,i) - rad_lw_out(k,j,i) |
---|
3846 | !!! ENDIF |
---|
3847 | !!!ENDDO |
---|
3848 | |
---|
3849 | END SUBROUTINE usm_radiation |
---|
3850 | |
---|
3851 | |
---|
3852 | !------------------------------------------------------------------------------! |
---|
3853 | ! Description: |
---|
3854 | ! ------------ |
---|
3855 | !> Raytracing for detecting obstacles and calculating compound canopy sink |
---|
3856 | !> factors. (A simple obstacle detection would only need to process faces in |
---|
3857 | !> 3 dimensions without any ordering.) |
---|
3858 | !> Assumtions: |
---|
3859 | !> ----------- |
---|
3860 | !> 1. The ray always originates from a face midpoint (only one coordinate equals |
---|
3861 | !> *.5, i.e. wall) and doesn't travel parallel to the surface (that would mean |
---|
3862 | !> shape factor=0). Therefore, the ray may never travel exactly along a face |
---|
3863 | !> or an edge. |
---|
3864 | !> 2. From grid bottom to urban surface top the grid has to be *equidistant* |
---|
3865 | !> within each of the dimensions, including vertical (but the resolution |
---|
3866 | !> doesn't need to be the same in all three dimensions). |
---|
3867 | !------------------------------------------------------------------------------! |
---|
3868 | SUBROUTINE usm_raytrace(src, targ, isrc, rirrf, atarg, create_csf, visible, transparency, win_lad) |
---|
3869 | IMPLICIT NONE |
---|
3870 | |
---|
3871 | REAL(wp), DIMENSION(3), INTENT(in) :: src, targ !< real coordinates z,y,x |
---|
3872 | INTEGER(iwp), INTENT(in) :: isrc !< index of source face for csf |
---|
3873 | REAL(wp), INTENT(in) :: rirrf !< irradiance factor for csf |
---|
3874 | REAL(wp), INTENT(in) :: atarg !< target surface area for csf |
---|
3875 | LOGICAL, INTENT(in) :: create_csf !< whether to generate new CSFs during raytracing |
---|
3876 | LOGICAL, INTENT(out) :: visible |
---|
3877 | REAL(wp), INTENT(out) :: transparency !< along whole path |
---|
3878 | INTEGER(iwp), INTENT(in) :: win_lad |
---|
3879 | INTEGER(iwp) :: i, j, k, d |
---|
3880 | INTEGER(iwp) :: seldim !< dimension to be incremented |
---|
3881 | INTEGER(iwp) :: ncsb !< no of written plant canopy sinkboxes |
---|
3882 | INTEGER(iwp) :: maxboxes !< max no of gridboxes visited |
---|
3883 | REAL(wp) :: distance !< euclidean along path |
---|
3884 | REAL(wp) :: crlen !< length of gridbox crossing |
---|
3885 | REAL(wp) :: lastdist !< beginning of current crossing |
---|
3886 | REAL(wp) :: nextdist !< end of current crossing |
---|
3887 | REAL(wp) :: realdist !< distance in meters per unit distance |
---|
3888 | REAL(wp) :: crmid !< midpoint of crossing |
---|
3889 | REAL(wp) :: cursink !< sink factor for current canopy box |
---|
3890 | REAL(wp), DIMENSION(3) :: delta !< path vector |
---|
3891 | REAL(wp), DIMENSION(3) :: uvect !< unit vector |
---|
3892 | REAL(wp), DIMENSION(3) :: dimnextdist !< distance for each dimension increments |
---|
3893 | INTEGER(iwp), DIMENSION(3) :: box !< gridbox being crossed |
---|
3894 | INTEGER(iwp), DIMENSION(3) :: dimnext !< next dimension increments along path |
---|
3895 | INTEGER(iwp), DIMENSION(3) :: dimdelta !< dimension direction = +- 1 |
---|
3896 | INTEGER(iwp) :: px, py !< number of processors in x and y dir before |
---|
3897 | !< the processor in the question |
---|
3898 | INTEGER(iwp) :: ip !< number of processor where gridbox reside |
---|
3899 | INTEGER(iwp) :: ig !< 1D index of gridbox in global 2D array |
---|
3900 | REAL(wp) :: lad_s_target !< recieved lad_s of particular grid box |
---|
3901 | REAL(wp), PARAMETER :: grow_factor = 1.5_wp !< factor of expansion of grow arrays |
---|
3902 | |
---|
3903 | ! |
---|
3904 | !-- Maximum number of gridboxes visited equals to maximum number of boundaries crossed in each dimension plus one. That's also |
---|
3905 | !-- the maximum number of plant canopy boxes written. We grow the acsf array accordingly using exponential factor. |
---|
3906 | maxboxes = SUM(ABS(NINT(targ) - NINT(src))) + 1 |
---|
3907 | IF ( plant_canopy .AND. ncsfl + maxboxes > ncsfla ) THEN |
---|
3908 | !-- use this code for growing by fixed exponential increments (equivalent to case where ncsfl always increases by 1) |
---|
3909 | !-- k = CEILING(grow_factor ** real(CEILING(log(real(ncsfl + maxboxes, kind=wp)) & |
---|
3910 | !-- / log(grow_factor)), kind=wp)) |
---|
3911 | !-- or use this code to simply always keep some extra space after growing |
---|
3912 | k = CEILING(REAL(ncsfl + maxboxes, kind=wp) * grow_factor) |
---|
3913 | |
---|
3914 | CALL usm_merge_and_grow_csf(k) |
---|
3915 | ENDIF |
---|
3916 | |
---|
3917 | transparency = 1._wp |
---|
3918 | ncsb = 0 |
---|
3919 | |
---|
3920 | delta(:) = targ(:) - src(:) |
---|
3921 | distance = SQRT(SUM(delta(:)**2)) |
---|
3922 | IF ( distance == 0._wp ) THEN |
---|
3923 | visible = .TRUE. |
---|
3924 | RETURN |
---|
3925 | ENDIF |
---|
3926 | uvect(:) = delta(:) / distance |
---|
3927 | realdist = SQRT(SUM( (uvect(:)*(/dz,dy,dx/))**2 )) |
---|
3928 | |
---|
3929 | lastdist = 0._wp |
---|
3930 | |
---|
3931 | !-- Since all face coordinates have values *.5 and we'd like to use |
---|
3932 | !-- integers, all these have .5 added |
---|
3933 | DO d = 1, 3 |
---|
3934 | IF ( uvect(d) == 0._wp ) THEN |
---|
3935 | dimnext(d) = 999999999 |
---|
3936 | dimdelta(d) = 999999999 |
---|
3937 | dimnextdist(d) = 1.0E20_wp |
---|
3938 | ELSE IF ( uvect(d) > 0._wp ) THEN |
---|
3939 | dimnext(d) = CEILING(src(d) + .5_wp) |
---|
3940 | dimdelta(d) = 1 |
---|
3941 | dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d) |
---|
3942 | ELSE |
---|
3943 | dimnext(d) = FLOOR(src(d) + .5_wp) |
---|
3944 | dimdelta(d) = -1 |
---|
3945 | dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d) |
---|
3946 | ENDIF |
---|
3947 | ENDDO |
---|
3948 | |
---|
3949 | DO |
---|
3950 | !-- along what dimension will the next wall crossing be? |
---|
3951 | seldim = minloc(dimnextdist, 1) |
---|
3952 | nextdist = dimnextdist(seldim) |
---|
3953 | IF ( nextdist > distance ) nextdist = distance |
---|
3954 | |
---|
3955 | crlen = nextdist - lastdist |
---|
3956 | IF ( crlen > .001_wp ) THEN |
---|
3957 | crmid = (lastdist + nextdist) * .5_wp |
---|
3958 | box = NINT(src(:) + uvect(:) * crmid) |
---|
3959 | |
---|
3960 | !-- calculate index of the grid with global indices (box(2),box(3)) |
---|
3961 | !-- in the array nzterr and plantt and id of the coresponding processor |
---|
3962 | px = box(3)/nnx |
---|
3963 | py = box(2)/nny |
---|
3964 | ip = px*pdims(2)+py |
---|
3965 | ig = ip*nnx*nny + (box(3)-px*nnx)*nny + box(2)-py*nny |
---|
3966 | IF ( box(1) <= nzterr(ig) ) THEN |
---|
3967 | visible = .FALSE. |
---|
3968 | RETURN |
---|
3969 | ENDIF |
---|
3970 | |
---|
3971 | IF ( plant_canopy ) THEN |
---|
3972 | IF ( box(1) <= plantt(ig) ) THEN |
---|
3973 | ncsb = ncsb + 1 |
---|
3974 | boxes(:,ncsb) = box |
---|
3975 | crlens(ncsb) = crlen |
---|
3976 | #if defined( __parallel ) |
---|
3977 | lad_ip(ncsb) = ip |
---|
3978 | lad_disp(ncsb) = (box(3)-px*nnx)*(nny*nzu) + (box(2)-py*nny)*nzu + box(1)-nzub |
---|
3979 | #endif |
---|
3980 | ENDIF |
---|
3981 | ENDIF |
---|
3982 | ENDIF |
---|
3983 | |
---|
3984 | IF ( nextdist >= distance ) EXIT |
---|
3985 | lastdist = nextdist |
---|
3986 | dimnext(seldim) = dimnext(seldim) + dimdelta(seldim) |
---|
3987 | dimnextdist(seldim) = (dimnext(seldim) - .5_wp - src(seldim)) / uvect(seldim) |
---|
3988 | ENDDO |
---|
3989 | |
---|
3990 | IF ( plant_canopy ) THEN |
---|
3991 | #if defined( __parallel ) |
---|
3992 | IF ( usm_lad_rma ) THEN |
---|
3993 | !-- send requests for lad_s to appropriate processor |
---|
3994 | CALL cpu_log( log_point_s(77), 'usm_init_rma', 'start' ) |
---|
3995 | DO i = 1, ncsb |
---|
3996 | CALL MPI_Get(lad_s_ray(i), 1, MPI_REAL, lad_ip(i), lad_disp(i), & |
---|
3997 | 1, MPI_REAL, win_lad, ierr) |
---|
3998 | IF ( ierr /= 0 ) THEN |
---|
3999 | WRITE(message_string, *) 'MPI error ', ierr, ' at MPI_Get' |
---|
4000 | CALL message( 'usm_raytrace', 'PA0519', 1, 2, 0, 6, 0 ) |
---|
4001 | ENDIF |
---|
4002 | ENDDO |
---|
4003 | |
---|
4004 | !-- wait for all pending local requests complete |
---|
4005 | CALL MPI_Win_flush_local_all(win_lad, ierr) |
---|
4006 | IF ( ierr /= 0 ) THEN |
---|
4007 | WRITE(message_string, *) 'MPI error ', ierr, ' at MPI_Win_flush_local_all' |
---|
4008 | CALL message( 'usm_raytrace', 'PA0519', 1, 2, 0, 6, 0 ) |
---|
4009 | ENDIF |
---|
4010 | CALL cpu_log( log_point_s(77), 'usm_init_rma', 'stop' ) |
---|
4011 | |
---|
4012 | ENDIF |
---|
4013 | #endif |
---|
4014 | |
---|
4015 | !-- calculate csf and transparency |
---|
4016 | DO i = 1, ncsb |
---|
4017 | #if defined( __parallel ) |
---|
4018 | IF ( usm_lad_rma ) THEN |
---|
4019 | lad_s_target = lad_s_ray(i) |
---|
4020 | ELSE |
---|
4021 | lad_s_target = usm_lad_g(lad_ip(i)*nnx*nny*nzu + lad_disp(i)) |
---|
4022 | ENDIF |
---|
4023 | #else |
