!> @file urban_surface_mod.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 2015-2019 Czech Technical University in Prague ! Copyright 2015-2019 Institute of Computer Science of the ! Czech Academy of Sciences, Prague ! Copyright 1997-2019 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: urban_surface_mod.f90 4077 2019-07-09 13:27:11Z gronemeier $ ! Set roughness length z0 and z0h/q at ground-floor level to same value as ! those above ground-floor level ! ! 4051 2019-06-24 13:58:30Z suehring ! Remove work-around for green surface fraction on buildings ! (do not set it zero) ! ! 4050 2019-06-24 13:57:27Z suehring ! In order to avoid confusion with global control parameter, rename the ! USM-internal flag spinup into during_spinup. ! ! 3987 2019-05-22 09:52:13Z kanani ! Introduce alternative switch for debug output during timestepping ! ! 3943 2019-05-02 09:50:41Z maronga ! Removed qsws_eb. Bugfix in calculation of qsws. ! ! 3933 2019-04-25 12:33:20Z kanani ! Remove allocation of pt_2m, this is done in surface_mod now (surfaces%pt_2m) ! ! 3921 2019-04-18 14:21:10Z suehring ! Undo accidentally commented initialization ! ! 3918 2019-04-18 13:33:11Z suehring ! Set green fraction to zero also at vertical surfaces ! ! 3914 2019-04-17 16:02:02Z suehring ! In order to obtain correct surface temperature during spinup set window ! fraction to zero (only during spinup) instead of just disabling ! time-integration of window-surface temperature. ! ! 3901 2019-04-16 16:17:02Z suehring ! Workaround - set green fraction to zero ( green-heat model crashes ). ! ! 3896 2019-04-15 10:10:17Z suehring ! ! ! 3896 2019-04-15 10:10:17Z suehring ! Bugfix, wrong index used for accessing building_pars from PIDS ! ! 3885 2019-04-11 11:29:34Z kanani ! Changes related to global restructuring of location messages and introduction ! of additional debug messages ! ! 3882 2019-04-10 11:08:06Z suehring ! Avoid different type kinds ! Move definition of building-surface properties from declaration block ! to an extra routine ! ! 3881 2019-04-10 09:31:22Z suehring ! Revise determination of local ground-floor level height. ! Make level 3 initalization conform with Palm-input-data standard ! Move output of albedo and emissivity to radiation module ! ! 3832 2019-03-28 13:16:58Z raasch ! instrumented with openmp directives ! ! 3824 2019-03-27 15:56:16Z pavelkrc ! Remove unused imports ! ! ! 3814 2019-03-26 08:40:31Z pavelkrc ! unused subroutine commented out ! ! 3769 2019-02-28 10:16:49Z moh.hefny ! removed unused variables ! ! 3767 2019-02-27 08:18:02Z raasch ! unused variables removed from rrd-subroutines parameter list ! ! 3748 2019-02-18 10:38:31Z suehring ! Revise conversion of waste-heat flux (do not divide by air density, will ! be done in diffusion_s) ! ! 3745 2019-02-15 18:57:56Z suehring ! - Remove internal flag indoor_model (is a global control parameter) ! - add waste heat from buildings to the kinmatic heat flux ! - consider waste heat in restart data ! - remove unused USE statements ! ! 3744 2019-02-15 18:38:58Z suehring ! fixed surface heat capacity in the building parameters ! convert the file back to unix format ! ! 3730 2019-02-11 11:26:47Z moh.hefny ! Formatting and clean-up (rvtils) ! ! 3710 2019-01-30 18:11:19Z suehring ! Check if building type is set within a valid range. ! ! 3705 2019-01-29 19:56:39Z suehring ! make nzb_wall public, required for virtual-measurements ! ! 3704 2019-01-29 19:51:41Z suehring ! Some interface calls moved to module_interface + cleanup ! ! 3655 2019-01-07 16:51:22Z knoop ! Implementation of the PALM module interface ! ! 3636 2018-12-19 13:48:34Z raasch ! nopointer option removed ! ! 3614 2018-12-10 07:05:46Z raasch ! unused variables removed ! ! 3607 2018-12-07 11:56:58Z suehring ! Output of radiation-related quantities migrated to radiation_model_mod. ! ! 3597 2018-12-04 08:40:18Z maronga ! Fixed calculation method of near surface air potential temperature at 10 cm ! and moved to surface_layer_fluxes. Removed unnecessary _eb strings. ! ! 3524 2018-11-14 13:36:44Z raasch ! bugfix concerning allocation of t_surf_wall_v ! ! 3502 2018-11-07 14:45:23Z suehring ! Disable initialization of building roofs with ground-floor-level properties, ! since this causes strong oscillations of surface temperature during the ! spinup. ! ! 3469 2018-10-30 20:05:07Z kanani ! Add missing PUBLIC variables for new indoor model ! ! 3449 2018-10-29 19:36:56Z suehring ! Bugfix: Fix average arrays allocations in usm_3d_data_averaging (J.Resler) ! Bugfix: Fix reading wall temperatures (J.Resler) ! Bugfix: Fix treating of outputs for wall temperature and sky view factors (J.Resler) ! ! ! 3435 2018-10-26 18:25:44Z gronemeier ! Bugfix: allocate gamma_w_green_sat until nzt_wall+1 ! ! 3418 2018-10-24 16:07:39Z kanani ! (rvtils, srissman) ! -Updated building databse, two green roof types (ind_green_type_roof) ! -Latent heat flux for green walls and roofs, new output of latent heatflux ! and soil water content of green roof substrate ! -t_surf changed to t_surf_wall ! -Added namelist parameter usm_wall_mod for lower wall tendency ! of first two wall layers during spinup ! -Window calculations deactivated during spinup ! ! 3382 2018-10-19 13:10:32Z knoop ! Bugix: made array declaration Fortran Standard conform ! ! 3378 2018-10-19 12:34:59Z kanani ! merge from radiation branch (r3362) into trunk ! (moh.hefny): ! - check the requested output variables if they are correct ! - added unscheduled_radiation_calls switch to control force_radiation_call ! - minor formate changes ! ! 3371 2018-10-18 13:40:12Z knoop ! Set flag indicating that albedo at urban surfaces is already initialized ! ! 3347 2018-10-15 14:21:08Z suehring ! Enable USM initialization with default building parameters in case no static ! input file exist. ! ! 3343 2018-10-15 10:38:52Z suehring ! Add output variables usm_rad_pc_inlw, usm_rad_pc_insw* ! ! 3274 2018-09-24 15:42:55Z knoop ! Modularization of all bulk cloud physics code components ! ! 3248 2018-09-14 09:42:06Z sward ! Minor formating changes ! ! 3246 2018-09-13 15:14:50Z sward ! Added error handling for input namelist via parin_fail_message ! ! 3241 2018-09-12 15:02:00Z raasch ! unused variables removed ! ! 3223 2018-08-30 13:48:17Z suehring ! Bugfix for commit 3222 ! ! 3222 2018-08-30 13:35:35Z suehring ! Introduction of surface array for type and its name ! ! 3203 2018-08-23 10:48:36Z suehring ! Revise bulk parameter for emissivity at ground-floor level ! ! 3196 2018-08-13 12:26:14Z maronga ! Added maximum aerodynamic resistance of 300 for horiztonal surfaces. ! ! 3176 2018-07-26 17:12:48Z suehring ! Bugfix, update virtual potential surface temparture, else heat fluxes on ! roofs might become unphysical ! ! 3152 2018-07-19 13:26:52Z suehring ! Initialize q_surface, which might be used in surface_layer_fluxes ! ! 3151 2018-07-19 08:45:38Z raasch ! remaining preprocessor define strings __check removed ! ! 3136 2018-07-16 14:48:21Z suehring ! Limit also roughness length for heat and moisture where necessary ! ! 3123 2018-07-12 16:21:53Z suehring ! Correct working precision for INTEGER number ! ! 3115 2018-07-10 12:49:26Z suehring ! Additional building type to represent bridges ! ! 3091 2018-06-28 16:20:35Z suehring ! - Limit aerodynamic resistance at vertical walls. ! - Add check for local roughness length not exceeding surface-layer height and ! limit roughness length where necessary. ! ! 3065 2018-06-12 07:03:02Z Giersch ! Unused array dxdir was removed, dz was replaced by dzu to consider vertical ! grid stretching ! ! 3049 2018-05-29 13:52:36Z Giersch ! Error messages revised ! ! 3045 2018-05-28 07:55:41Z Giersch ! Error message added ! ! 3029 2018-05-23 12:19:17Z raasch ! bugfix: close unit 151 instead of 90 ! ! 3014 2018-05-09 08:42:38Z maronga ! Added pc_transpiration_rate ! ! 2977 2018-04-17 10:27:57Z kanani ! Implement changes from branch radiation (r2948-2971) with minor modifications. ! (moh.hefny): ! Extended exn for all model domain height to avoid the need to get nzut. ! ! 2963 2018-04-12 14:47:44Z suehring ! Introduce index for vegetation/wall, pavement/green-wall and water/window ! surfaces, for clearer access of surface fraction, albedo, emissivity, etc. . ! ! 2943 2018-04-03 16:17:10Z suehring ! Calculate exner function at all height levels and remove some un-used ! variables. ! ! 2932 2018-03-26 09:39:22Z maronga ! renamed urban_surface_par to urban_surface_parameters ! ! 2921 2018-03-22 15:05:23Z Giersch ! The activation of spinup has been moved to parin ! ! 2920 2018-03-22 11:22:01Z kanani ! Remove unused pcbl, npcbl from ONLY list ! moh.hefny: ! Fixed bugs introduced by new structures and by moving radiation interaction ! into radiation_model_mod.f90. ! Bugfix: usm data output 3D didn't respect directions ! ! 2906 2018-03-19 08:56:40Z Giersch ! Local variable ids has to be initialized with a value of -1 in ! usm_3d_data_averaging ! ! 2894 2018-03-15 09:17:58Z Giersch ! Calculations of the index range of the subdomain on file which overlaps with ! the current subdomain are already done in read_restart_data_mod, ! usm_read/write_restart_data have been renamed to usm_r/wrd_local, variable ! named found has been introduced for checking if restart data was found, ! reading of restart strings has been moved completely to ! read_restart_data_mod, usm_rrd_local is already inside the overlap loop ! programmed in read_restart_data_mod, SAVE attribute added where necessary, ! deallocation and allocation of some arrays have been changed to take care of ! different restart files that can be opened (index i), the marker *** end usm ! *** is not necessary anymore, strings and their respective lengths are ! written out and read now in case of restart runs to get rid of prescribed ! character lengths ! ! 2805 2018-02-14 17:00:09Z suehring ! Initialization of resistances. ! ! 2797 2018-02-08 13:24:35Z suehring ! Comment concerning output of ground-heat flux added. ! ! 2766 2018-01-22 17:17:47Z kanani ! Removed redundant commas, added some blanks ! ! 2765 2018-01-22 11:34:58Z maronga ! Major bugfix in calculation of f_shf. Adjustment of roughness lengths in ! building_pars ! ! 2750 2018-01-15 16:26:51Z knoop ! Move flag plant canopy to modules ! ! 2737 2018-01-11 14:58:11Z kanani ! Removed unused variables t_surf_whole... ! ! 2735 2018-01-11 12:01:27Z suehring ! resistances are saved in surface attributes ! ! 2723 2018-01-05 09:27:03Z maronga ! Bugfix for spinups (end_time was increased twice in case of LSM + USM runs) ! ! 2720 2018-01-02 16:27:15Z kanani ! Correction of comment ! ! 2718 2018-01-02 08:49:38Z maronga ! Corrected "Former revisions" section ! ! 2705 2017-12-18 11:26:23Z maronga ! Changes from last commit documented ! ! 2703 2017-12-15 20:12:38Z maronga ! Workaround for calculation of r_a ! ! 2696 2017-12-14 17:12:51Z kanani ! - Change in file header (GPL part) ! - Bugfix in calculation of pt_surface and related fluxes. (BM) ! - Do not write surface temperatures onto pt array as this might cause ! problems with nesting. (MS) ! - Revised calculation of pt1 (now done in surface_layer_fluxes). ! Bugfix, f_shf_window and f_shf_green were not set at vertical surface ! elements. (MS) ! - merged with branch ebsolver ! green building surfaces do not evaporate yet ! properties of green wall layers and window layers are taken from wall layers ! this input data is missing. (RvT) ! - Merged with branch radiation (developed by Mohamed Salim) ! - Revised initialization. (MS) ! - Rename emiss_surf into emissivity, roughness_wall into z0, albedo_surf into ! albedo. (MS) ! - Move first call of usm_radiatin from usm_init to init_3d_model ! - fixed problem with near surface temperature ! - added near surface temperature pt_10cm_h(m), pt_10cm_v(l)%t(m) ! - does not work with temp profile including stability, ol ! pt_10cm = pt1 now ! - merged with 2357 bugfix, error message for nopointer version ! - added indoor model coupling with wall heat flux ! - added green substrate/ dry vegetation layer for buildings ! - merged with 2232 new surface-type structure ! - added transmissivity of window tiles ! - added MOSAIK tile approach for 3 different surfaces (RvT) ! ! 2583 2017-10-26 13:58:38Z knoop ! Bugfix: reverted MPI_Win_allocate_cptr introduction in last commit ! ! 2582 2017-10-26 13:19:46Z hellstea ! Workaround for gnufortran compiler added in usm_calc_svf. CALL MPI_Win_allocate is ! replaced by CALL MPI_Win_allocate_cptr if defined ( __gnufortran ). ! ! 2544 2017-10-13 18:09:32Z maronga ! Date and time quantities are now read from date_and_time_mod. Solar constant is ! read from radiation_model_mod ! ! 2516 2017-10-04 11:03:04Z suehring ! Remove tabs ! ! 2514 2017-10-04 09:52:37Z suehring ! upper bounds of 3d output changed from nx+1,ny+1 to nx,ny ! no output of ghost layer data ! ! 2350 2017-08-15 11:48:26Z kanani ! Bugfix and error message for nopointer version. ! Additional "! defined(__nopointer)" as workaround to enable compilation of ! nopointer version. ! ! 2318 2017-07-20 17:27:44Z suehring ! Get topography top index via Function call ! ! 2317 2017-07-20 17:27:19Z suehring ! Bugfix: adjust output of shf. Added support for spinups ! ! 2287 2017-06-15 16:46:30Z suehring ! Bugfix in determination topography-top index ! ! 2269 2017-06-09 11:57:32Z suehring ! Enable restart runs with different number of PEs ! Bugfixes nopointer branch ! ! 2258 2017-06-08 07:55:13Z suehring ! Bugfix, add pre-preprocessor directives to enable non-parrallel mode ! ! 2233 2017-05-30 18:08:54Z suehring ! ! 2232 2017-05-30 17:47:52Z suehring ! Adjustments according to new surface-type structure. Remove usm_wall_heat_flux; ! insteat, heat fluxes are directly applied in diffusion_s. ! ! 2213 2017-04-24 15:10:35Z kanani ! Removal of output quantities usm_lad and usm_canopy_hr ! ! 2209 2017-04-19 09:34:46Z kanani ! cpp switch __mpi3 removed, ! minor formatting, ! small bugfix for division by zero (Krc) ! ! 2113 2017-01-12 13:40:46Z kanani ! cpp switch __mpi3 added for MPI-3 standard code (Ketelsen) ! ! 2071 2016-11-17 11:22:14Z maronga ! Small bugfix (Resler) ! ! 2031 2016-10-21 15:11:58Z knoop ! renamed variable rho to rho_ocean ! ! 2024 2016-10-12 16:42:37Z kanani ! Bugfixes in deallocation of array plantt and reading of csf/csfsurf, ! optimization of MPI-RMA operations, ! declaration of pcbl as integer, ! renamed usm_radnet -> usm_rad_net, usm_canopy_khf -> usm_canopy_hr, ! splitted arrays svf -> svf & csf, svfsurf -> svfsurf & csfsurf, ! use of new control parameter varnamelength, ! added output variables usm_rad_ressw, usm_rad_reslw, ! minor formatting changes, ! minor optimizations. ! ! 2011 2016-09-19 17:29:57Z kanani ! Major reformatting according to PALM coding standard (comments, blanks, ! alphabetical ordering, etc.), ! removed debug_prints, ! removed auxiliary SUBROUTINE get_usm_info, instead, USM flag urban_surface is ! defined in MODULE control_parameters (modules.f90) to avoid circular ! dependencies, ! renamed canopy_heat_flux to pc_heating_rate, as meaning of quantity changed. ! ! 2007 2016-08-24 15:47:17Z kanani ! Initial revision ! ! ! Description: ! ------------ ! 2016/6/9 - Initial version of the USM (Urban Surface Model) ! authors: Jaroslav Resler, Pavel Krc ! (Czech Technical University in Prague and Institute of ! Computer Science of the Czech Academy of Sciences, Prague) ! with contributions: Michal Belda, Nina Benesova, Ondrej Vlcek ! partly inspired by PALM LSM (B. Maronga) ! parameterizations of Ra checked with TUF3D (E. S. Krayenhoff) !> Module for Urban Surface Model (USM) !> The module includes: !> 1. radiation model with direct/diffuse radiation, shading, reflections !> and integration with plant canopy !> 2. wall and wall surface model !> 3. surface layer energy balance !> 4. anthropogenic heat (only from transportation so far) !> 5. necessary auxiliary subroutines (reading inputs, writing outputs, !> restart simulations, ...) !> It also make use of standard radiation and integrates it into !> urban surface model. !> !> Further work: !> ------------- !> 1. Remove global arrays surfouts, surfoutl and only keep track of radiosity !> from surfaces that are visible from local surfaces (i.e. there is a SVF !> where target is local). To do that, radiosity will be exchanged after each !> reflection step using MPI_Alltoall instead of current MPI_Allgather. !> !> 2. Temporarily large values of surface heat flux can be observed, up to !> 1.2 Km/s, which seem to be not realistic. !> !> @todo Output of _av variables in case of restarts !> @todo Revise flux conversion in energy-balance solver !> @todo Check optimizations for RMA operations !> @todo Alternatives for MPI_WIN_ALLOCATE? (causes problems with openmpi) !> @todo Check for load imbalances in CPU measures, e.g. for exchange_horiz_prog !> factor 3 between min and max time !> @todo Check divisions in wtend (etc.) calculations for possible division !> by zero, e.g. in case fraq(0,m) + fraq(1,m) = 0?! !> @todo Use unit 90 for OPEN/CLOSE of input files (FK) !> @todo Move plant canopy stuff into plant canopy code !------------------------------------------------------------------------------! MODULE urban_surface_mod USE arrays_3d, & ONLY: hyp, zu, pt, p, u, v, w, tend, exner, hyrho, prr, q, ql, vpt USE calc_mean_profile_mod, & ONLY: calc_mean_profile USE basic_constants_and_equations_mod, & ONLY: c_p, g, kappa, pi, r_d, rho_l, l_v, sigma_sb USE control_parameters, & ONLY: coupling_start_time, topography, & debug_output, debug_output_timestep, debug_string, & dt_3d, humidity, indoor_model, & intermediate_timestep_count, initializing_actions, & intermediate_timestep_count_max, simulated_time, end_time, & timestep_scheme, tsc, coupling_char, io_blocks, io_group, & message_string, time_since_reference_point, surface_pressure, & pt_surface, large_scale_forcing, lsf_surf, & spinup_pt_mean, spinup_time, time_do3d, dt_do3d, & average_count_3d, varnamelength, urban_surface, dz USE bulk_cloud_model_mod, & ONLY: bulk_cloud_model, precipitation USE cpulog, & ONLY: cpu_log, log_point, log_point_s USE date_and_time_mod, & ONLY: time_utc_init USE grid_variables, & ONLY: dx, dy, ddx, ddy, ddx2, ddy2 USE indices, & ONLY: nx, ny, nnx, nny, nnz, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, & nysg, nzb, nzt, nbgp, wall_flags_0 USE, INTRINSIC :: iso_c_binding USE kinds USE pegrid USE radiation_model_mod, & ONLY: albedo_type, radiation_interaction, & radiation, rad_sw_in, rad_lw_in, rad_sw_out, rad_lw_out, & force_radiation_call, iup_u, inorth_u, isouth_u, ieast_u, & iwest_u, iup_l, inorth_l, isouth_l, ieast_l, iwest_l, id, & iz, iy, ix, nsurf, idsvf, ndsvf, & idcsf, ndcsf, kdcsf, pct, & nz_urban_b, nz_urban_t, unscheduled_radiation_calls USE statistics, & ONLY: hom, statistic_regions USE surface_mod, & ONLY: get_topography_top_index_ji, get_topography_top_index, & ind_pav_green, ind_veg_wall, ind_wat_win, surf_usm_h, & surf_usm_v, surface_restore_elements IMPLICIT NONE ! !-- USM model constants REAL(wp), PARAMETER :: & b_ch = 6.04_wp, & !< Clapp & Hornberger exponent lambda_h_green_dry = 0.19_wp, & !< heat conductivity for dry soil lambda_h_green_sm = 3.44_wp, & !< heat conductivity of the soil matrix lambda_h_water = 0.57_wp, & !< heat conductivity of water psi_sat = -0.388_wp, & !< soil matrix potential at saturation rho_c_soil = 2.19E6_wp, & !< volumetric heat capacity of soil rho_c_water = 4.20E6_wp !< volumetric heat capacity of water ! m_max_depth = 0.0002_wp ! Maximum capacity of the water reservoir (m) ! !-- Soil parameters I alpha_vg, l_vg_green, n_vg, gamma_w_green_sat REAL(wp), DIMENSION(0:3,1:7), PARAMETER :: soil_pars = RESHAPE( (/ & 3.83_wp, 1.250_wp, 1.38_wp, 6.94E-6_wp, & !< soil 1 3.14_wp, -2.342_wp, 1.28_wp, 1.16E-6_wp, & !< soil 2 0.83_wp, -0.588_wp, 1.25_wp, 0.26E-6_wp, & !< soil 3 3.67_wp, -1.977_wp, 1.10_wp, 2.87E-6_wp, & !< soil 4 2.65_wp, 2.500_wp, 1.10_wp, 1.74E-6_wp, & !< soil 5 1.30_wp, 0.400_wp, 1.20_wp, 0.93E-6_wp, & !< soil 6 0.00_wp, 0.00_wp, 0.00_wp, 0.57E-6_wp & !< soil 7 /), (/ 4, 7 /) ) ! !-- Soil parameters II swc_sat, fc, wilt, swc_res REAL(wp), DIMENSION(0:3,1:7), PARAMETER :: m_soil_pars = RESHAPE( (/ & 0.403_wp, 0.244_wp, 0.059_wp, 0.025_wp, & !< soil 1 0.439_wp, 0.347_wp, 0.151_wp, 0.010_wp, & !< soil 2 0.430_wp, 0.383_wp, 0.133_wp, 0.010_wp, & !< soil 3 0.520_wp, 0.448_wp, 0.279_wp, 0.010_wp, & !< soil 4 0.614_wp, 0.541_wp, 0.335_wp, 0.010_wp, & !< soil 5 0.766_wp, 0.663_wp, 0.267_wp, 0.010_wp, & !< soil 6 0.472_wp, 0.323_wp, 0.171_wp, 0.000_wp & !< soil 7 /), (/ 4, 7 /) ) ! !-- value 9999999.9_wp -> generic available or user-defined value must be set !-- otherwise -> no generic variable and user setting is optional REAL(wp) :: alpha_vangenuchten = 9999999.9_wp, & !< NAMELIST alpha_vg field_capacity = 9999999.9_wp, & !< NAMELIST fc hydraulic_conductivity = 9999999.9_wp, & !< NAMELIST gamma_w_green_sat l_vangenuchten = 9999999.9_wp, & !< NAMELIST l_vg n_vangenuchten = 9999999.9_wp, & !< NAMELIST n_vg residual_moisture = 9999999.9_wp, & !< NAMELIST m_res saturation_moisture = 9999999.9_wp, & !< NAMELIST m_sat wilting_point = 9999999.9_wp !< NAMELIST m_wilt ! !-- configuration parameters (they can be setup in PALM config) LOGICAL :: usm_material_model = .TRUE. !< flag parameter indicating wheather the model of heat in materials is used LOGICAL :: usm_anthropogenic_heat = .FALSE. !< flag parameter indicating wheather the anthropogenic heat sources !< (e.g.transportation) are used LOGICAL :: force_radiation_call_l = .FALSE. !< flag parameter for unscheduled radiation model calls LOGICAL :: read_wall_temp_3d = .FALSE. LOGICAL :: usm_wall_mod = .FALSE. !< reduces conductivity of the first 2 wall layers by factor 0.1 INTEGER(iwp) :: building_type = 1 !< default building type (preleminary setting) INTEGER(iwp) :: land_category = 2 !< default category for land surface INTEGER(iwp) :: wall_category = 2 !< default category for wall surface over pedestrian zone INTEGER(iwp) :: pedestrian_category = 2 !< default category for wall surface in pedestrian zone INTEGER(iwp) :: roof_category = 2 !< default category for root surface REAL(wp) :: roughness_concrete = 0.001_wp !< roughness length of average concrete surface ! !-- Indices of input attributes in building_pars for (above) ground floor level INTEGER(iwp) :: ind_alb_wall_agfl = 38 !< index in input list for albedo_type of wall above ground floor level INTEGER(iwp) :: ind_alb_wall_gfl = 66 !< index in input list for albedo_type of wall ground floor level INTEGER(iwp) :: ind_alb_wall_r = 101 !< index in input list for albedo_type of wall roof INTEGER(iwp) :: ind_alb_green_agfl = 39 !< index in input list for albedo_type of green above ground floor level INTEGER(iwp) :: ind_alb_green_gfl = 78 !< index in input list for albedo_type of green ground floor level INTEGER(iwp) :: ind_alb_green_r = 117 !< index in input list for albedo_type of green roof INTEGER(iwp) :: ind_alb_win_agfl = 40 !< index in input list for albedo_type of window fraction above ground floor level INTEGER(iwp) :: ind_alb_win_gfl = 77 !< index in input list for albedo_type of window fraction ground floor level INTEGER(iwp) :: ind_alb_win_r = 115 !< index in input list for albedo_type of window fraction roof INTEGER(iwp) :: ind_c_surface = 45 !< index in input list for heat capacity wall surface INTEGER(iwp) :: ind_c_surface_green = 48 !< index in input list for heat capacity green surface INTEGER(iwp) :: ind_c_surface_win = 47 !< index in input list for heat capacity window surface INTEGER(iwp) :: ind_emis_wall_agfl = 14 !< index in input list for wall emissivity, above ground floor level INTEGER(iwp) :: ind_emis_wall_gfl = 32 !< index in input list for wall emissivity, ground floor level INTEGER(iwp) :: ind_emis_wall_r = 100 !< index in input list for wall emissivity, roof INTEGER(iwp) :: ind_emis_green_agfl = 15 !< index in input list for green emissivity, above ground floor level INTEGER(iwp) :: ind_emis_green_gfl = 34 !< index in input list for green emissivity, ground floor level INTEGER(iwp) :: ind_emis_green_r = 116 !< index in input list for green emissivity, roof INTEGER(iwp) :: ind_emis_win_agfl = 16 !< index in input list for window emissivity, above ground floor level INTEGER(iwp) :: ind_emis_win_gfl = 33 !< index in input list for window emissivity, ground floor level INTEGER(iwp) :: ind_emis_win_r = 113 !< index in input list for window emissivity, roof INTEGER(iwp) :: ind_gflh = 20 !< index in input list for ground floor level height INTEGER(iwp) :: ind_green_frac_w_agfl = 2 !< index in input list for green fraction on wall, above ground floor level INTEGER(iwp) :: ind_green_frac_w_gfl = 23 !< index in input list for green fraction on wall, ground floor level INTEGER(iwp) :: ind_green_frac_r_agfl = 3 !< index in input list for green fraction on roof, above ground floor level INTEGER(iwp) :: ind_green_frac_r_gfl = 24 !< index in input list for green fraction on roof, ground floor level INTEGER(iwp) :: ind_hc1_agfl = 6 !< index in input list for heat capacity at first wall layer, !< above ground floor level INTEGER(iwp) :: ind_hc1_gfl = 26 !< index in input list for heat capacity at first wall layer, ground floor level INTEGER(iwp) :: ind_hc1_wall_r = 94 !< index in input list for heat capacity at first wall layer, roof INTEGER(iwp) :: ind_hc1_win_agfl = 83 !< index in input list for heat capacity at first window layer, !< above ground floor level INTEGER(iwp) :: ind_hc1_win_gfl = 71 !< index in input list for heat capacity at first window layer, !< ground floor level INTEGER(iwp) :: ind_hc1_win_r = 107 !< index in input list for heat capacity at first window layer, roof INTEGER(iwp) :: ind_hc2_agfl = 7 !< index in input list for heat capacity at second wall layer, !< above ground floor level INTEGER(iwp) :: ind_hc2_gfl = 27 !< index in input list for heat capacity at second wall layer, ground floor level INTEGER(iwp) :: ind_hc2_wall_r = 95 !< index in input list for heat capacity at second wall layer, roof INTEGER(iwp) :: ind_hc2_win_agfl = 84 !< index in input list for heat capacity at second window layer, !< above ground floor level INTEGER(iwp) :: ind_hc2_win_gfl = 72 !< index in input list for heat capacity at second window layer, !< ground floor level INTEGER(iwp) :: ind_hc2_win_r = 108 !< index in input list for heat capacity at second window layer, roof INTEGER(iwp) :: ind_hc3_agfl = 8 !< index in input list for heat capacity at third wall layer, !< above ground floor level INTEGER(iwp) :: ind_hc3_gfl = 28 !< index in input list for heat capacity at third wall layer, ground floor level INTEGER(iwp) :: ind_hc3_wall_r = 96 !< index in input list for heat capacity at third wall layer, roof INTEGER(iwp) :: ind_hc3_win_agfl = 85 !< index in input list for heat capacity at third window layer, !< above ground floor level INTEGER(iwp) :: ind_hc3_win_gfl = 73 !< index in input list for heat capacity at third window layer, !< ground floor level INTEGER(iwp) :: ind_hc3_win_r = 109 !< index in input list for heat capacity at third window layer, roof INTEGER(iwp) :: ind_indoor_target_temp_summer = 12 INTEGER(iwp) :: ind_indoor_target_temp_winter = 13 INTEGER(iwp) :: ind_lai_r_agfl = 4 !< index in input list for LAI on roof, above ground floor level INTEGER(iwp) :: ind_lai_r_gfl = 4 !< index in input list for LAI on roof, ground floor level INTEGER(iwp) :: ind_lai_w_agfl = 5 !< index in input list for LAI on wall, above ground floor level INTEGER(iwp) :: ind_lai_w_gfl = 25 !< index in input list for LAI on wall, ground floor level INTEGER(iwp) :: ind_lambda_surf = 46 !< index in input list for thermal conductivity of wall surface INTEGER(iwp) :: ind_lambda_surf_green = 50 !< index in input list for thermal conductivity of green surface INTEGER(iwp) :: ind_lambda_surf_win = 49 !< index in input list for thermal conductivity of window surface INTEGER(iwp) :: ind_tc1_agfl = 9 !< index in input list for thermal conductivity at first wall layer, !< above ground floor level INTEGER(iwp) :: ind_tc1_gfl = 29 !< index in input list for thermal conductivity at first wall layer, !< ground floor level INTEGER(iwp) :: ind_tc1_wall_r = 97 !< index in input list for thermal conductivity at first wall layer, roof INTEGER(iwp) :: ind_tc1_win_agfl = 86 !< index in input list for thermal conductivity at first window layer, !< above ground floor level INTEGER(iwp) :: ind_tc1_win_gfl = 74 !< index in input list for thermal conductivity at first window layer, !< ground floor level INTEGER(iwp) :: ind_tc1_win_r = 110 !< index in input list for thermal conductivity at first window layer, roof INTEGER(iwp) :: ind_tc2_agfl = 10 !< index in input list for thermal conductivity at second wall layer, !< above ground floor level INTEGER(iwp) :: ind_tc2_gfl = 30 !< index in input list for thermal conductivity at second wall layer, !< ground floor level INTEGER(iwp) :: ind_tc2_wall_r = 98 !< index in input list for thermal conductivity at second wall layer, roof INTEGER(iwp) :: ind_tc2_win_agfl = 87 !< index in input list for thermal conductivity at second window layer, !< above ground floor level INTEGER(iwp) :: ind_tc2_win_gfl = 75 !< index in input list for thermal conductivity at second window layer, !< ground floor level INTEGER(iwp) :: ind_tc2_win_r = 111 !< index in input list for thermal conductivity at second window layer, !< ground floor level INTEGER(iwp) :: ind_tc3_agfl = 11 !< index in input list for thermal conductivity at third wall layer, !< above ground floor level INTEGER(iwp) :: ind_tc3_gfl = 31 !< index in input list for thermal conductivity at third wall layer, !< ground floor level INTEGER(iwp) :: ind_tc3_wall_r = 99 !< index in input list for thermal conductivity at third wall layer, roof INTEGER(iwp) :: ind_tc3_win_agfl = 88 !< index in input list for thermal conductivity at third window layer, !< above ground floor level INTEGER(iwp) :: ind_tc3_win_gfl = 76 !< index in input list for thermal conductivity at third window layer, !< ground floor level INTEGER(iwp) :: ind_tc3_win_r = 112 !< index in input list for thermal conductivity at third window layer, roof INTEGER(iwp) :: ind_thick_1_agfl = 41 !< index for wall layer thickness - 1st layer above ground floor level INTEGER(iwp) :: ind_thick_1_gfl = 62 !< index for wall layer thickness - 1st layer ground floor level INTEGER(iwp) :: ind_thick_1_wall_r = 90 !< index for wall layer thickness - 1st layer roof INTEGER(iwp) :: ind_thick_1_win_agfl = 79 !< index for window layer thickness - 1st layer above ground floor level INTEGER(iwp) :: ind_thick_1_win_gfl = 67 !< index for window layer thickness - 1st layer ground floor level INTEGER(iwp) :: ind_thick_1_win_r = 103 !< index for window layer thickness - 1st layer roof INTEGER(iwp) :: ind_thick_2_agfl = 42 !< index for wall layer thickness - 2nd layer above ground floor level INTEGER(iwp) :: ind_thick_2_gfl = 63 !< index for wall layer thickness - 2nd layer ground floor level INTEGER(iwp) :: ind_thick_2_wall_r = 91 !< index for wall layer thickness - 2nd layer roof INTEGER(iwp) :: ind_thick_2_win_agfl = 80 !< index for window layer thickness - 2nd layer above ground floor level INTEGER(iwp) :: ind_thick_2_win_gfl = 68 !< index for window layer thickness - 2nd layer ground floor level INTEGER(iwp) :: ind_thick_2_win_r = 104 !< index for window layer thickness - 2nd layer roof INTEGER(iwp) :: ind_thick_3_agfl = 43 !< index for wall layer thickness - 3rd layer above ground floor level INTEGER(iwp) :: ind_thick_3_gfl = 64 !< index for wall layer thickness - 3rd layer ground floor level INTEGER(iwp) :: ind_thick_3_wall_r = 92 !< index for wall layer thickness - 3rd layer roof INTEGER(iwp) :: ind_thick_3_win_agfl = 81 !< index for window layer thickness - 3rd layer above ground floor level INTEGER(iwp) :: ind_thick_3_win_gfl = 69 !