---|
4024 | lad_s_target = usm_lad(boxes(1,i),boxes(2,i),boxes(3,i)) |
---|
4025 | #endif |
---|
4026 | cursink = 1._wp - exp(-ext_coef * lad_s_target * crlens(i)*realdist) |
---|
4027 | |
---|
4028 | IF ( create_csf ) THEN |
---|
4029 | !-- write svf values into the array |
---|
4030 | ncsfl = ncsfl + 1 |
---|
4031 | acsf(ncsfl)%ip = lad_ip(i) |
---|
4032 | acsf(ncsfl)%itx = boxes(3,i) |
---|
4033 | acsf(ncsfl)%ity = boxes(2,i) |
---|
4034 | acsf(ncsfl)%itz = boxes(1,i) |
---|
4035 | acsf(ncsfl)%isurfs = isrc |
---|
4036 | acsf(ncsfl)%rsvf = REAL(cursink*rirrf*atarg, wp) !-- we postpone multiplication by transparency |
---|
4037 | acsf(ncsfl)%rtransp = REAL(transparency, wp) |
---|
4038 | ENDIF !< create_csf |
---|
4039 | |
---|
4040 | transparency = transparency * (1._wp - cursink) |
---|
4041 | |
---|
4042 | ENDDO |
---|
4043 | ENDIF |
---|
4044 | |
---|
4045 | visible = .TRUE. |
---|
4046 | |
---|
4047 | END SUBROUTINE usm_raytrace |
---|
4048 | |
---|
4049 | |
---|
4050 | !------------------------------------------------------------------------------! |
---|
4051 | ! Description: |
---|
4052 | ! ------------ |
---|
4053 | ! |
---|
4054 | !> This subroutine is part of the urban surface model. |
---|
4055 | !> It reads daily heat produced by anthropogenic sources |
---|
4056 | !> and the diurnal cycle of the heat. |
---|
4057 | !------------------------------------------------------------------------------! |
---|
4058 | SUBROUTINE usm_read_anthropogenic_heat |
---|
4059 | |
---|
4060 | INTEGER(iwp) :: i,j,ii |
---|
4061 | REAL(wp) :: heat |
---|
4062 | |
---|
4063 | !-- allocation of array of sources of anthropogenic heat and their diural profile |
---|
4064 | ALLOCATE( aheat(nys:nyn,nxl:nxr) ) |
---|
4065 | ALLOCATE( aheatprof(0:24) ) |
---|
4066 | |
---|
4067 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4068 | !-- read daily amount of heat and its daily cycle |
---|
4069 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4070 | aheat = 0.0_wp |
---|
4071 | DO ii = 0, io_blocks-1 |
---|
4072 | IF ( ii == io_group ) THEN |
---|
4073 | |
---|
4074 | !-- open anthropogenic heat file |
---|
4075 | OPEN( 151, file='ANTHROPOGENIC_HEAT'//TRIM(coupling_char), action='read', & |
---|
4076 | status='old', form='formatted', err=11 ) |
---|
4077 | i = 0 |
---|
4078 | j = 0 |
---|
4079 | DO |
---|
4080 | READ( 151, *, err=12, end=13 ) i, j, heat |
---|
4081 | IF ( i >= nxl .AND. i <= nxr .AND. j >= nys .AND. j <= nyn ) THEN |
---|
4082 | !-- write heat into the array |
---|
4083 | aheat(j,i) = heat |
---|
4084 | ENDIF |
---|
4085 | CYCLE |
---|
4086 | 12 WRITE(message_string,'(a,2i4)') 'error in file ANTHROPOGENIC_HEAT'//TRIM(coupling_char)//' after line ',i,j |
---|
4087 | CALL message( 'usm_read_anthropogenic_heat', 'PA0515', 0, 1, 0, 6, 0 ) |
---|
4088 | ENDDO |
---|
4089 | 13 CLOSE(151) |
---|
4090 | CYCLE |
---|
4091 | 11 message_string = 'file ANTHROPOGENIC_HEAT'//TRIM(coupling_char)//' does not exist' |
---|
4092 | CALL message( 'usm_read_anthropogenic_heat', 'PA0516', 1, 2, 0, 6, 0 ) |
---|
4093 | ENDIF |
---|
4094 | |
---|
4095 | #if defined( __parallel ) && ! defined ( __check ) |
---|
4096 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
4097 | #endif |
---|
4098 | ENDDO |
---|
4099 | |
---|
4100 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4101 | !-- read diurnal profiles of heat sources |
---|
4102 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4103 | aheatprof = 0.0_wp |
---|
4104 | DO ii = 0, io_blocks-1 |
---|
4105 | IF ( ii == io_group ) THEN |
---|
4106 | |
---|
4107 | !-- open anthropogenic heat profile file |
---|
4108 | OPEN( 151, file='ANTHROPOGENIC_HEAT_PROFILE'//TRIM(coupling_char), action='read', & |
---|
4109 | status='old', form='formatted', err=21 ) |
---|
4110 | i = 0 |
---|
4111 | DO |
---|
4112 | READ( 151, *, err=22, end=23 ) i, heat |
---|
4113 | IF ( i >= 0 .AND. i <= 24 ) THEN |
---|
4114 | !-- write heat into the array |
---|
4115 | aheatprof(i) = heat |
---|
4116 | ENDIF |
---|
4117 | CYCLE |
---|
4118 | 22 WRITE(message_string,'(a,i4)') 'error in file ANTHROPOGENIC_HEAT_PROFILE'// & |
---|
4119 | TRIM(coupling_char)//' after line ',i |
---|
4120 | CALL message( 'usm_read_anthropogenic_heat', 'PA0517', 0, 1, 0, 6, 0 ) |
---|
4121 | ENDDO |
---|
4122 | aheatprof(24) = aheatprof(0) |
---|
4123 | 23 CLOSE(151) |
---|
4124 | CYCLE |
---|
4125 | 21 message_string = 'file ANTHROPOGENIC_HEAT_PROFILE'//TRIM(coupling_char)//' does not exist' |
---|
4126 | CALL message( 'usm_read_anthropogenic_heat', 'PA0518', 1, 2, 0, 6, 0 ) |
---|
4127 | ENDIF |
---|
4128 | |
---|
4129 | #if defined( __parallel ) && ! defined ( __check ) |
---|
4130 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
4131 | #endif |
---|
4132 | ENDDO |
---|
4133 | |
---|
4134 | END SUBROUTINE usm_read_anthropogenic_heat |
---|
4135 | |
---|
4136 | |
---|
4137 | !------------------------------------------------------------------------------! |
---|
4138 | ! |
---|
4139 | ! Description: |
---|
4140 | ! ------------ |
---|
4141 | !> Soubroutine reads t_surf and t_wall data from restart files |
---|
4142 | !kanani: Renamed this routine according to corresponging routines in PALM |
---|
4143 | !kanani: Modified the routine to match read_var_list, from where usm_read_restart_data |
---|
4144 | ! shall be called in the future. This part has not been tested yet. (see virtual_flight_mod) |
---|
4145 | ! Also, I had some trouble with the allocation of t_surf, since this is a pointer. |
---|
4146 | ! So, I added some directives here. |
---|
4147 | !------------------------------------------------------------------------------! |
---|
4148 | SUBROUTINE usm_read_restart_data |
---|
4149 | |
---|
4150 | |
---|
4151 | IMPLICIT NONE |
---|
4152 | |
---|
4153 | CHARACTER (LEN=30) :: variable_chr !< dummy variable to read string |
---|
4154 | |
---|
4155 | INTEGER(iwp) :: i !< running index |
---|
4156 | |
---|
4157 | |
---|
4158 | DO i = 0, io_blocks-1 |
---|
4159 | IF ( i == io_group ) THEN |
---|
4160 | READ ( 13 ) variable_chr |
---|
4161 | DO WHILE ( TRIM( variable_chr ) /= '*** end usm ***' ) |
---|
4162 | |
---|
4163 | SELECT CASE ( TRIM( variable_chr ) ) |
---|
4164 | |
---|
4165 | CASE ( 't_surf_h' ) |
---|
4166 | #if defined( __nopointer ) |
---|
4167 | IF ( .NOT. ALLOCATED( t_surf_h ) ) & |
---|
4168 | ALLOCATE( t_surf_h(1:surf_usm_h%ns) ) |
---|
4169 | READ ( 13 ) t_surf_h |
---|
4170 | #else |
---|
4171 | IF ( .NOT. ALLOCATED( t_surf_h_1 ) ) & |
---|
4172 | ALLOCATE( t_surf_h_1(1:surf_usm_h%ns) ) |
---|
4173 | READ ( 13 ) t_surf_h_1 |
---|
4174 | #endif |
---|
4175 | CASE ( 't_surf_v(0)' ) |
---|
4176 | #if defined( __nopointer ) |
---|
4177 | IF ( .NOT. ALLOCATED( t_surf_v(0)%t ) ) & |
---|
4178 | ALLOCATE( t_surf_v(0)%t(1:surf_usm_v(0)%ns) ) |
---|
4179 | READ ( 13 ) t_surf_v(0)%t |
---|
4180 | #else |
---|
4181 | IF ( .NOT. ALLOCATED( t_surf_v_1(0)%t ) ) & |
---|
4182 | ALLOCATE( t_surf_v_1(0)%t(1:surf_usm_v(0)%ns) ) |
---|
4183 | READ ( 13 ) t_surf_v_1(0)%t |
---|
4184 | #endif |
---|
4185 | CASE ( 't_surf_v(1)' ) |
---|
4186 | #if defined( __nopointer ) |
---|
4187 | IF ( .NOT. ALLOCATED( t_surf_v(1)%t ) ) & |
---|
4188 | ALLOCATE( t_surf_v(1)%t(1:surf_usm_v(1)%ns) ) |
---|
4189 | READ ( 13 ) t_surf_v(1)%t |
---|
4190 | #else |
---|
4191 | IF ( .NOT. ALLOCATED( t_surf_v_1(1)%t ) ) & |
---|
4192 | ALLOCATE( t_surf_v_1(1)%t(1:surf_usm_v(1)%ns) ) |
---|
4193 | READ ( 13 ) t_surf_v_1(1)%t |
---|
4194 | #endif |
---|
4195 | CASE ( 't_surf_v(2)' ) |
---|
4196 | #if defined( __nopointer ) |
---|
4197 | IF ( .NOT. ALLOCATED( t_surf_v(2)%t ) ) & |
---|
4198 | ALLOCATE( t_surf_v(2)%t(1:surf_usm_v(2)%ns) ) |
---|
4199 | READ ( 13 ) t_surf_v(2)%t |
---|
4200 | #else |
---|
4201 | IF ( .NOT. ALLOCATED( t_surf_v_1(2)%t ) ) & |
---|
4202 | ALLOCATE( t_surf_v_1(2)%t(1:surf_usm_v(2)%ns) ) |
---|
4203 | READ ( 13 ) t_surf_v_1(2)%t |
---|
4204 | #endif |
---|
4205 | CASE ( 't_surf_v(3)' ) |
---|
4206 | #if defined( __nopointer ) |
---|
4207 | IF ( .NOT. ALLOCATED( t_surf_v(3)%t ) ) & |
---|
4208 | ALLOCATE( t_surf_v(3)%t(1:surf_usm_v(3)%ns) ) |
---|
4209 | READ ( 13 ) t_surf_v(3)%t |
---|
4210 | #else |
---|
4211 | IF ( .NOT. ALLOCATED( t_surf_v_1(3)%t ) ) & |
---|
4212 | ALLOCATE( t_surf_v_1(3)%t(1:surf_usm_v(3)%ns) ) |
---|
4213 | READ ( 13 ) t_surf_v_1(3)%t |
---|
4214 | #endif |
---|
4215 | CASE ( 't_wall_h' ) |
---|
4216 | #if defined( __nopointer ) |
---|
4217 | IF ( .NOT. ALLOCATED( t_wall_h ) ) & |
---|
4218 | ALLOCATE( t_wall_h(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
4219 | READ ( 13 ) t_wall_h |
---|
4220 | #else |
---|
4221 | IF ( .NOT. ALLOCATED( t_wall_h_1 ) ) & |
---|
4222 | ALLOCATE( t_wall_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) |
---|
4223 | READ ( 13 ) t_wall_h_1 |
---|
4224 | #endif |
---|
4225 | CASE ( 't_wall_v(0)' ) |
---|
4226 | #if defined( __nopointer ) |
---|
4227 | IF ( .NOT. ALLOCATED( t_wall_v(0)%t ) ) & |
---|
4228 | ALLOCATE( t_wall_v(0)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(0)%ns) ) |
---|
4229 | READ ( 13 ) t_wall_v(0)%t |
---|
4230 | #else |
---|
4231 | IF ( .NOT. ALLOCATED( t_wall_v_1(0)%t ) ) & |
---|
4232 | ALLOCATE( t_wall_v_1(0)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(0)%ns) ) |
---|
4233 | READ ( 13 ) t_wall_v_1(0)%t |
---|
4234 | #endif |
---|
4235 | CASE ( 't_wall_v(1)' ) |
---|
4236 | #if defined( __nopointer ) |
---|
4237 | IF ( .NOT. ALLOCATED( t_wall_v(1)%t ) ) & |
---|
4238 | ALLOCATE( t_wall_v(1)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(1)%ns) ) |
---|
4239 | READ ( 13 ) t_wall_v(1)%t |
---|
4240 | #else |
---|
4241 | IF ( .NOT. ALLOCATED( t_wall_v_1(0)%t ) ) & |
---|
4242 | ALLOCATE( t_wall_v_1(1)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(1)%ns) ) |
---|
4243 | READ ( 13 ) t_wall_v_1(1)%t |
---|
4244 | #endif |
---|
4245 | CASE ( 't_wall_v(2)' ) |
---|
4246 | #if defined( __nopointer ) |
---|
4247 | IF ( .NOT. ALLOCATED( t_wall_v(2)%t ) ) & |
---|
4248 | ALLOCATE( t_wall_v(2)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(2)%ns) ) |
---|
4249 | READ ( 13 ) t_wall_v(2)%t |
---|
4250 | #else |
---|
4251 | IF ( .NOT. ALLOCATED( t_wall_v_1(2)%t ) ) & |
---|
4252 | ALLOCATE( t_wall_v_1(2)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(2)%ns) ) |
---|
4253 | READ ( 13 ) t_wall_v_1(2)%t |
---|
4254 | #endif |
---|
4255 | CASE ( 't_wall_v(3)' ) |
---|
4256 | #if defined( __nopointer ) |
---|
4257 | IF ( .NOT. ALLOCATED( t_wall_v(3)%t ) ) & |
---|
4258 | ALLOCATE( t_wall_v(3)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(3)%ns) ) |
---|
4259 | READ ( 13 ) t_wall_v(3)%t |
---|
4260 | #else |
---|
4261 | IF ( .NOT. ALLOCATED( t_wall_v_1(3)%t ) ) & |
---|
4262 | ALLOCATE( t_wall_v_1(3)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(3)%ns) ) |
---|
4263 | READ ( 13 ) t_wall_v_1(3)%t |
---|
4264 | #endif |
---|
4265 | |
---|
4266 | CASE DEFAULT |
---|
4267 | WRITE ( message_string, * ) 'unknown variable named "', & |
---|
4268 | TRIM( variable_chr ), '" found in', & |
---|
4269 | '&data from prior run on PE ', myid |
---|
4270 | CALL message( 'user_read_restart_data', 'UI0012', 1, 2, 0, 6, 0 ) |
---|
4271 | |
---|
4272 | END SELECT |
---|
4273 | |
---|
4274 | READ ( 13 ) variable_chr |
---|
4275 | |
---|
4276 | ENDDO |
---|
4277 | ENDIF |
---|
4278 | #if defined( __parallel ) |
---|
4279 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
4280 | #endif |
---|
4281 | ENDDO |
---|
4282 | |
---|
4283 | END SUBROUTINE usm_read_restart_data |
---|
4284 | |
---|
4285 | |
---|
4286 | !------------------------------------------------------------------------------! |
---|
4287 | ! |
---|
4288 | ! Description: |
---|
4289 | ! ------------ |
---|
4290 | !> Soubroutine reads svf and svfsurf data from saved file |
---|
4291 | !------------------------------------------------------------------------------! |
---|
4292 | SUBROUTINE usm_read_svf_from_file |
---|
4293 | |
---|
4294 | IMPLICIT NONE |
---|
4295 | INTEGER(iwp) :: fsvf = 89 |
---|
4296 | INTEGER(iwp) :: i |
---|
4297 | CHARACTER(usm_version_len) :: usm_version_field |
---|
4298 | CHARACTER(svf_code_len) :: svf_code_field |
---|
4299 | |
---|
4300 | DO i = 0, io_blocks-1 |
---|
4301 | IF ( i == io_group ) THEN |
---|
4302 | OPEN ( fsvf, file=TRIM(svf_file_name)//TRIM(coupling_char)//myid_char, & |
---|
4303 | form='unformatted', status='old' ) |
---|
4304 | |
---|
4305 | !-- read and check version |
---|
4306 | READ ( fsvf ) usm_version_field |
---|
4307 | IF ( TRIM(usm_version_field) /= TRIM(usm_version) ) THEN |
---|
4308 | WRITE( message_string, * ) 'Version of binary SVF file "', & |
---|
4309 | TRIM(usm_version_field), '" does not match ', & |
---|
4310 | 'the version of model "', TRIM(usm_version), '"' |
---|
4311 | CALL message( 'usm_read_svf_from_file', 'UI0012', 1, 2, 0, 6, 0 ) |
---|
4312 | ENDIF |
---|
4313 | |
---|
4314 | !-- read nsvfl, ncsfl |
---|
4315 | READ ( fsvf ) nsvfl, ncsfl |
---|
4316 | IF ( nsvfl <= 0 .OR. ncsfl < 0 ) THEN |
---|
4317 | WRITE( message_string, * ) 'Wrong number of SVF or CSF' |
---|
4318 | CALL message( 'usm_read_svf_from_file', 'UI0012', 1, 2, 0, 6, 0 ) |
---|
4319 | ELSE |
---|
4320 | WRITE(message_string,*) ' Number of SVF and CSF to read', nsvfl, ncsfl |
---|
4321 | CALL location_message( message_string, .TRUE. ) |
---|
4322 | ENDIF |
---|
4323 | |
---|
4324 | ALLOCATE(svf(ndsvf,nsvfl)) |
---|
4325 | ALLOCATE(svfsurf(idsvf,nsvfl)) |
---|
4326 | READ(fsvf) svf |
---|
4327 | READ(fsvf) svfsurf |
---|
4328 | IF ( plant_canopy ) THEN |
---|
4329 | ALLOCATE(csf(ndcsf,ncsfl)) |
---|
4330 | ALLOCATE(csfsurf(idcsf,ncsfl)) |
---|
4331 | READ(fsvf) csf |
---|
4332 | READ(fsvf) csfsurf |
---|
4333 | ENDIF |
---|
4334 | READ ( fsvf ) svf_code_field |
---|
4335 | |
---|
4336 | IF ( TRIM(svf_code_field) /= TRIM(svf_code) ) THEN |
---|
4337 | WRITE( message_string, * ) 'Wrong structure of binary svf file' |
---|
4338 | CALL message( 'usm_read_svf_from_file', 'UI0012', 1, 2, 0, 6, 0 ) |
---|
4339 | ENDIF |
---|
4340 | |
---|
4341 | CLOSE (fsvf) |
---|
4342 | |
---|
4343 | ENDIF |
---|
4344 | #if defined( __parallel ) |
---|
4345 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
4346 | #endif |
---|
4347 | ENDDO |
---|
4348 | |
---|
4349 | END SUBROUTINE usm_read_svf_from_file |
---|
4350 | |
---|
4351 | |
---|
4352 | !------------------------------------------------------------------------------! |
---|
4353 | ! Description: |
---|
4354 | ! ------------ |
---|
4355 | ! |
---|
4356 | !> This subroutine reads walls, roofs and land categories and it parameters |
---|
4357 | !> from input files. |
---|
4358 | !------------------------------------------------------------------------------! |
---|
4359 | SUBROUTINE usm_read_urban_surface_types |
---|
4360 | |
---|
4361 | CHARACTER(12) :: wtn |
---|
4362 | INTEGER(iwp) :: wtc |
---|
4363 | REAL(wp), DIMENSION(n_surface_params) :: wtp |
---|
4364 | |
---|
4365 | INTEGER(iwp), DIMENSION(0:17, nysg:nyng, nxlg:nxrg) :: usm_par |
---|
4366 | REAL(wp), DIMENSION(1:14, nysg:nyng, nxlg:nxrg) :: usm_val |
---|
4367 | INTEGER(iwp) :: k, l, d, iw, jw, kw, it, ip, ii, ij, m |
---|
4368 | INTEGER(iwp) :: i, j |
---|
4369 | INTEGER(iwp) :: nz, roof, dirwe, dirsn |
---|
4370 | INTEGER(iwp) :: category |
---|
4371 | INTEGER(iwp) :: weheight1, wecat1, snheight1, sncat1 |
---|
4372 | INTEGER(iwp) :: weheight2, wecat2, snheight2, sncat2 |
---|
4373 | INTEGER(iwp) :: weheight3, wecat3, snheight3, sncat3 |
---|
4374 | REAL(wp) :: height, albedo, thick |
---|
4375 | REAL(wp) :: wealbedo1, wethick1, snalbedo1, snthick1 |
---|
4376 | REAL(wp) :: wealbedo2, wethick2, snalbedo2, snthick2 |
---|
4377 | REAL(wp) :: wealbedo3, wethick3, snalbedo3, snthick3 |
---|
4378 | |
---|
4379 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4380 | !-- read categories of walls and their parameters |
---|
4381 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4382 | DO ii = 0, io_blocks-1 |
---|
4383 | IF ( ii == io_group ) THEN |
---|
4384 | |
---|
4385 | !-- open urban surface file |
---|
4386 | OPEN( 151, file='SURFACE_PARAMETERS'//coupling_char, action='read', & |
---|
4387 | status='old', form='formatted', err=15 ) |
---|
4388 | !-- first test and get n_surface_types |
---|
4389 | k = 0 |
---|
4390 | l = 0 |
---|
4391 | DO |
---|
4392 | l = l+1 |
---|
4393 | READ( 151, *, err=11, end=12 ) wtc, wtp, wtn |
---|
4394 | k = k+1 |
---|
4395 | CYCLE |
---|
4396 | 11 CONTINUE |
---|
4397 | ENDDO |
---|
4398 | 12 n_surface_types = k |
---|
4399 | ALLOCATE( surface_type_names(n_surface_types) ) |
---|
4400 | ALLOCATE( surface_type_codes(n_surface_types) ) |
---|
4401 | ALLOCATE( surface_params(n_surface_params, n_surface_types) ) |
---|
4402 | !-- real reading |
---|
4403 | rewind( 151 ) |
---|
4404 | k = 0 |
---|
4405 | DO |
---|
4406 | READ( 151, *, err=13, end=14 ) wtc, wtp, wtn |
---|
4407 | k = k+1 |
---|
4408 | surface_type_codes(k) = wtc |
---|
4409 | surface_params(:,k) = wtp |
---|
4410 | surface_type_names(k) = wtn |
---|
4411 | CYCLE |
---|
4412 | 13 WRITE(6,'(i3,a,2i5)') myid, 'readparams2 error k=', k |
---|
4413 | FLUSH(6) |
---|
4414 | CONTINUE |
---|
4415 | ENDDO |
---|
4416 | 14 CLOSE(151) |
---|
4417 | CYCLE |
---|
4418 | 15 message_string = 'file SURFACE_PARAMETERS'//TRIM(coupling_char)//' does not exist' |
---|
4419 | CALL message( 'usm_read_urban_surface_types', 'PA0513', 1, 2, 0, 6, 0 ) |
---|
4420 | ENDIF |
---|
4421 | ENDDO |
---|
4422 | |
---|
4423 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4424 | !-- read types of surfaces |
---|
4425 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
4426 | usm_par = 0 |
---|
4427 | DO ii = 0, io_blocks-1 |
---|
4428 | IF ( ii == io_group ) THEN |
---|
4429 | |
---|
4430 | ! |