< index for window layer thickness - 3rd layer ground floor level INTEGER(iwp) :: ind_thick_3_win_r = 105 !< index for window layer thickness - 3rd layer roof INTEGER(iwp) :: ind_thick_4_agfl = 44 !< index for wall layer thickness - 4th layer above ground floor level INTEGER(iwp) :: ind_thick_4_gfl = 65 !< index for wall layer thickness - 4th layer ground floor level INTEGER(iwp) :: ind_thick_4_wall_r = 93 !< index for wall layer thickness - 4st layer roof INTEGER(iwp) :: ind_thick_4_win_agfl = 82 !< index for window layer thickness - 4th layer above ground floor level INTEGER(iwp) :: ind_thick_4_win_gfl = 70 !< index for window layer thickness - 4th layer ground floor level INTEGER(iwp) :: ind_thick_4_win_r = 106 !< index for window layer thickness - 4th layer roof INTEGER(iwp) :: ind_trans_agfl = 17 !< index in input list for window transmissivity, above ground floor level INTEGER(iwp) :: ind_trans_gfl = 35 !< index in input list for window transmissivity, ground floor level INTEGER(iwp) :: ind_trans_r = 114 !< index in input list for window transmissivity, roof INTEGER(iwp) :: ind_wall_frac_agfl = 0 !< index in input list for wall fraction, above ground floor level INTEGER(iwp) :: ind_wall_frac_gfl = 21 !< index in input list for wall fraction, ground floor level INTEGER(iwp) :: ind_wall_frac_r = 89 !< index in input list for wall fraction, roof INTEGER(iwp) :: ind_win_frac_agfl = 1 !< index in input list for window fraction, above ground floor level INTEGER(iwp) :: ind_win_frac_gfl = 22 !< index in input list for window fraction, ground floor level INTEGER(iwp) :: ind_win_frac_r = 102 !< index in input list for window fraction, roof INTEGER(iwp) :: ind_z0_agfl = 18 !< index in input list for z0, above ground floor level INTEGER(iwp) :: ind_z0_gfl = 36 !< index in input list for z0, ground floor level INTEGER(iwp) :: ind_z0qh_agfl = 19 !< index in input list for z0h / z0q, above ground floor level INTEGER(iwp) :: ind_z0qh_gfl = 37 !< index in input list for z0h / z0q, ground floor level INTEGER(iwp) :: ind_green_type_roof = 118 !< index in input list for type of green roof REAL(wp) :: roof_height_limit = 4.0_wp !< height for distinguish between land surfaces and roofs REAL(wp) :: ground_floor_level = 4.0_wp !< default ground floor level CHARACTER(37), DIMENSION(0:7), PARAMETER :: building_type_name = (/ & 'user-defined ', & !< type 0 'residential - 1950 ', & !< type 1 'residential 1951 - 2000 ', & !< type 2 'residential 2001 - ', & !< type 3 'office - 1950 ', & !< type 4 'office 1951 - 2000 ', & !< type 5 'office 2001 - ', & !< type 6 'bridges ' & !< type 7 /) ! !-- Building facade/wall/green/window properties (partly according to PIDS). !-- Initialization of building_pars is outsourced to usm_init_pars. This is !-- needed because of the huge number of attributes given in building_pars !-- (>700), while intel and gfortran compiler have hard limit of continuation !-- lines of 511. REAL(wp), DIMENSION(0:133,1:7) :: building_pars ! !-- Type for surface temperatures at vertical walls. Is not necessary for horizontal walls. TYPE t_surf_vertical REAL(wp), DIMENSION(:), ALLOCATABLE :: t END TYPE t_surf_vertical ! !-- Type for wall temperatures at vertical walls. Is not necessary for horizontal walls. TYPE t_wall_vertical REAL(wp), DIMENSION(:,:), ALLOCATABLE :: t END TYPE t_wall_vertical TYPE surf_type_usm REAL(wp), DIMENSION(:), ALLOCATABLE :: var_usm_1d !< 1D prognostic variable REAL(wp), DIMENSION(:,:), ALLOCATABLE :: var_usm_2d !< 2D prognostic variable END TYPE surf_type_usm TYPE(surf_type_usm), POINTER :: m_liq_usm_h, & !< liquid water reservoir (m), horizontal surface elements m_liq_usm_h_p !< progn. liquid water reservoir (m), horizontal surface elements TYPE(surf_type_usm), TARGET :: m_liq_usm_h_1, & !< m_liq_usm_h_2 !< TYPE(surf_type_usm), DIMENSION(:), POINTER :: & m_liq_usm_v, & !< liquid water reservoir (m), vertical surface elements m_liq_usm_v_p !< progn. liquid water reservoir (m), vertical surface elements TYPE(surf_type_usm), DIMENSION(0:3), TARGET :: & m_liq_usm_v_1, & !< m_liq_usm_v_2 !< TYPE(surf_type_usm), TARGET :: tm_liq_usm_h_m !< liquid water reservoir tendency (m), horizontal surface elements TYPE(surf_type_usm), DIMENSION(0:3), TARGET :: tm_liq_usm_v_m !< liquid water reservoir tendency (m), !< vertical surface elements ! !-- anthropogenic heat sources REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: aheat !< daily average of anthropogenic heat (W/m2) REAL(wp), DIMENSION(:,:), ALLOCATABLE :: aheatprof !< diurnal profiles of anthropogenic heat !< for particular layers INTEGER(iwp) :: naheatlayers = 1 !< number of layers of anthropogenic heat ! !-- wall surface model !-- wall surface model constants INTEGER(iwp), PARAMETER :: nzb_wall = 0 !< inner side of the wall model (to be switched) INTEGER(iwp), PARAMETER :: nzt_wall = 3 !< outer side of the wall model (to be switched) INTEGER(iwp), PARAMETER :: nzw = 4 !< number of wall layers (fixed for now) REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: zwn_default = (/0.0242_wp, 0.0969_wp, 0.346_wp, 1.0_wp /) REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: zwn_default_window = (/0.25_wp, 0.5_wp, 0.75_wp, 1.0_wp /) REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: zwn_default_green = (/0.25_wp, 0.5_wp, 0.75_wp, 1.0_wp /) !< normalized soil, wall and roof, window and ! This subroutine creates the necessary indices of the urban surfaces !> and plant canopy and it allocates the needed arrays for USM !------------------------------------------------------------------------------! SUBROUTINE usm_init_arrays IMPLICIT NONE INTEGER(iwp) :: l IF ( debug_output ) CALL debug_message( 'usm_init_arrays', 'start' ) ! !-- Allocate radiation arrays which are part of the new data type. !-- For horizontal surfaces. ALLOCATE ( surf_usm_h%surfhf(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%rad_net_l(1:surf_usm_h%ns) ) ! !-- For vertical surfaces DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%surfhf(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%rad_net_l(1:surf_usm_v(l)%ns) ) ENDDO ! !-- Wall surface model !-- allocate arrays for wall surface model and define pointers !-- allocate array of wall types and wall parameters ALLOCATE ( surf_usm_h%surface_types(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%building_type(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%building_type_name(1:surf_usm_h%ns) ) surf_usm_h%building_type = 0 surf_usm_h%building_type_name = 'none' DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%surface_types(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%building_type(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%building_type_name(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%building_type = 0 surf_usm_v(l)%building_type_name = 'none' ENDDO ! !-- Allocate albedo_type and albedo. Each surface element !-- has 3 values, 0: wall fraction, 1: green fraction, 2: window fraction. ALLOCATE ( surf_usm_h%albedo_type(0:2,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%albedo(0:2,1:surf_usm_h%ns) ) surf_usm_h%albedo_type = albedo_type DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%albedo_type(0:2,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%albedo(0:2,1:surf_usm_v(l)%ns) ) surf_usm_v(l)%albedo_type = albedo_type ENDDO ! !-- Allocate indoor target temperature for summer and winter ALLOCATE ( surf_usm_h%target_temp_summer(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%target_temp_winter(1:surf_usm_h%ns) ) DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%target_temp_summer(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%target_temp_winter(1:surf_usm_v(l)%ns) ) ENDDO ! !-- In case the indoor model is applied, allocate memory for waste heat !-- and indoor temperature. IF ( indoor_model ) THEN ALLOCATE ( surf_usm_h%waste_heat(1:surf_usm_h%ns) ) surf_usm_h%waste_heat = 0.0_wp DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%waste_heat(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%waste_heat = 0.0_wp ENDDO ENDIF ! !-- Allocate flag indicating ground floor level surface elements ALLOCATE ( surf_usm_h%ground_level(1:surf_usm_h%ns) ) DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%ground_level(1:surf_usm_v(l)%ns) ) ENDDO ! !-- Allocate arrays for relative surface fraction. !-- 0 - wall fraction, 1 - green fraction, 2 - window fraction ALLOCATE ( surf_usm_h%frac(0:2,1:surf_usm_h%ns) ) surf_usm_h%frac = 0.0_wp DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%frac(0:2,1:surf_usm_v(l)%ns) ) surf_usm_v(l)%frac = 0.0_wp ENDDO ! !-- wall and roof surface parameters. First for horizontal surfaces ALLOCATE ( surf_usm_h%isroof_surf(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%lambda_surf(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%lambda_surf_window(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%lambda_surf_green(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%c_surface(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%c_surface_window(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%c_surface_green(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%transmissivity(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%lai(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%emissivity(0:2,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%r_a(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%r_a_green(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%r_a_window(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%green_type_roof(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%r_s(1:surf_usm_h%ns) ) ! !-- For vertical surfaces. DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%lambda_surf(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%c_surface(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%lambda_surf_window(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%c_surface_window(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%lambda_surf_green(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%c_surface_green(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%transmissivity(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%lai(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%emissivity(0:2,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%r_a(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%r_a_green(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%r_a_window(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%r_s(1:surf_usm_v(l)%ns) ) ENDDO ! !-- allocate wall and roof material parameters. First for horizontal surfaces ALLOCATE ( surf_usm_h%thickness_wall(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%thickness_window(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%thickness_green(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%lambda_h(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%rho_c_wall(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%lambda_h_window(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%rho_c_window(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%lambda_h_green(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%rho_c_green(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%rho_c_total_green(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%n_vg_green(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%alpha_vg_green(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%l_vg_green(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%gamma_w_green_sat(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%lambda_w_green(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%gamma_w_green(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%tswc_h_m(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ! !-- For vertical surfaces. DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%thickness_wall(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%thickness_window(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%thickness_green(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%lambda_h(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%rho_c_wall(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%lambda_h_window(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%rho_c_window(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%lambda_h_green(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%rho_c_green(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ENDDO ! !-- allocate green wall and roof vegetation and soil parameters. First horizontal surfaces ALLOCATE ( surf_usm_h%g_d(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%c_liq(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%qsws_liq(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%qsws_veg(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%r_canopy(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%r_canopy_min(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%pt_10cm(1:surf_usm_h%ns) ) ! !-- For vertical surfaces. DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%g_d(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%c_liq(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%qsws_liq(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%qsws_veg(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%r_canopy(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%r_canopy_min(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%pt_10cm(1:surf_usm_v(l)%ns) ) ENDDO ! !-- allocate wall and roof layers sizes. For horizontal surfaces. ALLOCATE ( zwn(nzb_wall:nzt_wall) ) ALLOCATE ( surf_usm_h%dz_wall(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) ALLOCATE ( zwn_window(nzb_wall:nzt_wall) ) ALLOCATE ( surf_usm_h%dz_window(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) ALLOCATE ( zwn_green(nzb_wall:nzt_wall) ) ALLOCATE ( surf_usm_h%dz_green(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%ddz_wall(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%dz_wall_stag(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%ddz_wall_stag(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%zw(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%ddz_window(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%dz_window_stag(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%ddz_window_stag(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%zw_window(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%ddz_green(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%dz_green_stag(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%ddz_green_stag(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%zw_green(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) ! !-- For vertical surfaces. DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%dz_wall(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%dz_window(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%dz_green(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%ddz_wall(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%dz_wall_stag(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%ddz_wall_stag(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%zw(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%ddz_window(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%dz_window_stag(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%ddz_window_stag(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%zw_window(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%ddz_green(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%dz_green_stag(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%ddz_green_stag(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%zw_green(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) ENDDO ! !-- allocate wall and roof temperature arrays, for horizontal walls ! !-- Allocate if required. Note, in case of restarts, some of these arrays !-- might be already allocated. IF ( .NOT. ALLOCATED( t_surf_wall_h_1 ) ) & ALLOCATE ( t_surf_wall_h_1(1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_surf_wall_h_2 ) ) & ALLOCATE ( t_surf_wall_h_2(1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_wall_h_1 ) ) & ALLOCATE ( t_wall_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_wall_h_2 ) ) & ALLOCATE ( t_wall_h_2(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_surf_window_h_1 ) ) & ALLOCATE ( t_surf_window_h_1(1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_surf_window_h_2 ) ) & ALLOCATE ( t_surf_window_h_2(1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_window_h_1 ) ) & ALLOCATE ( t_window_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_window_h_2 ) ) & ALLOCATE ( t_window_h_2(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_surf_green_h_1 ) ) & ALLOCATE ( t_surf_green_h_1(1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_surf_green_h_2 ) ) & ALLOCATE ( t_surf_green_h_2(1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_green_h_1 ) ) & ALLOCATE ( t_green_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( t_green_h_2 ) ) & ALLOCATE ( t_green_h_2(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( swc_h_1 ) ) & ALLOCATE ( swc_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( swc_sat_h_1 ) ) & ALLOCATE ( swc_sat_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( swc_res_h_1 ) ) & ALLOCATE ( swc_res_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( swc_h_2 ) ) & ALLOCATE ( swc_h_2(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( rootfr_h_1 ) ) & ALLOCATE ( rootfr_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( wilt_h_1 ) ) & ALLOCATE ( wilt_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( fc_h_1 ) ) & ALLOCATE ( fc_h_1(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( m_liq_usm_h_1%var_usm_1d ) ) & ALLOCATE ( m_liq_usm_h_1%var_usm_1d(1:surf_usm_h%ns) ) IF ( .NOT. ALLOCATED( m_liq_usm_h_2%var_usm_1d ) ) & ALLOCATE ( m_liq_usm_h_2%var_usm_1d(1:surf_usm_h%ns) ) ! !-- initial assignment of the pointers t_wall_h => t_wall_h_1; t_wall_h_p => t_wall_h_2 t_window_h => t_window_h_1; t_window_h_p => t_window_h_2 t_green_h => t_green_h_1; t_green_h_p => t_green_h_2 t_surf_wall_h => t_surf_wall_h_1; t_surf_wall_h_p => t_surf_wall_h_2 t_surf_window_h => t_surf_window_h_1; t_surf_window_h_p => t_surf_window_h_2 t_surf_green_h => t_surf_green_h_1; t_surf_green_h_p => t_surf_green_h_2 m_liq_usm_h => m_liq_usm_h_1; m_liq_usm_h_p => m_liq_usm_h_2 swc_h => swc_h_1; swc_h_p => swc_h_2 swc_sat_h => swc_sat_h_1 swc_res_h => swc_res_h_1 rootfr_h => rootfr_h_1 wilt_h => wilt_h_1 fc_h => fc_h_1 ! !-- allocate wall and roof temperature arrays, for vertical walls if required ! !-- Allocate if required. Note, in case of restarts, some of these arrays !-- might be already allocated. DO l = 0, 3 IF ( .NOT. ALLOCATED( t_surf_wall_v_1(l)%t ) ) & ALLOCATE ( t_surf_wall_v_1(l)%t(1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_surf_wall_v_2(l)%t ) ) & ALLOCATE ( t_surf_wall_v_2(l)%t(1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_wall_v_1(l)%t ) ) & ALLOCATE ( t_wall_v_1(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_wall_v_2(l)%t ) ) & ALLOCATE ( t_wall_v_2(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_surf_window_v_1(l)%t ) ) & ALLOCATE ( t_surf_window_v_1(l)%t(1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_surf_window_v_2(l)%t ) ) & ALLOCATE ( t_surf_window_v_2(l)%t(1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_window_v_1(l)%t ) ) & ALLOCATE ( t_window_v_1(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_window_v_2(l)%t ) ) & ALLOCATE ( t_window_v_2(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_surf_green_v_1(l)%t ) ) & ALLOCATE ( t_surf_green_v_1(l)%t(1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_surf_green_v_2(l)%t ) ) & ALLOCATE ( t_surf_green_v_2(l)%t(1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_green_v_1(l)%t ) ) & ALLOCATE ( t_green_v_1(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( t_green_v_2(l)%t ) ) & ALLOCATE ( t_green_v_2(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( m_liq_usm_v_1(l)%var_usm_1d ) ) & ALLOCATE ( m_liq_usm_v_1(l)%var_usm_1d(1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( m_liq_usm_v_2(l)%var_usm_1d ) ) & ALLOCATE ( m_liq_usm_v_2(l)%var_usm_1d(1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( swc_v_1(l)%t ) ) & ALLOCATE ( swc_v_1(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) IF ( .NOT. ALLOCATED( swc_v_2(l)%t ) ) & ALLOCATE ( swc_v_2(l)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) ENDDO ! !-- initial assignment of the pointers t_wall_v => t_wall_v_1; t_wall_v_p => t_wall_v_2 t_surf_wall_v => t_surf_wall_v_1; t_surf_wall_v_p => t_surf_wall_v_2 t_window_v => t_window_v_1; t_window_v_p => t_window_v_2 t_green_v => t_green_v_1; t_green_v_p => t_green_v_2 t_surf_window_v => t_surf_window_v_1; t_surf_window_v_p => t_surf_window_v_2 t_surf_green_v => t_surf_green_v_1; t_surf_green_v_p => t_surf_green_v_2 m_liq_usm_v => m_liq_usm_v_1; m_liq_usm_v_p => m_liq_usm_v_2 swc_v => swc_v_1; swc_v_p => swc_v_2 ! !-- Allocate intermediate timestep arrays. For horizontal surfaces. ALLOCATE ( surf_usm_h%tt_surface_wall_m(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%tt_wall_m(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%tt_surface_window_m(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%tt_window_m(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%tt_green_m(nzb_wall:nzt_wall+1,1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%tt_surface_green_m(1:surf_usm_h%ns) ) ! !-- Allocate intermediate timestep arrays !-- Horizontal surfaces ALLOCATE ( tm_liq_usm_h_m%var_usm_1d(1:surf_usm_h%ns) ) ! !-- Horizontal surfaces DO l = 0, 3 ALLOCATE ( tm_liq_usm_v_m(l)%var_usm_1d(1:surf_usm_v(l)%ns) ) ENDDO ! !-- Set inital values for prognostic quantities IF ( ALLOCATED( surf_usm_h%tt_surface_wall_m ) ) surf_usm_h%tt_surface_wall_m = 0.0_wp IF ( ALLOCATED( surf_usm_h%tt_wall_m ) ) surf_usm_h%tt_wall_m = 0.0_wp IF ( ALLOCATED( surf_usm_h%tt_surface_window_m ) ) surf_usm_h%tt_surface_window_m = 0.0_wp IF ( ALLOCATED( surf_usm_h%tt_window_m ) ) surf_usm_h%tt_window_m = 0.0_wp IF ( ALLOCATED( surf_usm_h%tt_green_m ) ) surf_usm_h%tt_green_m = 0.0_wp IF ( ALLOCATED( surf_usm_h%tt_surface_green_m ) ) surf_usm_h%tt_surface_green_m = 0.0_wp ! !-- Now, for vertical surfaces DO l = 0, 3 ALLOCATE ( surf_usm_v(l)%tt_surface_wall_m(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%tt_wall_m(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) IF ( ALLOCATED( surf_usm_v(l)%tt_surface_wall_m ) ) surf_usm_v(l)%tt_surface_wall_m = 0.0_wp IF ( ALLOCATED( surf_usm_v(l)%tt_wall_m ) ) surf_usm_v(l)%tt_wall_m = 0.0_wp ALLOCATE ( surf_usm_v(l)%tt_surface_window_m(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%tt_window_m(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) IF ( ALLOCATED( surf_usm_v(l)%tt_surface_window_m ) ) surf_usm_v(l)%tt_surface_window_m = 0.0_wp IF ( ALLOCATED( surf_usm_v(l)%tt_window_m ) ) surf_usm_v(l)%tt_window_m = 0.0_wp ALLOCATE ( surf_usm_v(l)%tt_surface_green_m(1:surf_usm_v(l)%ns) ) IF ( ALLOCATED( surf_usm_v(l)%tt_surface_green_m ) ) surf_usm_v(l)%tt_surface_green_m = 0.0_wp ALLOCATE ( surf_usm_v(l)%tt_green_m(nzb_wall:nzt_wall+1,1:surf_usm_v(l)%ns) ) IF ( ALLOCATED( surf_usm_v(l)%tt_green_m ) ) surf_usm_v(l)%tt_green_m = 0.0_wp ENDDO ! !-- allocate wall heat flux output array and set initial values. For horizontal surfaces ! ALLOCATE ( surf_usm_h%wshf(1:surf_usm_h%ns) ) !can be removed ALLOCATE ( surf_usm_h%wshf_eb(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%wghf_eb(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%wghf_eb_window(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%wghf_eb_green(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%iwghf_eb(1:surf_usm_h%ns) ) ALLOCATE ( surf_usm_h%iwghf_eb_window(1:surf_usm_h%ns) ) IF ( ALLOCATED( surf_usm_h%wshf ) ) surf_usm_h%wshf = 0.0_wp IF ( ALLOCATED( surf_usm_h%wshf_eb ) ) surf_usm_h%wshf_eb = 0.0_wp IF ( ALLOCATED( surf_usm_h%wghf_eb ) ) surf_usm_h%wghf_eb = 0.0_wp IF ( ALLOCATED( surf_usm_h%wghf_eb_window ) ) surf_usm_h%wghf_eb_window = 0.0_wp IF ( ALLOCATED( surf_usm_h%wghf_eb_green ) ) surf_usm_h%wghf_eb_green = 0.0_wp IF ( ALLOCATED( surf_usm_h%iwghf_eb ) ) surf_usm_h%iwghf_eb = 0.0_wp IF ( ALLOCATED( surf_usm_h%iwghf_eb_window ) ) surf_usm_h%iwghf_eb_window = 0.0_wp ! !-- Now, for vertical surfaces DO l = 0, 3 ! ALLOCATE ( surf_usm_v(l)%wshf(1:surf_usm_v(l)%ns) ) ! can be removed ALLOCATE ( surf_usm_v(l)%wshf_eb(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%wghf_eb(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%wghf_eb_window(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%wghf_eb_green(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%iwghf_eb(1:surf_usm_v(l)%ns) ) ALLOCATE ( surf_usm_v(l)%iwghf_eb_window(1:surf_usm_v(l)%ns) ) IF ( ALLOCATED( surf_usm_v(l)%wshf ) ) surf_usm_v(l)%wshf = 0.0_wp IF ( ALLOCATED( surf_usm_v(l)%wshf_eb ) ) surf_usm_v(l)%wshf_eb = 0.0_wp IF ( ALLOCATED( surf_usm_v(l)%wghf_eb ) ) surf_usm_v(l)%wghf_eb = 0.0_wp IF ( ALLOCATED( surf_usm_v(l)%wghf_eb_window ) ) surf_usm_v(l)%wghf_eb_window = 0.0_wp IF ( ALLOCATED( surf_usm_v(l)%wghf_eb_green ) ) surf_usm_v(l)%wghf_eb_green = 0.0_wp IF ( ALLOCATED( surf_usm_v(l)%iwghf_eb ) ) surf_usm_v(l)%iwghf_eb = 0.0_wp IF ( ALLOCATED( surf_usm_v(l)%iwghf_eb_window ) ) surf_usm_v(l)%iwghf_eb_window = 0.0_wp ENDDO IF ( debug_output ) CALL debug_message( 'usm_init_arrays', 'end' ) END SUBROUTINE usm_init_arrays !------------------------------------------------------------------------------! ! Description: ! ------------ !> Sum up and time-average urban surface output quantities as well as allocate !> the array necessary for storing the average. !------------------------------------------------------------------------------! SUBROUTINE usm_3d_data_averaging( mode, variable ) IMPLICIT NONE CHARACTER(LEN=*), INTENT(IN) :: mode CHARACTER(LEN=*), INTENT(IN) :: variable INTEGER(iwp) :: i, j, k, l, m, ids, idsint, iwl, istat !< runnin indices CHARACTER(LEN=varnamelength) :: var !< trimmed variable INTEGER(iwp), PARAMETER :: nd = 5 !< number of directions CHARACTER(LEN=6), DIMENSION(0:nd-1), PARAMETER :: dirname = (/ '_roof ', '_south', '_north', '_west ', '_east ' /) INTEGER(iwp), DIMENSION(0:nd-1), PARAMETER :: dirint = (/ iup_u, isouth_u, inorth_u, iwest_u, ieast_u /) IF ( variable(1:4) == 'usm_' ) THEN ! is such a check really rquired? ! !-- find the real name of the variable ids = -1 l = -1 var = TRIM(variable) DO i = 0, nd-1 k = len(TRIM(var)) j = len(TRIM(dirname(i))) IF ( TRIM(var(k-j+1:k)) == TRIM(dirname(i)) ) THEN ids = i idsint = dirint(ids) var = var(:k-j) EXIT ENDIF ENDDO l = idsint - 2 ! horisontal direction index - terible hack ! IF ( l < 0 .OR. l > 3 ) THEN l = -1 END IF IF ( ids == -1 ) THEN var = TRIM(variable) ENDIF IF ( var(1:11) == 'usm_t_wall_' .AND. len(TRIM(var)) >= 12 ) THEN ! !-- wall layers READ(var(12:12), '(I1)', iostat=istat ) iwl IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN var = var(1:10) ELSE ! !-- wrong wall layer index RETURN ENDIF ENDIF IF ( var(1:13) == 'usm_t_window_' .AND. len(TRIM(var)) >= 14 ) THEN ! !-- wall layers READ(var(14:14), '(I1)', iostat=istat ) iwl IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN var = var(1:12) ELSE ! !-- wrong window layer index RETURN ENDIF ENDIF IF ( var(1:12) == 'usm_t_green_' .AND. len(TRIM(var)) >= 13 ) THEN ! !-- wall layers READ(var(13:13), '(I1)', iostat=istat ) iwl IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN var = var(1:11) ELSE ! !-- wrong green layer index RETURN ENDIF ENDIF IF ( var(1:8) == 'usm_swc_' .AND. len(TRIM(var)) >= 9 ) THEN ! !-- swc layers READ(var(9:9), '(I1)', iostat=istat ) iwl IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN var = var(1:7) ELSE ! !-- wrong swc layer index RETURN ENDIF ENDIF IF ( mode == 'allocate' ) THEN SELECT CASE ( TRIM( var ) ) CASE ( 'usm_wshf' ) ! !-- array of sensible heat flux from surfaces !-- land surfaces IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%wshf_eb_av) ) THEN ALLOCATE ( surf_usm_h%wshf_eb_av(1:surf_usm_h%ns) ) surf_usm_h%wshf_eb_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%wshf_eb_av) ) THEN ALLOCATE ( surf_usm_v(l)%wshf_eb_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%wshf_eb_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_qsws' ) ! !-- array of latent heat flux from surfaces !-- land surfaces IF ( l == -1 .AND. .NOT. ALLOCATED(surf_usm_h%qsws_av) ) THEN ALLOCATE ( surf_usm_h%qsws_av(1:surf_usm_h%ns) ) surf_usm_h%qsws_av = 0.0_wp ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%qsws_av) ) THEN ALLOCATE ( surf_usm_v(l)%qsws_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%qsws_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_qsws_veg' ) ! !-- array of latent heat flux from vegetation surfaces !-- land surfaces IF ( l == -1 .AND. .NOT. ALLOCATED(surf_usm_h%qsws_veg_av) ) THEN ALLOCATE ( surf_usm_h%qsws_veg_av(1:surf_usm_h%ns) ) surf_usm_h%qsws_veg_av = 0.0_wp ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%qsws_veg_av) ) THEN ALLOCATE ( surf_usm_v(l)%qsws_veg_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%qsws_veg_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_qsws_liq' ) ! !-- array of latent heat flux from surfaces with liquid !-- land surfaces IF ( l == -1 .AND. .NOT. ALLOCATED(surf_usm_h%qsws_liq_av) ) THEN ALLOCATE ( surf_usm_h%qsws_liq_av(1:surf_usm_h%ns) ) surf_usm_h%qsws_liq_av = 0.0_wp ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%qsws_liq_av) ) THEN ALLOCATE ( surf_usm_v(l)%qsws_liq_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%qsws_liq_av = 0.0_wp ENDIF ENDIF ! !-- Please note, the following output quantities belongs to the !-- individual tile fractions - ground heat flux at wall-, window-, !-- and green fraction. Aggregated ground-heat flux is treated !-- accordingly in average_3d_data, sum_up_3d_data, etc.. CASE ( 'usm_wghf' ) ! !-- array of heat flux from ground (wall, roof, land) IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%wghf_eb_av) ) THEN ALLOCATE ( surf_usm_h%wghf_eb_av(1:surf_usm_h%ns) ) surf_usm_h%wghf_eb_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%wghf_eb_av) ) THEN ALLOCATE ( surf_usm_v(l)%wghf_eb_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%wghf_eb_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_wghf_window' ) ! !-- array of heat flux from window ground (wall, roof, land) IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%wghf_eb_window_av) ) THEN ALLOCATE ( surf_usm_h%wghf_eb_window_av(1:surf_usm_h%ns) ) surf_usm_h%wghf_eb_window_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%wghf_eb_window_av) ) THEN ALLOCATE ( surf_usm_v(l)%wghf_eb_window_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%wghf_eb_window_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_wghf_green' ) ! !-- array of heat flux from green ground (wall, roof, land) IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%wghf_eb_green_av) ) THEN ALLOCATE ( surf_usm_h%wghf_eb_green_av(1:surf_usm_h%ns) ) surf_usm_h%wghf_eb_green_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%wghf_eb_green_av) ) THEN ALLOCATE ( surf_usm_v(l)%wghf_eb_green_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%wghf_eb_green_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_iwghf' ) ! !-- array of heat flux from indoor ground (wall, roof, land) IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%iwghf_eb_av) ) THEN ALLOCATE ( surf_usm_h%iwghf_eb_av(1:surf_usm_h%ns) ) surf_usm_h%iwghf_eb_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%iwghf_eb_av) ) THEN ALLOCATE ( surf_usm_v(l)%iwghf_eb_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%iwghf_eb_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_iwghf_window' ) ! !-- array of heat flux from indoor window ground (wall, roof, land) IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%iwghf_eb_window_av) ) THEN ALLOCATE ( surf_usm_h%iwghf_eb_window_av(1:surf_usm_h%ns) ) surf_usm_h%iwghf_eb_window_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%iwghf_eb_window_av) ) THEN ALLOCATE ( surf_usm_v(l)%iwghf_eb_window_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%iwghf_eb_window_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_t_surf_wall' ) ! !-- surface temperature for surfaces IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%t_surf_wall_av) ) THEN ALLOCATE ( surf_usm_h%t_surf_wall_av(1:surf_usm_h%ns) ) surf_usm_h%t_surf_wall_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%t_surf_wall_av) ) THEN ALLOCATE ( surf_usm_v(l)%t_surf_wall_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%t_surf_wall_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_t_surf_window' ) ! !-- surface temperature for window surfaces IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%t_surf_window_av) ) THEN ALLOCATE ( surf_usm_h%t_surf_window_av(1:surf_usm_h%ns) ) surf_usm_h%t_surf_window_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%t_surf_window_av) ) THEN ALLOCATE ( surf_usm_v(l)%t_surf_window_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%t_surf_window_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_t_surf_green' ) ! !-- surface temperature for green surfaces IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%t_surf_green_av) ) THEN ALLOCATE ( surf_usm_h%t_surf_green_av(1:surf_usm_h%ns) ) surf_usm_h%t_surf_green_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%t_surf_green_av) ) THEN ALLOCATE ( surf_usm_v(l)%t_surf_green_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%t_surf_green_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_theta_10cm' ) ! !-- near surface (10cm) temperature for whole surfaces IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%pt_10cm_av) ) THEN ALLOCATE ( surf_usm_h%pt_10cm_av(1:surf_usm_h%ns) ) surf_usm_h%pt_10cm_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%pt_10cm_av) ) THEN ALLOCATE ( surf_usm_v(l)%pt_10cm_av(1:surf_usm_v(l)%ns) ) surf_usm_v(l)%pt_10cm_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_t_wall' ) ! !-- wall temperature for iwl layer of walls and land IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%t_wall_av) ) THEN ALLOCATE ( surf_usm_h%t_wall_av(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) surf_usm_h%t_wall_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%t_wall_av) ) THEN ALLOCATE ( surf_usm_v(l)%t_wall_av(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) surf_usm_v(l)%t_wall_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_t_window' ) ! !-- window temperature for iwl layer of walls and land IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%t_window_av) ) THEN ALLOCATE ( surf_usm_h%t_window_av(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) surf_usm_h%t_window_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%t_window_av) ) THEN ALLOCATE ( surf_usm_v(l)%t_window_av(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) surf_usm_v(l)%t_window_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_t_green' ) ! !-- green temperature for iwl layer of walls and land IF ( l == -1 ) THEN IF ( .NOT. ALLOCATED(surf_usm_h%t_green_av) ) THEN ALLOCATE ( surf_usm_h%t_green_av(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) surf_usm_h%t_green_av = 0.0_wp ENDIF ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%t_green_av) ) THEN ALLOCATE ( surf_usm_v(l)%t_green_av(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) surf_usm_v(l)%t_green_av = 0.0_wp ENDIF ENDIF CASE ( 'usm_swc' ) ! !-- soil water content for iwl layer of walls and land IF ( l == -1 .AND. .NOT. ALLOCATED(surf_usm_h%swc_av) ) THEN ALLOCATE ( surf_usm_h%swc_av(nzb_wall:nzt_wall,1:surf_usm_h%ns) ) surf_usm_h%swc_av = 0.0_wp ELSE IF ( .NOT. ALLOCATED(surf_usm_v(l)%swc_av) ) THEN ALLOCATE ( surf_usm_v(l)%swc_av(nzb_wall:nzt_wall,1:surf_usm_v(l)%ns) ) surf_usm_v(l)%swc_av = 0.0_wp ENDIF ENDIF CASE DEFAULT CONTINUE END SELECT ELSEIF ( mode == 'sum' ) THEN SELECT CASE ( TRIM( var ) ) CASE ( 'usm_wshf' ) ! !-- array of sensible heat flux from surfaces (land, roof, wall) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%wshf_eb_av(m) = & surf_usm_h%wshf_eb_av(m) + & surf_usm_h%wshf_eb(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%wshf_eb_av(m) = & surf_usm_v(l)%wshf_eb_av(m) + & surf_usm_v(l)%wshf_eb(m) ENDDO ENDIF CASE ( 'usm_qsws' ) ! !-- array of latent heat flux from surfaces (land, roof, wall) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%qsws_av(m) = & surf_usm_h%qsws_av(m) + & surf_usm_h%qsws(m) * l_v ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%qsws_av(m) = & surf_usm_v(l)%qsws_av(m) + & surf_usm_v(l)%qsws(m) * l_v ENDDO ENDIF CASE ( 'usm_qsws_veg' ) ! !-- array of latent heat flux from vegetation surfaces (land, roof, wall) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%qsws_veg_av(m) = & surf_usm_h%qsws_veg_av(m) + & surf_usm_h%qsws_veg(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%qsws_veg_av(m) = & surf_usm_v(l)%qsws_veg_av(m) + & surf_usm_v(l)%qsws_veg(m) ENDDO ENDIF CASE ( 'usm_qsws_liq' ) ! !-- array of latent heat flux from surfaces with liquid (land, roof, wall) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%qsws_liq_av(m) = & surf_usm_h%qsws_liq_av(m) + & surf_usm_h%qsws_liq(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%qsws_liq_av(m) = & surf_usm_v(l)%qsws_liq_av(m) + & surf_usm_v(l)%qsws_liq(m) ENDDO ENDIF CASE ( 'usm_wghf' ) ! !-- array of heat flux from ground (wall, roof, land) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%wghf_eb_av(m) = & surf_usm_h%wghf_eb_av(m) + & surf_usm_h%wghf_eb(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%wghf_eb_av(m) = & surf_usm_v(l)%wghf_eb_av(m) + & surf_usm_v(l)%wghf_eb(m) ENDDO ENDIF CASE ( 'usm_wghf_window' ) ! !-- array of heat flux from window ground (wall, roof, land) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%wghf_eb_window_av(m) = & surf_usm_h%wghf_eb_window_av(m) + & surf_usm_h%wghf_eb_window(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%wghf_eb_window_av(m) = & surf_usm_v(l)%wghf_eb_window_av(m) + & surf_usm_v(l)%wghf_eb_window(m) ENDDO ENDIF CASE ( 'usm_wghf_green' ) ! !-- array of heat flux from green ground (wall, roof, land) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%wghf_eb_green_av(m) = & surf_usm_h%wghf_eb_green_av(m) + & surf_usm_h%wghf_eb_green(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%wghf_eb_green_av(m) = & surf_usm_v(l)%wghf_eb_green_av(m) + & surf_usm_v(l)%wghf_eb_green(m) ENDDO ENDIF CASE ( 'usm_iwghf' ) ! !-- array of heat flux from indoor ground (wall, roof, land) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%iwghf_eb_av(m) = & surf_usm_h%iwghf_eb_av(m) + & surf_usm_h%iwghf_eb(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%iwghf_eb_av(m) = & surf_usm_v(l)%iwghf_eb_av(m) + & surf_usm_v(l)%iwghf_eb(m) ENDDO ENDIF CASE ( 'usm_iwghf_window' ) ! !-- array of heat flux from indoor window ground (wall, roof, land) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%iwghf_eb_window_av(m) = & surf_usm_h%iwghf_eb_window_av(m) + & surf_usm_h%iwghf_eb_window(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%iwghf_eb_window_av(m) = & surf_usm_v(l)%iwghf_eb_window_av(m) + & surf_usm_v(l)%iwghf_eb_window(m) ENDDO ENDIF CASE ( 'usm_t_surf_wall' ) ! !-- surface temperature for surfaces IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_surf_wall_av(m) = & surf_usm_h%t_surf_wall_av(m) + & t_surf_wall_h(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_surf_wall_av(m) = & surf_usm_v(l)%t_surf_wall_av(m) + & t_surf_wall_v(l)%t(m) ENDDO ENDIF CASE ( 'usm_t_surf_window' ) ! !-- surface temperature for window surfaces IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_surf_window_av(m) = & surf_usm_h%t_surf_window_av(m) + & t_surf_window_h(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_surf_window_av(m) = & surf_usm_v(l)%t_surf_window_av(m) + & t_surf_window_v(l)%t(m) ENDDO ENDIF CASE ( 'usm_t_surf_green' ) ! !-- surface temperature for green surfaces IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_surf_green_av(m) = & surf_usm_h%t_surf_green_av(m) + & t_surf_green_h(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_surf_green_av(m) = & surf_usm_v(l)%t_surf_green_av(m) + & t_surf_green_v(l)%t(m) ENDDO ENDIF CASE ( 'usm_theta_10cm' ) ! !-- near surface temperature for whole surfaces IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%pt_10cm_av(m) = & surf_usm_h%pt_10cm_av(m) + & surf_usm_h%pt_10cm(m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%pt_10cm_av(m) = & surf_usm_v(l)%pt_10cm_av(m) + & surf_usm_v(l)%pt_10cm(m) ENDDO ENDIF CASE ( 'usm_t_wall' ) ! !-- wall temperature for iwl layer of walls and land IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_wall_av(iwl,m) = & surf_usm_h%t_wall_av(iwl,m) + & t_wall_h(iwl,m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_wall_av(iwl,m) = & surf_usm_v(l)%t_wall_av(iwl,m) + & t_wall_v(l)%t(iwl,m) ENDDO ENDIF CASE ( 'usm_t_window' ) ! !-- window temperature for iwl layer of walls and land IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_window_av(iwl,m) = & surf_usm_h%t_window_av(iwl,m) + & t_window_h(iwl,m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_window_av(iwl,m) = & surf_usm_v(l)%t_window_av(iwl,m) + & t_window_v(l)%t(iwl,m) ENDDO ENDIF CASE ( 'usm_t_green' ) ! !-- green temperature for iwl layer of walls and land IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_green_av(iwl,m) = & surf_usm_h%t_green_av(iwl,m) + & t_green_h(iwl,m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_green_av(iwl,m) = & surf_usm_v(l)%t_green_av(iwl,m) + & t_green_v(l)%t(iwl,m) ENDDO ENDIF CASE ( 'usm_swc' ) ! !-- soil water content for iwl layer of walls and land IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%swc_av(iwl,m) = & surf_usm_h%swc_av(iwl,m) + & swc_h(iwl,m) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%swc_av(iwl,m) = & surf_usm_v(l)%swc_av(iwl,m) + & swc_v(l)%t(iwl,m) ENDDO ENDIF CASE DEFAULT CONTINUE END SELECT ELSEIF ( mode == 'average' ) THEN SELECT CASE ( TRIM( var ) ) CASE ( 'usm_wshf' ) ! !-- array of sensible heat flux from surfaces (land, roof, wall) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%wshf_eb_av(m) = & surf_usm_h%wshf_eb_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%wshf_eb_av(m) = & surf_usm_v(l)%wshf_eb_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_qsws' ) ! !-- array of latent heat flux from surfaces (land, roof, wall) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%qsws_av(m) = & surf_usm_h%qsws_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%qsws_av(m) = & surf_usm_v(l)%qsws_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_qsws_veg' ) ! !-- array of latent heat flux from vegetation surfaces (land, roof, wall) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%qsws_veg_av(m) = & surf_usm_h%qsws_veg_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%qsws_veg_av(m) = & surf_usm_v(l)%qsws_veg_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_qsws_liq' ) ! !-- array of latent heat flux from surfaces with liquid (land, roof, wall) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%qsws_liq_av(m) = & surf_usm_h%qsws_liq_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%qsws_liq_av(m) = & surf_usm_v(l)%qsws_liq_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_wghf' ) ! !-- array of heat flux from ground (wall, roof, land) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%wghf_eb_av(m) = & surf_usm_h%wghf_eb_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%wghf_eb_av(m) = & surf_usm_v(l)%wghf_eb_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_wghf_window' ) ! !-- array of heat flux from window ground (wall, roof, land) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%wghf_eb_window_av(m) = & surf_usm_h%wghf_eb_window_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%wghf_eb_window_av(m) = & surf_usm_v(l)%wghf_eb_window_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_wghf_green' ) ! !-- array of heat flux from green ground (wall, roof, land) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%wghf_eb_green_av(m) = & surf_usm_h%wghf_eb_green_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%wghf_eb_green_av(m) = & surf_usm_v(l)%wghf_eb_green_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_iwghf' ) ! !-- array of heat flux from indoor ground (wall, roof, land) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%iwghf_eb_av(m) = & surf_usm_h%iwghf_eb_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%iwghf_eb_av(m) = & surf_usm_v(l)%iwghf_eb_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_iwghf_window' ) ! !-- array of heat flux from indoor window ground (wall, roof, land) IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%iwghf_eb_window_av(m) = & surf_usm_h%iwghf_eb_window_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%iwghf_eb_window_av(m) = & surf_usm_v(l)%iwghf_eb_window_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_t_surf_wall' ) ! !-- surface temperature for surfaces IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_surf_wall_av(m) = & surf_usm_h%t_surf_wall_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_surf_wall_av(m) = & surf_usm_v(l)%t_surf_wall_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_t_surf_window' ) ! !-- surface temperature for window surfaces IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_surf_window_av(m) = & surf_usm_h%t_surf_window_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_surf_window_av(m) = & surf_usm_v(l)%t_surf_window_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_t_surf_green' ) ! !-- surface temperature for green surfaces IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_surf_green_av(m) = & surf_usm_h%t_surf_green_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_surf_green_av(m) = & surf_usm_v(l)%t_surf_green_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_theta_10cm' ) ! !-- near surface temperature for whole surfaces IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%pt_10cm_av(m) = & surf_usm_h%pt_10cm_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%pt_10cm_av(m) = & surf_usm_v(l)%pt_10cm_av(m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_t_wall' ) ! !-- wall temperature for iwl layer of walls and land IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_wall_av(iwl,m) = & surf_usm_h%t_wall_av(iwl,m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_wall_av(iwl,m) = & surf_usm_v(l)%t_wall_av(iwl,m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_t_window' ) ! !-- window temperature for iwl layer of walls and land IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_window_av(iwl,m) = & surf_usm_h%t_window_av(iwl,m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_window_av(iwl,m) = & surf_usm_v(l)%t_window_av(iwl,m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_t_green' ) ! !-- green temperature for iwl layer of walls and land IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%t_green_av(iwl,m) = & surf_usm_h%t_green_av(iwl,m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%t_green_av(iwl,m) = & surf_usm_v(l)%t_green_av(iwl,m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF CASE ( 'usm_swc' ) ! !-- soil water content for iwl layer of walls and land IF ( l == -1 ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%swc_av(iwl,m) = & surf_usm_h%swc_av(iwl,m) / & REAL( average_count_3d, kind=wp ) ENDDO ELSE DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%swc_av(iwl,m) = & surf_usm_v(l)%swc_av(iwl,m) / & REAL( average_count_3d, kind=wp ) ENDDO ENDIF END SELECT ENDIF ENDIF END SUBROUTINE usm_3d_data_averaging !------------------------------------------------------------------------------! ! Description: ! ------------ !> Set internal Neumann boundary condition at outer soil grid points !> for temperature and humidity. !------------------------------------------------------------------------------! SUBROUTINE usm_boundary_condition IMPLICIT NONE INTEGER(iwp) :: i !< grid index x-direction INTEGER(iwp) :: ioff !< offset index x-direction indicating location of soil grid point INTEGER(iwp) :: j !< grid index y-direction INTEGER(iwp) :: joff !< offset index x-direction indicating location of soil grid point INTEGER(iwp) :: k !< grid index z-direction INTEGER(iwp) :: koff !< offset index x-direction indicating location of soil grid point INTEGER(iwp) :: l !< running index surface-orientation INTEGER(iwp) :: m !< running index surface elements koff = surf_usm_h%koff DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) pt(k+koff,j,i) = pt(k,j,i) ENDDO DO l = 0, 3 ioff = surf_usm_v(l)%ioff joff = surf_usm_v(l)%joff DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) pt(k,j+joff,i+ioff) = pt(k,j,i) ENDDO ENDDO END SUBROUTINE usm_boundary_condition !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Subroutine checks variables and assigns units. !> It is called out from subroutine check_parameters. !------------------------------------------------------------------------------! SUBROUTINE usm_check_data_output( variable, unit ) IMPLICIT NONE CHARACTER(LEN=*),INTENT(IN) :: variable !< CHARACTER(LEN=*),INTENT(OUT) :: unit !< INTEGER(iwp) :: i,j,l !< index CHARACTER(LEN=2) :: ls CHARACTER(LEN=varnamelength) :: var !< TRIM(variable) INTEGER(iwp), PARAMETER :: nl1 = 15 !< number of directional usm variables CHARACTER(LEN=varnamelength), DIMENSION(nl1) :: varlist1 = & !< list of directional usm variables (/'usm_wshf ', & 'usm_wghf ', & 'usm_wghf_window ', & 'usm_wghf_green ', & 'usm_iwghf ', & 'usm_iwghf_window ', & 'usm_surfz ', & 'usm_surfwintrans ', & 'usm_surfcat ', & 'usm_t_surf_wall ', & 'usm_t_surf_window ', & 'usm_t_surf_green ', & 'usm_t_green ', & 'usm_qsws ', & 'usm_theta_10cm '/) INTEGER(iwp), PARAMETER :: nl2 = 3 !< number of directional layer usm variables CHARACTER(LEN=varnamelength), DIMENSION(nl2) :: varlist2 = & !< list of directional layer usm variables (/'usm_t_wall ', & 'usm_t_window ', & 'usm_t_green '/) INTEGER(iwp), PARAMETER :: nd = 5 !< number of directions CHARACTER(LEN=6), DIMENSION(nd), PARAMETER :: dirname = & !< direction names (/'_roof ','_south','_north','_west ','_east '/) LOGICAL :: lfound !< flag if the variable is found lfound = .FALSE. var = TRIM(variable) ! !-- check if variable exists !-- directional variables DO i = 1, nl1 DO j = 1, nd IF ( TRIM(var) == TRIM(varlist1(i))//TRIM(dirname(j)) ) THEN lfound = .TRUE. EXIT ENDIF IF ( lfound ) EXIT ENDDO ENDDO IF ( lfound ) GOTO 10 ! !-- directional layer variables DO i = 1, nl2 DO j = 1, nd DO l = nzb_wall, nzt_wall WRITE(ls,'(A1,I1)') '_',l IF ( TRIM(var) == TRIM(varlist2(i))//TRIM(ls)//TRIM(dirname(j)) ) THEN lfound = .TRUE. EXIT ENDIF ENDDO IF ( lfound ) EXIT ENDDO ENDDO IF ( .NOT. lfound ) THEN unit = 'illegal' RETURN ENDIF 10 CONTINUE IF ( var(1:9) == 'usm_wshf_' .OR. var(1:9) == 'usm_wghf_' .OR. & var(1:16) == 'usm_wghf_window_' .OR. var(1:15) == 'usm_wghf_green_' .OR. & var(1:10) == 'usm_iwghf_' .OR. var(1:17) == 'usm_iwghf_window_' .OR. & var(1:17) == 'usm_surfwintrans_' .OR. & var(1:9) == 'usm_qsws_' .OR. var(1:13) == 'usm_qsws_veg_' .OR. & var(1:13) == 'usm_qsws_liq_' ) THEN unit = 'W/m2' ELSE IF ( var(1:15) == 'usm_t_surf_wall' .OR. var(1:10) == 'usm_t_wall' .OR. & var(1:12) == 'usm_t_window' .OR. var(1:17) == 'usm_t_surf_window' .OR. & var(1:16) == 'usm_t_surf_green' .OR. & var(1:11) == 'usm_t_green' .OR. var(1:7) == 'usm_swc' .OR. & var(1:14) == 'usm_theta_10cm' ) THEN unit = 'K' ELSE IF ( var(1:9) == 'usm_surfz' .OR. var(1:11) == 'usm_surfcat' ) THEN unit = '1' ELSE unit = 'illegal' ENDIF END SUBROUTINE usm_check_data_output !------------------------------------------------------------------------------! ! Description: ! ------------ !> Check parameters routine for urban surface model !------------------------------------------------------------------------------! SUBROUTINE usm_check_parameters USE control_parameters, & ONLY: bc_pt_b, bc_q_b, constant_flux_layer, large_scale_forcing, & lsf_surf, topography USE netcdf_data_input_mod, & ONLY: building_type_f IMPLICIT NONE INTEGER(iwp) :: i !< running index, x-dimension INTEGER(iwp) :: j !< running index, y-dimension ! !-- Dirichlet boundary conditions are required as the surface fluxes are !-- calculated from the temperature/humidity gradients in the urban surface !-- model IF ( bc_pt_b == 'neumann' .OR. bc_q_b == 'neumann' ) THEN message_string = 'urban surface model requires setting of '// & 'bc_pt_b = "dirichlet" and '// & 'bc_q_b = "dirichlet"' CALL message( 'usm_check_parameters', 'PA0590', 1, 2, 0, 6, 0 ) ENDIF IF ( .NOT. constant_flux_layer ) THEN message_string = 'urban surface model requires '// & 'constant_flux_layer = .T.' CALL message( 'usm_check_parameters', 'PA0084', 1, 2, 0, 6, 0 ) ENDIF IF ( .NOT. radiation ) THEN message_string = 'urban surface model requires '// & 'the radiation model to be switched on' CALL message( 'usm_check_parameters', 'PA0084', 1, 2, 0, 6, 0 ) ENDIF ! !-- Surface forcing has to be disabled for LSF in case of enabled !-- urban surface module IF ( large_scale_forcing ) THEN lsf_surf = .FALSE. ENDIF ! !-- Topography IF ( topography == 'flat' ) THEN message_string = 'topography /= "flat" is required '// & 'when using the urban surface model' CALL message( 'usm_check_parameters', 'PA0592', 1, 2, 0, 6, 0 ) ENDIF ! !-- naheatlayers IF ( naheatlayers > nzt ) THEN message_string = 'number of anthropogenic heat layers '// & '"naheatlayers" can not be larger than'// & ' number of domain layers "nzt"' CALL message( 'usm_check_parameters', 'PA0593', 1, 2, 0, 6, 0 ) ENDIF ! !-- Check if building types are set within a valid range. IF ( building_type < LBOUND( building_pars, 2 ) .AND. & building_type > UBOUND( building_pars, 2 ) ) THEN WRITE( message_string, * ) 'building_type = ', building_type, & ' is out of the valid range' CALL message( 'usm_check_parameters', 'PA0529', 2, 2, 0, 6, 0 ) ENDIF IF ( building_type_f%from_file ) THEN DO i = nxl, nxr DO j = nys, nyn IF ( building_type_f%var(j,i) /= building_type_f%fill .AND. & ( building_type_f%var(j,i) < LBOUND( building_pars, 2 ) .OR. & building_type_f%var(j,i) > UBOUND( building_pars, 2 ) ) ) & THEN WRITE( message_string, * ) 'building_type = is out of ' // & 'the valid range at (j,i) = ', j, i CALL message( 'usm_check_parameters', 'PA0529', 2, 2, 0, 6, 0 ) ENDIF ENDDO ENDDO ENDIF END SUBROUTINE usm_check_parameters !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Output of the 3D-arrays in netCDF and/or AVS format !> for variables of urban_surface model. !> It resorts the urban surface module output quantities from surf style !> indexing into temporary 3D array with indices (i,j,k). !> It is called from subroutine data_output_3d. !------------------------------------------------------------------------------! SUBROUTINE usm_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: av !< flag if averaged CHARACTER (len=*), INTENT(IN) :: variable !< variable name INTEGER(iwp), INTENT(IN) :: nzb_do !< lower limit of the data output (usually 0) INTEGER(iwp), INTENT(IN) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) LOGICAL, INTENT(OUT) :: found !< REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< sp - it has to correspond to module data_output_3d REAL(sp), DIMENSION(nzb:nzt+1,nys:nyn,nxl:nxr) :: temp_pf !< temp array for urban surface output procedure CHARACTER (len=varnamelength) :: var !< trimmed variable name INTEGER(iwp), PARAMETER :: nd = 5 !< number of directions CHARACTER(len=6), DIMENSION(0:nd-1), PARAMETER :: dirname = (/ '_roof ', '_south', '_north', '_west ', '_east ' /) INTEGER(iwp), DIMENSION(0:nd-1), PARAMETER :: dirint = (/ iup_u, isouth_u, inorth_u, iwest_u, ieast_u /) INTEGER(iwp), DIMENSION(0:nd-1), PARAMETER :: diridx = (/ -1, 1, 0, 3, 2 /) !< index for surf_*_v: 0:3 = (North, South, East, West) INTEGER(iwp) :: ids,idsint,idsidx INTEGER(iwp) :: i,j,k,iwl,istat, l, m !< running indices found = .TRUE. temp_pf = -1._wp ids = -1 var = TRIM(variable) DO i = 0, nd-1 k = len(TRIM(var)) j = len(TRIM(dirname(i))) IF ( TRIM(var(k-j+1:k)) == TRIM(dirname(i)) ) THEN ids = i idsint = dirint(ids) idsidx = diridx(ids) var = var(:k-j) EXIT ENDIF ENDDO IF ( ids == -1 ) THEN var = TRIM(variable) ENDIF IF ( var(1:11) == 'usm_t_wall_' .AND. len(TRIM(var)) >= 12 ) THEN ! !-- wall layers READ(var(12:12), '(I1)', iostat=istat ) iwl IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN var = var(1:10) ENDIF ENDIF IF ( var(1:13) == 'usm_t_window_' .AND. len(TRIM(var)) >= 14 ) THEN ! !-- window layers READ(var(14:14), '(I1)', iostat=istat ) iwl IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN var = var(1:12) ENDIF ENDIF IF ( var(1:12) == 'usm_t_green_' .AND. len(TRIM(var)) >= 13 ) THEN ! !-- green layers READ(var(13:13), '(I1)', iostat=istat ) iwl IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN var = var(1:11) ENDIF ENDIF IF ( var(1:8) == 'usm_swc_' .AND. len(TRIM(var)) >= 9 ) THEN ! !-- green layers soil water content READ(var(9:9), '(I1)', iostat=istat ) iwl IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN var = var(1:7) ENDIF ENDIF SELECT CASE ( TRIM(var) ) CASE ( 'usm_surfz' ) ! !-- array of surface height (z) IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(0,j,i) = MAX( temp_pf(0,j,i), REAL( k, KIND = sp) ) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(0,j,i) = MAX( temp_pf(0,j,i), REAL( k, KIND = sp) + 1.0_sp ) ENDDO ENDIF CASE ( 'usm_surfcat' ) ! !-- surface category IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%surface_types(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%surface_types(m) ENDDO ENDIF CASE ( 'usm_surfwintrans' ) ! !-- transmissivity window tiles IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%transmissivity(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%transmissivity(m) ENDDO ENDIF CASE ( 'usm_wshf' ) ! !-- array of sensible heat flux from surfaces IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%wshf_eb(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%wshf_eb(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%wshf_eb_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%wshf_eb_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_qsws' ) ! !-- array of latent heat flux from surfaces IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%qsws(m) * l_v ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%qsws(m) * l_v ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%qsws_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%qsws_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_qsws_veg' ) ! !-- array of latent heat flux from vegetation surfaces IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%qsws_veg(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%qsws_veg(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%qsws_veg_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%qsws_veg_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_qsws_liq' ) ! !-- array of latent heat flux from surfaces with liquid IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%qsws_liq(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%qsws_liq(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%qsws_liq_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%qsws_liq_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_wghf' ) ! !-- array of heat flux from ground (land, wall, roof) IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%wghf_eb(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%wghf_eb(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%wghf_eb_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%wghf_eb_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_wghf_window' ) ! !-- array of heat flux from window ground (land, wall, roof) IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%wghf_eb_window(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%wghf_eb_window(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%wghf_eb_window_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%wghf_eb_window_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_wghf_green' ) ! !-- array of heat flux from green ground (land, wall, roof) IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%wghf_eb_green(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%wghf_eb_green(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%wghf_eb_green_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%wghf_eb_green_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_iwghf' ) ! !-- array of heat flux from indoor ground (land, wall, roof) IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%iwghf_eb(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%iwghf_eb(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%iwghf_eb_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%iwghf_eb_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_iwghf_window' ) ! !-- array of heat flux from indoor window ground (land, wall, roof) IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%iwghf_eb_window(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%iwghf_eb_window(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%iwghf_eb_window_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%iwghf_eb_window_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_t_surf_wall' ) ! !-- surface temperature for surfaces IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = t_surf_wall_h(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = t_surf_wall_v(l)%t(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%t_surf_wall_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%t_surf_wall_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_t_surf_window' ) ! !-- surface temperature for window surfaces IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = t_surf_window_h(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = t_surf_window_v(l)%t(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%t_surf_window_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%t_surf_window_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_t_surf_green' ) ! !-- surface temperature for green surfaces IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = t_surf_green_h(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = t_surf_green_v(l)%t(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%t_surf_green_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%t_surf_green_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_theta_10cm' ) ! !-- near surface temperature for whole surfaces IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%pt_10cm(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%pt_10cm(m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%pt_10cm_av(m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%pt_10cm_av(m) ENDDO ENDIF ENDIF CASE ( 'usm_t_wall' ) ! !-- wall temperature for iwl layer of walls and land IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = t_wall_h(iwl,m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = t_wall_v(l)%t(iwl,m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%t_wall_av(iwl,m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%t_wall_av(iwl,m) ENDDO ENDIF ENDIF CASE ( 'usm_t_window' ) ! !