---|
4431 | !-- open csv urban surface file |
---|
4432 | OPEN( 151, file='URBAN_SURFACE'//TRIM(coupling_char), action='read', & |
---|
4433 | status='old', form='formatted', err=23 ) |
---|
4434 | |
---|
4435 | l = 0 |
---|
4436 | DO |
---|
4437 | l = l+1 |
---|
4438 | !-- i, j, height, nz, roof, dirwe, dirsn, category, soilcat, |
---|
4439 | !-- weheight1, wecat1, snheight1, sncat1, weheight2, wecat2, snheight2, sncat2, |
---|
4440 | !-- weheight3, wecat3, snheight3, sncat3 |
---|
4441 | READ( 151, *, err=21, end=25 ) i, j, height, nz, roof, dirwe, dirsn, & |
---|
4442 | category, albedo, thick, & |
---|
4443 | weheight1, wecat1, wealbedo1, wethick1, & |
---|
4444 | weheight2, wecat2, wealbedo2, wethick2, & |
---|
4445 | weheight3, wecat3, wealbedo3, wethick3, & |
---|
4446 | snheight1, sncat1, snalbedo1, snthick1, & |
---|
4447 | snheight2, sncat2, snalbedo2, snthick2, & |
---|
4448 | snheight3, sncat3, snalbedo3, snthick3 |
---|
4449 | |
---|
4450 | IF ( i >= nxlg .AND. i <= nxrg .AND. j >= nysg .AND. j <= nyng ) THEN |
---|
4451 | !-- write integer variables into array |
---|
4452 | usm_par(:,j,i) = (/1, nz, roof, dirwe, dirsn, category, & |
---|
4453 | weheight1, wecat1, weheight2, wecat2, weheight3, wecat3, & |
---|
4454 | snheight1, sncat1, snheight2, sncat2, snheight3, sncat3 /) |
---|
4455 | !-- write real values into array |
---|
4456 | usm_val(:,j,i) = (/ albedo, thick, & |
---|
4457 | wealbedo1, wethick1, wealbedo2, wethick2, & |
---|
4458 | wealbedo3, wethick3, snalbedo1, snthick1, & |
---|
4459 | snalbedo2, snthick2, snalbedo3, snthick3 /) |
---|
4460 | ENDIF |
---|
4461 | CYCLE |
---|
4462 | 21 WRITE (message_string, "(A,I5)") 'errors in file URBAN_SURFACE'//TRIM(coupling_char)//' on line ', l |
---|
4463 | CALL message( 'usm_read_urban_surface_types', 'PA0512', 0, 1, 0, 6, 0 ) |
---|
4464 | ENDDO |
---|
4465 | |
---|
4466 | 23 message_string = 'file URBAN_SURFACE'//TRIM(coupling_char)//' does not exist' |
---|
4467 | CALL message( 'usm_read_urban_surface_types', 'PA0514', 1, 2, 0, 6, 0 ) |
---|
4468 | |
---|
4469 | 25 CLOSE( 90 ) |
---|
4470 | |
---|
4471 | ENDIF |
---|
4472 | #if defined( __parallel ) && ! defined ( __check ) |
---|
4473 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
4474 | #endif |
---|
4475 | ENDDO |
---|
4476 | |
---|
4477 | ! |
---|
4478 | !-- check completeness and formal correctness of the data |
---|
4479 | DO i = nxlg, nxrg |
---|
4480 | DO j = nysg, nyng |
---|
4481 | IF ( usm_par(0,j,i) /= 0 .AND. ( & !< incomplete data,supply default values later |
---|
4482 | usm_par(1,j,i) < nzb .OR. & |
---|
4483 | usm_par(1,j,i) > nzt .OR. & !< incorrect height (nz < nzb .OR. nz > nzt) |
---|
4484 | usm_par(2,j,i) < 0 .OR. & |
---|
4485 | usm_par(2,j,i) > 1 .OR. & !< incorrect roof sign |
---|
4486 | usm_par(3,j,i) < nzb-nzt .OR. & |
---|
4487 | usm_par(3,j,i) > nzt-nzb .OR. & !< incorrect west-east wall direction sign |
---|
4488 | usm_par(4,j,i) < nzb-nzt .OR. & |
---|
4489 | usm_par(4,j,i) > nzt-nzb .OR. & !< incorrect south-north wall direction sign |
---|
4490 | usm_par(6,j,i) < nzb .OR. & |
---|
4491 | usm_par(6,j,i) > nzt .OR. & !< incorrect pedestrian level height for west-east wall |
---|
4492 | usm_par(8,j,i) > nzt .OR. & |
---|
4493 | usm_par(10,j,i) > nzt .OR. & !< incorrect wall or roof level height for west-east wall |
---|
4494 | usm_par(12,j,i) < nzb .OR. & |
---|
4495 | usm_par(12,j,i) > nzt .OR. & !< incorrect pedestrian level height for south-north wall |
---|
4496 | usm_par(14,j,i) > nzt .OR. & |
---|
4497 | usm_par(16,j,i) > nzt & !< incorrect wall or roof level height for south-north wall |
---|
4498 | ) ) THEN |
---|
4499 | !-- incorrect input data |
---|
4500 | WRITE (message_string, "(A,2I5)") 'missing or incorrect data in file URBAN_SURFACE'// & |
---|
4501 | TRIM(coupling_char)//' for i,j=', i,j |
---|
4502 | CALL message( 'usm_read_urban_surface', 'PA0504', 1, 2, 0, 6, 0 ) |
---|
4503 | ENDIF |
---|
4504 | |
---|
4505 | ENDDO |
---|
4506 | ENDDO |
---|
4507 | ! |
---|
4508 | !-- Assign the surface types to the respective data type. |
---|
4509 | !-- First, for horizontal upward-facing surfaces. |
---|
4510 | DO m = 1, surf_usm_h%ns |
---|
4511 | iw = surf_usm_h%i(m) |
---|
4512 | jw = surf_usm_h%j(m) |
---|
4513 | kw = surf_usm_h%k(m) |
---|
4514 | |
---|
4515 | IF ( usm_par(5,jw,iw) == 0 ) THEN |
---|
4516 | IF ( zu(kw) >= roof_height_limit ) THEN |
---|
4517 | surf_usm_h%isroof_surf(m) = .TRUE. |
---|
4518 | surf_usm_h%surface_types(m) = roof_category !< default category for root surface |
---|
4519 | ELSE |
---|
4520 | surf_usm_h%isroof_surf(m) = .FALSE. |
---|
4521 | surf_usm_h%surface_types(m) = land_category !< default category for land surface |
---|
4522 | ENDIF |
---|
4523 | surf_usm_h%albedo_surf(m) = -1.0_wp |
---|
4524 | surf_usm_h%thickness_wall(m) = -1.0_wp |
---|
4525 | ELSE |
---|
4526 | IF ( usm_par(2,jw,iw)==0 ) THEN |
---|
4527 | surf_usm_h%isroof_surf(m) = .FALSE. |
---|
4528 | surf_usm_h%thickness_wall(m) = -1.0_wp |
---|
4529 | ELSE |
---|
4530 | surf_usm_h%isroof_surf(m) = .TRUE. |
---|
4531 | surf_usm_h%thickness_wall(m) = usm_val(2,jw,iw) |
---|
4532 | ENDIF |
---|
4533 | surf_usm_h%surface_types(m) = usm_par(5,jw,iw) |
---|
4534 | surf_usm_h%albedo_surf(m) = usm_val(1,jw,iw) |
---|
4535 | ENDIF |
---|
4536 | ! |
---|
4537 | !-- Find the type position |
---|
4538 | it = surf_usm_h%surface_types(m) |
---|
4539 | ip = -99999 |
---|
4540 | DO k = 1, n_surface_types |
---|
4541 | IF ( surface_type_codes(k) == it ) THEN |
---|
4542 | ip = k |
---|
4543 | EXIT |
---|
4544 | ENDIF |
---|
4545 | ENDDO |
---|
4546 | IF ( ip == -99999 ) THEN |
---|
4547 | !-- wall category not found |
---|
4548 | WRITE (message_string, "(A,I5,A,3I5)") 'wall category ', it, & |
---|
4549 | ' not found for i,j,k=', iw,jw,kw |
---|
4550 | CALL message( 'usm_read_urban_surface', 'PA0506', 1, 2, 0, 6, 0 ) |
---|
4551 | ENDIF |
---|
4552 | ! |
---|
4553 | !-- Albedo |
---|
4554 | IF ( surf_usm_h%albedo_surf(m) < 0.0_wp ) THEN |
---|
4555 | surf_usm_h%albedo_surf(m) = surface_params(ialbedo,ip) |
---|
4556 | ENDIF |
---|
4557 | ! |
---|
4558 | !-- emissivity of the wall |
---|
4559 | surf_usm_h%emiss_surf(m) = surface_params(iemiss,ip) |
---|
4560 | ! |
---|
4561 | !-- heat conductivity λS between air and wall ( W mâ2 Kâ1 ) |
---|
4562 | surf_usm_h%lambda_surf(m) = surface_params(ilambdas,ip) |
---|
4563 | ! |
---|
4564 | !-- roughness relative to concrete |
---|
4565 | surf_usm_h%roughness_wall(m) = surface_params(irough,ip) |
---|
4566 | ! |
---|
4567 | !-- Surface skin layer heat capacity (J mâ2 Kâ1 ) |
---|
4568 | surf_usm_h%c_surface(m) = surface_params(icsurf,ip) |
---|
4569 | ! |
---|
4570 | !-- wall material parameters: |
---|
4571 | !-- thickness of the wall (m) |
---|
4572 | !-- missing values are replaced by default value for category |
---|
4573 | IF ( surf_usm_h%thickness_wall(m) <= 0.001_wp ) THEN |
---|
4574 | surf_usm_h%thickness_wall(m) = surface_params(ithick,ip) |
---|
4575 | ENDIF |
---|
4576 | ! |
---|
4577 | !-- volumetric heat capacity rho*C of the wall ( J mâ3 Kâ1 ) |
---|
4578 | surf_usm_h%rho_c_wall(:,m) = surface_params(irhoC,ip) |
---|
4579 | ! |
---|
4580 | !-- thermal conductivity λH of the wall (W mâ1 Kâ1 ) |
---|
4581 | surf_usm_h%lambda_h(:,m) = surface_params(ilambdah,ip) |
---|
4582 | |
---|
4583 | ENDDO |
---|
4584 | ! |
---|
4585 | !-- For vertical surface elements ( 0 -- northward-facing, 1 -- southward-facing, |
---|
4586 | !-- 2 -- eastward-facing, 3 -- westward-facing ) |
---|
4587 | DO l = 0, 3 |
---|
4588 | DO m = 1, surf_usm_v(l)%ns |
---|
4589 | i = surf_usm_v(l)%i(m) |
---|
4590 | j = surf_usm_v(l)%j(m) |
---|
4591 | kw = surf_usm_v(l)%k(m) |
---|
4592 | |
---|
4593 | IF ( l == 3 ) THEN ! westward facing |
---|
4594 | iw = i |
---|
4595 | jw = j |
---|
4596 | ii = 6 |
---|
4597 | ij = 3 |
---|
4598 | ELSEIF ( l == 2 ) THEN |
---|
4599 | iw = i-1 |
---|
4600 | jw = j |
---|
4601 | ii = 6 |
---|
4602 | ij = 3 |
---|
4603 | ELSEIF ( l == 1 ) THEN |
---|
4604 | iw = i |
---|
4605 | jw = j |
---|
4606 | ii = 12 |
---|
4607 | ij = 9 |
---|
4608 | ELSEIF ( l == 0 ) THEN |
---|
4609 | iw = i |
---|
4610 | jw = j-1 |
---|
4611 | ii = 12 |
---|
4612 | ij = 9 |
---|
4613 | ENDIF |
---|
4614 | |
---|
4615 | IF ( kw <= usm_par(ii,jw,iw) ) THEN |
---|
4616 | !-- pedestrant zone |
---|
4617 | IF ( usm_par(ii+1,jw,iw) == 0 ) THEN |
---|
4618 | surf_usm_v(l)%surface_types(m) = pedestrant_category !< default category for wall surface in pedestrant zone |
---|
4619 | surf_usm_v(l)%albedo_surf(m) = -1.0_wp |
---|
4620 | surf_usm_v(l)%thickness_wall(m) = -1.0_wp |
---|
4621 | ELSE |
---|
4622 | surf_usm_v(l)%surface_types(m) = usm_par(ii+1,jw,iw) |
---|
4623 | surf_usm_v(l)%albedo_surf(m) = usm_val(ij,jw,iw) |
---|
4624 | surf_usm_v(l)%thickness_wall(m) = usm_val(ij+1,jw,iw) |
---|
4625 | ENDIF |
---|