-- window temperature for iwl layer of walls and land IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = t_window_h(iwl,m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = t_window_v(l)%t(iwl,m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%t_window_av(iwl,m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%t_window_av(iwl,m) ENDDO ENDIF ENDIF CASE ( 'usm_t_green' ) ! !-- green temperature for iwl layer of walls and land IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = t_green_h(iwl,m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = t_green_v(l)%t(iwl,m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%t_green_av(iwl,m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%t_green_av(iwl,m) ENDDO ENDIF ENDIF CASE ( 'usm_swc' ) ! !-- soil water content for iwl layer of walls and land IF ( av == 0 ) THEN IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = swc_h(iwl,m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = swc_v(l)%t(iwl,m) ENDDO ENDIF ELSE IF ( idsint == iup_u ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) temp_pf(k,j,i) = surf_usm_h%swc_av(iwl,m) ENDDO ELSE l = idsidx DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) temp_pf(k,j,i) = surf_usm_v(l)%swc_av(iwl,m) ENDDO ENDIF ENDIF CASE DEFAULT found = .FALSE. RETURN END SELECT ! !-- Rearrange dimensions for NetCDF output !-- FIXME: this may generate FPE overflow upon conversion from DP to SP DO j = nys, nyn DO i = nxl, nxr DO k = nzb_do, nzt_do local_pf(i,j,k) = temp_pf(k,j,i) ENDDO ENDDO ENDDO END SUBROUTINE usm_data_output_3d !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Soubroutine defines appropriate grid for netcdf variables. !> It is called out from subroutine netcdf. !------------------------------------------------------------------------------! SUBROUTINE usm_define_netcdf_grid( variable, found, grid_x, grid_y, grid_z ) IMPLICIT NONE CHARACTER (len=*), INTENT(IN) :: variable !< LOGICAL, INTENT(OUT) :: found !< CHARACTER (len=*), INTENT(OUT) :: grid_x !< CHARACTER (len=*), INTENT(OUT) :: grid_y !< CHARACTER (len=*), INTENT(OUT) :: grid_z !< CHARACTER (len=varnamelength) :: var var = TRIM(variable) IF ( var(1:9) == 'usm_wshf_' .OR. var(1:9) == 'usm_wghf_' .OR. & var(1:16) == 'usm_wghf_window_' .OR. var(1:15) == 'usm_wghf_green_' .OR. & var(1:10) == 'usm_iwghf_' .OR. var(1:17) == 'usm_iwghf_window_' .OR. & var(1:9) == 'usm_qsws_' .OR. var(1:13) == 'usm_qsws_veg_' .OR. & var(1:13) == 'usm_qsws_liq_' .OR. & var(1:15) == 'usm_t_surf_wall' .OR. var(1:10) == 'usm_t_wall' .OR. & var(1:17) == 'usm_t_surf_window' .OR. var(1:12) == 'usm_t_window' .OR. & var(1:16) == 'usm_t_surf_green' .OR. var(1:11) == 'usm_t_green' .OR. & var(1:15) == 'usm_theta_10cm' .OR. & var(1:9) == 'usm_surfz' .OR. var(1:11) == 'usm_surfcat' .OR. & var(1:16) == 'usm_surfwintrans' .OR. var(1:7) == 'usm_swc' ) THEN found = .TRUE. grid_x = 'x' grid_y = 'y' grid_z = 'zu' ELSE found = .FALSE. grid_x = 'none' grid_y = 'none' grid_z = 'none' ENDIF END SUBROUTINE usm_define_netcdf_grid !------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialization of the wall surface model !------------------------------------------------------------------------------! SUBROUTINE usm_init_material_model IMPLICIT NONE INTEGER(iwp) :: k, l, m !< running indices IF ( debug_output ) CALL debug_message( 'usm_init_material_model', 'start' ) ! !-- Calculate wall grid spacings. !-- Temperature is defined at the center of the wall layers, !-- whereas gradients/fluxes are defined at the edges (_stag) !-- apply for all particular surface grids. First for horizontal surfaces DO m = 1, surf_usm_h%ns surf_usm_h%dz_wall(nzb_wall,m) = surf_usm_h%zw(nzb_wall,m) DO k = nzb_wall+1, nzt_wall surf_usm_h%dz_wall(k,m) = surf_usm_h%zw(k,m) - & surf_usm_h%zw(k-1,m) ENDDO surf_usm_h%dz_window(nzb_wall,m) = surf_usm_h%zw_window(nzb_wall,m) DO k = nzb_wall+1, nzt_wall surf_usm_h%dz_window(k,m) = surf_usm_h%zw_window(k,m) - & surf_usm_h%zw_window(k-1,m) ENDDO surf_usm_h%dz_wall(nzt_wall+1,m) = surf_usm_h%dz_wall(nzt_wall,m) DO k = nzb_wall, nzt_wall-1 surf_usm_h%dz_wall_stag(k,m) = 0.5 * ( & surf_usm_h%dz_wall(k+1,m) + surf_usm_h%dz_wall(k,m) ) ENDDO surf_usm_h%dz_wall_stag(nzt_wall,m) = surf_usm_h%dz_wall(nzt_wall,m) surf_usm_h%dz_window(nzt_wall+1,m) = surf_usm_h%dz_window(nzt_wall,m) DO k = nzb_wall, nzt_wall-1 surf_usm_h%dz_window_stag(k,m) = 0.5 * ( & surf_usm_h%dz_window(k+1,m) + surf_usm_h%dz_window(k,m) ) ENDDO surf_usm_h%dz_window_stag(nzt_wall,m) = surf_usm_h%dz_window(nzt_wall,m) IF (surf_usm_h%green_type_roof(m) == 2.0_wp ) THEN ! !-- extensive green roof !-- set ratio of substrate layer thickness, soil-type and LAI soil_type = 3 surf_usm_h%lai(m) = 2.0_wp surf_usm_h%zw_green(nzb_wall,m) = 0.05_wp surf_usm_h%zw_green(nzb_wall+1,m) = 0.10_wp surf_usm_h%zw_green(nzb_wall+2,m) = 0.15_wp surf_usm_h%zw_green(nzb_wall+3,m) = 0.20_wp ELSE ! !-- intensiv green roof !-- set ratio of substrate layer thickness, soil-type and LAI soil_type = 6 surf_usm_h%lai(m) = 4.0_wp surf_usm_h%zw_green(nzb_wall,m) = 0.05_wp surf_usm_h%zw_green(nzb_wall+1,m) = 0.10_wp surf_usm_h%zw_green(nzb_wall+2,m) = 0.40_wp surf_usm_h%zw_green(nzb_wall+3,m) = 0.80_wp ENDIF surf_usm_h%dz_green(nzb_wall,m) = surf_usm_h%zw_green(nzb_wall,m) DO k = nzb_wall+1, nzt_wall surf_usm_h%dz_green(k,m) = surf_usm_h%zw_green(k,m) - & surf_usm_h%zw_green(k-1,m) ENDDO surf_usm_h%dz_green(nzt_wall+1,m) = surf_usm_h%dz_green(nzt_wall,m) DO k = nzb_wall, nzt_wall-1 surf_usm_h%dz_green_stag(k,m) = 0.5 * ( & surf_usm_h%dz_green(k+1,m) + surf_usm_h%dz_green(k,m) ) ENDDO surf_usm_h%dz_green_stag(nzt_wall,m) = surf_usm_h%dz_green(nzt_wall,m) IF ( alpha_vangenuchten == 9999999.9_wp ) THEN alpha_vangenuchten = soil_pars(0,soil_type) ENDIF IF ( l_vangenuchten == 9999999.9_wp ) THEN l_vangenuchten = soil_pars(1,soil_type) ENDIF IF ( n_vangenuchten == 9999999.9_wp ) THEN n_vangenuchten = soil_pars(2,soil_type) ENDIF IF ( hydraulic_conductivity == 9999999.9_wp ) THEN hydraulic_conductivity = soil_pars(3,soil_type) ENDIF IF ( saturation_moisture == 9999999.9_wp ) THEN saturation_moisture = m_soil_pars(0,soil_type) ENDIF IF ( field_capacity == 9999999.9_wp ) THEN field_capacity = m_soil_pars(1,soil_type) ENDIF IF ( wilting_point == 9999999.9_wp ) THEN wilting_point = m_soil_pars(2,soil_type) ENDIF IF ( residual_moisture == 9999999.9_wp ) THEN residual_moisture = m_soil_pars(3,soil_type) ENDIF DO k = nzb_wall, nzt_wall+1 swc_h(k,m) = field_capacity rootfr_h(k,m) = 0.5_wp surf_usm_h%alpha_vg_green(m) = alpha_vangenuchten surf_usm_h%l_vg_green(m) = l_vangenuchten surf_usm_h%n_vg_green(m) = n_vangenuchten surf_usm_h%gamma_w_green_sat(k,m) = hydraulic_conductivity swc_sat_h(k,m) = saturation_moisture fc_h(k,m) = field_capacity wilt_h(k,m) = wilting_point swc_res_h(k,m) = residual_moisture ENDDO ENDDO surf_usm_h%ddz_wall = 1.0_wp / surf_usm_h%dz_wall surf_usm_h%ddz_wall_stag = 1.0_wp / surf_usm_h%dz_wall_stag surf_usm_h%ddz_window = 1.0_wp / surf_usm_h%dz_window surf_usm_h%ddz_window_stag = 1.0_wp / surf_usm_h%dz_window_stag surf_usm_h%ddz_green = 1.0_wp / surf_usm_h%dz_green surf_usm_h%ddz_green_stag = 1.0_wp / surf_usm_h%dz_green_stag ! !-- For vertical surfaces DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%dz_wall(nzb_wall,m) = surf_usm_v(l)%zw(nzb_wall,m) DO k = nzb_wall+1, nzt_wall surf_usm_v(l)%dz_wall(k,m) = surf_usm_v(l)%zw(k,m) - & surf_usm_v(l)%zw(k-1,m) ENDDO surf_usm_v(l)%dz_window(nzb_wall,m) = surf_usm_v(l)%zw_window(nzb_wall,m) DO k = nzb_wall+1, nzt_wall surf_usm_v(l)%dz_window(k,m) = surf_usm_v(l)%zw_window(k,m) - & surf_usm_v(l)%zw_window(k-1,m) ENDDO surf_usm_v(l)%dz_green(nzb_wall,m) = surf_usm_v(l)%zw_green(nzb_wall,m) DO k = nzb_wall+1, nzt_wall surf_usm_v(l)%dz_green(k,m) = surf_usm_v(l)%zw_green(k,m) - & surf_usm_v(l)%zw_green(k-1,m) ENDDO surf_usm_v(l)%dz_wall(nzt_wall+1,m) = & surf_usm_v(l)%dz_wall(nzt_wall,m) DO k = nzb_wall, nzt_wall-1 surf_usm_v(l)%dz_wall_stag(k,m) = 0.5 * ( & surf_usm_v(l)%dz_wall(k+1,m) + & surf_usm_v(l)%dz_wall(k,m) ) ENDDO surf_usm_v(l)%dz_wall_stag(nzt_wall,m) = & surf_usm_v(l)%dz_wall(nzt_wall,m) surf_usm_v(l)%dz_window(nzt_wall+1,m) = & surf_usm_v(l)%dz_window(nzt_wall,m) DO k = nzb_wall, nzt_wall-1 surf_usm_v(l)%dz_window_stag(k,m) = 0.5 * ( & surf_usm_v(l)%dz_window(k+1,m) + & surf_usm_v(l)%dz_window(k,m) ) ENDDO surf_usm_v(l)%dz_window_stag(nzt_wall,m) = & surf_usm_v(l)%dz_window(nzt_wall,m) surf_usm_v(l)%dz_green(nzt_wall+1,m) = & surf_usm_v(l)%dz_green(nzt_wall,m) DO k = nzb_wall, nzt_wall-1 surf_usm_v(l)%dz_green_stag(k,m) = 0.5 * ( & surf_usm_v(l)%dz_green(k+1,m) + & surf_usm_v(l)%dz_green(k,m) ) ENDDO surf_usm_v(l)%dz_green_stag(nzt_wall,m) = & surf_usm_v(l)%dz_green(nzt_wall,m) ENDDO surf_usm_v(l)%ddz_wall = 1.0_wp / surf_usm_v(l)%dz_wall surf_usm_v(l)%ddz_wall_stag = 1.0_wp / surf_usm_v(l)%dz_wall_stag surf_usm_v(l)%ddz_window = 1.0_wp / surf_usm_v(l)%dz_window surf_usm_v(l)%ddz_window_stag = 1.0_wp / surf_usm_v(l)%dz_window_stag surf_usm_v(l)%ddz_green = 1.0_wp / surf_usm_v(l)%dz_green surf_usm_v(l)%ddz_green_stag = 1.0_wp / surf_usm_v(l)%dz_green_stag ENDDO IF ( debug_output ) CALL debug_message( 'usm_init_material_model', 'end' ) END SUBROUTINE usm_init_material_model !------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialization of the urban surface model !------------------------------------------------------------------------------! SUBROUTINE usm_init USE arrays_3d, & ONLY: zw USE netcdf_data_input_mod, & ONLY: building_pars_f, building_type_f, terrain_height_f IMPLICIT NONE INTEGER(iwp) :: i !< loop index x-dirction INTEGER(iwp) :: ind_alb_green !< index in input list for green albedo INTEGER(iwp) :: ind_alb_wall !< index in input list for wall albedo INTEGER(iwp) :: ind_alb_win !< index in input list for window albedo INTEGER(iwp) :: ind_emis_wall !< index in input list for wall emissivity INTEGER(iwp) :: ind_emis_green !< index in input list for green emissivity INTEGER(iwp) :: ind_emis_win !< index in input list for window emissivity INTEGER(iwp) :: ind_green_frac_w !< index in input list for green fraction on wall INTEGER(iwp) :: ind_green_frac_r !< index in input list for green fraction on roof INTEGER(iwp) :: ind_hc1 !< index in input list for heat capacity at first wall layer INTEGER(iwp) :: ind_hc1_win !< index in input list for heat capacity at first window layer INTEGER(iwp) :: ind_hc2 !< index in input list for heat capacity at second wall layer INTEGER(iwp) :: ind_hc2_win !< index in input list for heat capacity at second window layer INTEGER(iwp) :: ind_hc3 !< index in input list for heat capacity at third wall layer INTEGER(iwp) :: ind_hc3_win !< index in input list for heat capacity at third window layer INTEGER(iwp) :: ind_lai_r !< index in input list for LAI on roof INTEGER(iwp) :: ind_lai_w !< index in input list for LAI on wall INTEGER(iwp) :: ind_tc1 !< index in input list for thermal conductivity at first wall layer INTEGER(iwp) :: ind_tc1_win !< index in input list for thermal conductivity at first window layer INTEGER(iwp) :: ind_tc2 !< index in input list for thermal conductivity at second wall layer INTEGER(iwp) :: ind_tc2_win !< index in input list for thermal conductivity at second window layer INTEGER(iwp) :: ind_tc3 !< index in input list for thermal conductivity at third wall layer INTEGER(iwp) :: ind_tc3_win !< index in input list for thermal conductivity at third window layer INTEGER(iwp) :: ind_thick_1 !< index in input list for thickness of first wall layer INTEGER(iwp) :: ind_thick_1_win !< index in input list for thickness of first window layer INTEGER(iwp) :: ind_thick_2 !< index in input list for thickness of second wall layer INTEGER(iwp) :: ind_thick_2_win !< index in input list for thickness of second window layer INTEGER(iwp) :: ind_thick_3 !< index in input list for thickness of third wall layer INTEGER(iwp) :: ind_thick_3_win !< index in input list for thickness of third window layer INTEGER(iwp) :: ind_thick_4 !< index in input list for thickness of fourth wall layer INTEGER(iwp) :: ind_thick_4_win !< index in input list for thickness of fourth window layer INTEGER(iwp) :: ind_trans !< index in input list for window transmissivity INTEGER(iwp) :: ind_wall_frac !< index in input list for wall fraction INTEGER(iwp) :: ind_win_frac !< index in input list for window fraction INTEGER(iwp) :: ind_z0 !< index in input list for z0 INTEGER(iwp) :: ind_z0qh !< index in input list for z0h / z0q INTEGER(iwp) :: j !< loop index y-dirction INTEGER(iwp) :: k !< loop index z-dirction INTEGER(iwp) :: l !< loop index surface orientation INTEGER(iwp) :: m !< loop index surface element INTEGER(iwp) :: st !< dummy REAL(wp) :: c, tin, twin REAL(wp) :: ground_floor_level_l !< local height of ground floor level REAL(wp) :: z_agl !< height above ground IF ( debug_output ) CALL debug_message( 'usm_init', 'start' ) CALL cpu_log( log_point_s(78), 'usm_init', 'start' ) ! !-- Initialize building-surface properties CALL usm_define_pars ! !-- surface forcing have to be disabled for LSF !-- in case of enabled urban surface module IF ( large_scale_forcing ) THEN lsf_surf = .FALSE. ENDIF ! !-- Flag surface elements belonging to the ground floor level. Therefore, !-- use terrain height array from file, if available. This flag is later used !-- to control initialization of surface attributes. !-- Todo: for the moment disable initialization of building roofs with !-- ground-floor-level properties. surf_usm_h%ground_level = .FALSE. DO l = 0, 3 surf_usm_v(l)%ground_level = .FALSE. DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff k = surf_usm_v(l)%k(m) ! !-- Determine local ground level. Level 1 - default value, !-- level 2 - initialization according to building type, !-- level 3 - initialization from value read from file. ground_floor_level_l = ground_floor_level IF ( building_type_f%from_file ) THEN ground_floor_level_l = & building_pars(ind_gflh,building_type_f%var(j,i)) ENDIF IF ( building_pars_f%from_file ) THEN IF ( building_pars_f%pars_xy(ind_gflh,j,i) /= & building_pars_f%fill ) & ground_floor_level_l = building_pars_f%pars_xy(ind_gflh,j,i) ENDIF ! !-- Determine height of surface element above ground level. Please !-- note, height of surface element is determined with respect to !-- its height above ground of the reference grid point in atmosphere, !-- Therefore, substract the offset values when assessing the terrain !-- height. IF ( terrain_height_f%from_file ) THEN z_agl = zw(k) - terrain_height_f%var(j-surf_usm_v(l)%joff, & i-surf_usm_v(l)%ioff) ELSE z_agl = zw(k) ENDIF ! !-- Set flag for ground level IF ( z_agl <= ground_floor_level_l ) & surf_usm_v(l)%ground_level(m) = .TRUE. ENDDO ENDDO ! !-- Initialization of resistances. DO m = 1, surf_usm_h%ns surf_usm_h%r_a(m) = 50.0_wp surf_usm_h%r_a_green(m) = 50.0_wp surf_usm_h%r_a_window(m) = 50.0_wp ENDDO DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%r_a(m) = 50.0_wp surf_usm_v(l)%r_a_green(m) = 50.0_wp surf_usm_v(l)%r_a_window(m) = 50.0_wp ENDDO ENDDO ! !-- Map values onto horizontal elemements DO m = 1, surf_usm_h%ns surf_usm_h%r_canopy_min(m) = 200.0_wp !< min_canopy_resistance surf_usm_h%g_d(m) = 0.0_wp !< canopy_resistance_coefficient ENDDO ! !-- Map values onto vertical elements, even though this does not make !-- much sense. DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%r_canopy_min(m) = 200.0_wp !< min_canopy_resistance surf_usm_v(l)%g_d(m) = 0.0_wp !< canopy_resistance_coefficient ENDDO ENDDO ! !-- Initialize urban-type surface attribute. According to initialization in !-- land-surface model, follow a 3-level approach. !-- Level 1 - initialization via default attributes DO m = 1, surf_usm_h%ns ! !-- Now, all horizontal surfaces are roof surfaces (?) surf_usm_h%isroof_surf(m) = .TRUE. surf_usm_h%surface_types(m) = roof_category !< default category for root surface ! !-- In order to distinguish between ground floor level and !-- above-ground-floor level surfaces, set input indices. ind_green_frac_r = MERGE( ind_green_frac_r_gfl, ind_green_frac_r_agfl, & surf_usm_h%ground_level(m) ) ind_lai_r = MERGE( ind_lai_r_gfl, ind_lai_r_agfl, & surf_usm_h%ground_level(m) ) ind_z0 = MERGE( ind_z0_gfl, ind_z0_agfl, & surf_usm_h%ground_level(m) ) ind_z0qh = MERGE( ind_z0qh_gfl, ind_z0qh_agfl, & surf_usm_h%ground_level(m) ) ! !-- Store building type and its name on each surface element surf_usm_h%building_type(m) = building_type surf_usm_h%building_type_name(m) = building_type_name(building_type) ! !-- Initialize relatvie wall- (0), green- (1) and window (2) fractions surf_usm_h%frac(ind_veg_wall,m) = building_pars(ind_wall_frac_r,building_type) surf_usm_h%frac(ind_pav_green,m) = building_pars(ind_green_frac_r,building_type) surf_usm_h%frac(ind_wat_win,m) = building_pars(ind_win_frac_r,building_type) surf_usm_h%lai(m) = building_pars(ind_lai_r,building_type) surf_usm_h%rho_c_wall(nzb_wall,m) = building_pars(ind_hc1_wall_r,building_type) surf_usm_h%rho_c_wall(nzb_wall+1,m) = building_pars(ind_hc1_wall_r,building_type) surf_usm_h%rho_c_wall(nzb_wall+2,m) = building_pars(ind_hc2_wall_r,building_type) surf_usm_h%rho_c_wall(nzb_wall+3,m) = building_pars(ind_hc3_wall_r,building_type) surf_usm_h%lambda_h(nzb_wall,m) = building_pars(ind_tc1_wall_r,building_type) surf_usm_h%lambda_h(nzb_wall+1,m) = building_pars(ind_tc1_wall_r,building_type) surf_usm_h%lambda_h(nzb_wall+2,m) = building_pars(ind_tc2_wall_r,building_type) surf_usm_h%lambda_h(nzb_wall+3,m) = building_pars(ind_tc3_wall_r,building_type) surf_usm_h%rho_c_green(nzb_wall,m) = rho_c_soil !building_pars(ind_hc1_wall_r,building_type) surf_usm_h%rho_c_green(nzb_wall+1,m) = rho_c_soil !building_pars(ind_hc1_wall_r,building_type) surf_usm_h%rho_c_green(nzb_wall+2,m) = rho_c_soil !building_pars(ind_hc2_wall_r,building_type) surf_usm_h%rho_c_green(nzb_wall+3,m) = rho_c_soil !building_pars(ind_hc3_wall_r,building_type) surf_usm_h%lambda_h_green(nzb_wall,m) = lambda_h_green_sm !building_pars(ind_tc1_wall_r,building_type) surf_usm_h%lambda_h_green(nzb_wall+1,m) = lambda_h_green_sm !building_pars(ind_tc1_wall_r,building_type) surf_usm_h%lambda_h_green(nzb_wall+2,m) = lambda_h_green_sm !building_pars(ind_tc2_wall_r,building_type) surf_usm_h%lambda_h_green(nzb_wall+3,m) = lambda_h_green_sm !building_pars(ind_tc3_wall_r,building_type) surf_usm_h%rho_c_window(nzb_wall,m) = building_pars(ind_hc1_win_r,building_type) surf_usm_h%rho_c_window(nzb_wall+1,m) = building_pars(ind_hc1_win_r,building_type) surf_usm_h%rho_c_window(nzb_wall+2,m) = building_pars(ind_hc2_win_r,building_type) surf_usm_h%rho_c_window(nzb_wall+3,m) = building_pars(ind_hc3_win_r,building_type) surf_usm_h%lambda_h_window(nzb_wall,m) = building_pars(ind_tc1_win_r,building_type) surf_usm_h%lambda_h_window(nzb_wall+1,m) = building_pars(ind_tc1_win_r,building_type) surf_usm_h%lambda_h_window(nzb_wall+2,m) = building_pars(ind_tc2_win_r,building_type) surf_usm_h%lambda_h_window(nzb_wall+3,m) = building_pars(ind_tc3_win_r,building_type) surf_usm_h%target_temp_summer(m) = building_pars(ind_indoor_target_temp_summer,building_type) surf_usm_h%target_temp_winter(m) = building_pars(ind_indoor_target_temp_winter,building_type) ! !-- emissivity of wall-, green- and window fraction surf_usm_h%emissivity(ind_veg_wall,m) = building_pars(ind_emis_wall_r,building_type) surf_usm_h%emissivity(ind_pav_green,m) = building_pars(ind_emis_green_r,building_type) surf_usm_h%emissivity(ind_wat_win,m) = building_pars(ind_emis_win_r,building_type) surf_usm_h%transmissivity(m) = building_pars(ind_trans_r,building_type) surf_usm_h%z0(m) = building_pars(ind_z0,building_type) surf_usm_h%z0h(m) = building_pars(ind_z0qh,building_type) surf_usm_h%z0q(m) = building_pars(ind_z0qh,building_type) ! !-- albedo type for wall fraction, green fraction, window fraction surf_usm_h%albedo_type(ind_veg_wall,m) = INT( building_pars(ind_alb_wall_r,building_type) ) surf_usm_h%albedo_type(ind_pav_green,m) = INT( building_pars(ind_alb_green_r,building_type) ) surf_usm_h%albedo_type(ind_wat_win,m) = INT( building_pars(ind_alb_win_r,building_type) ) surf_usm_h%zw(nzb_wall,m) = building_pars(ind_thick_1_wall_r,building_type) surf_usm_h%zw(nzb_wall+1,m) = building_pars(ind_thick_2_wall_r,building_type) surf_usm_h%zw(nzb_wall+2,m) = building_pars(ind_thick_3_wall_r,building_type) surf_usm_h%zw(nzb_wall+3,m) = building_pars(ind_thick_4_wall_r,building_type) surf_usm_h%zw_green(nzb_wall,m) = building_pars(ind_thick_1_wall_r,building_type) surf_usm_h%zw_green(nzb_wall+1,m) = building_pars(ind_thick_2_wall_r,building_type) surf_usm_h%zw_green(nzb_wall+2,m) = building_pars(ind_thick_3_wall_r,building_type) surf_usm_h%zw_green(nzb_wall+3,m) = building_pars(ind_thick_4_wall_r,building_type) surf_usm_h%zw_window(nzb_wall,m) = building_pars(ind_thick_1_win_r,building_type) surf_usm_h%zw_window(nzb_wall+1,m) = building_pars(ind_thick_2_win_r,building_type) surf_usm_h%zw_window(nzb_wall+2,m) = building_pars(ind_thick_3_win_r,building_type) surf_usm_h%zw_window(nzb_wall+3,m) = building_pars(ind_thick_4_win_r,building_type) surf_usm_h%c_surface(m) = building_pars(ind_c_surface,building_type) surf_usm_h%lambda_surf(m) = building_pars(ind_lambda_surf,building_type) surf_usm_h%c_surface_green(m) = building_pars(ind_c_surface_green,building_type) surf_usm_h%lambda_surf_green(m) = building_pars(ind_lambda_surf_green,building_type) surf_usm_h%c_surface_window(m) = building_pars(ind_c_surface_win,building_type) surf_usm_h%lambda_surf_window(m) = building_pars(ind_lambda_surf_win,building_type) surf_usm_h%green_type_roof(m) = building_pars(ind_green_type_roof,building_type) ENDDO DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%surface_types(m) = wall_category !< default category for root surface ! !-- In order to distinguish between ground floor level and !-- above-ground-floor level surfaces, set input indices. ind_alb_green = MERGE( ind_alb_green_gfl, ind_alb_green_agfl, & surf_usm_v(l)%ground_level(m) ) ind_alb_wall = MERGE( ind_alb_wall_gfl, ind_alb_wall_agfl, & surf_usm_v(l)%ground_level(m) ) ind_alb_win = MERGE( ind_alb_win_gfl, ind_alb_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_wall_frac = MERGE( ind_wall_frac_gfl, ind_wall_frac_agfl, & surf_usm_v(l)%ground_level(m) ) ind_win_frac = MERGE( ind_win_frac_gfl, ind_win_frac_agfl, & surf_usm_v(l)%ground_level(m) ) ind_green_frac_w = MERGE( ind_green_frac_w_gfl, ind_green_frac_w_agfl, & surf_usm_v(l)%ground_level(m) ) ind_green_frac_r = MERGE( ind_green_frac_r_gfl, ind_green_frac_r_agfl, & surf_usm_v(l)%ground_level(m) ) ind_lai_r = MERGE( ind_lai_r_gfl, ind_lai_r_agfl, & surf_usm_v(l)%ground_level(m) ) ind_lai_w = MERGE( ind_lai_w_gfl, ind_lai_w_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc1 = MERGE( ind_hc1_gfl, ind_hc1_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc1_win = MERGE( ind_hc1_win_gfl, ind_hc1_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc2 = MERGE( ind_hc2_gfl, ind_hc2_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc2_win = MERGE( ind_hc2_win_gfl, ind_hc2_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc3 = MERGE( ind_hc3_gfl, ind_hc3_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc3_win = MERGE( ind_hc3_win_gfl, ind_hc3_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc1 = MERGE( ind_tc1_gfl, ind_tc1_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc1_win = MERGE( ind_tc1_win_gfl, ind_tc1_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc2 = MERGE( ind_tc2_gfl, ind_tc2_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc2_win = MERGE( ind_tc2_win_gfl, ind_tc2_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc3 = MERGE( ind_tc3_gfl, ind_tc3_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc3_win = MERGE( ind_tc3_win_gfl, ind_tc3_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_1 = MERGE( ind_thick_1_gfl, ind_thick_1_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_1_win = MERGE( ind_thick_1_win_gfl, ind_thick_1_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_2 = MERGE( ind_thick_2_gfl, ind_thick_2_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_2_win = MERGE( ind_thick_2_win_gfl, ind_thick_2_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_3 = MERGE( ind_thick_3_gfl, ind_thick_3_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_3_win = MERGE( ind_thick_3_win_gfl, ind_thick_3_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_4 = MERGE( ind_thick_4_gfl, ind_thick_4_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_4_win = MERGE( ind_thick_4_win_gfl, ind_thick_4_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_emis_wall = MERGE( ind_emis_wall_gfl, ind_emis_wall_agfl, & surf_usm_v(l)%ground_level(m) ) ind_emis_green = MERGE( ind_emis_green_gfl, ind_emis_green_agfl, & surf_usm_v(l)%ground_level(m) ) ind_emis_win = MERGE( ind_emis_win_gfl, ind_emis_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_trans = MERGE( ind_trans_gfl, ind_trans_agfl, & surf_usm_v(l)%ground_level(m) ) ind_z0 = MERGE( ind_z0_gfl, ind_z0_agfl, & surf_usm_v(l)%ground_level(m) ) ind_z0qh = MERGE( ind_z0qh_gfl, ind_z0qh_agfl, & surf_usm_v(l)%ground_level(m) ) ! !-- Store building type and its name on each surface element surf_usm_v(l)%building_type(m) = building_type surf_usm_v(l)%building_type_name(m) = building_type_name(building_type) ! !-- Initialize relatvie wall- (0), green- (1) and window (2) fractions surf_usm_v(l)%frac(ind_veg_wall,m) = building_pars(ind_wall_frac,building_type) surf_usm_v(l)%frac(ind_pav_green,m) = building_pars(ind_green_frac_w,building_type) surf_usm_v(l)%frac(ind_wat_win,m) = building_pars(ind_win_frac,building_type) surf_usm_v(l)%lai(m) = building_pars(ind_lai_w,building_type) surf_usm_v(l)%rho_c_wall(nzb_wall,m) = building_pars(ind_hc1,building_type) surf_usm_v(l)%rho_c_wall(nzb_wall+1,m) = building_pars(ind_hc1,building_type) surf_usm_v(l)%rho_c_wall(nzb_wall+2,m) = building_pars(ind_hc2,building_type) surf_usm_v(l)%rho_c_wall(nzb_wall+3,m) = building_pars(ind_hc3,building_type) surf_usm_v(l)%rho_c_green(nzb_wall,m) = rho_c_soil !building_pars(ind_hc1,building_type) surf_usm_v(l)%rho_c_green(nzb_wall+1,m) = rho_c_soil !building_pars(ind_hc1,building_type) surf_usm_v(l)%rho_c_green(nzb_wall+2,m) = rho_c_soil !building_pars(ind_hc2,building_type) surf_usm_v(l)%rho_c_green(nzb_wall+3,m) = rho_c_soil !building_pars(ind_hc3,building_type) surf_usm_v(l)%rho_c_window(nzb_wall,m) = building_pars(ind_hc1_win,building_type) surf_usm_v(l)%rho_c_window(nzb_wall+1,m) = building_pars(ind_hc1_win,building_type) surf_usm_v(l)%rho_c_window(nzb_wall+2,m) = building_pars(ind_hc2_win,building_type) surf_usm_v(l)%rho_c_window(nzb_wall+3,m) = building_pars(ind_hc3_win,building_type) surf_usm_v(l)%lambda_h(nzb_wall,m) = building_pars(ind_tc1,building_type) surf_usm_v(l)%lambda_h(nzb_wall+1,m) = building_pars(ind_tc1,building_type) surf_usm_v(l)%lambda_h(nzb_wall+2,m) = building_pars(ind_tc2,building_type) surf_usm_v(l)%lambda_h(nzb_wall+3,m) = building_pars(ind_tc3,building_type) surf_usm_v(l)%lambda_h_green(nzb_wall,m) = lambda_h_green_sm !building_pars(ind_tc1,building_type) surf_usm_v(l)%lambda_h_green(nzb_wall+1,m) = lambda_h_green_sm !building_pars(ind_tc1,building_type) surf_usm_v(l)%lambda_h_green(nzb_wall+2,m) = lambda_h_green_sm !building_pars(ind_tc2,building_type) surf_usm_v(l)%lambda_h_green(nzb_wall+3,m) = lambda_h_green_sm !building_pars(ind_tc3,building_type) surf_usm_v(l)%lambda_h_window(nzb_wall,m) = building_pars(ind_tc1_win,building_type) surf_usm_v(l)%lambda_h_window(nzb_wall+1,m) = building_pars(ind_tc1_win,building_type) surf_usm_v(l)%lambda_h_window(nzb_wall+2,m) = building_pars(ind_tc2_win,building_type) surf_usm_v(l)%lambda_h_window(nzb_wall+3,m) = building_pars(ind_tc3_win,building_type) surf_usm_v(l)%target_temp_summer(m) = building_pars(ind_indoor_target_temp_summer,building_type) surf_usm_v(l)%target_temp_winter(m) = building_pars(ind_indoor_target_temp_winter,building_type) ! !-- emissivity of wall-, green- and window fraction surf_usm_v(l)%emissivity(ind_veg_wall,m) = building_pars(ind_emis_wall,building_type) surf_usm_v(l)%emissivity(ind_pav_green,m) = building_pars(ind_emis_green,building_type) surf_usm_v(l)%emissivity(ind_wat_win,m) = building_pars(ind_emis_win,building_type) surf_usm_v(l)%transmissivity(m) = building_pars(ind_trans,building_type) surf_usm_v(l)%z0(m) = building_pars(ind_z0,building_type) surf_usm_v(l)%z0h(m) = building_pars(ind_z0qh,building_type) surf_usm_v(l)%z0q(m) = building_pars(ind_z0qh,building_type) surf_usm_v(l)%albedo_type(ind_veg_wall,m) = INT( building_pars(ind_alb_wall,building_type) ) surf_usm_v(l)%albedo_type(ind_pav_green,m) = INT( building_pars(ind_alb_green,building_type) ) surf_usm_v(l)%albedo_type(ind_wat_win,m) = INT( building_pars(ind_alb_win,building_type) ) surf_usm_v(l)%zw(nzb_wall,m) = building_pars(ind_thick_1,building_type) surf_usm_v(l)%zw(nzb_wall+1,m) = building_pars(ind_thick_2,building_type) surf_usm_v(l)%zw(nzb_wall+2,m) = building_pars(ind_thick_3,building_type) surf_usm_v(l)%zw(nzb_wall+3,m) = building_pars(ind_thick_4,building_type) surf_usm_v(l)%zw_green(nzb_wall,m) = building_pars(ind_thick_1,building_type) surf_usm_v(l)%zw_green(nzb_wall+1,m) = building_pars(ind_thick_2,building_type) surf_usm_v(l)%zw_green(nzb_wall+2,m) = building_pars(ind_thick_3,building_type) surf_usm_v(l)%zw_green(nzb_wall+3,m) = building_pars(ind_thick_4,building_type) surf_usm_v(l)%zw_window(nzb_wall,m) = building_pars(ind_thick_1_win,building_type) surf_usm_v(l)%zw_window(nzb_wall+1,m) = building_pars(ind_thick_2_win,building_type) surf_usm_v(l)%zw_window(nzb_wall+2,m) = building_pars(ind_thick_3_win,building_type) surf_usm_v(l)%zw_window(nzb_wall+3,m) = building_pars(ind_thick_4_win,building_type) surf_usm_v(l)%c_surface(m) = building_pars(ind_c_surface,building_type) surf_usm_v(l)%lambda_surf(m) = building_pars(ind_lambda_surf,building_type) surf_usm_v(l)%c_surface_green(m) = building_pars(ind_c_surface_green,building_type) surf_usm_v(l)%lambda_surf_green(m) = building_pars(ind_lambda_surf_green,building_type) surf_usm_v(l)%c_surface_window(m) = building_pars(ind_c_surface_win,building_type) surf_usm_v(l)%lambda_surf_window(m) = building_pars(ind_lambda_surf_win,building_type) ENDDO ENDDO ! !-- Level 2 - initialization via building type read from file IF ( building_type_f%from_file ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) ! !-- For the moment, limit building type to 6 (to overcome errors in input file). st = building_type_f%var(j,i) IF ( st /= building_type_f%fill ) THEN ! !-- In order to distinguish between ground floor level and !-- above-ground-floor level surfaces, set input indices. ind_green_frac_r = MERGE( ind_green_frac_r_gfl, ind_green_frac_r_agfl, & surf_usm_h%ground_level(m) ) ind_lai_r = MERGE( ind_lai_r_gfl, ind_lai_r_agfl, & surf_usm_h%ground_level(m) ) ind_z0 = MERGE( ind_z0_gfl, ind_z0_agfl, & surf_usm_h%ground_level(m) ) ind_z0qh = MERGE( ind_z0qh_gfl, ind_z0qh_agfl, & surf_usm_h%ground_level(m) ) ! !-- Store building type and its name on each surface element surf_usm_h%building_type(m) = st surf_usm_h%building_type_name(m) = building_type_name(st) ! !