4626 | ELSE IF ( kw <= usm_par(ii+2,jw,iw) ) THEN |
---|
4627 | !-- wall zone |
---|
4628 | IF ( usm_par(ii+3,jw,iw) == 0 ) THEN |
---|
4629 | surf_usm_v(l)%surface_types(m) = wall_category !< default category for wall surface |
---|
4630 | surf_usm_v(l)%albedo_surf(m) = -1.0_wp |
---|
4631 | surf_usm_v(l)%thickness_wall(m) = -1.0_wp |
---|
4632 | ELSE |
---|
4633 | surf_usm_v(l)%surface_types(m) = usm_par(ii+3,jw,iw) |
---|
4634 | surf_usm_v(l)%albedo_surf(m) = usm_val(ij+2,jw,iw) |
---|
4635 | surf_usm_v(l)%thickness_wall(m) = usm_val(ij+3,jw,iw) |
---|
4636 | ENDIF |
---|
4637 | ELSE IF ( kw <= usm_par(ii+4,jw,iw) ) THEN |
---|
4638 | !-- roof zone |
---|
4639 | IF ( usm_par(ii+5,jw,iw) == 0 ) THEN |
---|
4640 | surf_usm_v(l)%surface_types(m) = roof_category !< default category for roof surface |
---|
4641 | surf_usm_v(l)%albedo_surf(m) = -1.0_wp |
---|
4642 | surf_usm_v(l)%thickness_wall(m) = -1.0_wp |
---|
4643 | ELSE |
---|
4644 | surf_usm_v(l)%surface_types(m) = usm_par(ii+5,jw,iw) |
---|
4645 | surf_usm_v(l)%albedo_surf(m) = usm_val(ij+4,jw,iw) |
---|
4646 | surf_usm_v(l)%thickness_wall(m) = usm_val(ij+5,jw,iw) |
---|
4647 | ENDIF |
---|
4648 | ELSE |
---|
4649 | !-- something wrong |
---|
4650 | CALL message( 'usm_read_urban_surface', 'PA0505', 1, 2, 0, 6, 0 ) |
---|
4651 | ENDIF |
---|
4652 | |
---|
4653 | ! |
---|
4654 | !-- Find the type position |
---|
4655 | it = surf_usm_v(l)%surface_types(m) |
---|
4656 | ip = -99999 |
---|
4657 | DO k = 1, n_surface_types |
---|
4658 | IF ( surface_type_codes(k) == it ) THEN |
---|
4659 | ip = k |
---|
4660 | EXIT |
---|
4661 | ENDIF |
---|
4662 | ENDDO |
---|
4663 | IF ( ip == -99999 ) THEN |
---|
4664 | !-- wall category not found |
---|
4665 | WRITE (message_string, "(A,I5,A,3I5)") 'wall category ', it, & |
---|
4666 | ' not found for i,j,k=', iw,jw,kw |
---|
4667 | CALL message( 'usm_read_urban_surface', 'PA0506', 1, 2, 0, 6, 0 ) |
---|
4668 | ENDIF |
---|
4669 | ! |
---|
4670 | !-- Albedo |
---|
4671 | IF ( surf_usm_v(l)%albedo_surf(m) < 0.0_wp ) THEN |
---|
4672 | surf_usm_v(l)%albedo_surf(m) = surface_params(ialbedo,ip) |
---|
4673 | ENDIF |
---|
4674 | ! |
---|
4675 | !-- emissivity of the wall |
---|
4676 | surf_usm_v(l)%emiss_surf(m) = surface_params(iemiss,ip) |
---|
4677 | ! |
---|
4678 | !-- heat conductivity λS between air and wall ( W mâ2 Kâ1 ) |
---|
4679 | surf_usm_v(l)%lambda_surf(m) = surface_params(ilambdas,ip) |
---|
4680 | ! |
---|
4681 | !-- roughness relative to concrete |
---|
4682 | surf_usm_v(l)%roughness_wall(m) = surface_params(irough,ip) |
---|
4683 | ! |
---|
4684 | !-- Surface skin layer heat capacity (J mâ2 Kâ1 ) |
---|
4685 | surf_usm_v(l)%c_surface(m) = surface_params(icsurf,ip) |
---|
4686 | ! |
---|
4687 | !-- wall material parameters: |
---|
4688 | !-- thickness of the wall (m) |
---|
4689 | !-- missing values are replaced by default value for category |
---|
4690 | IF ( surf_usm_v(l)%thickness_wall(m) <= 0.001_wp ) THEN |
---|
4691 | surf_usm_v(l)%thickness_wall(m) = surface_params(ithick,ip) |
---|
4692 | ENDIF |
---|
4693 | ! |
---|
4694 | !-- volumetric heat capacity rho*C of the wall ( J mâ3 Kâ1 ) |
---|
4695 | surf_usm_v(l)%rho_c_wall(:,m) = surface_params(irhoC,ip) |
---|
4696 | ! |
---|
4697 | !-- thermal conductivity λH of the wall (W mâ1 Kâ1 ) |
---|
4698 | surf_usm_v(l)%lambda_h(:,m) = surface_params(ilambdah,ip) |
---|
4699 | |
---|
4700 | ENDDO |
---|
4701 | ENDDO |
---|
4702 | |
---|
4703 | CALL location_message( ' types and parameters of urban surfaces read', .TRUE. ) |
---|
4704 | |
---|
4705 | END SUBROUTINE usm_read_urban_surface_types |
---|
4706 | |
---|
4707 | |
---|
4708 | !------------------------------------------------------------------------------! |
---|
4709 | ! Description: |
---|
4710 | ! ------------ |
---|
4711 | !> Solver for the energy balance at the ground/roof/wall surface. |
---|
4712 | !> It follows basic ideas and structure of lsm_energy_balance |
---|
4713 | !> with many simplifications and adjustments. |
---|
4714 | !> TODO better description |
---|
4715 | !------------------------------------------------------------------------------! |
---|
4716 | SUBROUTINE usm_surface_energy_balance |
---|
4717 | |
---|
4718 | IMPLICIT NONE |
---|
4719 | |
---|
4720 | INTEGER(iwp) :: i, j, k, l, d, m !< running indices |
---|
4721 | |
---|
4722 | REAL(wp) :: pt1 !< temperature at first grid box adjacent to surface |
---|
4723 | REAL(wp) :: u1,v1,w1 !< near wall u,v,w |
---|
4724 | REAL(wp) :: stend !< surface tendency |
---|
4725 | REAL(wp) :: coef_1 !< first coeficient for prognostic equation |
---|
4726 | REAL(wp) :: coef_2 !< second coeficient for prognostic equation |
---|
4727 | REAL(wp) :: rho_cp !< rho_wall_surface * cp |
---|
4728 | REAL(wp) :: r_a !< aerodynamic resistance for horizontal and vertical surfaces |
---|
4729 | REAL(wp) :: f_shf !< factor for shf_eb |
---|
4730 | REAL(wp) :: lambda_surface !< current value of lambda_surface (heat conductivity between air and wall) |
---|
4731 | REAL(wp) :: Ueff !< effective wind speed for calculation of heat transfer coefficients |
---|
4732 | REAL(wp) :: httc !< heat transfer coefficient |
---|
4733 | REAL(wp), DIMENSION(nzub:nzut) :: exn !< value of the Exner function in layers |
---|
4734 | |
---|
4735 | REAL(wp), DIMENSION(0:4) :: dxdir !< surface normal direction gridbox length |
---|
4736 | REAL(wp) :: dtime !< simulated time of day (in UTC) |
---|
4737 | INTEGER(iwp) :: dhour !< simulated hour of day (in UTC) |
---|
4738 | REAL(wp) :: acoef !< actual coefficient of diurnal profile of anthropogenic heat |
---|
4739 | |
---|
4740 | |
---|
4741 | dxdir = (/dz,dy,dy,dx,dx/) |
---|
4742 | |
---|
4743 | exn(:) = (hyp(nzub:nzut) / 100000.0_wp )**0.286_wp !< Exner function |
---|
4744 | ! |
---|
4745 | !-- First, treat horizontal surface elements |
---|
4746 | |
---|
4747 | DO m = 1, surf_usm_h%ns |
---|
4748 | ! |
---|
4749 | !-- Get indices of respective grid point |
---|
4750 | i = surf_usm_h%i(m) |
---|
4751 | j = surf_usm_h%j(m) |
---|
4752 | k = surf_usm_h%k(m) |
---|
4753 | ! |
---|
4754 | !-- TODO - how to calculate lambda_surface for horizontal surfaces |
---|
4755 | !-- (lambda_surface is set according to stratification in land surface model) |
---|
4756 | !-- MS: ??? |
---|
4757 | IF ( surf_usm_h%ol(m) >= 0.0_wp ) THEN |
---|
4758 | lambda_surface = surf_usm_h%lambda_surf(m) |
---|
4759 | ELSE |
---|
4760 | lambda_surface = surf_usm_h%lambda_surf(m) |
---|
4761 | ENDIF |
---|
4762 | |
---|
4763 | pt1 = pt(k,j,i) |
---|
4764 | ! |
---|
4765 | !-- calculate rho * cp coefficient at surface layer |
---|
4766 | rho_cp = cp * hyp(k) / ( r_d * pt1 * exn(k) ) |
---|
4767 | ! |
---|
4768 | !-- Calculate aerodyamic resistance. |
---|
4769 | !-- Calculation for horizontal surfaces follows LSM formulation |
---|
4770 | !-- pt, us, ts are not available for the prognostic time step, |
---|
4771 | !-- data from the last time step is used here. |
---|
4772 | |
---|
4773 | r_a = ( pt1 - t_surf_h(m) / exn(k) ) / & |
---|
4774 | ( surf_usm_h%ts(m) * surf_usm_h%us(m) + 1.0E-10_wp ) |
---|
4775 | |
---|
4776 | !-- make sure that the resistance does not drop to zero |
---|
4777 | IF ( ABS(r_a) < 1.0E-10_wp ) r_a = 1.0E-10_wp |
---|
4778 | |
---|
4779 | !-- the parameterization is developed originally for larger scales |
---|
4780 | !-- (compare with remark in TUF-3D) |
---|
4781 | !-- our first experiences show that the parameterization underestimates |
---|
4782 | !-- r_a in meter resolution. |
---|
4783 | !-- temporary solution - multiplication by magic constant :-(. |
---|
4784 | r_a = r_a * ra_horiz_coef |
---|
4785 | |
---|
4786 | !-- factor for shf_eb |
---|
4787 | f_shf = rho_cp / r_a |
---|
4788 | |
---|
4789 | !-- add LW up so that it can be removed in prognostic equation |
---|
4790 | surf_usm_h%rad_net_l(m) = surf_usm_h%rad_in_sw(m) - & |
---|
4791 | surf_usm_h%rad_out_sw(m) + & |
---|
4792 | surf_usm_h%rad_in_lw(m) - & |
---|
4793 | surf_usm_h%rad_out_lw(m) |
---|
4794 | |
---|
4795 | !-- numerator of the prognostic equation |
---|
4796 | coef_1 = surf_usm_h%rad_net_l(m) + & |
---|
4797 | ( 3.0_wp + 1.0_wp ) * surf_usm_h%emiss_surf(m) * sigma_sb * & |
---|
4798 | t_surf_h(m) ** 4 + & |
---|
4799 | f_shf * pt1 + & |
---|
4800 | lambda_surface * t_wall_h(nzb_wall,m) |
---|
4801 | |
---|
4802 | !-- denominator of the prognostic equation |
---|
4803 | coef_2 = 4.0_wp * surf_usm_h%emiss_surf(m) * sigma_sb * & |
---|
4804 | t_surf_h(m) ** 3 & |
---|
4805 | + lambda_surface + f_shf / exn(k) |
---|
4806 | |
---|
4807 | !-- implicit solution when the surface layer has no heat capacity, |
---|
4808 | !-- otherwise use RK3 scheme. |
---|
4809 | t_surf_h_p(m) = ( coef_1 * dt_3d * tsc(2) + & |
---|
4810 | surf_usm_h%c_surface(m) * t_surf_h(m) ) / & |
---|
4811 | ( surf_usm_h%c_surface(m) + coef_2 * dt_3d * tsc(2) ) |
---|
4812 | |