-- Initialize relatvie wall- (0), green- (1) and window (2) fractions surf_usm_h%frac(ind_veg_wall,m) = building_pars(ind_wall_frac_r,st) surf_usm_h%frac(ind_pav_green,m) = building_pars(ind_green_frac_r,st) surf_usm_h%frac(ind_wat_win,m) = building_pars(ind_win_frac_r,st) surf_usm_h%lai(m) = building_pars(ind_lai_r,st) surf_usm_h%rho_c_wall(nzb_wall,m) = building_pars(ind_hc1_wall_r,st) surf_usm_h%rho_c_wall(nzb_wall+1,m) = building_pars(ind_hc1_wall_r,st) surf_usm_h%rho_c_wall(nzb_wall+2,m) = building_pars(ind_hc2_wall_r,st) surf_usm_h%rho_c_wall(nzb_wall+3,m) = building_pars(ind_hc3_wall_r,st) surf_usm_h%lambda_h(nzb_wall,m) = building_pars(ind_tc1_wall_r,st) surf_usm_h%lambda_h(nzb_wall+1,m) = building_pars(ind_tc1_wall_r,st) surf_usm_h%lambda_h(nzb_wall+2,m) = building_pars(ind_tc2_wall_r,st) surf_usm_h%lambda_h(nzb_wall+3,m) = building_pars(ind_tc3_wall_r,st) surf_usm_h%rho_c_green(nzb_wall,m) = rho_c_soil !building_pars(ind_hc1_wall_r,st) surf_usm_h%rho_c_green(nzb_wall+1,m) = rho_c_soil !building_pars(ind_hc1_wall_r,st) surf_usm_h%rho_c_green(nzb_wall+2,m) = rho_c_soil !building_pars(ind_hc2_wall_r,st) surf_usm_h%rho_c_green(nzb_wall+3,m) = rho_c_soil !building_pars(ind_hc3_wall_r,st) surf_usm_h%lambda_h_green(nzb_wall,m) = lambda_h_green_sm !building_pars(ind_tc1_wall_r,st) surf_usm_h%lambda_h_green(nzb_wall+1,m) = lambda_h_green_sm !building_pars(ind_tc1_wall_r,st) surf_usm_h%lambda_h_green(nzb_wall+2,m) = lambda_h_green_sm !building_pars(ind_tc2_wall_r,st) surf_usm_h%lambda_h_green(nzb_wall+3,m) = lambda_h_green_sm !building_pars(ind_tc3_wall_r,st) surf_usm_h%rho_c_window(nzb_wall,m) = building_pars(ind_hc1_win_r,st) surf_usm_h%rho_c_window(nzb_wall+1,m) = building_pars(ind_hc1_win_r,st) surf_usm_h%rho_c_window(nzb_wall+2,m) = building_pars(ind_hc2_win_r,st) surf_usm_h%rho_c_window(nzb_wall+3,m) = building_pars(ind_hc3_win_r,st) surf_usm_h%lambda_h_window(nzb_wall,m) = building_pars(ind_tc1_win_r,st) surf_usm_h%lambda_h_window(nzb_wall+1,m) = building_pars(ind_tc1_win_r,st) surf_usm_h%lambda_h_window(nzb_wall+2,m) = building_pars(ind_tc2_win_r,st) surf_usm_h%lambda_h_window(nzb_wall+3,m) = building_pars(ind_tc3_win_r,st) surf_usm_h%target_temp_summer(m) = building_pars(ind_indoor_target_temp_summer,st) surf_usm_h%target_temp_winter(m) = building_pars(ind_indoor_target_temp_winter,st) ! !-- emissivity of wall-, green- and window fraction surf_usm_h%emissivity(ind_veg_wall,m) = building_pars(ind_emis_wall_r,st) surf_usm_h%emissivity(ind_pav_green,m) = building_pars(ind_emis_green_r,st) surf_usm_h%emissivity(ind_wat_win,m) = building_pars(ind_emis_win_r,st) surf_usm_h%transmissivity(m) = building_pars(ind_trans_r,st) surf_usm_h%z0(m) = building_pars(ind_z0,st) surf_usm_h%z0h(m) = building_pars(ind_z0qh,st) surf_usm_h%z0q(m) = building_pars(ind_z0qh,st) ! !-- albedo type for wall fraction, green fraction, window fraction surf_usm_h%albedo_type(ind_veg_wall,m) = INT( building_pars(ind_alb_wall_r,st) ) surf_usm_h%albedo_type(ind_pav_green,m) = INT( building_pars(ind_alb_green_r,st) ) surf_usm_h%albedo_type(ind_wat_win,m) = INT( building_pars(ind_alb_win_r,st) ) surf_usm_h%zw(nzb_wall,m) = building_pars(ind_thick_1_wall_r,st) surf_usm_h%zw(nzb_wall+1,m) = building_pars(ind_thick_2_wall_r,st) surf_usm_h%zw(nzb_wall+2,m) = building_pars(ind_thick_3_wall_r,st) surf_usm_h%zw(nzb_wall+3,m) = building_pars(ind_thick_4_wall_r,st) surf_usm_h%zw_green(nzb_wall,m) = building_pars(ind_thick_1_wall_r,st) surf_usm_h%zw_green(nzb_wall+1,m) = building_pars(ind_thick_2_wall_r,st) surf_usm_h%zw_green(nzb_wall+2,m) = building_pars(ind_thick_3_wall_r,st) surf_usm_h%zw_green(nzb_wall+3,m) = building_pars(ind_thick_4_wall_r,st) surf_usm_h%zw_window(nzb_wall,m) = building_pars(ind_thick_1_win_r,st) surf_usm_h%zw_window(nzb_wall+1,m) = building_pars(ind_thick_2_win_r,st) surf_usm_h%zw_window(nzb_wall+2,m) = building_pars(ind_thick_3_win_r,st) surf_usm_h%zw_window(nzb_wall+3,m) = building_pars(ind_thick_4_win_r,st) surf_usm_h%c_surface(m) = building_pars(ind_c_surface,st) surf_usm_h%lambda_surf(m) = building_pars(ind_lambda_surf,st) surf_usm_h%c_surface_green(m) = building_pars(ind_c_surface_green,st) surf_usm_h%lambda_surf_green(m) = building_pars(ind_lambda_surf_green,st) surf_usm_h%c_surface_window(m) = building_pars(ind_c_surface_win,st) surf_usm_h%lambda_surf_window(m) = building_pars(ind_lambda_surf_win,st) surf_usm_h%green_type_roof(m) = building_pars(ind_green_type_roof,st) ENDIF ENDDO DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff ! !-- For the moment, limit building type to 6 (to overcome errors in input file). st = building_type_f%var(j,i) IF ( st /= building_type_f%fill ) THEN ! !-- In order to distinguish between ground floor level and !-- above-ground-floor level surfaces, set input indices. ind_alb_green = MERGE( ind_alb_green_gfl, ind_alb_green_agfl, & surf_usm_v(l)%ground_level(m) ) ind_alb_wall = MERGE( ind_alb_wall_gfl, ind_alb_wall_agfl, & surf_usm_v(l)%ground_level(m) ) ind_alb_win = MERGE( ind_alb_win_gfl, ind_alb_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_wall_frac = MERGE( ind_wall_frac_gfl, ind_wall_frac_agfl, & surf_usm_v(l)%ground_level(m) ) ind_win_frac = MERGE( ind_win_frac_gfl, ind_win_frac_agfl, & surf_usm_v(l)%ground_level(m) ) ind_green_frac_w = MERGE( ind_green_frac_w_gfl, ind_green_frac_w_agfl, & surf_usm_v(l)%ground_level(m) ) ind_green_frac_r = MERGE( ind_green_frac_r_gfl, ind_green_frac_r_agfl, & surf_usm_v(l)%ground_level(m) ) ind_lai_r = MERGE( ind_lai_r_gfl, ind_lai_r_agfl, & surf_usm_v(l)%ground_level(m) ) ind_lai_w = MERGE( ind_lai_w_gfl, ind_lai_w_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc1 = MERGE( ind_hc1_gfl, ind_hc1_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc1_win = MERGE( ind_hc1_win_gfl, ind_hc1_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc2 = MERGE( ind_hc2_gfl, ind_hc2_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc2_win = MERGE( ind_hc2_win_gfl, ind_hc2_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc3 = MERGE( ind_hc3_gfl, ind_hc3_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc3_win = MERGE( ind_hc3_win_gfl, ind_hc3_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc1 = MERGE( ind_tc1_gfl, ind_tc1_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc1_win = MERGE( ind_tc1_win_gfl, ind_tc1_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc2 = MERGE( ind_tc2_gfl, ind_tc2_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc2_win = MERGE( ind_tc2_win_gfl, ind_tc2_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc3 = MERGE( ind_tc3_gfl, ind_tc3_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc3_win = MERGE( ind_tc3_win_gfl, ind_tc3_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_1 = MERGE( ind_thick_1_gfl, ind_thick_1_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_1_win = MERGE( ind_thick_1_win_gfl, ind_thick_1_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_2 = MERGE( ind_thick_2_gfl, ind_thick_2_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_2_win = MERGE( ind_thick_2_win_gfl, ind_thick_2_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_3 = MERGE( ind_thick_3_gfl, ind_thick_3_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_3_win = MERGE( ind_thick_3_win_gfl, ind_thick_3_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_4 = MERGE( ind_thick_4_gfl, ind_thick_4_agfl, & surf_usm_v(l)%ground_level(m) ) ind_thick_4_win = MERGE( ind_thick_4_win_gfl, ind_thick_4_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_emis_wall = MERGE( ind_emis_wall_gfl, ind_emis_wall_agfl, & surf_usm_v(l)%ground_level(m) ) ind_emis_green = MERGE( ind_emis_green_gfl, ind_emis_green_agfl, & surf_usm_v(l)%ground_level(m) ) ind_emis_win = MERGE( ind_emis_win_gfl, ind_emis_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_trans = MERGE( ind_trans_gfl, ind_trans_agfl, & surf_usm_v(l)%ground_level(m) ) ind_z0 = MERGE( ind_z0_gfl, ind_z0_agfl, & surf_usm_v(l)%ground_level(m) ) ind_z0qh = MERGE( ind_z0qh_gfl, ind_z0qh_agfl, & surf_usm_v(l)%ground_level(m) ) ! !-- Store building type and its name on each surface element surf_usm_v(l)%building_type(m) = st surf_usm_v(l)%building_type_name(m) = building_type_name(st) ! !-- Initialize relatvie wall- (0), green- (1) and window (2) fractions surf_usm_v(l)%frac(ind_veg_wall,m) = building_pars(ind_wall_frac,st) surf_usm_v(l)%frac(ind_pav_green,m) = building_pars(ind_green_frac_w,st) surf_usm_v(l)%frac(ind_wat_win,m) = building_pars(ind_win_frac,st) surf_usm_v(l)%lai(m) = building_pars(ind_lai_w,st) surf_usm_v(l)%rho_c_wall(nzb_wall,m) = building_pars(ind_hc1,st) surf_usm_v(l)%rho_c_wall(nzb_wall+1,m) = building_pars(ind_hc1,st) surf_usm_v(l)%rho_c_wall(nzb_wall+2,m) = building_pars(ind_hc2,st) surf_usm_v(l)%rho_c_wall(nzb_wall+3,m) = building_pars(ind_hc3,st) surf_usm_v(l)%rho_c_green(nzb_wall,m) = rho_c_soil !building_pars(ind_hc1,st) surf_usm_v(l)%rho_c_green(nzb_wall+1,m) = rho_c_soil !building_pars(ind_hc1,st) surf_usm_v(l)%rho_c_green(nzb_wall+2,m) = rho_c_soil !building_pars(ind_hc2,st) surf_usm_v(l)%rho_c_green(nzb_wall+3,m) = rho_c_soil !building_pars(ind_hc3,st) surf_usm_v(l)%rho_c_window(nzb_wall,m) = building_pars(ind_hc1_win,st) surf_usm_v(l)%rho_c_window(nzb_wall+1,m) = building_pars(ind_hc1_win,st) surf_usm_v(l)%rho_c_window(nzb_wall+2,m) = building_pars(ind_hc2_win,st) surf_usm_v(l)%rho_c_window(nzb_wall+3,m) = building_pars(ind_hc3_win,st) surf_usm_v(l)%lambda_h(nzb_wall,m) = building_pars(ind_tc1,st) surf_usm_v(l)%lambda_h(nzb_wall+1,m) = building_pars(ind_tc1,st) surf_usm_v(l)%lambda_h(nzb_wall+2,m) = building_pars(ind_tc2,st) surf_usm_v(l)%lambda_h(nzb_wall+3,m) = building_pars(ind_tc3,st) surf_usm_v(l)%lambda_h_green(nzb_wall,m) = lambda_h_green_sm !building_pars(ind_tc1,st) surf_usm_v(l)%lambda_h_green(nzb_wall+1,m) = lambda_h_green_sm !building_pars(ind_tc1,st) surf_usm_v(l)%lambda_h_green(nzb_wall+2,m) = lambda_h_green_sm !building_pars(ind_tc2,st) surf_usm_v(l)%lambda_h_green(nzb_wall+3,m) = lambda_h_green_sm !building_pars(ind_tc3,st) surf_usm_v(l)%lambda_h_window(nzb_wall,m) = building_pars(ind_tc1_win,st) surf_usm_v(l)%lambda_h_window(nzb_wall+1,m) = building_pars(ind_tc1_win,st) surf_usm_v(l)%lambda_h_window(nzb_wall+2,m) = building_pars(ind_tc2_win,st) surf_usm_v(l)%lambda_h_window(nzb_wall+3,m) = building_pars(ind_tc3_win,st) surf_usm_v(l)%target_temp_summer(m) = building_pars(ind_indoor_target_temp_summer,st) surf_usm_v(l)%target_temp_winter(m) = building_pars(ind_indoor_target_temp_winter,st) ! !-- emissivity of wall-, green- and window fraction surf_usm_v(l)%emissivity(ind_veg_wall,m) = building_pars(ind_emis_wall,st) surf_usm_v(l)%emissivity(ind_pav_green,m) = building_pars(ind_emis_green,st) surf_usm_v(l)%emissivity(ind_wat_win,m) = building_pars(ind_emis_win,st) surf_usm_v(l)%transmissivity(m) = building_pars(ind_trans,st) surf_usm_v(l)%z0(m) = building_pars(ind_z0,st) surf_usm_v(l)%z0h(m) = building_pars(ind_z0qh,st) surf_usm_v(l)%z0q(m) = building_pars(ind_z0qh,st) surf_usm_v(l)%albedo_type(ind_veg_wall,m) = INT( building_pars(ind_alb_wall,st) ) surf_usm_v(l)%albedo_type(ind_pav_green,m) = INT( building_pars(ind_alb_green,st) ) surf_usm_v(l)%albedo_type(ind_wat_win,m) = INT( building_pars(ind_alb_win,st) ) surf_usm_v(l)%zw(nzb_wall,m) = building_pars(ind_thick_1,st) surf_usm_v(l)%zw(nzb_wall+1,m) = building_pars(ind_thick_2,st) surf_usm_v(l)%zw(nzb_wall+2,m) = building_pars(ind_thick_3,st) surf_usm_v(l)%zw(nzb_wall+3,m) = building_pars(ind_thick_4,st) surf_usm_v(l)%zw_green(nzb_wall,m) = building_pars(ind_thick_1,st) surf_usm_v(l)%zw_green(nzb_wall+1,m) = building_pars(ind_thick_2,st) surf_usm_v(l)%zw_green(nzb_wall+2,m) = building_pars(ind_thick_3,st) surf_usm_v(l)%zw_green(nzb_wall+3,m) = building_pars(ind_thick_4,st) surf_usm_v(l)%zw_window(nzb_wall,m) = building_pars(ind_thick_1_win,st) surf_usm_v(l)%zw_window(nzb_wall+1,m) = building_pars(ind_thick_2_win,st) surf_usm_v(l)%zw_window(nzb_wall+2,m) = building_pars(ind_thick_3_win,st) surf_usm_v(l)%zw_window(nzb_wall+3,m) = building_pars(ind_thick_4_win,st) surf_usm_v(l)%c_surface(m) = building_pars(ind_c_surface,st) surf_usm_v(l)%lambda_surf(m) = building_pars(ind_lambda_surf,st) surf_usm_v(l)%c_surface_green(m) = building_pars(ind_c_surface_green,st) surf_usm_v(l)%lambda_surf_green(m) = building_pars(ind_lambda_surf_green,st) surf_usm_v(l)%c_surface_window(m) = building_pars(ind_c_surface_win,st) surf_usm_v(l)%lambda_surf_window(m) = building_pars(ind_lambda_surf_win,st) ENDIF ENDDO ENDDO ENDIF ! !-- Level 3 - initialization via building_pars read from file. Note, only !-- variables that are also defined in the input-standard can be initialized !-- via file. Other variables will be initialized on level 1 or 2. IF ( building_pars_f%from_file ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) ! !-- In order to distinguish between ground floor level and !-- above-ground-floor level surfaces, set input indices. ind_wall_frac = MERGE( ind_wall_frac_gfl, & ind_wall_frac_agfl, & surf_usm_h%ground_level(m) ) ind_green_frac_r = MERGE( ind_green_frac_r_gfl, & ind_green_frac_r_agfl, & surf_usm_h%ground_level(m) ) ind_win_frac = MERGE( ind_win_frac_gfl, & ind_win_frac_agfl, & surf_usm_h%ground_level(m) ) ind_lai_r = MERGE( ind_lai_r_gfl, & ind_lai_r_agfl, & surf_usm_h%ground_level(m) ) ind_z0 = MERGE( ind_z0_gfl, & ind_z0_agfl, & surf_usm_h%ground_level(m) ) ind_z0qh = MERGE( ind_z0qh_gfl, & ind_z0qh_agfl, & surf_usm_h%ground_level(m) ) ind_hc1 = MERGE( ind_hc1_gfl, & ind_hc1_agfl, & surf_usm_h%ground_level(m) ) ind_hc2 = MERGE( ind_hc2_gfl, & ind_hc2_agfl, & surf_usm_h%ground_level(m) ) ind_hc3 = MERGE( ind_hc3_gfl, & ind_hc3_agfl, & surf_usm_h%ground_level(m) ) ind_tc1 = MERGE( ind_tc1_gfl, & ind_tc1_agfl, & surf_usm_h%ground_level(m) ) ind_tc2 = MERGE( ind_tc2_gfl, & ind_tc2_agfl, & surf_usm_h%ground_level(m) ) ind_tc3 = MERGE( ind_tc3_gfl, & ind_tc3_agfl, & surf_usm_h%ground_level(m) ) ind_emis_wall = MERGE( ind_emis_wall_gfl, & ind_emis_wall_agfl, & surf_usm_h%ground_level(m) ) ind_emis_green = MERGE( ind_emis_green_gfl, & ind_emis_green_agfl, & surf_usm_h%ground_level(m) ) ind_emis_win = MERGE( ind_emis_win_gfl, & ind_emis_win_agfl, & surf_usm_h%ground_level(m) ) ind_trans = MERGE( ind_trans_gfl, & ind_trans_agfl, & surf_usm_h%ground_level(m) ) ! !-- Initialize relatvie wall- (0), green- (1) and window (2) fractions IF ( building_pars_f%pars_xy(ind_wall_frac,j,i) /= & building_pars_f%fill ) & surf_usm_h%frac(ind_veg_wall,m) = & building_pars_f%pars_xy(ind_wall_frac,j,i) IF ( building_pars_f%pars_xy(ind_green_frac_r,j,i) /= & building_pars_f%fill ) & surf_usm_h%frac(ind_pav_green,m) = & building_pars_f%pars_xy(ind_green_frac_r,j,i) IF ( building_pars_f%pars_xy(ind_win_frac,j,i) /= & building_pars_f%fill ) & surf_usm_h%frac(ind_wat_win,m) = & building_pars_f%pars_xy(ind_win_frac,j,i) IF ( building_pars_f%pars_xy(ind_lai_r,j,i) /= & building_pars_f%fill ) & surf_usm_h%lai(m) = building_pars_f%pars_xy(ind_lai_r,j,i) IF ( building_pars_f%pars_xy(ind_hc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_h%rho_c_wall(nzb_wall,m) = & building_pars_f%pars_xy(ind_hc1,j,i) surf_usm_h%rho_c_wall(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_hc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_hc2,j,i) /= & building_pars_f%fill ) & surf_usm_h%rho_c_wall(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_hc2,j,i) IF ( building_pars_f%pars_xy(ind_hc3,j,i) /= & building_pars_f%fill ) & surf_usm_h%rho_c_wall(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_hc3,j,i) IF ( building_pars_f%pars_xy(ind_hc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_h%rho_c_green(nzb_wall,m) = & building_pars_f%pars_xy(ind_hc1,j,i) surf_usm_h%rho_c_green(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_hc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_hc2,j,i) /= & building_pars_f%fill ) & surf_usm_h%rho_c_green(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_hc2,j,i) IF ( building_pars_f%pars_xy(ind_hc3,j,i) /= & building_pars_f%fill ) & surf_usm_h%rho_c_green(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_hc3,j,i) IF ( building_pars_f%pars_xy(ind_hc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_h%rho_c_window(nzb_wall,m) = & building_pars_f%pars_xy(ind_hc1,j,i) surf_usm_h%rho_c_window(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_hc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_hc2,j,i) /= & building_pars_f%fill ) & surf_usm_h%rho_c_window(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_hc2,j,i) IF ( building_pars_f%pars_xy(ind_hc3,j,i) /= & building_pars_f%fill ) & surf_usm_h%rho_c_window(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_hc3,j,i) IF ( building_pars_f%pars_xy(ind_tc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_h%lambda_h(nzb_wall,m) = & building_pars_f%pars_xy(ind_tc1,j,i) surf_usm_h%lambda_h(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_tc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_tc2,j,i) /= & building_pars_f%fill ) & surf_usm_h%lambda_h(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_tc2,j,i) IF ( building_pars_f%pars_xy(ind_tc3,j,i) /= & building_pars_f%fill ) & surf_usm_h%lambda_h(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_tc3,j,i) IF ( building_pars_f%pars_xy(ind_tc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_h%lambda_h_green(nzb_wall,m) = & building_pars_f%pars_xy(ind_tc1,j,i) surf_usm_h%lambda_h_green(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_tc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_tc2,j,i) /= & building_pars_f%fill ) & surf_usm_h%lambda_h_green(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_tc2,j,i) IF ( building_pars_f%pars_xy(ind_tc3,j,i) /= & building_pars_f%fill ) & surf_usm_h%lambda_h_green(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_tc3,j,i) IF ( building_pars_f%pars_xy(ind_tc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_h%lambda_h_window(nzb_wall,m) = & building_pars_f%pars_xy(ind_tc1,j,i) surf_usm_h%lambda_h_window(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_tc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_tc2,j,i) /= & building_pars_f%fill ) & surf_usm_h%lambda_h_window(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_tc2,j,i) IF ( building_pars_f%pars_xy(ind_tc3,j,i) /= & building_pars_f%fill ) & surf_usm_h%lambda_h_window(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_tc3,j,i) IF ( building_pars_f%pars_xy(ind_indoor_target_temp_summer,j,i) /=& building_pars_f%fill ) & surf_usm_h%target_temp_summer(m) = & building_pars_f%pars_xy(ind_indoor_target_temp_summer,j,i) IF ( building_pars_f%pars_xy(ind_indoor_target_temp_winter,j,i) /=& building_pars_f%fill ) & surf_usm_h%target_temp_winter(m) = & building_pars_f%pars_xy(ind_indoor_target_temp_winter,j,i) IF ( building_pars_f%pars_xy(ind_emis_wall,j,i) /= & building_pars_f%fill ) & surf_usm_h%emissivity(ind_veg_wall,m) = & building_pars_f%pars_xy(ind_emis_wall,j,i) IF ( building_pars_f%pars_xy(ind_emis_green,j,i) /= & building_pars_f%fill ) & surf_usm_h%emissivity(ind_pav_green,m) = & building_pars_f%pars_xy(ind_emis_green,j,i) IF ( building_pars_f%pars_xy(ind_emis_win,j,i) /= & building_pars_f%fill ) & surf_usm_h%emissivity(ind_wat_win,m) = & building_pars_f%pars_xy(ind_emis_win,j,i) IF ( building_pars_f%pars_xy(ind_trans,j,i) /= & building_pars_f%fill ) & surf_usm_h%transmissivity(m) = & building_pars_f%pars_xy(ind_trans,j,i) IF ( building_pars_f%pars_xy(ind_z0,j,i) /= & building_pars_f%fill ) & surf_usm_h%z0(m) = building_pars_f%pars_xy(ind_z0,j,i) IF ( building_pars_f%pars_xy(ind_z0qh,j,i) /= & building_pars_f%fill ) & surf_usm_h%z0h(m) = building_pars_f%pars_xy(ind_z0qh,j,i) IF ( building_pars_f%pars_xy(ind_z0qh,j,i) /= & building_pars_f%fill ) & surf_usm_h%z0q(m) = building_pars_f%pars_xy(ind_z0qh,j,i) IF ( building_pars_f%pars_xy(ind_alb_wall_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%albedo_type(ind_veg_wall,m) = & building_pars_f%pars_xy(ind_alb_wall_agfl,j,i) IF ( building_pars_f%pars_xy(ind_alb_green_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%albedo_type(ind_pav_green,m) = & building_pars_f%pars_xy(ind_alb_green_agfl,j,i) IF ( building_pars_f%pars_xy(ind_alb_win_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%albedo_type(ind_wat_win,m) = & building_pars_f%pars_xy(ind_alb_win_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_1_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%zw(nzb_wall,m) = & building_pars_f%pars_xy(ind_thick_1_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_2_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%zw(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_thick_2_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_3_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%zw(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_thick_3_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_4_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%zw(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_thick_4_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_1_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%zw_green(nzb_wall,m) = & building_pars_f%pars_xy(ind_thick_1_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_2_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%zw_green(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_thick_2_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_3_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%zw_green(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_thick_3_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_4_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_h%zw_green(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_thick_4_agfl,j,i) IF ( building_pars_f%pars_xy(ind_c_surface,j,i) /= & building_pars_f%fill ) & surf_usm_h%c_surface(m) = & building_pars_f%pars_xy(ind_c_surface,j,i) IF ( building_pars_f%pars_xy(ind_lambda_surf,j,i) /= & building_pars_f%fill ) & surf_usm_h%lambda_surf(m) = & building_pars_f%pars_xy(ind_lambda_surf,j,i) ENDDO DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) + surf_usm_v(l)%ioff j = surf_usm_v(l)%j(m) + surf_usm_v(l)%joff ! !-- In order to distinguish between ground floor level and !-- above-ground-floor level surfaces, set input indices. ind_wall_frac = MERGE( ind_wall_frac_gfl, & ind_wall_frac_agfl, & surf_usm_v(l)%ground_level(m) ) ind_green_frac_w = MERGE( ind_green_frac_w_gfl, & ind_green_frac_w_agfl, & surf_usm_v(l)%ground_level(m) ) ind_win_frac = MERGE( ind_win_frac_gfl, & ind_win_frac_agfl, & surf_usm_v(l)%ground_level(m) ) ind_lai_w = MERGE( ind_lai_w_gfl, & ind_lai_w_agfl, & surf_usm_v(l)%ground_level(m) ) ind_z0 = MERGE( ind_z0_gfl, & ind_z0_agfl, & surf_usm_v(l)%ground_level(m) ) ind_z0qh = MERGE( ind_z0qh_gfl, & ind_z0qh_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc1 = MERGE( ind_hc1_gfl, & ind_hc1_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc2 = MERGE( ind_hc2_gfl, & ind_hc2_agfl, & surf_usm_v(l)%ground_level(m) ) ind_hc3 = MERGE( ind_hc3_gfl, & ind_hc3_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc1 = MERGE( ind_tc1_gfl, & ind_tc1_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc2 = MERGE( ind_tc2_gfl, & ind_tc2_agfl, & surf_usm_v(l)%ground_level(m) ) ind_tc3 = MERGE( ind_tc3_gfl, & ind_tc3_agfl, & surf_usm_v(l)%ground_level(m) ) ind_emis_wall = MERGE( ind_emis_wall_gfl, & ind_emis_wall_agfl, & surf_usm_v(l)%ground_level(m) ) ind_emis_green = MERGE( ind_emis_green_gfl, & ind_emis_green_agfl, & surf_usm_v(l)%ground_level(m) ) ind_emis_win = MERGE( ind_emis_win_gfl, & ind_emis_win_agfl, & surf_usm_v(l)%ground_level(m) ) ind_trans = MERGE( ind_trans_gfl, & ind_trans_agfl, & surf_usm_v(l)%ground_level(m) ) ! !-- Initialize relatvie wall- (0), green- (1) and window (2) fractions IF ( building_pars_f%pars_xy(ind_wall_frac,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%frac(ind_veg_wall,m) = & building_pars_f%pars_xy(ind_wall_frac,j,i) IF ( building_pars_f%pars_xy(ind_green_frac_w,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%frac(ind_pav_green,m) = & building_pars_f%pars_xy(ind_green_frac_w,j,i) IF ( building_pars_f%pars_xy(ind_win_frac,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%frac(ind_wat_win,m) = & building_pars_f%pars_xy(ind_win_frac,j,i) IF ( building_pars_f%pars_xy(ind_lai_w,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%lai(m) = & building_pars_f%pars_xy(ind_lai_w,j,i) IF ( building_pars_f%pars_xy(ind_hc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_v(l)%rho_c_wall(nzb_wall,m) = & building_pars_f%pars_xy(ind_hc1,j,i) surf_usm_v(l)%rho_c_wall(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_hc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_hc2,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%rho_c_wall(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_hc2,j,i) IF ( building_pars_f%pars_xy(ind_hc3,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%rho_c_wall(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_hc3,j,i) IF ( building_pars_f%pars_xy(ind_hc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_v(l)%rho_c_green(nzb_wall,m) = & building_pars_f%pars_xy(ind_hc1,j,i) surf_usm_v(l)%rho_c_green(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_hc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_hc2,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%rho_c_green(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_hc2,j,i) IF ( building_pars_f%pars_xy(ind_hc3,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%rho_c_green(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_hc3,j,i) IF ( building_pars_f%pars_xy(ind_hc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_v(l)%rho_c_window(nzb_wall,m) = & building_pars_f%pars_xy(ind_hc1,j,i) surf_usm_v(l)%rho_c_window(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_hc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_hc2,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%rho_c_window(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_hc2,j,i) IF ( building_pars_f%pars_xy(ind_hc3,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%rho_c_window(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_hc3,j,i) IF ( building_pars_f%pars_xy(ind_tc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_v(l)%lambda_h(nzb_wall,m) = & building_pars_f%pars_xy(ind_tc1,j,i) surf_usm_v(l)%lambda_h(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_tc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_tc2,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%lambda_h(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_tc2,j,i) IF ( building_pars_f%pars_xy(ind_tc3,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%lambda_h(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_tc3,j,i) IF ( building_pars_f%pars_xy(ind_tc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_v(l)%lambda_h_green(nzb_wall,m) = & building_pars_f%pars_xy(ind_tc1,j,i) surf_usm_v(l)%lambda_h_green(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_tc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_tc2,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%lambda_h_green(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_tc2,j,i) IF ( building_pars_f%pars_xy(ind_tc3,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%lambda_h_green(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_tc3,j,i) IF ( building_pars_f%pars_xy(ind_tc1,j,i) /= & building_pars_f%fill ) THEN surf_usm_v(l)%lambda_h_window(nzb_wall,m) = & building_pars_f%pars_xy(ind_tc1,j,i) surf_usm_v(l)%lambda_h_window(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_tc1,j,i) ENDIF IF ( building_pars_f%pars_xy(ind_tc2,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%lambda_h_window(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_tc2,j,i) IF ( building_pars_f%pars_xy(ind_tc3,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%lambda_h_window(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_tc3,j,i) IF ( building_pars_f%pars_xy(ind_indoor_target_temp_summer,j,i) /=& building_pars_f%fill ) & surf_usm_v(l)%target_temp_summer(m) = & building_pars_f%pars_xy(ind_indoor_target_temp_summer,j,i) IF ( building_pars_f%pars_xy(ind_indoor_target_temp_winter,j,i) /=& building_pars_f%fill ) & surf_usm_v(l)%target_temp_winter(m) = & building_pars_f%pars_xy(ind_indoor_target_temp_winter,j,i) IF ( building_pars_f%pars_xy(ind_emis_wall,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%emissivity(ind_veg_wall,m) = & building_pars_f%pars_xy(ind_emis_wall,j,i) IF ( building_pars_f%pars_xy(ind_emis_green,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%emissivity(ind_pav_green,m) = & building_pars_f%pars_xy(ind_emis_green,j,i) IF ( building_pars_f%pars_xy(ind_emis_win,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%emissivity(ind_wat_win,m) = & building_pars_f%pars_xy(ind_emis_win,j,i) IF ( building_pars_f%pars_xy(ind_trans,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%transmissivity(m) = & building_pars_f%pars_xy(ind_trans,j,i) IF ( building_pars_f%pars_xy(ind_z0,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%z0(m) = building_pars_f%pars_xy(ind_z0,j,i) IF ( building_pars_f%pars_xy(ind_z0qh,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%z0h(m) = & building_pars_f%pars_xy(ind_z0qh,j,i) IF ( building_pars_f%pars_xy(ind_z0qh,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%z0q(m) = & building_pars_f%pars_xy(ind_z0qh,j,i) IF ( building_pars_f%pars_xy(ind_alb_wall_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%albedo_type(ind_veg_wall,m) = & building_pars_f%pars_xy(ind_alb_wall_agfl,j,i) IF ( building_pars_f%pars_xy(ind_alb_green_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%albedo_type(ind_pav_green,m) = & building_pars_f%pars_xy(ind_alb_green_agfl,j,i) IF ( building_pars_f%pars_xy(ind_alb_win_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%albedo_type(ind_wat_win,m) = & building_pars_f%pars_xy(ind_alb_win_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_1_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%zw(nzb_wall,m) = & building_pars_f%pars_xy(ind_thick_1_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_2_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%zw(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_thick_2_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_3_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%zw(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_thick_3_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_4_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%zw(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_thick_4_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_1_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%zw_green(nzb_wall,m) = & building_pars_f%pars_xy(ind_thick_1_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_2_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%zw_green(nzb_wall+1,m) = & building_pars_f%pars_xy(ind_thick_2_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_3_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%zw_green(nzb_wall+2,m) = & building_pars_f%pars_xy(ind_thick_3_agfl,j,i) IF ( building_pars_f%pars_xy(ind_thick_4_agfl,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%zw_green(nzb_wall+3,m) = & building_pars_f%pars_xy(ind_thick_4_agfl,j,i) IF ( building_pars_f%pars_xy(ind_c_surface,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%c_surface(m) = & building_pars_f%pars_xy(ind_c_surface,j,i) IF ( building_pars_f%pars_xy(ind_lambda_surf,j,i) /= & building_pars_f%fill ) & surf_usm_v(l)%lambda_surf(m) = & building_pars_f%pars_xy(ind_lambda_surf,j,i) ENDDO ENDDO ENDIF ! !-- Read the surface_types array. !-- Please note, here also initialization of surface attributes is done as !-- long as _urbsurf and _surfpar files are available. Values from above !-- will be overwritten. This might be removed later, but is still in the !-- code to enable compatibility with older model version. CALL usm_read_urban_surface_types() CALL usm_init_material_model() ! !-- init anthropogenic sources of heat IF ( usm_anthropogenic_heat ) THEN ! !-- init anthropogenic sources of heat (from transportation for now) CALL usm_read_anthropogenic_heat() ENDIF ! !-- Check for consistent initialization. !-- Check if roughness length for momentum, or heat, exceed surface-layer !-- height and decrease local roughness length where necessary. DO m = 1, surf_usm_h%ns IF ( surf_usm_h%z0(m) >= surf_usm_h%z_mo(m) ) THEN surf_usm_h%z0(m) = 0.9_wp * surf_usm_h%z_mo(m) WRITE( message_string, * ) 'z0 exceeds surface-layer height ' // & 'at horizontal urban surface and is ' // & 'decreased appropriately at grid point (i,j) = ', & surf_usm_h%i(m), surf_usm_h%j(m) CALL message( 'urban_surface_model_mod', 'PA0503', & 0, 0, 0, 6, 0 ) ENDIF IF ( surf_usm_h%z0h(m) >= surf_usm_h%z_mo(m) ) THEN surf_usm_h%z0h(m) = 0.9_wp * surf_usm_h%z_mo(m) surf_usm_h%z0q(m) = 0.9_wp * surf_usm_h%z_mo(m) WRITE( message_string, * ) 'z0h exceeds surface-layer height ' // & 'at horizontal urban surface and is ' // & 'decreased appropriately at grid point (i,j) = ', & surf_usm_h%i(m), surf_usm_h%j(m) CALL message( 'urban_surface_model_mod', 'PA0507', & 0, 0, 0, 6, 0 ) ENDIF ENDDO DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns IF ( surf_usm_v(l)%z0(m) >= surf_usm_v(l)%z_mo(m) ) THEN surf_usm_v(l)%z0(m) = 0.9_wp * surf_usm_v(l)%z_mo(m) WRITE( message_string, * ) 'z0 exceeds surface-layer height '// & 'at vertical urban surface and is ' // & 'decreased appropriately at grid point (i,j) = ', & surf_usm_v(l)%i(m)+surf_usm_v(l)%ioff, & surf_usm_v(l)%j(m)+surf_usm_v(l)%joff CALL message( 'urban_surface_model_mod', 'PA0503', & 0, 0, 0, 6, 0 ) ENDIF IF ( surf_usm_v(l)%z0h(m) >= surf_usm_v(l)%z_mo(m) ) THEN surf_usm_v(l)%z0h(m) = 0.9_wp * surf_usm_v(l)%z_mo(m) surf_usm_v(l)%z0q(m) = 0.9_wp * surf_usm_v(l)%z_mo(m) WRITE( message_string, * ) 'z0h exceeds surface-layer height '// & 'at vertical urban surface and is ' // & 'decreased appropriately at grid point (i,j) = ', & surf_usm_v(l)%i(m)+surf_usm_v(l)%ioff, & surf_usm_v(l)%j(m)+surf_usm_v(l)%joff CALL message( 'urban_surface_model_mod', 'PA0507', & 0, 0, 0, 6, 0 ) ENDIF ENDDO ENDDO ! !-- Intitialization of the surface and wall/ground/roof temperature ! !-- Initialization for restart runs IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN ! !-- At horizontal surfaces. Please note, t_surf_wall_h is defined on a !-- different data type, but with the same dimension. DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) t_surf_wall_h(m) = pt(k,j,i) * exner(k) t_surf_window_h(m) = pt(k,j,i) * exner(k) t_surf_green_h(m) = pt(k,j,i) * exner(k) surf_usm_h%pt_surface(m) = pt(k,j,i) * exner(k) ENDDO ! !-- At vertical surfaces. DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) t_surf_wall_v(l)%t(m) = pt(k,j,i) * exner(k) t_surf_window_v(l)%t(m) = pt(k,j,i) * exner(k) t_surf_green_v(l)%t(m) = pt(k,j,i) * exner(k) surf_usm_v(l)%pt_surface(m) = pt(k,j,i) * exner(k) ENDDO ENDDO ! !-- For the sake of correct initialization, set also q_surface. !-- Note, at urban surfaces q_surface is initialized with 0. IF ( humidity ) THEN DO m = 1, surf_usm_h%ns surf_usm_h%q_surface(m) = 0.0_wp ENDDO DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns surf_usm_v(l)%q_surface(m) = 0.0_wp ENDDO ENDDO ENDIF ! !-- initial values for t_wall !-- outer value is set to surface temperature !-- inner value is set to wall_inner_temperature !-- and profile is logaritmic (linear in nz). !-- Horizontal surfaces DO m = 1, surf_usm_h%ns ! !-- Roof IF ( surf_usm_h%isroof_surf(m) ) THEN tin = roof_inner_temperature twin = window_inner_temperature ! !-- Normal land surface ELSE tin = soil_inner_temperature twin = window_inner_temperature ENDIF DO k = nzb_wall, nzt_wall+1 c = REAL( k - nzb_wall, wp ) / & REAL( nzt_wall + 1 - nzb_wall , wp ) t_wall_h(k,m) = ( 1.0_wp - c ) * t_surf_wall_h(m) + c * tin t_window_h(k,m) = ( 1.0_wp - c ) * t_surf_window_h(m) + c * twin t_green_h(k,m) = t_surf_wall_h(m) swc_h(k,m) = 0.5_wp swc_sat_h(k,m) = 0.95_wp swc_res_h(k,m) = 0.05_wp rootfr_h(k,m) = 0.1_wp wilt_h(k,m) = 0.1_wp fc_h(k,m) = 0.9_wp ENDDO ENDDO ! !-- Vertical surfaces DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns ! !-- Inner wall tin = wall_inner_temperature twin = window_inner_temperature DO k = nzb_wall, nzt_wall+1 c = REAL( k - nzb_wall, wp ) / & REAL( nzt_wall + 1 - nzb_wall , wp ) t_wall_v(l)%t(k,m) = ( 1.0_wp - c ) * t_surf_wall_v(l)%t(m) + c * tin t_window_v(l)%t(k,m) = ( 1.0_wp - c ) * t_surf_window_v(l)%t(m) + c * twin t_green_v(l)%t(k,m) = t_surf_wall_v(l)%t(m) swc_v(l)%t(k,m) = 0.5_wp ENDDO ENDDO ENDDO ENDIF ! !-- If specified, replace constant wall temperatures with fully 3D values from file IF ( read_wall_temp_3d ) CALL usm_read_wall_temperature() !-- !-- Possibly DO user-defined actions (e.g. define heterogeneous wall surface) CALL user_init_urban_surface ! !-- initialize prognostic values for the first timestep t_surf_wall_h_p = t_surf_wall_h t_surf_wall_v_p = t_surf_wall_v t_surf_window_h_p = t_surf_window_h t_surf_window_v_p = t_surf_window_v t_surf_green_h_p = t_surf_green_h t_surf_green_v_p = t_surf_green_v t_wall_h_p = t_wall_h t_wall_v_p = t_wall_v t_window_h_p = t_window_h t_window_v_p = t_window_v t_green_h_p = t_green_h t_green_v_p = t_green_v ! !-- Adjust radiative fluxes for urban surface at model start !CALL radiation_interaction !-- TODO: interaction should be called once before first output, !-- that is not yet possible. m_liq_usm_h_p = m_liq_usm_h m_liq_usm_v_p = m_liq_usm_v ! !-- Set initial values for prognostic quantities !-- Horizontal surfaces tm_liq_usm_h_m%var_usm_1d = 0.0_wp surf_usm_h%c_liq = 0.0_wp surf_usm_h%qsws_liq = 0.0_wp surf_usm_h%qsws_veg = 0.0_wp ! !-- Do the same for vertical surfaces DO l = 0, 3 tm_liq_usm_v_m(l)%var_usm_1d = 0.0_wp surf_usm_v(l)%c_liq = 0.0_wp surf_usm_v(l)%qsws_liq = 0.0_wp surf_usm_v(l)%qsws_veg = 0.0_wp ENDDO ! !-- Set initial values for prognostic soil quantities IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN m_liq_usm_h%var_usm_1d = 0.0_wp DO l = 0, 3 m_liq_usm_v(l)%var_usm_1d = 0.0_wp ENDDO ENDIF CALL cpu_log( log_point_s(78), 'usm_init', 'stop' ) IF ( debug_output ) CALL debug_message( 'usm_init', 'end' ) END SUBROUTINE usm_init !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> Wall model as part of the urban surface model. The model predicts vertical !> and horizontal wall / roof temperatures and window layer temperatures. !> No window layer temperature calculactions during spinup to increase !> possible timestep. !------------------------------------------------------------------------------! SUBROUTINE usm_material_heat_model( during_spinup ) IMPLICIT NONE INTEGER(iwp) :: i,j,k,l,kw, m !< running indices REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: wtend, wintend !< tendency REAL(wp) :: win_absorp !< absorption coefficient from transmissivity REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: wall_mod LOGICAL :: during_spinup !< if true, no calculation of window temperatures IF ( debug_output_timestep ) THEN WRITE( debug_string, * ) 'usm_material_heat_model | during_spinup: ',& during_spinup CALL debug_message( debug_string, 'start' ) ENDIF !$OMP PARALLEL PRIVATE (m, i, j, k, kw, wtend, wintend, win_absorp, wall_mod) wall_mod=1.0_wp IF ( usm_wall_mod .AND. during_spinup ) THEN DO kw=nzb_wall,nzb_wall+1 wall_mod(kw)=0.1_wp ENDDO ENDIF ! !-- For horizontal surfaces !$OMP DO SCHEDULE (STATIC) DO m = 1, surf_usm_h%ns ! !-- Obtain indices i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) ! !-- prognostic equation for ground/roof temperature t_wall_h wtend(:) = 0.0_wp wtend(nzb_wall) = (1.0_wp / surf_usm_h%rho_c_wall(nzb_wall,m)) * & ( surf_usm_h%lambda_h(nzb_wall,m) * wall_mod(nzb_wall) * & ( t_wall_h(nzb_wall+1,m) & - t_wall_h(nzb_wall,m) ) * & surf_usm_h%ddz_wall(nzb_wall+1,m) & + surf_usm_h%frac(ind_veg_wall,m) & / (surf_usm_h%frac(ind_veg_wall,m) & + surf_usm_h%frac(ind_pav_green,m) ) & * surf_usm_h%wghf_eb(m) & - surf_usm_h%frac(ind_pav_green,m) & / (surf_usm_h%frac(ind_veg_wall,m) & + surf_usm_h%frac(ind_pav_green,m) ) & * ( surf_usm_h%lambda_h_green(nzt_wall,m)* wall_mod(nzt_wall) & * surf_usm_h%ddz_green(nzt_wall,m) & + surf_usm_h%lambda_h(nzb_wall,m) * wall_mod(nzb_wall) & * surf_usm_h%ddz_wall(nzb_wall,m) ) & / ( surf_usm_h%ddz_green(nzt_wall,m) & + surf_usm_h%ddz_wall(nzb_wall,m) ) & * ( t_wall_h(nzb_wall,m) & - t_green_h(nzt_wall,m) ) ) * & surf_usm_h%ddz_wall_stag(nzb_wall,m) ! !-- if indoor model ist used inner wall layer is calculated by using iwghf (indoor wall ground heat flux) IF ( indoor_model ) THEN DO kw = nzb_wall+1, nzt_wall-1 wtend(kw) = (1.0_wp / surf_usm_h%rho_c_wall(kw,m)) & * ( surf_usm_h%lambda_h(kw,m) * wall_mod(kw) & * ( t_wall_h(kw+1,m) - t_wall_h(kw,m) ) & * surf_usm_h%ddz_wall(kw+1,m) & - surf_usm_h%lambda_h(kw-1,m) * wall_mod(kw-1) & * ( t_wall_h(kw,m) - t_wall_h(kw-1,m) ) & * surf_usm_h%ddz_wall(kw,m) & ) * surf_usm_h%ddz_wall_stag(kw,m) ENDDO wtend(nzt_wall) = (1.0_wp / surf_usm_h%rho_c_wall(nzt_wall,m)) * & ( -surf_usm_h%lambda_h(nzt_wall-1,m) * wall_mod(nzt_wall-1) * & ( t_wall_h(nzt_wall,m) & - t_wall_h(nzt_wall-1,m) ) * & surf_usm_h%ddz_wall(nzt_wall,m) & + surf_usm_h%iwghf_eb(m) ) * & surf_usm_h%ddz_wall_stag(nzt_wall,m) ELSE DO kw = nzb_wall+1, nzt_wall wtend(kw) = (1.0_wp / surf_usm_h%rho_c_wall(kw,m)) & * ( surf_usm_h%lambda_h(kw,m) * wall_mod(kw) & * ( t_wall_h(kw+1,m) - t_wall_h(kw,m) ) & * surf_usm_h%ddz_wall(kw+1,m) & - surf_usm_h%lambda_h(kw-1,m) * wall_mod(kw-1) & * ( t_wall_h(kw,m) - t_wall_h(kw-1,m) ) & * surf_usm_h%ddz_wall(kw,m) & ) * surf_usm_h%ddz_wall_stag(kw,m) ENDDO ENDIF t_wall_h_p(nzb_wall:nzt_wall,m) = t_wall_h(nzb_wall:nzt_wall,m) & + dt_3d * ( tsc(2) & * wtend(nzb_wall:nzt_wall) + tsc(3) & * surf_usm_h%tt_wall_m(nzb_wall:nzt_wall,m) ) ! !-- during spinup the tempeature inside window layers is not calculated to make larger timesteps possible IF ( .NOT. during_spinup ) THEN win_absorp = -log(surf_usm_h%transmissivity(m)) / surf_usm_h%zw_window(nzt_wall,m) ! !-- prognostic equation for ground/roof window temperature t_window_h !-- takes absorption of shortwave radiation into account wintend(:) = 0.0_wp wintend(nzb_wall) = (1.0_wp / surf_usm_h%rho_c_window(nzb_wall,m)) * & ( surf_usm_h%lambda_h_window(nzb_wall,m) * & ( t_window_h(nzb_wall+1,m) & - t_window_h(nzb_wall,m) ) * & surf_usm_h%ddz_window(nzb_wall+1,m) & + surf_usm_h%wghf_eb_window(m) & + surf_usm_h%rad_sw_in(m) & * (1.0_wp - exp(-win_absorp & * surf_usm_h%zw_window(nzb_wall,m) ) ) & ) * surf_usm_h%ddz_window_stag(nzb_wall,m) IF ( indoor_model ) THEN DO kw = nzb_wall+1, nzt_wall-1 wintend(kw) = (1.0_wp / surf_usm_h%rho_c_window(kw,m)) & * ( surf_usm_h%lambda_h_window(kw,m) & * ( t_window_h(kw+1,m) - t_window_h(kw,m) ) & * surf_usm_h%ddz_window(kw+1,m) & - surf_usm_h%lambda_h_window(kw-1,m) & * ( t_window_h(kw,m) - t_window_h(kw-1,m) ) & * surf_usm_h%ddz_window(kw,m) & + surf_usm_h%rad_sw_in(m) & * (exp(-win_absorp & * surf_usm_h%zw_window(kw-1,m) ) & - exp(-win_absorp & * surf_usm_h%zw_window(kw,m) ) ) & ) * surf_usm_h%ddz_window_stag(kw,m) ENDDO wintend(nzt_wall) = (1.0_wp / surf_usm_h%rho_c_window(nzt_wall,m)) * & ( -surf_usm_h%lambda_h_window(nzt_wall-1,m) * & ( t_window_h(nzt_wall,m) & - t_window_h(nzt_wall-1,m) ) * & surf_usm_h%ddz_window(nzt_wall,m) & + surf_usm_h%iwghf_eb_window(m) & + surf_usm_h%rad_sw_in(m) & * (exp(-win_absorp & * surf_usm_h%zw_window(nzt_wall-1,m) ) & - exp(-win_absorp & * surf_usm_h%zw_window(nzt_wall,m) ) ) & ) * surf_usm_h%ddz_window_stag(nzt_wall,m) ELSE DO kw = nzb_wall+1, nzt_wall wintend(kw) = (1.0_wp / surf_usm_h%rho_c_window(kw,m)) & * ( surf_usm_h%lambda_h_window(kw,m) & * ( t_window_h(kw+1,m) - t_window_h(kw,m) ) & * surf_usm_h%ddz_window(kw+1,m) & - surf_usm_h%lambda_h_window(kw-1,m) & * ( t_window_h(kw,m) - t_window_h(kw-1,m) ) & * surf_usm_h%ddz_window(kw,m) & + surf_usm_h%rad_sw_in(m) & * (exp(-win_absorp & * surf_usm_h%zw_window(kw-1,m) ) & - exp(-win_absorp & * surf_usm_h%zw_window(kw,m) ) ) & ) * surf_usm_h%ddz_window_stag(kw,m) ENDDO ENDIF t_window_h_p(nzb_wall:nzt_wall,m) = t_window_h(nzb_wall:nzt_wall,m) & + dt_3d * ( tsc(2) & * wintend(nzb_wall:nzt_wall) + tsc(3) & * surf_usm_h%tt_window_m(nzb_wall:nzt_wall,m) ) ENDIF ! !-- calculate t_wall tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO kw = nzb_wall, nzt_wall surf_usm_h%tt_wall_m(kw,m) = wtend(kw) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO kw = nzb_wall, nzt_wall surf_usm_h%tt_wall_m(kw,m) = -9.5625_wp * wtend(kw) + & 5.3125_wp * surf_usm_h%tt_wall_m(kw,m) ENDDO ENDIF ENDIF IF ( .NOT. during_spinup ) THEN ! !-- calculate t_window tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO kw = nzb_wall, nzt_wall surf_usm_h%tt_window_m(kw,m) = wintend(kw) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO kw = nzb_wall, nzt_wall surf_usm_h%tt_window_m(kw,m) = -9.5625_wp * wintend(kw) + & 5.3125_wp * surf_usm_h%tt_window_m(kw,m) ENDDO ENDIF ENDIF ENDIF ENDDO ! !-- For vertical surfaces !$OMP DO SCHEDULE (STATIC) DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns ! !-- Obtain indices i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) ! !-- prognostic equation for wall temperature t_wall_v wtend(:) = 0.0_wp wtend(nzb_wall) = (1.0_wp / surf_usm_v(l)%rho_c_wall(nzb_wall,m)) * & ( surf_usm_v(l)%lambda_h(nzb_wall,m) * wall_mod(nzb_wall) * & ( t_wall_v(l)%t(nzb_wall+1,m) & - t_wall_v(l)%t(nzb_wall,m) ) * & surf_usm_v(l)%ddz_wall(nzb_wall+1,m) & + surf_usm_v(l)%frac(ind_veg_wall,m) & / (surf_usm_v(l)%frac(ind_veg_wall,m) & + surf_usm_v(l)%frac(ind_pav_green,m) ) & * surf_usm_v(l)%wghf_eb(m) & - surf_usm_v(l)%frac(ind_pav_green,m) & / (surf_usm_v(l)%frac(ind_veg_wall,m) & + surf_usm_v(l)%frac(ind_pav_green,m) ) & * ( surf_usm_v(l)%lambda_h_green(nzt_wall,m)* wall_mod(nzt_wall) & * surf_usm_v(l)%ddz_green(nzt_wall,m) & + surf_usm_v(l)%lambda_h(nzb_wall,m)* wall_mod(nzb_wall) & * surf_usm_v(l)%ddz_wall(nzb_wall,m) ) & / ( surf_usm_v(l)%ddz_green(nzt_wall,m) & + surf_usm_v(l)%ddz_wall(nzb_wall,m) ) & * ( t_wall_v(l)%t(nzb_wall,m) & - t_green_v(l)%t(nzt_wall,m) ) ) * & surf_usm_v(l)%ddz_wall_stag(nzb_wall,m) IF ( indoor_model ) THEN DO kw = nzb_wall+1, nzt_wall-1 wtend(kw) = (1.0_wp / surf_usm_v(l)%rho_c_wall(kw,m)) & * ( surf_usm_v(l)%lambda_h(kw,m) * wall_mod(kw) & * ( t_wall_v(l)%t(kw+1,m) - t_wall_v(l)%t(kw,m) )& * surf_usm_v(l)%ddz_wall(kw+1,m) & - surf_usm_v(l)%lambda_h(kw-1,m) * wall_mod(kw-1) & * ( t_wall_v(l)%t(kw,m) - t_wall_v(l)%t(kw-1,m) )& * surf_usm_v(l)%ddz_wall(kw,m) & ) * surf_usm_v(l)%ddz_wall_stag(kw,m) ENDDO wtend(nzt_wall) = (1.0_wp / surf_usm_v(l)%rho_c_wall(nzt_wall,m)) * & ( -surf_usm_v(l)%lambda_h(nzt_wall-1,m) * wall_mod(nzt_wall-1)* & ( t_wall_v(l)%t(nzt_wall,m) & - t_wall_v(l)%t(nzt_wall-1,m) ) * & surf_usm_v(l)%ddz_wall(nzt_wall,m) & + surf_usm_v(l)%iwghf_eb(m) ) * & surf_usm_v(l)%ddz_wall_stag(nzt_wall,m) ELSE DO kw = nzb_wall+1, nzt_wall wtend(kw) = (1.0_wp / surf_usm_v(l)%rho_c_wall(kw,m)) & * ( surf_usm_v(l)%lambda_h(kw,m) * wall_mod(kw) & * ( t_wall_v(l)%t(kw+1,m) - t_wall_v(l)%t(kw,m) )& * surf_usm_v(l)%ddz_wall(kw+1,m) & - surf_usm_v(l)%lambda_h(kw-1,m) * wall_mod(kw-1) & * ( t_wall_v(l)%t(kw,m) - t_wall_v(l)%t(kw-1,m) )& * surf_usm_v(l)%ddz_wall(kw,m) & ) * surf_usm_v(l)%ddz_wall_stag(kw,m) ENDDO ENDIF t_wall_v_p(l)%t(nzb_wall:nzt_wall,m) = & t_wall_v(l)%t(nzb_wall:nzt_wall,m) & + dt_3d * ( tsc(2) & * wtend(nzb_wall:nzt_wall) + tsc(3) & * surf_usm_v(l)%tt_wall_m(nzb_wall:nzt_wall,m) ) IF ( .NOT. during_spinup ) THEN win_absorp = -log(surf_usm_v(l)%transmissivity(m)) / surf_usm_v(l)%zw_window(nzt_wall,m) ! !-- prognostic equation for window temperature t_window_v wintend(:) = 0.0_wp wintend(nzb_wall) = (1.0_wp / surf_usm_v(l)%rho_c_window(nzb_wall,m)) * & ( surf_usm_v(l)%lambda_h_window(nzb_wall,m) * & ( t_window_v(l)%t(nzb_wall+1,m) & - t_window_v(l)%t(nzb_wall,m) ) * & surf_usm_v(l)%ddz_window(nzb_wall+1,m) & + surf_usm_v(l)%wghf_eb_window(m) & + surf_usm_v(l)%rad_sw_in(m) & * (1.0_wp - exp(-win_absorp & * surf_usm_v(l)%zw_window(nzb_wall,m) ) ) & ) * surf_usm_v(l)%ddz_window_stag(nzb_wall,m) IF ( indoor_model ) THEN DO kw = nzb_wall+1, nzt_wall -1 wintend(kw) = (1.0_wp / surf_usm_v(l)%rho_c_window(kw,m)) & * ( surf_usm_v(l)%lambda_h_window(kw,m) & * ( t_window_v(l)%t(kw+1,m) - t_window_v(l)%t(kw,m) ) & * surf_usm_v(l)%ddz_window(kw+1,m) & - surf_usm_v(l)%lambda_h_window(kw-1,m) & * ( t_window_v(l)%t(kw,m) - t_window_v(l)%t(kw-1,m) ) & * surf_usm_v(l)%ddz_window(kw,m) & + surf_usm_v(l)%rad_sw_in(m) & * (exp(-win_absorp & * surf_usm_v(l)%zw_window(kw-1,m) ) & - exp(-win_absorp & * surf_usm_v(l)%zw_window(kw,m) ) ) & ) * surf_usm_v(l)%ddz_window_stag(kw,m) ENDDO wintend(nzt_wall) = (1.0_wp / surf_usm_v(l)%rho_c_window(nzt_wall,m)) * & ( -surf_usm_v(l)%lambda_h_window(nzt_wall-1,m) * & ( t_window_v(l)%t(nzt_wall,m) & - t_window_v(l)%t(nzt_wall-1,m) ) * & surf_usm_v(l)%ddz_window(nzt_wall,m) & + surf_usm_v(l)%iwghf_eb_window(m) & + surf_usm_v(l)%rad_sw_in(m) & * (exp(-win_absorp & * surf_usm_v(l)%zw_window(nzt_wall-1,m) ) & - exp(-win_absorp & * surf_usm_v(l)%zw_window(nzt_wall,m) ) ) & ) * surf_usm_v(l)%ddz_window_stag(nzt_wall,m) ELSE DO kw = nzb_wall+1, nzt_wall wintend(kw) = (1.0_wp / surf_usm_v(l)%rho_c_window(kw,m)) & * ( surf_usm_v(l)%lambda_h_window(kw,m) & * ( t_window_v(l)%t(kw+1,m) - t_window_v(l)%t(kw,m) ) & * surf_usm_v(l)%ddz_window(kw+1,m) & - surf_usm_v(l)%lambda_h_window(kw-1,m) & * ( t_window_v(l)%t(kw,m) - t_window_v(l)%t(kw-1,m) ) & * surf_usm_v(l)%ddz_window(kw,m) & + surf_usm_v(l)%rad_sw_in(m) & * (exp(-win_absorp & * surf_usm_v(l)%zw_window(kw-1,m) ) & - exp(-win_absorp & * surf_usm_v(l)%zw_window(kw,m) ) ) & ) * surf_usm_v(l)%ddz_window_stag(kw,m) ENDDO ENDIF t_window_v_p(l)%t(nzb_wall:nzt_wall,m) = & t_window_v(l)%t(nzb_wall:nzt_wall,m) & + dt_3d * ( tsc(2) & * wintend(nzb_wall:nzt_wall) + tsc(3) & * surf_usm_v(l)%tt_window_m(nzb_wall:nzt_wall,m) ) ENDIF ! !-- calculate t_wall tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO kw = nzb_wall, nzt_wall surf_usm_v(l)%tt_wall_m(kw,m) = wtend(kw) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO kw = nzb_wall, nzt_wall surf_usm_v(l)%tt_wall_m(kw,m) = & - 9.5625_wp * wtend(kw) + & 5.3125_wp * surf_usm_v(l)%tt_wall_m(kw,m) ENDDO ENDIF ENDIF IF ( .NOT. during_spinup ) THEN ! !-- calculate t_window tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO kw = nzb_wall, nzt_wall surf_usm_v(l)%tt_window_m(kw,m) = wintend(kw) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO kw = nzb_wall, nzt_wall surf_usm_v(l)%tt_window_m(kw,m) = & - 9.5625_wp * wintend(kw) + & 5.3125_wp * surf_usm_v(l)%tt_window_m(kw,m) ENDDO ENDIF ENDIF ENDIF ENDDO ENDDO !$OMP END PARALLEL IF ( debug_output_timestep ) THEN WRITE( debug_string, * ) 'usm_material_heat_model | during_spinup: ',& during_spinup CALL debug_message( debug_string, 'end' ) ENDIF END SUBROUTINE usm_material_heat_model !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> Green and substrate model as part of the urban surface model. The model predicts ground !> temperatures. !> !> Important: gree-heat model crashes due to unknown reason. Green fraction !> is thus set to zero (in favor of wall fraction). !------------------------------------------------------------------------------! SUBROUTINE usm_green_heat_model IMPLICIT NONE INTEGER(iwp) :: i,j,k,l,kw, m !< running indices REAL(wp) :: ke, lambda_h_green_sat !< heat conductivity for saturated soil REAL(wp) :: h_vg !< Van Genuchten coef. h REAL(wp) :: drho_l_lv !< frequently used parameter REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: gtend,tend !< tendency REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: root_extr_green REAL(wp), DIMENSION(nzb_wall:nzt_wall+1) :: lambda_green_temp !< temp. lambda REAL(wp), DIMENSION(nzb_wall:nzt_wall+1) :: gamma_green_temp !< temp. gamma LOGICAL :: conserve_water_content = .true. IF ( debug_output_timestep ) CALL debug_message( 'usm_green_heat_model', 'start' ) drho_l_lv = 1.0_wp / (rho_l * l_v) ! !-- For horizontal surfaces !$OMP PARALLEL PRIVATE (m, i, j, k, kw, lambda_h_green_sat, ke, lambda_green_temp, gtend, & !$OMP& tend, h_vg, gamma_green_temp, m_total, root_extr_green) !$OMP DO SCHEDULE (STATIC) DO m = 1, surf_usm_h%ns IF (surf_usm_h%frac(ind_pav_green,m) > 0.0_wp) THEN ! !-- Obtain indices i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) DO kw = nzb_wall, nzt_wall ! !-- Calculate volumetric heat capacity of the soil, taking !-- into account water content surf_usm_h%rho_c_total_green(kw,m) = (surf_usm_h%rho_c_green(kw,m) * (1.0_wp - swc_sat_h(kw,m)) & + rho_c_water * swc_h(kw,m)) ! !-- Calculate soil heat conductivity at the center of the soil !-- layers lambda_h_green_sat = lambda_h_green_sm ** (1.0_wp - swc_sat_h(kw,m)) * & lambda_h_water ** swc_h(kw,m) ke = 1.0_wp + LOG10(MAX(0.1_wp,swc_h(kw,m) & / swc_sat_h(kw,m))) lambda_green_temp(kw) = ke * (lambda_h_green_sat - lambda_h_green_dry) + & lambda_h_green_dry ENDDO lambda_green_temp(nzt_wall+1) = lambda_green_temp(nzt_wall) ! !-- Calculate soil heat conductivity (lambda_h) at the _stag level !-- using linear interpolation. For pavement surface, the !-- true pavement depth is considered DO kw = nzb_wall, nzt_wall surf_usm_h%lambda_h_green(kw,m) = ( lambda_green_temp(kw+1) + lambda_green_temp(kw) ) & * 0.5_wp ENDDO t_green_h(nzt_wall+1,m) = t_wall_h(nzb_wall,m) ! !-- prognostic equation for ground/roof temperature t_green_h gtend(:) = 0.0_wp gtend(nzb_wall) = (1.0_wp / surf_usm_h%rho_c_total_green(nzb_wall,m)) * & ( surf_usm_h%lambda_h_green(nzb_wall,m) * & ( t_green_h(nzb_wall+1,m) & - t_green_h(nzb_wall,m) ) * & surf_usm_h%ddz_green(nzb_wall+1,m) & + surf_usm_h%wghf_eb_green(m) ) * & surf_usm_h%ddz_green_stag(nzb_wall,m) DO kw = nzb_wall+1, nzt_wall gtend(kw) = (1.0_wp / surf_usm_h%rho_c_total_green(kw,m)) & * ( surf_usm_h%lambda_h_green(kw,m) & * ( t_green_h(kw+1,m) - t_green_h(kw,m) ) & * surf_usm_h%ddz_green(kw+1,m) & - surf_usm_h%lambda_h_green(kw-1,m) & * ( t_green_h(kw,m) - t_green_h(kw-1,m) ) & * surf_usm_h%ddz_green(kw,m) & ) * surf_usm_h%ddz_green_stag(kw,m) ENDDO t_green_h_p(nzb_wall:nzt_wall,m) = t_green_h(nzb_wall:nzt_wall,m) & + dt_3d * ( tsc(2) & * gtend(nzb_wall:nzt_wall) + tsc(3) & * surf_usm_h%tt_green_m(nzb_wall:nzt_wall,m) ) ! !-- calculate t_green tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO kw = nzb_wall, nzt_wall surf_usm_h%tt_green_m(kw,m) = gtend(kw) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO kw = nzb_wall, nzt_wall surf_usm_h%tt_green_m(kw,m) = -9.5625_wp * gtend(kw) + & 5.3125_wp * surf_usm_h%tt_green_m(kw,m) ENDDO ENDIF ENDIF DO kw = nzb_wall, nzt_wall ! !-- Calculate soil diffusivity at the center of the soil layers lambda_green_temp(kw) = (- b_ch * surf_usm_h%gamma_w_green_sat(kw,m) * psi_sat & / swc_sat_h(kw,m) ) * ( MAX( swc_h(kw,m), & wilt_h(kw,m) ) / swc_sat_h(kw,m) )**( & b_ch + 2.0_wp ) ! !-- Parametrization of Van Genuchten IF ( soil_type /= 7 ) THEN ! !-- Calculate the hydraulic conductivity after Van Genuchten !-- (1980) h_vg = ( ( (swc_res_h(kw,m) - swc_sat_h(kw,m)) / ( swc_res_h(kw,m) - & MAX( swc_h(kw,m), wilt_h(kw,m) ) ) )**( & surf_usm_h%n_vg_green(m) / (surf_usm_h%n_vg_green(m) - 1.0_wp ) ) - 1.0_wp & )**( 1.0_wp / surf_usm_h%n_vg_green(m) ) / surf_usm_h%alpha_vg_green(m) gamma_green_temp(kw) = surf_usm_h%gamma_w_green_sat(kw,m) * ( ( (1.0_wp + & ( surf_usm_h%alpha_vg_green(m) * h_vg )**surf_usm_h%n_vg_green(m))**( & 1.0_wp - 1.0_wp / surf_usm_h%n_vg_green(m) ) - ( & surf_usm_h%alpha_vg_green(m) * h_vg )**( surf_usm_h%n_vg_green(m) & - 1.0_wp) )**2 ) & / ( ( 1.0_wp + ( surf_usm_h%alpha_vg_green(m) * h_vg & )**surf_usm_h%n_vg_green(m) )**( ( 1.0_wp - 1.0_wp & / surf_usm_h%n_vg_green(m) ) *( surf_usm_h%l_vg_green(m) + 2.0_wp) ) ) ! !-- Parametrization of Clapp & Hornberger ELSE gamma_green_temp(kw) = surf_usm_h%gamma_w_green_sat(kw,m) * ( swc_h(kw,m) & / swc_sat_h(kw,m) )**(2.0_wp * b_ch + 3.0_wp) ENDIF ENDDO ! !-- Prognostic equation for soil moisture content. Only performed, !-- when humidity is enabled in the atmosphere IF ( humidity ) THEN ! !-- Calculate soil diffusivity (lambda_w) at the _stag level !-- using linear interpolation. To do: replace this with !-- ECMWF-IFS Eq. 8.81 DO kw = nzb_wall, nzt_wall-1 surf_usm_h%lambda_w_green(kw,m) = ( lambda_green_temp(kw+1) + lambda_green_temp(kw) ) & * 0.5_wp surf_usm_h%gamma_w_green(kw,m) = ( gamma_green_temp(kw+1) + gamma_green_temp(kw) ) & * 0.5_wp ENDDO ! !-- In case of a closed bottom (= water content is conserved), !-- set hydraulic conductivity to zero to that no water will be !-- lost in the bottom layer. IF ( conserve_water_content ) THEN surf_usm_h%gamma_w_green(kw,m) = 0.0_wp ELSE surf_usm_h%gamma_w_green(kw,m) = gamma_green_temp(nzt_wall) ENDIF !-- The root extraction (= root_extr * qsws_veg / (rho_l !-- * l_v)) ensures the mass conservation for water. The !-- transpiration of plants equals the cumulative withdrawals by !-- the roots in the soil. The scheme takes into account the !-- availability of water in the soil layers as well as the root !-- fraction in the respective layer. Layer with moisture below !-- wilting point will not contribute, which reflects the !-- preference of plants to take water from moister layers. ! !-- Calculate the root extraction (ECMWF 7.69, the sum of !-- root_extr = 1). The energy balance solver guarantees a !-- positive transpiration, so that there is no need for an !-- additional check. m_total = 0.0_wp DO kw = nzb_wall, nzt_wall IF ( swc_h(kw,m) > wilt_h(kw,m) ) THEN m_total = m_total + rootfr_h(kw,m) * swc_h(kw,m) ENDIF ENDDO IF ( m_total > 0.0_wp ) THEN DO kw = nzb_wall, nzt_wall IF ( swc_h(kw,m) > wilt_h(kw,m) ) THEN root_extr_green(kw) = rootfr_h(kw,m) * swc_h(kw,m) & / m_total ELSE root_extr_green(kw) = 0.0_wp ENDIF ENDDO ENDIF ! !-- Prognostic equation for soil water content m_soil. tend(:) = 0.0_wp tend(nzb_wall) = ( surf_usm_h%lambda_w_green(nzb_wall,m) * ( & swc_h(nzb_wall+1,m) - swc_h(nzb_wall,m) ) & * surf_usm_h%ddz_green(nzb_wall+1,m) - surf_usm_h%gamma_w_green(nzb_wall,m) - ( & root_extr_green(nzb_wall) * surf_usm_h%qsws_veg(m) & ! + surf_usm_h%qsws_soil_green(m) ) * drho_l_lv ) & * surf_usm_h%ddz_green_stag(nzb_wall,m) DO kw = nzb_wall+1, nzt_wall-1 tend(kw) = ( surf_usm_h%lambda_w_green(kw,m) * ( swc_h(kw+1,m) & - swc_h(kw,m) ) * surf_usm_h%ddz_green(kw+1,m) & - surf_usm_h%gamma_w_green(kw,m) & - surf_usm_h%lambda_w_green(kw-1,m) * (swc_h(kw,m) - & swc_h(kw-1,m)) * surf_usm_h%ddz_green(kw,m) & + surf_usm_h%gamma_w_green(kw-1,m) - (root_extr_green(kw) & * surf_usm_h%qsws_veg(m) * drho_l_lv) & ) * surf_usm_h%ddz_green_stag(kw,m) ENDDO tend(nzt_wall) = ( - surf_usm_h%gamma_w_green(nzt_wall,m) & - surf_usm_h%lambda_w_green(nzt_wall-1,m) & * (swc_h(nzt_wall,m) & - swc_h(nzt_wall-1,m)) & * surf_usm_h%ddz_green(nzt_wall,m) & + surf_usm_h%gamma_w_green(nzt_wall-1,m) - ( & root_extr_green(nzt_wall) & * surf_usm_h%qsws_veg(m) * drho_l_lv ) & ) * surf_usm_h%ddz_green_stag(nzt_wall,m) swc_h_p(nzb_wall:nzt_wall,m) = swc_h(nzb_wall:nzt_wall,m)& + dt_3d * ( tsc(2) * tend(:) & + tsc(3) * surf_usm_h%tswc_h_m(:,m) ) ! !-- Account for dry soils (find a better solution here!) DO kw = nzb_wall, nzt_wall IF ( swc_h_p(kw,m) < 0.0_wp ) swc_h_p(kw,m) = 0.0_wp ENDDO ! !-- Calculate m_soil tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO kw = nzb_wall, nzt_wall surf_usm_h%tswc_h_m(kw,m) = tend(kw) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO kw = nzb_wall, nzt_wall surf_usm_h%tswc_h_m(kw,m) = -9.5625_wp * tend(kw) + 5.3125_wp& * surf_usm_h%tswc_h_m(kw,m) ENDDO ENDIF ENDIF ENDIF ENDIF ENDDO !$OMP END PARALLEL ! !-- For vertical surfaces DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns IF (surf_usm_v(l)%frac(ind_pav_green,m) > 0.0_wp) THEN ! !-- no substrate layer for green walls / only groundbase green walls (ivy i.e.) -> green layers get same !-- temperature as first wall layer !-- there fore no temperature calculations for vertical green substrate layers now ! ! ! ! !-- Obtain indices ! i = surf_usm_v(l)%i(m) ! j = surf_usm_v(l)%j(m) ! k = surf_usm_v(l)%k(m) ! ! t_green_v(l)%t(nzt_wall+1,m) = t_wall_v(l)%t(nzb_wall,m) ! ! ! !-- prognostic equation for green temperature t_green_v ! gtend(:) = 0.0_wp ! gtend(nzb_wall) = (1.0_wp / surf_usm_v(l)%rho_c_green(nzb_wall,m)) * & ! ( surf_usm_v(l)%lambda_h_green(nzb_wall,m) * & ! ( t_green_v(l)%t(nzb_wall+1,m) & ! - t_green_v(l)%t(nzb_wall,m) ) * & ! surf_usm_v(l)%ddz_green(nzb_wall+1,m) & ! + surf_usm_v(l)%wghf_eb(m) ) * & ! surf_usm_v(l)%ddz_green_stag(nzb_wall,m) ! ! DO kw = nzb_wall+1, nzt_wall ! gtend(kw) = (1.0_wp / surf_usm_v(l)%rho_c_green(kw,m)) & ! * ( surf_usm_v(l)%lambda_h_green(kw,m) & ! * ( t_green_v(l)%t(kw+1,m) - t_green_v(l)%t(kw,m) ) & ! * surf_usm_v(l)%ddz_green(kw+1,m) & ! - surf_usm_v(l)%lambda_h(kw-1,m) & ! * ( t_green_v(l)%t(kw,m) - t_green_v(l)%t(kw-1,m) ) & ! * surf_usm_v(l)%ddz_green(kw,m) ) & ! * surf_usm_v(l)%ddz_green_stag(kw,m) ! ENDDO ! ! t_green_v_p(l)%t(nzb_wall:nzt_wall,m) = & ! t_green_v(l)%t(nzb_wall:nzt_wall,m) & ! + dt_3d * ( tsc(2) & ! * gtend(nzb_wall:nzt_wall) + tsc(3) & ! * surf_usm_v(l)%tt_green_m(nzb_wall:nzt_wall,m) ) ! ! ! ! !-- calculate t_green tendencies for the next Runge-Kutta step ! IF ( timestep_scheme(1:5) == 'runge' ) THEN ! IF ( intermediate_timestep_count == 1 ) THEN ! DO kw = nzb_wall, nzt_wall ! surf_usm_v(l)%tt_green_m(kw,m) = gtend(kw) ! ENDDO ! ELSEIF ( intermediate_timestep_count < & ! intermediate_timestep_count_max ) THEN ! DO kw = nzb_wall, nzt_wall ! surf_usm_v(l)%tt_green_m(kw,m) = & ! - 9.5625_wp * gtend(kw) + & ! 5.3125_wp * surf_usm_v(l)%tt_green_m(kw,m) ! ENDDO ! ENDIF ! ENDIF DO kw = nzb_wall, nzt_wall+1 t_green_v(l)%t(kw,m) = t_wall_v(l)%t(nzb_wall,m) ENDDO ENDIF ENDDO ENDDO IF ( debug_output_timestep ) CALL debug_message( 'usm_green_heat_model', 'end' ) END SUBROUTINE usm_green_heat_model !------------------------------------------------------------------------------! ! Description: ! ------------ !> Parin for &usm_par for urban surface model !------------------------------------------------------------------------------! SUBROUTINE usm_parin IMPLICIT NONE CHARACTER (LEN=80) :: line !< string containing current line of file PARIN NAMELIST /urban_surface_par/ & building_type, & land_category, & naheatlayers, & pedestrian_category, & roughness_concrete, & read_wall_temp_3d, & roof_category, & urban_surface, & usm_anthropogenic_heat, & usm_material_model, & wall_category, & wall_inner_temperature, & roof_inner_temperature, & soil_inner_temperature, & window_inner_temperature, & usm_wall_mod NAMELIST /urban_surface_parameters/ & building_type, & land_category, & naheatlayers, & pedestrian_category, & roughness_concrete, & read_wall_temp_3d, & roof_category, & urban_surface, & usm_anthropogenic_heat, & usm_material_model, & wall_category, & wall_inner_temperature, & roof_inner_temperature, & soil_inner_temperature, & window_inner_temperature, & usm_wall_mod ! !-- Try to find urban surface model package REWIND ( 11 ) line = ' ' DO WHILE ( INDEX( line, '&urban_surface_parameters' ) == 0 ) READ ( 11, '(A)', END=12 ) line ENDDO BACKSPACE ( 11 ) ! !-- Read user-defined namelist READ ( 11, urban_surface_parameters, ERR = 10 ) ! !-- Set flag that indicates that the urban surface model is switched on urban_surface = .TRUE. GOTO 14 10 BACKSPACE( 11 ) READ( 11 , '(A)') line CALL parin_fail_message( 'urban_surface_parameters', line ) ! !-- Try to find old namelist 12 REWIND ( 11 ) line = ' ' DO WHILE ( INDEX( line, '&urban_surface_par' ) == 0 ) READ ( 11, '(A)', END=14 ) line ENDDO BACKSPACE ( 11 ) ! !-- Read user-defined namelist READ ( 11, urban_surface_par, ERR = 13, END = 14 ) message_string = 'namelist urban_surface_par is deprecated and will be ' // & 'removed in near future. Please use namelist ' // & 'urban_surface_parameters instead' CALL message( 'usm_parin', 'PA0487', 0, 1, 0, 6, 0 ) ! !-- Set flag that indicates that the urban surface model is switched on urban_surface = .TRUE. GOTO 14 13 BACKSPACE( 11 ) READ( 11 , '(A)') line CALL parin_fail_message( 'urban_surface_par', line ) 14 CONTINUE END SUBROUTINE usm_parin !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> This subroutine is part of the urban surface model. !> It reads daily heat produced by anthropogenic sources !> and the diurnal cycle of the heat. !------------------------------------------------------------------------------! SUBROUTINE usm_read_anthropogenic_heat INTEGER(iwp) :: i,j,k,ii !