---|
4813 | !-- add RK3 term |
---|
4814 | t_surf_h_p(m) = t_surf_h_p(m) + dt_3d * tsc(3) * & |
---|
4815 | surf_usm_h%tt_surface_m(m) |
---|
4816 | |
---|
4817 | !-- calculate true tendency |
---|
4818 | stend = ( t_surf_h_p(m) - t_surf_h(m) - dt_3d * tsc(3) * & |
---|
4819 | surf_usm_h%tt_surface_m(m)) / ( dt_3d * tsc(2) ) |
---|
4820 | |
---|
4821 | !-- calculate t_surf tendencies for the next Runge-Kutta step |
---|
4822 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
4823 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
4824 | surf_usm_h%tt_surface_m(m) = stend |
---|
4825 | ELSEIF ( intermediate_timestep_count < & |
---|
4826 | intermediate_timestep_count_max ) THEN |
---|
4827 | surf_usm_h%tt_surface_m(m) = -9.5625_wp * stend + & |
---|
4828 | 5.3125_wp * surf_usm_h%tt_surface_m(m) |
---|
4829 | ENDIF |
---|
4830 | ENDIF |
---|
4831 | |
---|
4832 | !-- in case of fast changes in the skin temperature, it is required to |
---|
4833 | !-- update the radiative fluxes in order to keep the solution stable |
---|
4834 | IF ( ABS( t_surf_h_p(m) - t_surf_h(m) ) > 1.0_wp ) THEN |
---|
4835 | force_radiation_call_l = .TRUE. |
---|
4836 | ENDIF |
---|
4837 | ! |
---|
4838 | !-- for horizontal surfaces is pt(nzb_s_inner(j,i),j,i) = pt_surf. |
---|
4839 | !-- there is no equivalent surface gridpoint for vertical surfaces. |
---|
4840 | !-- pt(k,j,i) is calculated for all directions in diffusion_s |
---|
4841 | !-- using surface and wall heat fluxes |
---|
4842 | pt(k-1,j,i) = t_surf_h_p(m) / exn(k) ! not for vertical surfaces |
---|
4843 | |
---|
4844 | !-- calculate fluxes |
---|
4845 | !-- rad_net_l is never used! |
---|
4846 | surf_usm_h%rad_net_l(m) = surf_usm_h%rad_net_l(m) + & |
---|
4847 | 3.0_wp * sigma_sb * & |
---|
4848 | t_surf_h(m)**4 - 4.0_wp * sigma_sb * & |
---|
4849 | t_surf_h(m)**3 * t_surf_h_p(m) |
---|
4850 | surf_usm_h%wghf_eb(m) = lambda_surface * & |
---|
4851 | ( t_surf_h_p(m) - t_wall_h(nzb_wall,m) ) |
---|
4852 | ! |
---|
4853 | !-- ground/wall/roof surface heat flux |
---|
4854 | surf_usm_h%wshf_eb(m) = - f_shf * ( pt1 - t_surf_h_p(m) ) |
---|
4855 | ! |
---|
4856 | !-- store kinematic surface heat fluxes for utilization in other processes |
---|
4857 | !-- diffusion_s, surface_layer_fluxes,... |
---|
4858 | surf_usm_h%shf(m) = surf_usm_h%wshf_eb(m) / rho_cp |
---|
4859 | |
---|
4860 | ENDDO |
---|
4861 | ! |
---|
4862 | !-- Now, treat vertical surface elements |
---|
4863 | DO l = 0, 3 |
---|
4864 | DO m = 1, surf_usm_v(l)%ns |
---|
4865 | ! |
---|
4866 | !-- Get indices of respective grid point |
---|
4867 | i = surf_usm_v(l)%i(m) |
---|
4868 | j = surf_usm_v(l)%j(m) |
---|
4869 | k = surf_usm_v(l)%k(m) |
---|
4870 | ! |
---|
4871 | !-- TODO - how to calculate lambda_surface for horizontal (??? do you mean verical ???) surfaces |
---|
4872 | !-- (lambda_surface is set according to stratification in land surface model). |
---|
4873 | !-- Please note, for vertical surfaces no ol is defined, since |
---|
4874 | !-- stratification is not considered in this case. |
---|
4875 | lambda_surface = surf_usm_v(l)%lambda_surf(m) |
---|
4876 | |
---|
4877 | pt1 = pt(k,j,i) |
---|
4878 | ! |
---|
4879 | !-- calculate rho * cp coefficient at surface layer |
---|
4880 | rho_cp = cp * hyp(k) / ( r_d * pt1 * exn(k) ) |
---|
4881 | |
---|
4882 | !-- Calculation of r_a for vertical surfaces |
---|
4883 | !-- |
---|
4884 | !-- heat transfer coefficient for forced convection along vertical walls |
---|
4885 | !-- follows formulation in TUF3d model (Krayenhoff & Voogt, 2006) |
---|
4886 | !-- |
---|
4887 | !-- H = httc (Tsfc - Tair) |
---|
4888 | !-- httc = rw * (11.8 + 4.2 * Ueff) - 4.0 |
---|
4889 | !-- |
---|
4890 | !-- rw: wall patch roughness relative to 1.0 for concrete |
---|
4891 | !-- Ueff: effective wind speed |
---|
4892 | !-- - 4.0 is a reduction of Rowley et al (1930) formulation based on |
---|
4893 | !-- Cole and Sturrock (1977) |
---|
4894 | !-- |
---|
4895 | !-- Ucan: Canyon wind speed |
---|
4896 | !-- wstar: convective velocity |
---|
4897 | !-- Qs: surface heat flux |
---|
4898 | !-- zH: height of the convective layer |
---|
4899 | !-- wstar = (g/Tcan*Qs*zH)**(1./3.) |
---|
4900 | |
---|
4901 | !-- Effective velocity components must always |
---|
4902 | !-- be defined at scalar grid point. The wall normal component is |
---|
4903 | !-- obtained by simple linear interpolation. ( An alternative would |
---|
4904 | !-- be an logarithmic interpolation. ) |
---|
4905 | u1 = ( u(k,j,i) + u(k,j,i+1) ) * 0.5_wp |
---|
4906 | v1 = ( v(k,j,i) + v(k,j+1,i) ) * 0.5_wp |
---|
4907 | w1 = ( w(k,j,i) + w(k-1,j,i) ) * 0.5_wp |
---|
4908 | |
---|
4909 | Ueff = SQRT( u1**2 + v1**2 + w1**2 ) |
---|
4910 | httc = surf_usm_v(l)%roughness_wall(m) * & |
---|
4911 | ( 11.8_wp + 4.2_wp * Ueff ) - 4.0_wp |
---|
4912 | f_shf = httc |
---|
4913 | |
---|
4914 | !-- add LW up so that it can be removed in prognostic equation |
---|
4915 | surf_usm_v(l)%rad_net_l(m) = surf_usm_v(l)%rad_in_sw(m) - & |
---|
4916 | surf_usm_v(l)%rad_out_sw(m) + & |
---|
4917 | surf_usm_v(l)%rad_in_lw(m) - & |
---|
4918 | surf_usm_v(l)%rad_out_lw(m) |
---|
4919 | |
---|
4920 | !-- numerator of the prognostic equation |
---|
4921 | coef_1 = surf_usm_v(l)%rad_net_l(m) + & ! coef +1 corresponds to -lwout included in calculation of radnet_l |
---|
4922 | ( 3.0_wp + 1.0_wp ) * surf_usm_v(l)%emiss_surf(m) * sigma_sb * & |
---|
4923 | t_surf_v(l)%t(m) ** 4 + & |
---|
4924 | f_shf * pt1 + & |
---|
4925 | lambda_surface * t_wall_v(l)%t(nzb_wall,m) |
---|
4926 | |
---|
4927 | !-- denominator of the prognostic equation |
---|
4928 | coef_2 = 4.0_wp * surf_usm_v(l)%emiss_surf(m) * sigma_sb * & |
---|
4929 | t_surf_v(l)%t(m) ** 3 & |
---|
4930 | + lambda_surface + f_shf / exn(k) |
---|
4931 | |
---|
4932 | !-- implicit solution when the surface layer has no heat capacity, |
---|
4933 | !-- otherwise use RK3 scheme. |
---|
4934 | t_surf_v_p(l)%t(m) = ( coef_1 * dt_3d * tsc(2) + & |
---|
4935 | surf_usm_v(l)%c_surface(m) * t_surf_v(l)%t(m) ) / & |
---|
4936 | ( surf_usm_v(l)%c_surface(m) + coef_2 * dt_3d * tsc(2) ) |
---|
4937 | |
---|
4938 | !-- add RK3 term |
---|
4939 | t_surf_v_p(l)%t(m) = t_surf_v_p(l)%t(m) + dt_3d * tsc(3) * & |
---|
4940 | surf_usm_v(l)%tt_surface_m(m) |
---|
4941 | |
---|
4942 | !-- calculate true tendency |
---|
4943 | stend = ( t_surf_v_p(l)%t(m) - t_surf_v(l)%t(m) - dt_3d * tsc(3) *& |
---|
4944 | surf_usm_v(l)%tt_surface_m(m) ) / ( dt_3d * tsc(2) ) |
---|
4945 | |
---|
4946 | !-- calculate t_surf tendencies for the next Runge-Kutta step |
---|
4947 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
4948 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
4949 | surf_usm_v(l)%tt_surface_m(m) = stend |
---|
4950 | ELSEIF ( intermediate_timestep_count < & |
---|
4951 | intermediate_timestep_count_max ) THEN |
---|
4952 | surf_usm_v(l)%tt_surface_m(m) = -9.5625_wp * stend + & |
---|
4953 | 5.3125_wp * surf_usm_h%tt_surface_m(m) |
---|
4954 | ENDIF |
---|
4955 | ENDIF |
---|
4956 | |
---|
4957 | !-- in case of fast changes in the skin temperature, it is required to |
---|
4958 | !-- update the radiative fluxes in order to keep the solution stable |
---|
4959 | IF ( ABS( t_surf_v_p(l)%t(m) - t_surf_v(l)%t(m) ) > 1.0_wp ) THEN |
---|
4960 | force_radiation_call_l = .TRUE. |
---|
4961 | ENDIF |
---|
4962 | |
---|
4963 | !-- calculate fluxes |
---|
4964 | !-- rad_net_l is never used! |
---|
4965 | surf_usm_v(l)%rad_net_l(m) = surf_usm_v(l)%rad_net_l(m) + & |
---|
4966 | 3.0_wp * sigma_sb * & |
---|
4967 | t_surf_v(l)%t(m)**4 - 4.0_wp * sigma_sb * & |
---|
4968 | t_surf_v(l)%t(m)**3 * t_surf_v_p(l)%t(m) |
---|
4969 | |
---|
4970 | surf_usm_v(l)%wghf_eb(m) = lambda_surface * & |
---|
4971 | ( t_surf_v_p(l)%t(m) - t_wall_v(l)%t(nzb_wall,m) ) |
---|
4972 | |
---|
4973 | !-- ground/wall/roof surface heat flux |
---|
4974 | surf_usm_v(l)%wshf_eb(m) = - f_shf * ( pt1 - t_surf_v_p(l)%t(m) ) |
---|
4975 | |
---|
4976 | ! |
---|
4977 | !-- store kinematic surface heat fluxes for utilization in other processes |
---|
4978 | !-- diffusion_s, surface_layer_fluxes,... |
---|
4979 | surf_usm_v(l)%shf(m) = surf_usm_v(l)%wshf_eb(m) / rho_cp |
---|
4980 | |
---|
4981 | ENDDO |
---|
4982 | |
---|
4983 | ENDDO |
---|
4984 | ! |
---|
4985 | !-- Add-up anthropogenic heat, for now only at upward-facing surfaces |
---|
4986 | IF ( usm_anthropogenic_heat .AND. & |
---|
4987 | intermediate_timestep_count == intermediate_timestep_count_max ) THEN |
---|
4988 | !-- application of the additional anthropogenic heat sources |
---|
4989 | !-- we considere the traffic for now so all heat is absorbed |
---|
4990 | !-- to the first layer, generalization would be worth. |
---|
4991 | |
---|
4992 | !-- calculation of actual profile coefficient |
---|
4993 | !-- ??? check time_since_reference_point ??? |
---|
4994 | dtime = mod(simulated_time + time_utc_init, 24.0_wp*3600.0_wp) |
---|
4995 | dhour = INT(dtime/3600.0_wp) |
---|
4996 | !-- linear interpolation of coeficient |
---|
4997 | acoef = (REAL(dhour+1,wp)-dtime/3600.0_wp)*aheatprof(dhour) + (dtime/3600.0_wp-REAL(dhour,wp))*aheatprof(dhour+1) |
---|
4998 | |
---|
4999 | DO m = 1, surf_usm_h%ns |
---|
5000 | ! |
---|
5001 | !-- Get indices of respective grid point |
---|
5002 | i = surf_usm_h%i(m) |
---|
5003 | j = surf_usm_h%j(m) |
---|
5004 | k = surf_usm_h%k(m) |
---|
5005 | |
---|
5006 | IF ( aheat(j,i) > 0.0_wp ) THEN |
---|
5007 | !-- TODO the increase of pt in box i,j,nzb_s_inner(j,i)+1 in time dt_3d |
---|
5008 | !-- given to anthropogenic heat aheat*acoef (W*m-2) |
---|
5009 | !-- k = nzb_s_inner(j,i)+1 |
---|
5010 | !-- pt(k,j,i) = pt(k,j,i) + aheat(j,i)*acoef*dt_3d/(exn(k)*rho_cp*dz) |
---|
5011 | !-- Instead of this, we can adjust shf in case AH only at surface |
---|
5012 | surf_usm_h%shf(m) = surf_usm_h%shf(m) + & |
---|
5013 | aheat(j,i) * acoef * ddx * ddy / rho_cp |
---|
5014 | ENDIF |
---|
5015 | ENDDO |
---|
5016 | |
---|
5017 | ENDIF |
---|
5018 | |
---|
5019 | !-- pt and shf are defined on nxlg:nxrg,nysg:nyng |
---|
5020 | !-- get the borders from neighbours |
---|
5021 | CALL exchange_horiz( pt, nbgp ) |
---|
5022 | |
---|
5023 | |
---|
5024 | !-- calculation of force_radiation_call: |
---|
5025 | !-- Make logical OR for all processes. |
---|
5026 | !-- Force radiation call if at least one processor forces it. |
---|
5027 | IF ( intermediate_timestep_count == intermediate_timestep_count_max-1 )& |
---|
5028 | THEN |
---|
5029 | #if defined( __parallel ) |
---|
5030 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
5031 | CALL MPI_ALLREDUCE( force_radiation_call_l, force_radiation_call, & |
---|
5032 | 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr ) |
---|
5033 | #else |
---|
5034 | force_radiation_call = force_radiation_call_l |
---|
5035 | #endif |
---|
5036 | force_radiation_call_l = .FALSE. |
---|
5037 | ENDIF |
---|
5038 | |
---|
5039 | END SUBROUTINE usm_surface_energy_balance |
---|
5040 | |
---|
5041 | |
---|
5042 | !------------------------------------------------------------------------------! |
---|
5043 | ! Description: |
---|
5044 | ! ------------ |
---|
5045 | !> Swapping of timelevels for t_surf and t_wall |
---|
5046 | !> called out from subroutine swap_timelevel |
---|
5047 | !------------------------------------------------------------------------------! |
---|
5048 | SUBROUTINE usm_swap_timelevel ( mod_count ) |
---|
5049 | |
---|
5050 | IMPLICIT NONE |
---|
5051 | |
---|
5052 | INTEGER(iwp), INTENT(IN) :: mod_count |
---|
5053 | INTEGER(iwp) :: i |
---|
5054 | |
---|
5055 | #if defined( __nopointer ) |
---|
5056 | t_surf_h = t_surf_h_p |
---|
5057 | t_wall_h = t_wall_h_p |
---|
5058 | t_surf_v = t_surf_v_p |
---|
5059 | t_wall_v = t_wall_v_p |
---|
5060 | #else |
---|
5061 | SELECT CASE ( mod_count ) |
---|
5062 | CASE ( 0 ) |
---|
5063 | ! |
---|
5064 | !-- Horizontal surfaces |
---|
5065 | t_surf_h => t_surf_h_1; t_surf_h_p => t_surf_h_2 |
---|
5066 | t_wall_h => t_wall_h_1; t_wall_h_p => t_wall_h_2 |
---|
5067 | ! |
---|
5068 | !-- Vertical surfaces |
---|
5069 | t_surf_v => t_surf_v_1; t_surf_v_p => t_surf_v_2 |
---|
5070 | t_wall_v => t_wall_v_1; t_wall_v_p => t_wall_v_2 |
---|
5071 | CASE ( 1 ) |
---|
5072 | ! |
---|
5073 | !-- Horizontal surfaces |
---|
5074 | t_surf_h => t_surf_h_2; t_surf_h_p => t_surf_h_1 |
---|
5075 | t_wall_h => t_wall_h_2; t_wall_h_p => t_wall_h_1 |
---|
5076 | ! |
---|
5077 | !-- Vertical surfaces |
---|
5078 | t_surf_v => t_surf_v_2; t_surf_v_p => t_surf_v_1 |
---|
5079 | t_wall_v => t_wall_v_2; t_wall_v_p => t_wall_v_1 |
---|
5080 | END SELECT |
---|
5081 | #endif |
---|
5082 | |
---|
5083 | END SUBROUTINE usm_swap_timelevel |
---|
5084 | |
---|
5085 | !------------------------------------------------------------------------------! |
---|
5086 | ! |
---|
5087 | ! Description: |
---|
5088 | ! ------------ |
---|
5089 | !> Subroutine writes t_surf and t_wall data into restart files |
---|
5090 | !kanani: Renamed this routine according to corresponging routines in PALM |
---|
5091 | !kanani: Modified the routine to match write_var_list, from where usm_write_restart_data |
---|
5092 | ! shall be called in the future. This part has not been tested yet. (see virtual_flight_mod) |
---|
5093 | ! Also, I had some trouble with the allocation of t_surf, since this is a pointer. |
---|
5094 | ! So, I added some directives here. |
---|
5095 | !------------------------------------------------------------------------------! |
---|
5096 | SUBROUTINE usm_write_restart_data |
---|
5097 | |
---|
5098 | IMPLICIT NONE |
---|
5099 | |
---|
5100 | INTEGER(iwp) :: i |
---|
5101 | |
---|
5102 | DO i = 0, io_blocks-1 |
---|
5103 | IF ( i == io_group ) THEN |
---|
5104 | |
---|
5105 | WRITE ( 14 ) 't_surf_h ' |
---|
5106 | #if defined( __nopointer ) |
---|
5107 | WRITE ( 14 ) t_surf_h |
---|
5108 | #else |
---|
5109 | WRITE ( 14 ) t_surf_h_1 |
---|
5110 | #endif |
---|
5111 | WRITE ( 14 ) 't_surf_v(0) ' |
---|
5112 | #if defined( __nopointer ) |
---|
5113 | WRITE ( 14 ) t_surf_v(0)%t |
---|
5114 | #else |
---|
5115 | WRITE ( 14 ) t_surf_v_1(0)%t |
---|
5116 | #endif |
---|
5117 | WRITE ( 14 ) 't_surf_v(1) ' |
---|
5118 | #if defined( __nopointer ) |
---|
5119 | WRITE ( 14 ) t_surf_v(1)%t |
---|
5120 | #else |
---|
5121 | WRITE ( 14 ) t_surf_v_1(1)%t |
---|
5122 | #endif |
---|
5123 | WRITE ( 14 ) 't_surf_v(2) ' |
---|
5124 | #if defined( __nopointer ) |
---|
5125 | WRITE ( 14 ) t_surf_v(2)%t |
---|
5126 | #else |
---|
5127 | WRITE ( 14 ) t_surf_v_1(2)%t |
---|
5128 | #endif |
---|
5129 | WRITE ( 14 ) 't_surf_v(3) ' |
---|
5130 | #if defined( __nopointer ) |
---|
5131 | WRITE ( 14 ) t_surf_v(3)%t |
---|
5132 | #else |
---|
5133 | WRITE ( 14 ) t_surf_v_1(3)%t |
---|
5134 | #endif |
---|
5135 | WRITE ( 14 ) 't_wall_h ' |
---|
5136 | #if defined( __nopointer ) |
---|
5137 | WRITE ( 14 ) t_wall_h |
---|
5138 | #else |
---|
5139 | WRITE ( 14 ) t_wall_h_1 |
---|
5140 | #endif |
---|
5141 | WRITE ( 14 ) 't_wall_v(0) ' |
---|
5142 | #if defined( __nopointer ) |
---|
5143 | WRITE ( 14 ) t_wall_v(0)%t |
---|
5144 | #else |
---|
5145 | WRITE ( 14 ) t_wall_v_1(0)%t |
---|
5146 | #endif |
---|
5147 | WRITE ( 14 ) 't_wall_v(1) ' |
---|
5148 | #if defined( __nopointer ) |
---|
5149 | WRITE ( 14 ) t_wall_v(1)%t |
---|
5150 | #else |
---|
5151 | WRITE ( 14 ) t_wall_v_1(1)%t |
---|
5152 | #endif |
---|
5153 | WRITE ( 14 ) 't_wall_v(2) ' |
---|
5154 | #if defined( __nopointer ) |
---|
5155 | WRITE ( 14 ) t_wall_v(2)%t |
---|
5156 | #else |
---|
5157 | WRITE ( 14 ) t_wall_v_1(2)%t |
---|
5158 | #endif |
---|
5159 | WRITE ( 14 ) 't_wall_v(3) ' |
---|
5160 | #if defined( __nopointer ) |
---|
5161 | WRITE ( 14 ) t_wall_v(3)%t |
---|
5162 | #else |
---|
5163 | WRITE ( 14 ) t_wall_v_1(3)%t |
---|
5164 | #endif |
---|
5165 | WRITE ( 14 ) '*** end usm *** ' |
---|
5166 | ENDIF |
---|
5167 | #if defined( __parallel ) |
---|
5168 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
5169 | #endif |
---|
5170 | ENDDO |
---|
5171 | |
---|
5172 | |
---|
5173 | END SUBROUTINE usm_write_restart_data |
---|
5174 | |
---|
5175 | |
---|
5176 | !------------------------------------------------------------------------------! |
---|
5177 | ! |
---|
5178 | ! Description: |
---|
5179 | ! ------------ |
---|
5180 | !> Subroutine stores svf, svfsurf, csf and csfsurf data to a file. |
---|
5181 | !------------------------------------------------------------------------------! |
---|
5182 | SUBROUTINE usm_write_svf_to_file |
---|
5183 | |
---|
5184 | IMPLICIT NONE |
---|
5185 | INTEGER(iwp) :: fsvf = 89 |
---|
5186 | INTEGER(iwp) :: i |
---|
5187 | |
---|
5188 | DO i = 0, io_blocks-1 |
---|
5189 | IF ( i == io_group ) THEN |
---|
5190 | OPEN ( fsvf, file=TRIM(svf_file_name)//TRIM(coupling_char)//myid_char, & |
---|
5191 | form='unformatted', status='new' ) |
---|
5192 | |
---|
5193 | WRITE ( fsvf ) usm_version |
---|
5194 | WRITE ( fsvf ) nsvfl, ncsfl |
---|
5195 | WRITE ( fsvf ) svf |
---|
5196 | WRITE ( fsvf ) svfsurf |
---|
5197 | IF ( plant_canopy ) THEN |
---|
5198 | WRITE ( fsvf ) csf |
---|
5199 | WRITE ( fsvf ) csfsurf |
---|
5200 | ENDIF |
---|
5201 | WRITE ( fsvf ) TRIM(svf_code) |
---|
5202 | |
---|
5203 | CLOSE (fsvf) |
---|
5204 | #if defined( __parallel ) |
---|
5205 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
5206 | #endif |
---|
5207 | ENDIF |
---|
5208 | ENDDO |
---|
5209 | END SUBROUTINE usm_write_svf_to_file |
---|
5210 | |
---|
5211 | |
---|
5212 | !------------------------------------------------------------------------------! |
---|
5213 | ! |
---|
5214 | ! Description: |
---|
5215 | ! ------------ |
---|
5216 | !> Block of auxiliary subroutines: |
---|
5217 | !> 1. quicksort and corresponding comparison |
---|