< running indices REAL(wp) :: heat !< anthropogenic heat ! !-- allocation of array of sources of anthropogenic heat and their diural profile ALLOCATE( aheat(naheatlayers,nys:nyn,nxl:nxr) ) ALLOCATE( aheatprof(naheatlayers,0:24) ) ! !-- read daily amount of heat and its daily cycle aheat = 0.0_wp DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN !-- open anthropogenic heat file OPEN( 151, file='ANTHROPOGENIC_HEAT'//TRIM(coupling_char), action='read', & status='old', form='formatted', err=11 ) i = 0 j = 0 DO READ( 151, *, err=12, end=13 ) i, j, k, heat IF ( i >= nxl .AND. i <= nxr .AND. j >= nys .AND. j <= nyn ) THEN IF ( k <= naheatlayers .AND. k > get_topography_top_index_ji( j, i, 's' ) ) THEN !-- write heat into the array aheat(k,j,i) = heat ENDIF ENDIF CYCLE 12 WRITE(message_string,'(a,2i4)') 'error in file ANTHROPOGENIC_HEAT'//TRIM(coupling_char)//' after line ',i,j CALL message( 'usm_read_anthropogenic_heat', 'PA0515', 0, 1, 0, 6, 0 ) ENDDO 13 CLOSE(151) CYCLE 11 message_string = 'file ANTHROPOGENIC_HEAT'//TRIM(coupling_char)//' does not exist' CALL message( 'usm_read_anthropogenic_heat', 'PA0516', 1, 2, 0, 6, 0 ) ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ! !-- read diurnal profiles of heat sources aheatprof = 0.0_wp DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN ! !-- open anthropogenic heat profile file OPEN( 151, file='ANTHROPOGENIC_HEAT_PROFILE'//TRIM(coupling_char), action='read', & status='old', form='formatted', err=21 ) i = 0 DO READ( 151, *, err=22, end=23 ) i, k, heat IF ( i >= 0 .AND. i <= 24 .AND. k <= naheatlayers ) THEN !-- write heat into the array aheatprof(k,i) = heat ENDIF CYCLE 22 WRITE(message_string,'(a,i4)') 'error in file ANTHROPOGENIC_HEAT_PROFILE'// & TRIM(coupling_char)//' after line ',i CALL message( 'usm_read_anthropogenic_heat', 'PA0517', 0, 1, 0, 6, 0 ) ENDDO aheatprof(:,24) = aheatprof(:,0) 23 CLOSE(151) CYCLE 21 message_string = 'file ANTHROPOGENIC_HEAT_PROFILE'//TRIM(coupling_char)//' does not exist' CALL message( 'usm_read_anthropogenic_heat', 'PA0518', 1, 2, 0, 6, 0 ) ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO END SUBROUTINE usm_read_anthropogenic_heat !------------------------------------------------------------------------------! ! Description: ! ------------ !> Soubroutine reads t_surf and t_wall data from restart files !------------------------------------------------------------------------------! SUBROUTINE usm_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, nxr_on_file, nynf, nyn_on_file, & nysf, nysc, nys_on_file, found ) USE control_parameters, & ONLY: length, restart_string IMPLICIT NONE INTEGER(iwp) :: k !< running index over previous input files covering current local domain INTEGER(iwp) :: l !< index variable for surface type INTEGER(iwp) :: ns_h_on_file_usm !< number of horizontal surface elements (urban type) on file INTEGER(iwp) :: nxlc !< index of left boundary on current subdomain INTEGER(iwp) :: nxlf !< index of left boundary on former subdomain INTEGER(iwp) :: nxl_on_file !< index of left boundary on former local domain INTEGER(iwp) :: nxrf !< index of right boundary on former subdomain INTEGER(iwp) :: nxr_on_file !< index of right boundary on former local domain INTEGER(iwp) :: nynf !< index of north boundary on former subdomain INTEGER(iwp) :: nyn_on_file !< index of north boundary on former local domain INTEGER(iwp) :: nysc !< index of south boundary on current subdomain INTEGER(iwp) :: nysf !< index of south boundary on former subdomain INTEGER(iwp) :: nys_on_file !< index of south boundary on former local domain INTEGER(iwp) :: ns_v_on_file_usm(0:3) !< number of vertical surface elements (urban type) on file INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE, SAVE :: start_index_on_file INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE, SAVE :: end_index_on_file LOGICAL, INTENT(OUT) :: found !!! suehring: Why the SAVE attribute? REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: tmp_surf_wall_h REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: tmp_surf_window_h REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: tmp_surf_green_h REAL(wp), DIMENSION(:), ALLOCATABLE, SAVE :: tmp_surf_waste_h REAL(wp), DIMENSION(:,:), ALLOCATABLE, SAVE :: tmp_wall_h REAL(wp), DIMENSION(:,:), ALLOCATABLE, SAVE :: tmp_window_h REAL(wp), DIMENSION(:,:), ALLOCATABLE, SAVE :: tmp_green_h TYPE( t_surf_vertical ), DIMENSION(0:3), SAVE :: tmp_surf_wall_v TYPE( t_surf_vertical ), DIMENSION(0:3), SAVE :: tmp_surf_window_v TYPE( t_surf_vertical ), DIMENSION(0:3), SAVE :: tmp_surf_green_v TYPE( t_surf_vertical ), DIMENSION(0:3), SAVE :: tmp_surf_waste_v TYPE( t_wall_vertical ), DIMENSION(0:3), SAVE :: tmp_wall_v TYPE( t_wall_vertical ), DIMENSION(0:3), SAVE :: tmp_window_v TYPE( t_wall_vertical ), DIMENSION(0:3), SAVE :: tmp_green_v found = .TRUE. SELECT CASE ( restart_string(1:length) ) CASE ( 'ns_h_on_file_usm') IF ( k == 1 ) THEN READ ( 13 ) ns_h_on_file_usm IF ( ALLOCATED( tmp_surf_wall_h ) ) DEALLOCATE( tmp_surf_wall_h ) IF ( ALLOCATED( tmp_wall_h ) ) DEALLOCATE( tmp_wall_h ) IF ( ALLOCATED( tmp_surf_window_h ) ) & DEALLOCATE( tmp_surf_window_h ) IF ( ALLOCATED( tmp_window_h) ) DEALLOCATE( tmp_window_h ) IF ( ALLOCATED( tmp_surf_green_h) ) & DEALLOCATE( tmp_surf_green_h ) IF ( ALLOCATED( tmp_green_h) ) DEALLOCATE( tmp_green_h ) IF ( ALLOCATED( tmp_surf_waste_h) ) & DEALLOCATE( tmp_surf_waste_h ) ! !-- Allocate temporary arrays for reading data on file. Note, !-- the size of allocated surface elements do not necessarily !-- need to match the size of present surface elements on !-- current processor, as the number of processors between !-- restarts can change. ALLOCATE( tmp_surf_wall_h(1:ns_h_on_file_usm) ) ALLOCATE( tmp_wall_h(nzb_wall:nzt_wall+1, & 1:ns_h_on_file_usm) ) ALLOCATE( tmp_surf_window_h(1:ns_h_on_file_usm) ) ALLOCATE( tmp_window_h(nzb_wall:nzt_wall+1, & 1:ns_h_on_file_usm) ) ALLOCATE( tmp_surf_green_h(1:ns_h_on_file_usm) ) ALLOCATE( tmp_green_h(nzb_wall:nzt_wall+1, & 1:ns_h_on_file_usm) ) ALLOCATE( tmp_surf_waste_h(1:ns_h_on_file_usm) ) ENDIF CASE ( 'ns_v_on_file_usm') IF ( k == 1 ) THEN READ ( 13 ) ns_v_on_file_usm DO l = 0, 3 IF ( ALLOCATED( tmp_surf_wall_v(l)%t ) ) & DEALLOCATE( tmp_surf_wall_v(l)%t ) IF ( ALLOCATED( tmp_wall_v(l)%t ) ) & DEALLOCATE( tmp_wall_v(l)%t ) IF ( ALLOCATED( tmp_surf_window_v(l)%t ) ) & DEALLOCATE( tmp_surf_window_v(l)%t ) IF ( ALLOCATED( tmp_window_v(l)%t ) ) & DEALLOCATE( tmp_window_v(l)%t ) IF ( ALLOCATED( tmp_surf_green_v(l)%t ) ) & DEALLOCATE( tmp_surf_green_v(l)%t ) IF ( ALLOCATED( tmp_green_v(l)%t ) ) & DEALLOCATE( tmp_green_v(l)%t ) IF ( ALLOCATED( tmp_surf_waste_v(l)%t ) ) & DEALLOCATE( tmp_surf_waste_v(l)%t ) ENDDO ! !-- Allocate temporary arrays for reading data on file. Note, !-- the size of allocated surface elements do not necessarily !-- need to match the size of present surface elements on !-- current processor, as the number of processors between !-- restarts can change. DO l = 0, 3 ALLOCATE( tmp_surf_wall_v(l)%t(1:ns_v_on_file_usm(l)) ) ALLOCATE( tmp_wall_v(l)%t(nzb_wall:nzt_wall+1, & 1:ns_v_on_file_usm(l) ) ) ALLOCATE( tmp_surf_window_v(l)%t(1:ns_v_on_file_usm(l)) ) ALLOCATE( tmp_window_v(l)%t(nzb_wall:nzt_wall+1, & 1:ns_v_on_file_usm(l) ) ) ALLOCATE( tmp_surf_green_v(l)%t(1:ns_v_on_file_usm(l)) ) ALLOCATE( tmp_green_v(l)%t(nzb_wall:nzt_wall+1, & 1:ns_v_on_file_usm(l) ) ) ALLOCATE( tmp_surf_waste_v(l)%t(1:ns_v_on_file_usm(l)) ) ENDDO ENDIF CASE ( 'usm_start_index_h', 'usm_start_index_v' ) IF ( k == 1 ) THEN IF ( ALLOCATED( start_index_on_file ) ) & DEALLOCATE( start_index_on_file ) ALLOCATE ( start_index_on_file(nys_on_file:nyn_on_file, & nxl_on_file:nxr_on_file) ) READ ( 13 ) start_index_on_file ENDIF CASE ( 'usm_end_index_h', 'usm_end_index_v' ) IF ( k == 1 ) THEN IF ( ALLOCATED( end_index_on_file ) ) & DEALLOCATE( end_index_on_file ) ALLOCATE ( end_index_on_file(nys_on_file:nyn_on_file, & nxl_on_file:nxr_on_file) ) READ ( 13 ) end_index_on_file ENDIF CASE ( 't_surf_wall_h' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_wall_h_1 ) ) & ALLOCATE( t_surf_wall_h_1(1:surf_usm_h%ns) ) READ ( 13 ) tmp_surf_wall_h ENDIF CALL surface_restore_elements( & t_surf_wall_h_1, tmp_surf_wall_h, & surf_usm_h%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_wall_v(0)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_wall_v_1(0)%t ) ) & ALLOCATE( t_surf_wall_v_1(0)%t(1:surf_usm_v(0)%ns) ) READ ( 13 ) tmp_surf_wall_v(0)%t ENDIF CALL surface_restore_elements( & t_surf_wall_v_1(0)%t, tmp_surf_wall_v(0)%t, & surf_usm_v(0)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_wall_v(1)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_wall_v_1(1)%t ) ) & ALLOCATE( t_surf_wall_v_1(1)%t(1:surf_usm_v(1)%ns) ) READ ( 13 ) tmp_surf_wall_v(1)%t ENDIF CALL surface_restore_elements( & t_surf_wall_v_1(1)%t, tmp_surf_wall_v(1)%t, & surf_usm_v(1)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_wall_v(2)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_wall_v_1(2)%t ) ) & ALLOCATE( t_surf_wall_v_1(2)%t(1:surf_usm_v(2)%ns) ) READ ( 13 ) tmp_surf_wall_v(2)%t ENDIF CALL surface_restore_elements( & t_surf_wall_v_1(2)%t, tmp_surf_wall_v(2)%t, & surf_usm_v(2)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_wall_v(3)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_wall_v_1(3)%t ) ) & ALLOCATE( t_surf_wall_v_1(3)%t(1:surf_usm_v(3)%ns) ) READ ( 13 ) tmp_surf_wall_v(3)%t ENDIF CALL surface_restore_elements( & t_surf_wall_v_1(3)%t, tmp_surf_wall_v(3)%t, & surf_usm_v(3)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_green_h' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_green_h_1 ) ) & ALLOCATE( t_surf_green_h_1(1:surf_usm_h%ns) ) READ ( 13 ) tmp_surf_green_h ENDIF CALL surface_restore_elements( & t_surf_green_h_1, tmp_surf_green_h, & surf_usm_h%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_green_v(0)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_green_v_1(0)%t ) ) & ALLOCATE( t_surf_green_v_1(0)%t(1:surf_usm_v(0)%ns) ) READ ( 13 ) tmp_surf_green_v(0)%t ENDIF CALL surface_restore_elements( & t_surf_green_v_1(0)%t, & tmp_surf_green_v(0)%t, & surf_usm_v(0)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_green_v(1)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_green_v_1(1)%t ) ) & ALLOCATE( t_surf_green_v_1(1)%t(1:surf_usm_v(1)%ns) ) READ ( 13 ) tmp_surf_green_v(1)%t ENDIF CALL surface_restore_elements( & t_surf_green_v_1(1)%t, & tmp_surf_green_v(1)%t, & surf_usm_v(1)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_green_v(2)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_green_v_1(2)%t ) ) & ALLOCATE( t_surf_green_v_1(2)%t(1:surf_usm_v(2)%ns) ) READ ( 13 ) tmp_surf_green_v(2)%t ENDIF CALL surface_restore_elements( & t_surf_green_v_1(2)%t, & tmp_surf_green_v(2)%t, & surf_usm_v(2)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_green_v(3)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_green_v_1(3)%t ) ) & ALLOCATE( t_surf_green_v_1(3)%t(1:surf_usm_v(3)%ns) ) READ ( 13 ) tmp_surf_green_v(3)%t ENDIF CALL surface_restore_elements( & t_surf_green_v_1(3)%t, & tmp_surf_green_v(3)%t, & surf_usm_v(3)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_window_h' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_window_h_1 ) ) & ALLOCATE( t_surf_window_h_1(1:surf_usm_h%ns) ) READ ( 13 ) tmp_surf_window_h ENDIF CALL surface_restore_elements( & t_surf_window_h_1, & tmp_surf_window_h, & surf_usm_h%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_window_v(0)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_window_v_1(0)%t ) ) & ALLOCATE( t_surf_window_v_1(0)%t(1:surf_usm_v(0)%ns) ) READ ( 13 ) tmp_surf_window_v(0)%t ENDIF CALL surface_restore_elements( & t_surf_window_v_1(0)%t, & tmp_surf_window_v(0)%t, & surf_usm_v(0)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_window_v(1)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_window_v_1(1)%t ) ) & ALLOCATE( t_surf_window_v_1(1)%t(1:surf_usm_v(1)%ns) ) READ ( 13 ) tmp_surf_window_v(1)%t ENDIF CALL surface_restore_elements( & t_surf_window_v_1(1)%t, & tmp_surf_window_v(1)%t, & surf_usm_v(1)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_window_v(2)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_window_v_1(2)%t ) ) & ALLOCATE( t_surf_window_v_1(2)%t(1:surf_usm_v(2)%ns) ) READ ( 13 ) tmp_surf_window_v(2)%t ENDIF CALL surface_restore_elements( & t_surf_window_v_1(2)%t, & tmp_surf_window_v(2)%t, & surf_usm_v(2)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_surf_window_v(3)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_surf_window_v_1(3)%t ) ) & ALLOCATE( t_surf_window_v_1(3)%t(1:surf_usm_v(3)%ns) ) READ ( 13 ) tmp_surf_window_v(3)%t ENDIF CALL surface_restore_elements( & t_surf_window_v_1(3)%t, & tmp_surf_window_v(3)%t, & surf_usm_v(3)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 'waste_heat_h' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( surf_usm_h%waste_heat ) ) & ALLOCATE( surf_usm_h%waste_heat(1:surf_usm_h%ns) ) READ ( 13 ) tmp_surf_waste_h ENDIF CALL surface_restore_elements( & surf_usm_h%waste_heat, & tmp_surf_waste_h, & surf_usm_h%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 'waste_heat_v(0)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( surf_usm_v(0)%waste_heat ) ) & ALLOCATE( surf_usm_v(0)%waste_heat(1:surf_usm_v(0)%ns) ) READ ( 13 ) tmp_surf_waste_v(0)%t ENDIF CALL surface_restore_elements( & surf_usm_v(0)%waste_heat, & tmp_surf_waste_v(0)%t, & surf_usm_v(0)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 'waste_heat_v(1)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( surf_usm_v(1)%waste_heat ) ) & ALLOCATE( surf_usm_v(1)%waste_heat(1:surf_usm_v(1)%ns) ) READ ( 13 ) tmp_surf_waste_v(1)%t ENDIF CALL surface_restore_elements( & surf_usm_v(1)%waste_heat, & tmp_surf_waste_v(1)%t, & surf_usm_v(1)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 'waste_heat_v(2)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( surf_usm_v(2)%waste_heat ) ) & ALLOCATE( surf_usm_v(2)%waste_heat(1:surf_usm_v(2)%ns) ) READ ( 13 ) tmp_surf_waste_v(2)%t ENDIF CALL surface_restore_elements( & surf_usm_v(2)%waste_heat, & tmp_surf_waste_v(2)%t, & surf_usm_v(2)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 'waste_heat_v(3)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( surf_usm_v(3)%waste_heat ) ) & ALLOCATE( surf_usm_v(3)%waste_heat(1:surf_usm_v(3)%ns) ) READ ( 13 ) tmp_surf_waste_v(3)%t ENDIF CALL surface_restore_elements( & surf_usm_v(3)%waste_heat, & tmp_surf_waste_v(3)%t, & surf_usm_v(3)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_wall_h' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_wall_h_1 ) ) & ALLOCATE( t_wall_h_1(nzb_wall:nzt_wall+1, & 1:surf_usm_h%ns) ) READ ( 13 ) tmp_wall_h ENDIF CALL surface_restore_elements( & t_wall_h_1, tmp_wall_h, & surf_usm_h%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_wall_v(0)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_wall_v_1(0)%t ) ) & ALLOCATE( t_wall_v_1(0)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(0)%ns) ) READ ( 13 ) tmp_wall_v(0)%t ENDIF CALL surface_restore_elements( & t_wall_v_1(0)%t, tmp_wall_v(0)%t, & surf_usm_v(0)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_wall_v(1)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_wall_v_1(1)%t ) ) & ALLOCATE( t_wall_v_1(1)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(1)%ns) ) READ ( 13 ) tmp_wall_v(1)%t ENDIF CALL surface_restore_elements( & t_wall_v_1(1)%t, tmp_wall_v(1)%t, & surf_usm_v(1)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_wall_v(2)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_wall_v_1(2)%t ) ) & ALLOCATE( t_wall_v_1(2)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(2)%ns) ) READ ( 13 ) tmp_wall_v(2)%t ENDIF CALL surface_restore_elements( & t_wall_v_1(2)%t, tmp_wall_v(2)%t, & surf_usm_v(2)%start_index, & start_index_on_file, & end_index_on_file , & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_wall_v(3)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_wall_v_1(3)%t ) ) & ALLOCATE( t_wall_v_1(3)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(3)%ns) ) READ ( 13 ) tmp_wall_v(3)%t ENDIF CALL surface_restore_elements( & t_wall_v_1(3)%t, tmp_wall_v(3)%t, & surf_usm_v(3)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_green_h' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_green_h_1 ) ) & ALLOCATE( t_green_h_1(nzb_wall:nzt_wall+1, & 1:surf_usm_h%ns) ) READ ( 13 ) tmp_green_h ENDIF CALL surface_restore_elements( & t_green_h_1, tmp_green_h, & surf_usm_h%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_green_v(0)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_green_v_1(0)%t ) ) & ALLOCATE( t_green_v_1(0)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(0)%ns) ) READ ( 13 ) tmp_green_v(0)%t ENDIF CALL surface_restore_elements( & t_green_v_1(0)%t, tmp_green_v(0)%t, & surf_usm_v(0)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_green_v(1)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_green_v_1(1)%t ) ) & ALLOCATE( t_green_v_1(1)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(1)%ns) ) READ ( 13 ) tmp_green_v(1)%t ENDIF CALL surface_restore_elements( & t_green_v_1(1)%t, tmp_green_v(1)%t, & surf_usm_v(1)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_green_v(2)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_green_v_1(2)%t ) ) & ALLOCATE( t_green_v_1(2)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(2)%ns) ) READ ( 13 ) tmp_green_v(2)%t ENDIF CALL surface_restore_elements( & t_green_v_1(2)%t, tmp_green_v(2)%t, & surf_usm_v(2)%start_index, & start_index_on_file, & end_index_on_file , & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_green_v(3)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_green_v_1(3)%t ) ) & ALLOCATE( t_green_v_1(3)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(3)%ns) ) READ ( 13 ) tmp_green_v(3)%t ENDIF CALL surface_restore_elements( & t_green_v_1(3)%t, tmp_green_v(3)%t, & surf_usm_v(3)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_window_h' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_window_h_1 ) ) & ALLOCATE( t_window_h_1(nzb_wall:nzt_wall+1, & 1:surf_usm_h%ns) ) READ ( 13 ) tmp_window_h ENDIF CALL surface_restore_elements( & t_window_h_1, tmp_window_h, & surf_usm_h%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file, nxr_on_file ) CASE ( 't_window_v(0)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_window_v_1(0)%t ) ) & ALLOCATE( t_window_v_1(0)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(0)%ns) ) READ ( 13 ) tmp_window_v(0)%t ENDIF CALL surface_restore_elements( & t_window_v_1(0)%t, & tmp_window_v(0)%t, & surf_usm_v(0)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_window_v(1)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_window_v_1(1)%t ) ) & ALLOCATE( t_window_v_1(1)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(1)%ns) ) READ ( 13 ) tmp_window_v(1)%t ENDIF CALL surface_restore_elements( & t_window_v_1(1)%t, & tmp_window_v(1)%t, & surf_usm_v(1)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_window_v(2)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_window_v_1(2)%t ) ) & ALLOCATE( t_window_v_1(2)%t(nzb_wall:nzt_wall+1, & 1:surf_usm_v(2)%ns) ) READ ( 13 ) tmp_window_v(2)%t ENDIF CALL surface_restore_elements( & t_window_v_1(2)%t, & tmp_window_v(2)%t, & surf_usm_v(2)%start_index, & start_index_on_file, & end_index_on_file , & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE ( 't_window_v(3)' ) IF ( k == 1 ) THEN IF ( .NOT. ALLOCATED( t_window_v_1(3)%t ) ) & ALLOCATE( t_window_v_1(3)%t(nzb_wall:nzt_wall+1,1:surf_usm_v(3)%ns) ) READ ( 13 ) tmp_window_v(3)%t ENDIF CALL surface_restore_elements( & t_window_v_1(3)%t, & tmp_window_v(3)%t, & surf_usm_v(3)%start_index, & start_index_on_file, & end_index_on_file, & nxlc, nysc, & nxlf, nxrf, nysf, nynf, & nys_on_file, nyn_on_file, & nxl_on_file,nxr_on_file ) CASE DEFAULT found = .FALSE. END SELECT END SUBROUTINE usm_rrd_local !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> This subroutine reads walls, roofs and land categories and it parameters !> from input files. !------------------------------------------------------------------------------! SUBROUTINE usm_read_urban_surface_types USE netcdf_data_input_mod, & ONLY: building_pars_f, building_type_f IMPLICIT NONE CHARACTER(12) :: wtn INTEGER(iwp) :: wtc REAL(wp), DIMENSION(n_surface_params) :: wtp LOGICAL :: ascii_file = .FALSE. INTEGER(iwp), DIMENSION(0:17, nysg:nyng, nxlg:nxrg) :: usm_par REAL(wp), DIMENSION(1:14, nysg:nyng, nxlg:nxrg) :: usm_val INTEGER(iwp) :: k, l, iw, jw, kw, it, ip, ii, ij, m INTEGER(iwp) :: i, j INTEGER(iwp) :: nz, roof, dirwe, dirsn INTEGER(iwp) :: category INTEGER(iwp) :: weheight1, wecat1, snheight1, sncat1 INTEGER(iwp) :: weheight2, wecat2, snheight2, sncat2 INTEGER(iwp) :: weheight3, wecat3, snheight3, sncat3 REAL(wp) :: height, albedo, thick REAL(wp) :: wealbedo1, wethick1, snalbedo1, snthick1 REAL(wp) :: wealbedo2, wethick2, snalbedo2, snthick2 REAL(wp) :: wealbedo3, wethick3, snalbedo3, snthick3 IF ( debug_output ) CALL debug_message( 'usm_read_urban_surface_types', 'start' ) ! !-- If building_pars or building_type are already read from static input !-- file, skip reading ASCII file. IF ( building_type_f%from_file .OR. building_pars_f%from_file ) & RETURN ! !-- Check if ASCII input file exists. If not, return and initialize USM !-- with default settings. INQUIRE( FILE = 'SURFACE_PARAMETERS' // coupling_char, & EXIST = ascii_file ) IF ( .NOT. ascii_file ) RETURN ! !-- read categories of walls and their parameters DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN ! !-- open urban surface file OPEN( 151, file='SURFACE_PARAMETERS'//coupling_char, action='read', & status='old', form='formatted', err=15 ) ! !-- first test and get n_surface_types k = 0 l = 0 DO l = l+1 READ( 151, *, err=11, end=12 ) wtc, wtp, wtn k = k+1 CYCLE 11 CONTINUE ENDDO 12 n_surface_types = k ALLOCATE( surface_type_names(n_surface_types) ) ALLOCATE( surface_type_codes(n_surface_types) ) ALLOCATE( surface_params(n_surface_params, n_surface_types) ) ! !-- real reading rewind( 151 ) k = 0 DO READ( 151, *, err=13, end=14 ) wtc, wtp, wtn k = k+1 surface_type_codes(k) = wtc surface_params(:,k) = wtp surface_type_names(k) = wtn CYCLE 13 WRITE(6,'(i3,a,2i5)') myid, 'readparams2 error k=', k FLUSH(6) CONTINUE ENDDO 14 CLOSE(151) CYCLE 15 message_string = 'file SURFACE_PARAMETERS'//TRIM(coupling_char)//' does not exist' CALL message( 'usm_read_urban_surface_types', 'PA0513', 1, 2, 0, 6, 0 ) ENDIF ENDDO ! !-- read types of surfaces usm_par = 0 DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN ! !-- open csv urban surface file OPEN( 151, file='URBAN_SURFACE'//TRIM(coupling_char), action='read', & status='old', form='formatted', err=23 ) l = 0 DO l = l+1 ! !-- i, j, height, nz, roof, dirwe, dirsn, category, soilcat, !-- weheight1, wecat1, snheight1, sncat1, weheight2, wecat2, snheight2, sncat2, !-- weheight3, wecat3, snheight3, sncat3 READ( 151, *, err=21, end=25 ) i, j, height, nz, roof, dirwe, dirsn, & category, albedo, thick, & weheight1, wecat1, wealbedo1, wethick1, & weheight2, wecat2, wealbedo2, wethick2, & weheight3, wecat3, wealbedo3, wethick3, & snheight1, sncat1, snalbedo1, snthick1, & snheight2, sncat2, snalbedo2, snthick2, & snheight3, sncat3, snalbedo3, snthick3 IF ( i >= nxlg .AND. i <= nxrg .AND. j >= nysg .AND. j <= nyng ) THEN ! !-- write integer variables into array usm_par(:,j,i) = (/1, nz, roof, dirwe, dirsn, category, & weheight1, wecat1, weheight2, wecat2, weheight3, wecat3, & snheight1, sncat1, snheight2, sncat2, snheight3, sncat3 /) ! !-- write real values into array usm_val(:,j,i) = (/ albedo, thick, & wealbedo1, wethick1, wealbedo2, wethick2, & wealbedo3, wethick3, snalbedo1, snthick1, & snalbedo2, snthick2, snalbedo3, snthick3 /) ENDIF CYCLE 21 WRITE (message_string, "(A,I5)") 'errors in file URBAN_SURFACE'//TRIM(coupling_char)//' on line ', l CALL message( 'usm_read_urban_surface_types', 'PA0512', 0, 1, 0, 6, 0 ) ENDDO 23 message_string = 'file URBAN_SURFACE'//TRIM(coupling_char)//' does not exist' CALL message( 'usm_read_urban_surface_types', 'PA0514', 1, 2, 0, 6, 0 ) 25 CLOSE( 151 ) ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO ! !-- check completeness and formal correctness of the data DO i = nxlg, nxrg DO j = nysg, nyng IF ( usm_par(0,j,i) /= 0 .AND. ( & !< incomplete data,supply default values later usm_par(1,j,i) < nzb .OR. & usm_par(1,j,i) > nzt .OR. & !< incorrect height (nz < nzb .OR. nz > nzt) usm_par(2,j,i) < 0 .OR. & usm_par(2,j,i) > 1 .OR. & !< incorrect roof sign usm_par(3,j,i) < nzb-nzt .OR. & usm_par(3,j,i) > nzt-nzb .OR. & !< incorrect west-east wall direction sign usm_par(4,j,i) < nzb-nzt .OR. & usm_par(4,j,i) > nzt-nzb .OR. & !< incorrect south-north wall direction sign usm_par(6,j,i) < nzb .OR. & usm_par(6,j,i) > nzt .OR. & !< incorrect pedestrian level height for west-east wall usm_par(8,j,i) > nzt .OR. & usm_par(10,j,i) > nzt .OR. & !< incorrect wall or roof level height for west-east wall usm_par(12,j,i) < nzb .OR. & usm_par(12,j,i) > nzt .OR. & !< incorrect pedestrian level height for south-north wall usm_par(14,j,i) > nzt .OR. & usm_par(16,j,i) > nzt & !< incorrect wall or roof level height for south-north wall ) ) THEN ! !-- incorrect input data WRITE (message_string, "(A,2I5)") 'missing or incorrect data in file URBAN_SURFACE'// & TRIM(coupling_char)//' for i,j=', i,j CALL message( 'usm_read_urban_surface', 'PA0504', 1, 2, 0, 6, 0 ) ENDIF ENDDO ENDDO ! !-- Assign the surface types to the respective data type. !-- First, for horizontal upward-facing surfaces. !-- Further, set flag indicating that albedo is initialized via ASCII !-- format, else it would be overwritten in the radiation model. surf_usm_h%albedo_from_ascii = .TRUE. DO m = 1, surf_usm_h%ns iw = surf_usm_h%i(m) jw = surf_usm_h%j(m) kw = surf_usm_h%k(m) IF ( usm_par(5,jw,iw) == 0 ) THEN IF ( zu(kw) >= roof_height_limit ) THEN surf_usm_h%isroof_surf(m) = .TRUE. surf_usm_h%surface_types(m) = roof_category !< default category for root surface ELSE surf_usm_h%isroof_surf(m) = .FALSE. surf_usm_h%surface_types(m) = land_category !< default category for land surface ENDIF surf_usm_h%albedo(:,m) = -1.0_wp surf_usm_h%thickness_wall(m) = -1.0_wp surf_usm_h%thickness_green(m) = -1.0_wp surf_usm_h%thickness_window(m) = -1.0_wp ELSE IF ( usm_par(2,jw,iw)==0 ) THEN surf_usm_h%isroof_surf(m) = .FALSE. surf_usm_h%thickness_wall(m) = -1.0_wp surf_usm_h%thickness_window(m) = -1.0_wp surf_usm_h%thickness_green(m) = -1.0_wp ELSE surf_usm_h%isroof_surf(m) = .TRUE. surf_usm_h%thickness_wall(m) = usm_val(2,jw,iw) surf_usm_h%thickness_window(m) = usm_val(2,jw,iw) surf_usm_h%thickness_green(m) = usm_val(2,jw,iw) ENDIF surf_usm_h%surface_types(m) = usm_par(5,jw,iw) surf_usm_h%albedo(:,m) = usm_val(1,jw,iw) surf_usm_h%transmissivity(m) = 0.0_wp ENDIF ! !-- Find the type position it = surf_usm_h%surface_types(m) ip = -99999 DO k = 1, n_surface_types IF ( surface_type_codes(k) == it ) THEN ip = k EXIT ENDIF ENDDO IF ( ip == -99999 ) THEN ! !-- land/roof category not found WRITE (9,"(A,I5,A,3I5)") 'land/roof category ', it, & ' not found for i,j,k=', iw,jw,kw FLUSH(9) IF ( surf_usm_h%isroof_surf(m) ) THEN category = roof_category ELSE category = land_category ENDIF DO k = 1, n_surface_types IF ( surface_type_codes(k) == roof_category ) THEN ip = k EXIT ENDIF ENDDO IF ( ip == -99999 ) THEN ! !-- default land/roof category not found WRITE (9,"(A,I5,A,3I5)") 'Default land/roof category', category, ' not found!' FLUSH(9) ip = 1 ENDIF ENDIF ! !-- Albedo IF ( surf_usm_h%albedo(ind_veg_wall,m) < 0.0_wp ) THEN surf_usm_h%albedo(:,m) = surface_params(ialbedo,ip) ENDIF ! !-- Albedo type is 0 (custom), others are replaced later surf_usm_h%albedo_type(:,m) = 0 ! !-- Transmissivity IF ( surf_usm_h%transmissivity(m) < 0.0_wp ) THEN surf_usm_h%transmissivity(m) = 0.0_wp ENDIF ! !-- emissivity of the wall surf_usm_h%emissivity(:,m) = surface_params(iemiss,ip) ! !-- heat conductivity λS between air and wall ( W m−2 K−1 ) surf_usm_h%lambda_surf(m) = surface_params(ilambdas,ip) surf_usm_h%lambda_surf_window(m) = surface_params(ilambdas,ip) surf_usm_h%lambda_surf_green(m) = surface_params(ilambdas,ip) ! !-- roughness length for momentum, heat and humidity surf_usm_h%z0(m) = surface_params(irough,ip) surf_usm_h%z0h(m) = surface_params(iroughh,ip) surf_usm_h%z0q(m) = surface_params(iroughh,ip) ! !-- Surface skin layer heat capacity (J m−2 K−1 ) surf_usm_h%c_surface(m) = surface_params(icsurf,ip) surf_usm_h%c_surface_window(m) = surface_params(icsurf,ip) surf_usm_h%c_surface_green(m) = surface_params(icsurf,ip) ! !-- wall material parameters: !-- thickness of the wall (m) !-- missing values are replaced by default value for category IF ( surf_usm_h%thickness_wall(m) <= 0.001_wp ) THEN surf_usm_h%thickness_wall(m) = surface_params(ithick,ip) ENDIF IF ( surf_usm_h%thickness_window(m) <= 0.001_wp ) THEN surf_usm_h%thickness_window(m) = surface_params(ithick,ip) ENDIF IF ( surf_usm_h%thickness_green(m) <= 0.001_wp ) THEN surf_usm_h%thickness_green(m) = surface_params(ithick,ip) ENDIF ! !-- volumetric heat capacity rho*C of the wall ( J m−3 K−1 ) surf_usm_h%rho_c_wall(:,m) = surface_params(irhoC,ip) surf_usm_h%rho_c_window(:,m) = surface_params(irhoC,ip) surf_usm_h%rho_c_green(:,m) = surface_params(irhoC,ip) ! !-- thermal conductivity λH of the wall (W m−1 K−1 ) surf_usm_h%lambda_h(:,m) = surface_params(ilambdah,ip) surf_usm_h%lambda_h_window(:,m) = surface_params(ilambdah,ip) surf_usm_h%lambda_h_green(:,m) = surface_params(ilambdah,ip) ENDDO ! !-- For vertical surface elements ( 0 -- northward-facing, 1 -- southward-facing, !-- 2 -- eastward-facing, 3 -- westward-facing ) DO l = 0, 3 ! !-- Set flag indicating that albedo is initialized via ASCII format. !-- Else it would be overwritten in the radiation model. surf_usm_v(l)%albedo_from_ascii = .TRUE. DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) kw = surf_usm_v(l)%k(m) IF ( l == 3 ) THEN ! westward facing iw = i jw = j ii = 6 ij = 3 ELSEIF ( l == 2 ) THEN iw = i-1 jw = j ii = 6 ij = 3 ELSEIF ( l == 1 ) THEN iw = i jw = j ii = 12 ij = 9 ELSEIF ( l == 0 ) THEN iw = i jw = j-1 ii = 12 ij = 9 ENDIF IF ( iw < 0 .OR. jw < 0 ) THEN ! !-- wall on west or south border of the domain - assign default category IF ( kw <= roof_height_limit ) THEN surf_usm_v(l)%surface_types(m) = wall_category !< default category for wall surface in wall zone ELSE surf_usm_v(l)%surface_types(m) = roof_category !< default category for wall surface in roof zone END IF surf_usm_v(l)%albedo(:,m) = -1.0_wp surf_usm_v(l)%thickness_wall(m) = -1.0_wp surf_usm_v(l)%thickness_window(m) = -1.0_wp surf_usm_v(l)%thickness_green(m) = -1.0_wp surf_usm_v(l)%transmissivity(m) = -1.0_wp ELSE IF ( kw <= usm_par(ii,jw,iw) ) THEN ! !-- pedestrian zone IF ( usm_par(ii+1,jw,iw) == 0 ) THEN surf_usm_v(l)%surface_types(m) = pedestrian_category !< default category for wall surface in ! This function advances through the list of local surfaces to find given !> x, y, d, z coordinates !------------------------------------------------------------------------------! PURE FUNCTION find_surface( x, y, z, d ) result(isurfl) INTEGER(iwp), INTENT(in) :: x, y, z, d INTEGER(iwp) :: isurfl INTEGER(iwp) :: isx, isy, isz IF ( d == 0 ) THEN DO isurfl = 1, surf_usm_h%ns isx = surf_usm_h%i(isurfl) isy = surf_usm_h%j(isurfl) isz = surf_usm_h%k(isurfl) IF ( isx==x .and. isy==y .and. isz==z ) RETURN ENDDO ELSE DO isurfl = 1, surf_usm_v(d-1)%ns isx = surf_usm_v(d-1)%i(isurfl) isy = surf_usm_v(d-1)%j(isurfl) isz = surf_usm_v(d-1)%k(isurfl) IF ( isx==x .and. isy==y .and. isz==z ) RETURN ENDDO ENDIF ! !-- coordinate not found isurfl = -1 END FUNCTION !