5218 | !> 2. usm_merge_and_grow_csf for implementation of "dynamical growing" |
---|
5219 | !> array for csf |
---|
5220 | !------------------------------------------------------------------------------! |
---|
5221 | PURE FUNCTION svf_lt(svf1,svf2) result (res) |
---|
5222 | TYPE (t_svf), INTENT(in) :: svf1,svf2 |
---|
5223 | LOGICAL :: res |
---|
5224 | IF ( svf1%isurflt < svf2%isurflt .OR. & |
---|
5225 | (svf1%isurflt == svf2%isurflt .AND. svf1%isurfs < svf2%isurfs) ) THEN |
---|
5226 | res = .TRUE. |
---|
5227 | ELSE |
---|
5228 | res = .FALSE. |
---|
5229 | ENDIF |
---|
5230 | END FUNCTION svf_lt |
---|
5231 | |
---|
5232 | |
---|
5233 | !-- quicksort.f -*-f90-*- |
---|
5234 | !-- Author: t-nissie, adaptation J.Resler |
---|
5235 | !-- License: GPLv3 |
---|
5236 | !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea |
---|
5237 | RECURSIVE SUBROUTINE quicksort_svf(svfl, first, last) |
---|
5238 | IMPLICIT NONE |
---|
5239 | TYPE(t_svf), DIMENSION(:), INTENT(INOUT) :: svfl |
---|
5240 | INTEGER(iwp), INTENT(IN) :: first, last |
---|
5241 | TYPE(t_svf) :: x, t |
---|
5242 | INTEGER(iwp) :: i, j |
---|
5243 | |
---|
5244 | IF ( first>=last ) RETURN |
---|
5245 | x = svfl( (first+last) / 2 ) |
---|
5246 | i = first |
---|
5247 | j = last |
---|
5248 | DO |
---|
5249 | DO while ( svf_lt(svfl(i),x) ) |
---|
5250 | i=i+1 |
---|
5251 | ENDDO |
---|
5252 | DO while ( svf_lt(x,svfl(j)) ) |
---|
5253 | j=j-1 |
---|
5254 | ENDDO |
---|
5255 | IF ( i >= j ) EXIT |
---|
5256 | t = svfl(i); svfl(i) = svfl(j); svfl(j) = t |
---|
5257 | i=i+1 |
---|
5258 | j=j-1 |
---|
5259 | ENDDO |
---|
5260 | IF ( first < i-1 ) CALL quicksort_svf(svfl, first, i-1) |
---|
5261 | IF ( j+1 < last ) CALL quicksort_svf(svfl, j+1, last) |
---|
5262 | END SUBROUTINE quicksort_svf |
---|
5263 | |
---|
5264 | |
---|
5265 | PURE FUNCTION csf_lt(csf1,csf2) result (res) |
---|
5266 | TYPE (t_csf), INTENT(in) :: csf1,csf2 |
---|
5267 | LOGICAL :: res |
---|
5268 | IF ( csf1%ip < csf2%ip .OR. & |
---|
5269 | (csf1%ip == csf2%ip .AND. csf1%itx < csf2%itx) .OR. & |
---|
5270 | (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity < csf2%ity) .OR. & |
---|
5271 | (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. & |
---|
5272 | csf1%itz < csf2%itz) .OR. & |
---|
5273 | (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. & |
---|
5274 | csf1%itz == csf2%itz .AND. csf1%isurfs < csf2%isurfs) ) THEN |
---|
5275 | res = .TRUE. |
---|
5276 | ELSE |
---|
5277 | res = .FALSE. |
---|
5278 | ENDIF |
---|
5279 | END FUNCTION csf_lt |
---|
5280 | |
---|
5281 | |
---|
5282 | !-- quicksort.f -*-f90-*- |
---|
5283 | !-- Author: t-nissie, adaptation J.Resler |
---|
5284 | !-- License: GPLv3 |
---|
5285 | !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea |
---|
5286 | RECURSIVE SUBROUTINE quicksort_csf(csfl, first, last) |
---|
5287 | IMPLICIT NONE |
---|
5288 | TYPE(t_csf), DIMENSION(:), INTENT(INOUT) :: csfl |
---|
5289 | INTEGER(iwp), INTENT(IN) :: first, last |
---|
5290 | TYPE(t_csf) :: x, t |
---|
5291 | INTEGER(iwp) :: i, j |
---|
5292 | |
---|
5293 | IF ( first>=last ) RETURN |
---|
5294 | x = csfl( (first+last)/2 ) |
---|
5295 | i = first |
---|
5296 | j = last |
---|
5297 | DO |
---|
5298 | DO while ( csf_lt(csfl(i),x) ) |
---|
5299 | i=i+1 |
---|
5300 | ENDDO |
---|
5301 | DO while ( csf_lt(x,csfl(j)) ) |
---|
5302 | j=j-1 |
---|
5303 | ENDDO |
---|
5304 | IF ( i >= j ) EXIT |
---|
5305 | t = csfl(i); csfl(i) = csfl(j); csfl(j) = t |
---|
5306 | i=i+1 |
---|
5307 | j=j-1 |
---|
5308 | ENDDO |
---|
5309 | IF ( first < i-1 ) CALL quicksort_csf(csfl, first, i-1) |
---|
5310 | IF ( j+1 < last ) CALL quicksort_csf(csfl, j+1, last) |
---|
5311 | END SUBROUTINE quicksort_csf |
---|
5312 | |
---|
5313 | |
---|
5314 | SUBROUTINE usm_merge_and_grow_csf(newsize) |
---|
5315 | INTEGER(iwp), INTENT(in) :: newsize !< new array size after grow, must be >= ncsfl |
---|
5316 | !< or -1 to shrink to minimum |
---|
5317 | INTEGER(iwp) :: iread, iwrite |
---|
5318 | TYPE(t_csf), DIMENSION(:), POINTER :: acsfnew |
---|
5319 | |
---|
5320 | IF ( newsize == -1 ) THEN |
---|
5321 | !-- merge in-place |
---|
5322 | acsfnew => acsf |
---|
5323 | ELSE |
---|
5324 | !-- allocate new array |
---|
5325 | IF ( mcsf == 0 ) THEN |
---|
5326 | ALLOCATE( acsf1(newsize) ) |
---|
5327 | acsfnew => acsf1 |
---|
5328 | ELSE |
---|
5329 | ALLOCATE( acsf2(newsize) ) |
---|
5330 | acsfnew => acsf2 |
---|
5331 | ENDIF |
---|
5332 | ENDIF |
---|
5333 | |
---|
5334 | IF ( ncsfl >= 1 ) THEN |
---|
5335 | !-- sort csf in place (quicksort) |
---|
5336 | CALL quicksort_csf(acsf,1,ncsfl) |
---|
5337 | |
---|
5338 | !-- while moving to a new array, aggregate canopy sink factor records with identical box & source |
---|
5339 | acsfnew(1) = acsf(1) |
---|
5340 | iwrite = 1 |
---|
5341 | DO iread = 2, ncsfl |
---|
5342 | !-- here acsf(kcsf) already has values from acsf(icsf) |
---|
5343 | IF ( acsfnew(iwrite)%itx == acsf(iread)%itx & |
---|
5344 | .AND. acsfnew(iwrite)%ity == acsf(iread)%ity & |
---|
5345 | .AND. acsfnew(iwrite)%itz == acsf(iread)%itz & |
---|
5346 | .AND. acsfnew(iwrite)%isurfs == acsf(iread)%isurfs ) THEN |
---|
5347 | !-- We could simply take either first or second rtransp, both are valid. As a very simple heuristic about which ray |
---|
5348 | !-- probably passes nearer the center of the target box, we choose DIF from the entry with greater CSF, since that |
---|
5349 | !-- might mean that the traced beam passes longer through the canopy box. |
---|
5350 | IF ( acsfnew(iwrite)%rsvf < acsf(iread)%rsvf ) THEN |
---|
5351 | acsfnew(iwrite)%rtransp = acsf(iread)%rtransp |
---|
5352 | ENDIF |
---|
5353 | acsfnew(iwrite)%rsvf = acsfnew(iwrite)%rsvf + acsf(iread)%rsvf |
---|
5354 | !-- advance reading index, keep writing index |
---|
5355 | ELSE |
---|
5356 | !-- not identical, just advance and copy |
---|
5357 | iwrite = iwrite + 1 |
---|
5358 | acsfnew(iwrite) = acsf(iread) |
---|
5359 | ENDIF |
---|
5360 | ENDDO |
---|
5361 | ncsfl = iwrite |
---|
5362 | ENDIF |
---|
5363 | |
---|
5364 | IF ( newsize == -1 ) THEN |
---|
5365 | !-- allocate new array and copy shrinked data |
---|
5366 | IF ( mcsf == 0 ) THEN |
---|
5367 | ALLOCATE( acsf1(ncsfl) ) |
---|
5368 | acsf1(1:ncsfl) = acsf2(1:ncsfl) |
---|
5369 | ELSE |
---|
5370 | ALLOCATE( acsf2(ncsfl) ) |
---|
5371 | acsf2(1:ncsfl) = acsf1(1:ncsfl) |
---|
5372 | ENDIF |
---|
5373 | ENDIF |
---|
5374 | |
---|
5375 | !-- deallocate old array |
---|
5376 | IF ( mcsf == 0 ) THEN |
---|
5377 | mcsf = 1 |
---|
5378 | acsf => acsf1 |
---|
5379 | DEALLOCATE( acsf2 ) |
---|
5380 | ELSE |
---|
5381 | mcsf = 0 |
---|
5382 | acsf => acsf2 |
---|
5383 | DEALLOCATE( acsf1 ) |
---|
5384 | ENDIF |
---|
5385 | ncsfla = newsize |
---|
5386 | END SUBROUTINE usm_merge_and_grow_csf |
---|
5387 | |
---|
5388 | |
---|
5389 | !-- quicksort.f -*-f90-*- |
---|
5390 | !-- Author: t-nissie, adaptation J.Resler |
---|
5391 | !-- License: GPLv3 |
---|
5392 | !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea |
---|
5393 | RECURSIVE SUBROUTINE quicksort_csf2(kpcsflt, pcsflt, first, last) |
---|
5394 | IMPLICIT NONE |
---|
5395 | INTEGER(iwp), DIMENSION(:,:), INTENT(INOUT) :: kpcsflt |
---|
5396 | REAL(wp), DIMENSION(:,:), INTENT(INOUT) :: pcsflt |
---|
5397 | INTEGER(iwp), INTENT(IN) :: first, last |
---|
5398 | REAL(wp), DIMENSION(ndcsf) :: t2 |
---|
5399 | INTEGER(iwp), DIMENSION(kdcsf) :: x, t1 |
---|
5400 | INTEGER(iwp) :: i, j |
---|
5401 | |
---|
5402 | IF ( first>=last ) RETURN |
---|
5403 | x = kpcsflt(:, (first+last)/2 ) |
---|
5404 | i = first |
---|
5405 | j = last |
---|
5406 | DO |
---|
5407 | DO while ( csf_lt2(kpcsflt(:,i),x) ) |
---|
5408 | i=i+1 |
---|
5409 | ENDDO |
---|
5410 | DO while ( csf_lt2(x,kpcsflt(:,j)) ) |
---|
5411 | j=j-1 |
---|
5412 | ENDDO |
---|
5413 | IF ( i >= j ) EXIT |
---|
5414 | t1 = kpcsflt(:,i); kpcsflt(:,i) = kpcsflt(:,j); kpcsflt(:,j) = t1 |
---|
5415 | t2 = pcsflt(:,i); pcsflt(:,i) = pcsflt(:,j); pcsflt(:,j) = t2 |
---|
5416 | i=i+1 |
---|
5417 | j=j-1 |
---|
5418 | ENDDO |
---|
5419 | IF ( first < i-1 ) CALL quicksort_csf2(kpcsflt, pcsflt, first, i-1) |
---|
5420 | IF ( j+1 < last ) CALL quicksort_csf2(kpcsflt, pcsflt, j+1, last) |
---|
5421 | END SUBROUTINE quicksort_csf2 |
---|
5422 | |
---|
5423 | |
---|
5424 | PURE FUNCTION csf_lt2(item1, item2) result(res) |
---|
5425 | INTEGER(iwp), DIMENSION(kdcsf), INTENT(in) :: item1, item2 |
---|
5426 | LOGICAL :: res |
---|
5427 | res = ( (item1(3) < item2(3)) & |
---|
5428 | .OR. (item1(3) == item2(3) .AND. item1(2) < item2(2)) & |
---|
5429 | .OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) < item2(1)) & |
---|
5430 | .OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) == item2(1) & |
---|
5431 | .AND. item1(4) < item2(4)) ) |
---|
5432 | END FUNCTION csf_lt2 |
---|
5433 | |
---|
5434 | |
---|
5435 | END MODULE urban_surface_mod |
---|