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> This subroutine reads temperatures of respective material layers in walls, !> roofs and ground from input files. Data in the input file must be in !> standard order, i.e. horizontal surfaces first ordered by x, y and then !> vertical surfaces ordered by x, y, direction, z !------------------------------------------------------------------------------! SUBROUTINE usm_read_wall_temperature INTEGER(iwp) :: i, j, k, d, ii, iline !> running indices INTEGER(iwp) :: isurfl REAL(wp) :: rtsurf REAL(wp), DIMENSION(nzb_wall:nzt_wall+1) :: rtwall IF ( debug_output ) CALL debug_message( 'usm_read_wall_temperature', 'start' ) DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN ! !-- open wall temperature file OPEN( 152, file='WALL_TEMPERATURE'//coupling_char, action='read', & status='old', form='formatted', err=15 ) isurfl = 0 iline = 1 DO rtwall = -9999.0_wp !< for incomplete lines READ( 152, *, err=13, end=14 ) i, j, k, d, rtsurf, rtwall IF ( nxl <= i .and. i <= nxr .and. & nys <= j .and. j <= nyn) THEN !< local processor !-- identify surface id isurfl = find_surface( i, j, k, d ) IF ( isurfl == -1 ) THEN WRITE(message_string, '(a,4i5,a,i5,a)') 'Coordinates (xyzd) ', i, j, k, d, & ' on line ', iline, & ' in file WALL_TEMPERATURE are either not present or out of standard order of surfaces.' CALL message( 'usm_read_wall_temperature', 'PA0521', 1, 2, 0, 6, 0 ) ENDIF ! !-- assign temperatures IF ( d == 0 ) THEN t_surf_wall_h(isurfl) = rtsurf t_wall_h(:,isurfl) = rtwall(:) t_window_h(:,isurfl) = rtwall(:) t_green_h(:,isurfl) = rtwall(:) ELSE t_surf_wall_v(d-1)%t(isurfl) = rtsurf t_wall_v(d-1)%t(:,isurfl) = rtwall(:) t_window_v(d-1)%t(:,isurfl) = rtwall(:) t_green_v(d-1)%t(:,isurfl) = rtwall(:) ENDIF ENDIF iline = iline + 1 CYCLE 13 WRITE(message_string, '(a,i5,a)') 'Error reading line ', iline, & ' in file WALL_TEMPERATURE.' CALL message( 'usm_read_wall_temperature', 'PA0522', 1, 2, 0, 6, 0 ) ENDDO 14 CLOSE(152) CYCLE 15 message_string = 'file WALL_TEMPERATURE'//TRIM(coupling_char)//' does not exist' CALL message( 'usm_read_wall_temperature', 'PA0523', 1, 2, 0, 6, 0 ) ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO IF ( debug_output ) CALL debug_message( 'usm_read_wall_temperature', 'end' ) END SUBROUTINE usm_read_wall_temperature !------------------------------------------------------------------------------! ! Description: ! ------------ !> Solver for the energy balance at the ground/roof/wall surface. !> It follows basic ideas and structure of lsm_energy_balance !> with many simplifications and adjustments. !> TODO better description !> No calculation of window surface temperatures during spinup to increase !> maximum possible timstep !------------------------------------------------------------------------------! SUBROUTINE usm_surface_energy_balance( during_spinup ) IMPLICIT NONE INTEGER(iwp) :: i, j, k, l, m !< running indices INTEGER(iwp) :: i_off !< offset to determine index of surface element, seen from atmospheric grid point, for x INTEGER(iwp) :: j_off !< offset to determine index of surface element, seen from atmospheric grid point, for y INTEGER(iwp) :: k_off !< offset to determine index of surface element, seen from atmospheric grid point, for z LOGICAL :: during_spinup !< flag indicating soil/wall spinup phase REAL(wp) :: frac_win !< window fraction, used to restore original values during spinup REAL(wp) :: frac_green !< green fraction, used to restore original values during spinup REAL(wp) :: frac_wall !< wall fraction, used to restore original values during spinup REAL(wp) :: stend_wall !< surface tendency REAL(wp) :: stend_window !< surface tendency REAL(wp) :: stend_green !< surface tendency REAL(wp) :: coef_1 !< first coeficient for prognostic equation REAL(wp) :: coef_window_1 !< first coeficient for prognostic window equation REAL(wp) :: coef_green_1 !< first coeficient for prognostic green wall equation REAL(wp) :: coef_2 !< second coeficient for prognostic equation REAL(wp) :: coef_window_2 !< second coeficient for prognostic window equation REAL(wp) :: coef_green_2 !< second coeficient for prognostic green wall equation REAL(wp) :: rho_cp !< rho_wall_surface * c_p REAL(wp) :: f_shf !< factor for shf_eb REAL(wp) :: f_shf_window !< factor for shf_eb window REAL(wp) :: f_shf_green !< factor for shf_eb green wall REAL(wp) :: lambda_surface !< current value of lambda_surface (heat conductivity != 0.0_wp ) THEN lambda_surface = surf_usm_h%lambda_surf(m) lambda_surface_window = surf_usm_h%lambda_surf_window(m) lambda_surface_green = surf_usm_h%lambda_surf_green(m) ELSE lambda_surface = surf_usm_h%lambda_surf(m) lambda_surface_window = surf_usm_h%lambda_surf_window(m) lambda_surface_green = surf_usm_h%lambda_surf_green(m) ENDIF ! pt1 = pt(k,j,i) IF ( humidity ) THEN qv1 = q(k,j,i) ELSE qv1 = 0.0_wp ENDIF ! !-- calculate rho * c_p coefficient at surface layer rho_cp = c_p * hyp(k) / ( r_d * surf_usm_h%pt1(m) * exner(k) ) IF ( surf_usm_h%frac(ind_pav_green,m) > 0.0_wp ) THEN ! !-- Calculate frequently used parameters rho_lv = rho_cp / c_p * l_v drho_l_lv = 1.0_wp / (rho_l * l_v) ENDIF ! !-- Calculate aerodyamic resistance. !-- Calculation for horizontal surfaces follows LSM formulation !-- pt, us, ts are not available for the prognostic time step, !-- data from the last time step is used here. ! !-- Workaround: use single r_a as stability is only treated for the !-- average temperature surf_usm_h%r_a(m) = ( surf_usm_h%pt1(m) - surf_usm_h%pt_surface(m) ) /& ( surf_usm_h%ts(m) * surf_usm_h%us(m) + 1.0E-20_wp ) surf_usm_h%r_a_window(m) = surf_usm_h%r_a(m) surf_usm_h%r_a_green(m) = surf_usm_h%r_a(m) ! r_a = ( surf_usm_h%pt1(m) - t_surf_h(m) / exner(k) ) / & ! ( surf_usm_h%ts(m) * surf_usm_h%us(m) + 1.0E-20_wp ) ! r_a_window = ( surf_usm_h%pt1(m) - t_surf_window_h(m) / exner(k) ) / & ! ( surf_usm_h%ts(m) * surf_usm_h%us(m) + 1.0E-20_wp ) ! r_a_green = ( surf_usm_h%pt1(m) - t_surf_green_h(m) / exner(k) ) / & ! ( surf_usm_h%ts(m) * surf_usm_h%us(m) + 1.0E-20_wp ) !-- Make sure that the resistance does not drop to zero IF ( surf_usm_h%r_a(m) < 1.0_wp ) & surf_usm_h%r_a(m) = 1.0_wp IF ( surf_usm_h%r_a_green(m) < 1.0_wp ) & surf_usm_h%r_a_green(m) = 1.0_wp IF ( surf_usm_h%r_a_window(m) < 1.0_wp ) & surf_usm_h%r_a_window(m) = 1.0_wp ! !-- Make sure that the resistacne does not exceed a maxmium value in case !-- of zero velocities IF ( surf_usm_h%r_a(m) > 300.0_wp ) & surf_usm_h%r_a(m) = 300.0_wp IF ( surf_usm_h%r_a_green(m) > 300.0_wp ) & surf_usm_h%r_a_green(m) = 300.0_wp IF ( surf_usm_h%r_a_window(m) > 300.0_wp ) & surf_usm_h%r_a_window(m) = 300.0_wp ! !-- factor for shf_eb f_shf = rho_cp / surf_usm_h%r_a(m) f_shf_window = rho_cp / surf_usm_h%r_a_window(m) f_shf_green = rho_cp / surf_usm_h%r_a_green(m) IF ( surf_usm_h%frac(ind_pav_green,m) > 0.0_wp ) THEN !-- Adapted from LSM: !-- Second step: calculate canopy resistance r_canopy !-- f1-f3 here are defined as 1/f1-f3 as in ECMWF documentation !-- f1: correction for incoming shortwave radiation (stomata close at !-- night) f1 = MIN( 1.0_wp, ( 0.004_wp * surf_usm_h%rad_sw_in(m) + 0.05_wp ) / & (0.81_wp * (0.004_wp * surf_usm_h%rad_sw_in(m) & + 1.0_wp)) ) ! !-- f2: correction for soil moisture availability to plants (the !-- integrated soil moisture must thus be considered here) !-- f2 = 0 for very dry soils m_total = 0.0_wp DO k = nzb_wall, nzt_wall+1 m_total = m_total + rootfr_h(nzb_wall,m) & * MAX(swc_h(nzb_wall,m),wilt_h(nzb_wall,m)) ENDDO IF ( m_total > wilt_h(nzb_wall,m) .AND. m_total < fc_h(nzb_wall,m) ) THEN f2 = ( m_total - wilt_h(nzb_wall,m) ) / (fc_h(nzb_wall,m) - wilt_h(nzb_wall,m) ) ELSEIF ( m_total >= fc_h(nzb_wall,m) ) THEN f2 = 1.0_wp ELSE f2 = 1.0E-20_wp ENDIF ! !-- Calculate water vapour pressure at saturation e_s = 0.01_wp * 610.78_wp * EXP( 17.269_wp * ( t_surf_green_h(m) & - 273.16_wp ) / ( t_surf_green_h(m) - 35.86_wp ) ) ! !-- f3: correction for vapour pressure deficit IF ( surf_usm_h%g_d(m) /= 0.0_wp ) THEN ! !-- Calculate vapour pressure e = qv1 * surface_pressure / ( qv1 + 0.622_wp ) f3 = EXP ( - surf_usm_h%g_d(m) * (e_s - e) ) ELSE f3 = 1.0_wp ENDIF ! !-- Calculate canopy resistance. In case that c_veg is 0 (bare soils), !-- this calculation is obsolete, as r_canopy is not used below. !-- To do: check for very dry soil -> r_canopy goes to infinity surf_usm_h%r_canopy(m) = surf_usm_h%r_canopy_min(m) / & ( surf_usm_h%lai(m) * f1 * f2 * f3 + 1.0E-20_wp ) ! !-- Calculate the maximum possible liquid water amount on plants and !-- bare surface. For vegetated surfaces, a maximum depth of 0.2 mm is !-- assumed, while paved surfaces might hold up 1 mm of water. The !-- liquid water fraction for paved surfaces is calculated after !-- Noilhan & Planton (1989), while the ECMWF formulation is used for !-- vegetated surfaces and bare soils. m_liq_max = m_max_depth * ( surf_usm_h%lai(m) ) surf_usm_h%c_liq(m) = MIN( 1.0_wp, ( m_liq_usm_h%var_usm_1d(m) / m_liq_max )**0.67 ) ! !-- Calculate saturation specific humidity q_s = 0.622_wp * e_s / ( surface_pressure - e_s ) ! !-- In case of dewfall, set evapotranspiration to zero !-- All super-saturated water is then removed from the air IF ( humidity .AND. q_s <= qv1 ) THEN surf_usm_h%r_canopy(m) = 0.0_wp ENDIF ! !-- Calculate coefficients for the total evapotranspiration !-- In case of water surface, set vegetation and soil fluxes to zero. !-- For pavements, only evaporation of liquid water is possible. f_qsws_veg = rho_lv * & ( 1.0_wp - surf_usm_h%c_liq(m) ) / & ( surf_usm_h%r_a_green(m) + surf_usm_h%r_canopy(m) ) f_qsws_liq = rho_lv * surf_usm_h%c_liq(m) / & surf_usm_h%r_a_green(m) f_qsws = f_qsws_veg + f_qsws_liq ! !-- Calculate derivative of q_s for Taylor series expansion e_s_dt = e_s * ( 17.269_wp / ( t_surf_green_h(m) - 35.86_wp) - & 17.269_wp*( t_surf_green_h(m) - 273.16_wp) & / ( t_surf_green_h(m) - 35.86_wp)**2 ) dq_s_dt = 0.622_wp * e_s_dt / ( surface_pressure - e_s_dt ) ENDIF ! !-- add LW up so that it can be removed in prognostic equation surf_usm_h%rad_net_l(m) = surf_usm_h%rad_sw_in(m) - & surf_usm_h%rad_sw_out(m) + & surf_usm_h%rad_lw_in(m) - & surf_usm_h%rad_lw_out(m) ! !-- numerator of the prognostic equation !-- Todo: Adjust to tile approach. So far, emissivity for wall (element 0) !-- is used coef_1 = surf_usm_h%rad_net_l(m) + & ( 3.0_wp + 1.0_wp ) * surf_usm_h%emissivity(ind_veg_wall,m) * & sigma_sb * t_surf_wall_h(m) ** 4 + & f_shf * surf_usm_h%pt1(m) + & lambda_surface * t_wall_h(nzb_wall,m) IF ( ( .NOT. during_spinup ) .AND. (surf_usm_h%frac(ind_wat_win,m) > 0.0_wp ) ) THEN coef_window_1 = surf_usm_h%rad_net_l(m) + & ( 3.0_wp + 1.0_wp ) * surf_usm_h%emissivity(ind_wat_win,m) & * sigma_sb * t_surf_window_h(m) ** 4 + & f_shf_window * surf_usm_h%pt1(m) + & lambda_surface_window * t_window_h(nzb_wall,m) ENDIF IF ( ( humidity ) .AND. ( surf_usm_h%frac(ind_pav_green,m) > 0.0_wp ) ) THEN coef_green_1 = surf_usm_h%rad_net_l(m) + & ( 3.0_wp + 1.0_wp ) * surf_usm_h%emissivity(ind_pav_green,m) * sigma_sb * & t_surf_green_h(m) ** 4 + & f_shf_green * surf_usm_h%pt1(m) + f_qsws * ( qv1 - q_s & + dq_s_dt * t_surf_green_h(m) ) & +lambda_surface_green * t_green_h(nzb_wall,m) ELSE coef_green_1 = surf_usm_h%rad_net_l(m) + & ( 3.0_wp + 1.0_wp ) * surf_usm_h%emissivity(ind_pav_green,m) *& sigma_sb * t_surf_green_h(m) ** 4 + & f_shf_green * surf_usm_h%pt1(m) + & lambda_surface_green * t_green_h(nzb_wall,m) ENDIF ! !-- denominator of the prognostic equation coef_2 = 4.0_wp * surf_usm_h%emissivity(ind_veg_wall,m) * & sigma_sb * t_surf_wall_h(m) ** 3 & + lambda_surface + f_shf / exner(k) IF ( ( .NOT. during_spinup ) .AND. ( surf_usm_h%frac(ind_wat_win,m) > 0.0_wp ) ) THEN coef_window_2 = 4.0_wp * surf_usm_h%emissivity(ind_wat_win,m) * & sigma_sb * t_surf_window_h(m) ** 3 & + lambda_surface_window + f_shf_window / exner(k) ENDIF IF ( ( humidity ) .AND. ( surf_usm_h%frac(ind_pav_green,m) > 0.0_wp ) ) THEN coef_green_2 = 4.0_wp * surf_usm_h%emissivity(ind_pav_green,m) * sigma_sb * & t_surf_green_h(m) ** 3 + f_qsws * dq_s_dt & + lambda_surface_green + f_shf_green / exner(k) ELSE coef_green_2 = 4.0_wp * surf_usm_h%emissivity(ind_pav_green,m) * sigma_sb * & t_surf_green_h(m) ** 3 & + lambda_surface_green + f_shf_green / exner(k) ENDIF ! !-- implicit solution when the surface layer has no heat capacity, !-- otherwise use RK3 scheme. t_surf_wall_h_p(m) = ( coef_1 * dt_3d * tsc(2) + & surf_usm_h%c_surface(m) * t_surf_wall_h(m) ) / & ( surf_usm_h%c_surface(m) + coef_2 * dt_3d * tsc(2) ) IF (( .NOT. during_spinup ) .AND. (surf_usm_h%frac(ind_wat_win,m) > 0.0_wp)) THEN t_surf_window_h_p(m) = ( coef_window_1 * dt_3d * tsc(2) + & surf_usm_h%c_surface_window(m) * t_surf_window_h(m) ) / & ( surf_usm_h%c_surface_window(m) + coef_window_2 * dt_3d * tsc(2) ) ENDIF t_surf_green_h_p(m) = ( coef_green_1 * dt_3d * tsc(2) + & surf_usm_h%c_surface_green(m) * t_surf_green_h(m) ) / & ( surf_usm_h%c_surface_green(m) + coef_green_2 * dt_3d * tsc(2) ) ! !-- add RK3 term t_surf_wall_h_p(m) = t_surf_wall_h_p(m) + dt_3d * tsc(3) * & surf_usm_h%tt_surface_wall_m(m) t_surf_window_h_p(m) = t_surf_window_h_p(m) + dt_3d * tsc(3) * & surf_usm_h%tt_surface_window_m(m) t_surf_green_h_p(m) = t_surf_green_h_p(m) + dt_3d * tsc(3) * & surf_usm_h%tt_surface_green_m(m) ! !-- Store surface temperature on pt_surface. Further, in case humidity is used !-- store also vpt_surface, which is, due to the lack of moisture on roofs simply !-- assumed to be the surface temperature. surf_usm_h%pt_surface(m) = ( surf_usm_h%frac(ind_veg_wall,m) * t_surf_wall_h_p(m) & + surf_usm_h%frac(ind_wat_win,m) * t_surf_window_h_p(m) & + surf_usm_h%frac(ind_pav_green,m) * t_surf_green_h_p(m) ) & / exner(k) IF ( humidity ) surf_usm_h%vpt_surface(m) = & surf_usm_h%pt_surface(m) ! !-- calculate true tendency stend_wall = ( t_surf_wall_h_p(m) - t_surf_wall_h(m) - dt_3d * tsc(3) * & surf_usm_h%tt_surface_wall_m(m)) / ( dt_3d * tsc(2) ) stend_window = ( t_surf_window_h_p(m) - t_surf_window_h(m) - dt_3d * tsc(3) * & surf_usm_h%tt_surface_window_m(m)) / ( dt_3d * tsc(2) ) stend_green = ( t_surf_green_h_p(m) - t_surf_green_h(m) - dt_3d * tsc(3) * & surf_usm_h%tt_surface_green_m(m)) / ( dt_3d * tsc(2) ) ! !-- calculate t_surf tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN surf_usm_h%tt_surface_wall_m(m) = stend_wall surf_usm_h%tt_surface_window_m(m) = stend_window surf_usm_h%tt_surface_green_m(m) = stend_green ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN surf_usm_h%tt_surface_wall_m(m) = -9.5625_wp * stend_wall + & 5.3125_wp * surf_usm_h%tt_surface_wall_m(m) surf_usm_h%tt_surface_window_m(m) = -9.5625_wp * stend_window + & 5.3125_wp * surf_usm_h%tt_surface_window_m(m) surf_usm_h%tt_surface_green_m(m) = -9.5625_wp * stend_green + & 5.3125_wp * surf_usm_h%tt_surface_green_m(m) ENDIF ENDIF ! !-- in case of fast changes in the skin temperature, it is required to !-- update the radiative fluxes in order to keep the solution stable IF ( ( ( ABS( t_surf_wall_h_p(m) - t_surf_wall_h(m) ) > 1.0_wp ) .OR. & ( ABS( t_surf_green_h_p(m) - t_surf_green_h(m) ) > 1.0_wp ) .OR. & ( ABS( t_surf_window_h_p(m) - t_surf_window_h(m) ) > 1.0_wp ) ) & .AND. unscheduled_radiation_calls ) THEN force_radiation_call_l = .TRUE. ENDIF ! !-- calculate fluxes !-- rad_net_l is never used! surf_usm_h%rad_net_l(m) = surf_usm_h%rad_net_l(m) + & surf_usm_h%frac(ind_veg_wall,m) * & sigma_sb * surf_usm_h%emissivity(ind_veg_wall,m) * & ( t_surf_wall_h_p(m)**4 - t_surf_wall_h(m)**4 ) & + surf_usm_h%frac(ind_wat_win,m) * & sigma_sb * surf_usm_h%emissivity(ind_wat_win,m) * & ( t_surf_window_h_p(m)**4 - t_surf_window_h(m)**4 ) & + surf_usm_h%frac(ind_pav_green,m) * & sigma_sb * surf_usm_h%emissivity(ind_pav_green,m) * & ( t_surf_green_h_p(m)**4 - t_surf_green_h(m)**4 ) surf_usm_h%wghf_eb(m) = lambda_surface * & ( t_surf_wall_h_p(m) - t_wall_h(nzb_wall,m) ) surf_usm_h%wghf_eb_green(m) = lambda_surface_green * & ( t_surf_green_h_p(m) - t_green_h(nzb_wall,m) ) surf_usm_h%wghf_eb_window(m) = lambda_surface_window * & ( t_surf_window_h_p(m) - t_window_h(nzb_wall,m) ) ! !-- ground/wall/roof surface heat flux surf_usm_h%wshf_eb(m) = - f_shf * ( surf_usm_h%pt1(m) - t_surf_wall_h_p(m) / exner(k) ) * & surf_usm_h%frac(ind_veg_wall,m) & - f_shf_window * ( surf_usm_h%pt1(m) - t_surf_window_h_p(m) / exner(k) ) * & surf_usm_h%frac(ind_wat_win,m) & - f_shf_green * ( surf_usm_h%pt1(m) - t_surf_green_h_p(m) / exner(k) ) * & surf_usm_h%frac(ind_pav_green,m) ! !-- store kinematic surface heat fluxes for utilization in other processes !-- diffusion_s, surface_layer_fluxes,... surf_usm_h%shf(m) = surf_usm_h%wshf_eb(m) / c_p ! !-- If the indoor model is applied, further add waste heat from buildings to the !-- kinematic flux. IF ( indoor_model ) THEN surf_usm_h%shf(m) = surf_usm_h%shf(m) + surf_usm_h%waste_heat(m) / c_p ENDIF IF (surf_usm_h%frac(ind_pav_green,m) > 0.0_wp) THEN IF ( humidity ) THEN surf_usm_h%qsws(m) = - f_qsws * ( qv1 - q_s + dq_s_dt & * t_surf_green_h(m) - dq_s_dt * & t_surf_green_h_p(m) ) surf_usm_h%qsws_veg(m) = - f_qsws_veg * ( qv1 - q_s & + dq_s_dt * t_surf_green_h(m) - dq_s_dt & * t_surf_green_h_p(m) ) surf_usm_h%qsws_liq(m) = - f_qsws_liq * ( qv1 - q_s & + dq_s_dt * t_surf_green_h(m) - dq_s_dt & * t_surf_green_h_p(m) ) ENDIF ! !-- Calculate the true surface resistance IF ( .NOT. humidity ) THEN surf_usm_h%r_s(m) = 1.0E10_wp ELSE surf_usm_h%r_s(m) = - rho_lv * ( qv1 - q_s + dq_s_dt & * t_surf_green_h(m) - dq_s_dt * & t_surf_green_h_p(m) ) / & (surf_usm_h%qsws(m) + 1.0E-20) - surf_usm_h%r_a_green(m) ENDIF ! !-- Calculate change in liquid water reservoir due to dew fall or !-- evaporation of liquid water IF ( humidity ) THEN ! !-- If precipitation is activated, add rain water to qsws_liq !-- and qsws_soil according the the vegetation coverage. !-- precipitation_rate is given in mm. IF ( precipitation ) THEN ! !-- Add precipitation to liquid water reservoir, if possible. !-- Otherwise, add the water to soil. In case of !-- pavements, the exceeding water amount is implicitely removed !-- as runoff as qsws_soil is then not used in the soil model IF ( m_liq_usm_h%var_usm_1d(m) /= m_liq_max ) THEN surf_usm_h%qsws_liq(m) = surf_usm_h%qsws_liq(m) & + surf_usm_h%frac(ind_pav_green,m) * prr(k+k_off,j+j_off,i+i_off)& * hyrho(k+k_off) & * 0.001_wp * rho_l * l_v ENDIF ENDIF ! !-- If the air is saturated, check the reservoir water level IF ( surf_usm_h%qsws(m) < 0.0_wp ) THEN ! !-- Check if reservoir is full (avoid values > m_liq_max) !-- In that case, qsws_liq goes to qsws_soil. In this !-- case qsws_veg is zero anyway (because c_liq = 1), !-- so that tend is zero and no further check is needed IF ( m_liq_usm_h%var_usm_1d(m) == m_liq_max ) THEN ! surf_usm_h%qsws_soil(m) = surf_usm_h%qsws_soil(m) + surf_usm_h%qsws_liq(m) surf_usm_h%qsws_liq(m) = 0.0_wp ENDIF ! !-- In case qsws_veg becomes negative (unphysical behavior), !-- let the water enter the liquid water reservoir as dew on the !-- plant IF ( surf_usm_h%qsws_veg(m) < 0.0_wp ) THEN surf_usm_h%qsws_liq(m) = surf_usm_h%qsws_liq(m) + surf_usm_h%qsws_veg(m) surf_usm_h%qsws_veg(m) = 0.0_wp ENDIF ENDIF surf_usm_h%qsws(m) = surf_usm_h%qsws(m) / l_v tend = - surf_usm_h%qsws_liq(m) * drho_l_lv m_liq_usm_h_p%var_usm_1d(m) = m_liq_usm_h%var_usm_1d(m) + dt_3d * & ( tsc(2) * tend + & tsc(3) * tm_liq_usm_h_m%var_usm_1d(m) ) ! !-- Check if reservoir is overfull -> reduce to maximum !-- (conservation of water is violated here) m_liq_usm_h_p%var_usm_1d(m) = MIN( m_liq_usm_h_p%var_usm_1d(m),m_liq_max ) ! !-- Check if reservoir is empty (avoid values < 0.0) !-- (conservation of water is violated here) m_liq_usm_h_p%var_usm_1d(m) = MAX( m_liq_usm_h_p%var_usm_1d(m), 0.0_wp ) ! !-- Calculate m_liq tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN tm_liq_usm_h_m%var_usm_1d(m) = tend ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN tm_liq_usm_h_m%var_usm_1d(m) = -9.5625_wp * tend + & 5.3125_wp * tm_liq_usm_h_m%var_usm_1d(m) ENDIF ENDIF ENDIF ELSE surf_usm_h%r_s(m) = 1.0E10_wp ENDIF ! !-- During spinup green and window fraction are set to zero. Here, the original !-- values are restored. IF ( during_spinup ) THEN surf_usm_h%frac(ind_wat_win,m) = frac_win surf_usm_h%frac(ind_veg_wall,m) = frac_wall surf_usm_h%frac(ind_pav_green,m) = frac_green ENDIF ENDDO ! !-- Now, treat vertical surface elements !$OMP DO SCHEDULE (STATIC) DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns ! !-- During spinup set green and window fraction to zero and restore !-- at the end of the loop. !-- Note, this is a temporary fix and need to be removed later. IF ( during_spinup ) THEN frac_win = surf_usm_v(l)%frac(ind_wat_win,m) frac_wall = surf_usm_v(l)%frac(ind_veg_wall,m) frac_green = surf_usm_v(l)%frac(ind_pav_green,m) surf_usm_v(l)%frac(ind_wat_win,m) = 0.0_wp surf_usm_v(l)%frac(ind_veg_wall,m) = 1.0_wp surf_usm_v(l)%frac(ind_pav_green,m) = 0.0_wp ENDIF ! !-- Get indices of respective grid point i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) ! !-- TODO - how to calculate lambda_surface for horizontal (??? do you mean verical ???) surfaces !-- (lambda_surface is set according to stratification in land surface model). !-- Please note, for vertical surfaces no ol is defined, since !-- stratification is not considered in this case. lambda_surface = surf_usm_v(l)%lambda_surf(m) lambda_surface_window = surf_usm_v(l)%lambda_surf_window(m) lambda_surface_green = surf_usm_v(l)%lambda_surf_green(m) ! pt1 = pt(k,j,i) IF ( humidity ) THEN qv1 = q(k,j,i) ELSE qv1 = 0.0_wp ENDIF ! !-- calculate rho * c_p coefficient at wall layer rho_cp = c_p * hyp(k) / ( r_d * surf_usm_v(l)%pt1(m) * exner(k) ) IF (surf_usm_v(l)%frac(1,m) > 0.0_wp ) THEN ! !-- Calculate frequently used parameters rho_lv = rho_cp / c_p * l_v drho_l_lv = 1.0_wp / (rho_l * l_v) ENDIF !-- Calculation of r_a for vertical surfaces !-- !-- heat transfer coefficient for forced convection along vertical walls !-- follows formulation in TUF3d model (Krayenhoff & Voogt, 2006) !-- !-- H = httc (Tsfc - Tair) !-- httc = rw * (11.8 + 4.2 * Ueff) - 4.0 !-- !-- rw: wall patch roughness relative to 1.0 for concrete !-- Ueff: effective wind speed !-- - 4.0 is a reduction of Rowley et al (1930) formulation based on !-- Cole and Sturrock (1977) !-- !-- Ucan: Canyon wind speed !-- wstar: convective velocity !-- Qs: surface heat flux !-- zH: height of the convective layer !-- wstar = (g/Tcan*Qs*zH)**(1./3.) !-- Effective velocity components must always !-- be defined at scalar grid point. The wall normal component is !-- obtained by simple linear interpolation. ( An alternative would !-- be an logarithmic interpolation. ) !-- Parameter roughness_concrete (default value = 0.001) is used !-- to calculation of roughness relative to concrete surf_usm_v(l)%r_a(m) = rho_cp / ( surf_usm_v(l)%z0(m) / & roughness_concrete * ( 11.8_wp + 4.2_wp * & SQRT( MAX( ( ( u(k,j,i) + u(k,j,i+1) ) * 0.5_wp )**2 + & ( ( v(k,j,i) + v(k,j+1,i) ) * 0.5_wp )**2 + & ( ( w(k,j,i) + w(k-1,j,i) ) * 0.5_wp )**2, & 0.01_wp ) ) & ) - 4.0_wp ) ! !-- Limit aerodynamic resistance IF ( surf_usm_v(l)%r_a(m) < 1.0_wp ) surf_usm_v(l)%r_a(m) = 1.0_wp f_shf = rho_cp / surf_usm_v(l)%r_a(m) f_shf_window = rho_cp / surf_usm_v(l)%r_a(m) f_shf_green = rho_cp / surf_usm_v(l)%r_a(m) IF ( surf_usm_v(l)%frac(1,m) > 0.0_wp ) THEN ! !-- Adapted from LSM: !-- Second step: calculate canopy resistance r_canopy !-- f1-f3 here are defined as 1/f1-f3 as in ECMWF documentation !-- f1: correction for incoming shortwave radiation (stomata close at !-- night) f1 = MIN( 1.0_wp, ( 0.004_wp * surf_usm_v(l)%rad_sw_in(m) + 0.05_wp ) / & (0.81_wp * (0.004_wp * surf_usm_v(l)%rad_sw_in(m) & + 1.0_wp)) ) ! !-- f2: correction for soil moisture availability to plants (the !-- integrated soil moisture must thus be considered here) !-- f2 = 0 for very dry soils f2=1.0_wp ! !-- Calculate water vapour pressure at saturation e_s = 0.01_wp * 610.78_wp * EXP( 17.269_wp * ( t_surf_green_v_p(l)%t(m) & - 273.16_wp ) / ( t_surf_green_v_p(l)%t(m) - 35.86_wp ) ) ! !-- f3: correction for vapour pressure deficit IF ( surf_usm_v(l)%g_d(m) /= 0.0_wp ) THEN ! !-- Calculate vapour pressure e = qv1 * surface_pressure / ( qv1 + 0.622_wp ) f3 = EXP ( - surf_usm_v(l)%g_d(m) * (e_s - e) ) ELSE f3 = 1.0_wp ENDIF ! !-- Calculate canopy resistance. In case that c_veg is 0 (bare soils), !-- this calculation is obsolete, as r_canopy is not used below. !-- To do: check for very dry soil -> r_canopy goes to infinity surf_usm_v(l)%r_canopy(m) = surf_usm_v(l)%r_canopy_min(m) / & ( surf_usm_v(l)%lai(m) * f1 * f2 * f3 + 1.0E-20_wp ) ! !-- Calculate saturation specific humidity q_s = 0.622_wp * e_s / ( surface_pressure - e_s ) ! !-- In case of dewfall, set evapotranspiration to zero !-- All super-saturated water is then removed from the air IF ( humidity .AND. q_s <= qv1 ) THEN surf_usm_v(l)%r_canopy(m) = 0.0_wp ENDIF ! !-- Calculate coefficients for the total evapotranspiration !-- In case of water surface, set vegetation and soil fluxes to zero. !-- For pavements, only evaporation of liquid water is possible. f_qsws_veg = rho_lv * & ( 1.0_wp - 0.0_wp ) / & !surf_usm_h%c_liq(m) ) / & ( surf_usm_v(l)%r_a(m) + surf_usm_v(l)%r_canopy(m) ) ! f_qsws_liq = rho_lv * surf_usm_h%c_liq(m) / & ! surf_usm_h%r_a_green(m) f_qsws = f_qsws_veg! + f_qsws_liq ! !-- Calculate derivative of q_s for Taylor series expansion e_s_dt = e_s * ( 17.269_wp / ( t_surf_green_v_p(l)%t(m) - 35.86_wp) - & 17.269_wp*( t_surf_green_v_p(l)%t(m) - 273.16_wp) & / ( t_surf_green_v_p(l)%t(m) - 35.86_wp)**2 ) dq_s_dt = 0.622_wp * e_s_dt / ( surface_pressure - e_s_dt ) ENDIF ! !-- add LW up so that it can be removed in prognostic equation surf_usm_v(l)%rad_net_l(m) = surf_usm_v(l)%rad_sw_in(m) - & surf_usm_v(l)%rad_sw_out(m) + & surf_usm_v(l)%rad_lw_in(m) - & surf_usm_v(l)%rad_lw_out(m) ! !-- numerator of the prognostic equation coef_1 = surf_usm_v(l)%rad_net_l(m) + & ! coef +1 corresponds to -lwout ! included in calculation of radnet_l ( 3.0_wp + 1.0_wp ) * surf_usm_v(l)%emissivity(ind_veg_wall,m) * & sigma_sb * t_surf_wall_v(l)%t(m) ** 4 + & f_shf * surf_usm_v(l)%pt1(m) + & lambda_surface * t_wall_v(l)%t(nzb_wall,m) IF ( ( .NOT. during_spinup ) .AND. ( surf_usm_v(l)%frac(ind_wat_win,m) > 0.0_wp ) ) THEN coef_window_1 = surf_usm_v(l)%rad_net_l(m) + & ! coef +1 corresponds to -lwout ! included in calculation of radnet_l ( 3.0_wp + 1.0_wp ) * surf_usm_v(l)%emissivity(ind_wat_win,m) * & sigma_sb * t_surf_window_v(l)%t(m) ** 4 + & f_shf * surf_usm_v(l)%pt1(m) + & lambda_surface_window * t_window_v(l)%t(nzb_wall,m) ENDIF IF ( ( humidity ) .AND. ( surf_usm_v(l)%frac(ind_pav_green,m) > 0.0_wp ) ) THEN coef_green_1 = surf_usm_v(l)%rad_net_l(m) + & ! coef +1 corresponds to -lwout ! included in calculation of radnet_l ( 3.0_wp + 1.0_wp ) * surf_usm_v(l)%emissivity(ind_pav_green,m) * sigma_sb * & t_surf_green_v(l)%t(m) ** 4 + & f_shf * surf_usm_v(l)%pt1(m) + f_qsws * ( qv1 - q_s & + dq_s_dt * t_surf_green_v(l)%t(m) ) + & lambda_surface_green * t_wall_v(l)%t(nzb_wall,m) ELSE coef_green_1 = surf_usm_v(l)%rad_net_l(m) + & ! coef +1 corresponds to -lwout included ! in calculation of radnet_l ( 3.0_wp + 1.0_wp ) * surf_usm_v(l)%emissivity(ind_pav_green,m) * sigma_sb * & t_surf_green_v(l)%t(m) ** 4 + & f_shf * surf_usm_v(l)%pt1(m) + & lambda_surface_green * t_wall_v(l)%t(nzb_wall,m) ENDIF ! !-- denominator of the prognostic equation coef_2 = 4.0_wp * surf_usm_v(l)%emissivity(ind_veg_wall,m) * sigma_sb * & t_surf_wall_v(l)%t(m) ** 3 & + lambda_surface + f_shf / exner(k) IF ( ( .NOT. during_spinup ) .AND. ( surf_usm_v(l)%frac(ind_wat_win,m) > 0.0_wp ) ) THEN coef_window_2 = 4.0_wp * surf_usm_v(l)%emissivity(ind_wat_win,m) * sigma_sb * & t_surf_window_v(l)%t(m) ** 3 & + lambda_surface_window + f_shf / exner(k) ENDIF IF ( ( humidity ) .AND. ( surf_usm_v(l)%frac(ind_pav_green,m) > 0.0_wp ) ) THEN coef_green_2 = 4.0_wp * surf_usm_v(l)%emissivity(ind_pav_green,m) * sigma_sb * & t_surf_green_v(l)%t(m) ** 3 + f_qsws * dq_s_dt & + lambda_surface_green + f_shf / exner(k) ELSE coef_green_2 = 4.0_wp * surf_usm_v(l)%emissivity(ind_pav_green,m) * sigma_sb * & t_surf_green_v(l)%t(m) ** 3 & + lambda_surface_green + f_shf / exner(k) ENDIF ! !-- implicit solution when the surface layer has no heat capacity, !-- otherwise use RK3 scheme. t_surf_wall_v_p(l)%t(m) = ( coef_1 * dt_3d * tsc(2) + & surf_usm_v(l)%c_surface(m) * t_surf_wall_v(l)%t(m) ) / & ( surf_usm_v(l)%c_surface(m) + coef_2 * dt_3d * tsc(2) ) IF ( ( .NOT. during_spinup ) .AND. ( surf_usm_v(l)%frac(ind_wat_win,m) > 0.0_wp ) ) THEN t_surf_window_v_p(l)%t(m) = ( coef_window_1 * dt_3d * tsc(2) + & surf_usm_v(l)%c_surface_window(m) * t_surf_window_v(l)%t(m) ) / & ( surf_usm_v(l)%c_surface_window(m) + coef_window_2 * dt_3d * tsc(2) ) ENDIF t_surf_green_v_p(l)%t(m) = ( coef_green_1 * dt_3d * tsc(2) + & surf_usm_v(l)%c_surface_green(m) * t_surf_green_v(l)%t(m) ) / & ( surf_usm_v(l)%c_surface_green(m) + coef_green_2 * dt_3d * tsc(2) ) ! !-- add RK3 term t_surf_wall_v_p(l)%t(m) = t_surf_wall_v_p(l)%t(m) + dt_3d * tsc(3) * & surf_usm_v(l)%tt_surface_wall_m(m) t_surf_window_v_p(l)%t(m) = t_surf_window_v_p(l)%t(m) + dt_3d * tsc(3) * & surf_usm_v(l)%tt_surface_window_m(m) t_surf_green_v_p(l)%t(m) = t_surf_green_v_p(l)%t(m) + dt_3d * tsc(3) * & surf_usm_v(l)%tt_surface_green_m(m) ! !-- Store surface temperature. Further, in case humidity is used !-- store also vpt_surface, which is, due to the lack of moisture on roofs simply !-- assumed to be the surface temperature. surf_usm_v(l)%pt_surface(m) = ( surf_usm_v(l)%frac(ind_veg_wall,m) * t_surf_wall_v_p(l)%t(m) & + surf_usm_v(l)%frac(ind_wat_win,m) * t_surf_window_v_p(l)%t(m) & + surf_usm_v(l)%frac(ind_pav_green,m) * t_surf_green_v_p(l)%t(m) ) & / exner(k) IF ( humidity ) surf_usm_v(l)%vpt_surface(m) = & surf_usm_v(l)%pt_surface(m) ! !-- calculate true tendency stend_wall = ( t_surf_wall_v_p(l)%t(m) - t_surf_wall_v(l)%t(m) - dt_3d * tsc(3) * & surf_usm_v(l)%tt_surface_wall_m(m) ) / ( dt_3d * tsc(2) ) stend_window = ( t_surf_window_v_p(l)%t(m) - t_surf_window_v(l)%t(m) - dt_3d * tsc(3) *& surf_usm_v(l)%tt_surface_window_m(m) ) / ( dt_3d * tsc(2) ) stend_green = ( t_surf_green_v_p(l)%t(m) - t_surf_green_v(l)%t(m) - dt_3d * tsc(3) * & surf_usm_v(l)%tt_surface_green_m(m) ) / ( dt_3d * tsc(2) ) ! !-- calculate t_surf_* tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN surf_usm_v(l)%tt_surface_wall_m(m) = stend_wall surf_usm_v(l)%tt_surface_window_m(m) = stend_window surf_usm_v(l)%tt_surface_green_m(m) = stend_green ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN surf_usm_v(l)%tt_surface_wall_m(m) = -9.5625_wp * stend_wall + & 5.3125_wp * surf_usm_v(l)%tt_surface_wall_m(m) surf_usm_v(l)%tt_surface_green_m(m) = -9.5625_wp * stend_green + & 5.3125_wp * surf_usm_v(l)%tt_surface_green_m(m) surf_usm_v(l)%tt_surface_window_m(m) = -9.5625_wp * stend_window + & 5.3125_wp * surf_usm_v(l)%tt_surface_window_m(m) ENDIF ENDIF ! !-- in case of fast changes in the skin temperature, it is required to !-- update the radiative fluxes in order to keep the solution stable IF ( ( ( ABS( t_surf_wall_v_p(l)%t(m) - t_surf_wall_v(l)%t(m) ) > 1.0_wp ) .OR. & ( ABS( t_surf_green_v_p(l)%t(m) - t_surf_green_v(l)%t(m) ) > 1.0_wp ) .OR. & ( ABS( t_surf_window_v_p(l)%t(m) - t_surf_window_v(l)%t(m) ) > 1.0_wp ) ) & .AND. unscheduled_radiation_calls ) THEN force_radiation_call_l = .TRUE. ENDIF ! !-- calculate fluxes !-- prognostic rad_net_l is used just for output! surf_usm_v(l)%rad_net_l(m) = surf_usm_v(l)%frac(ind_veg_wall,m) * & ( surf_usm_v(l)%rad_net_l(m) + & 3.0_wp * sigma_sb * & t_surf_wall_v(l)%t(m)**4 - 4.0_wp * sigma_sb * & t_surf_wall_v(l)%t(m)**3 * t_surf_wall_v_p(l)%t(m) ) & + surf_usm_v(l)%frac(ind_wat_win,m) * & ( surf_usm_v(l)%rad_net_l(m) + & 3.0_wp * sigma_sb * & t_surf_window_v(l)%t(m)**4 - 4.0_wp * sigma_sb * & t_surf_window_v(l)%t(m)**3 * t_surf_window_v_p(l)%t(m) ) & + surf_usm_v(l)%frac(ind_pav_green,m) * & ( surf_usm_v(l)%rad_net_l(m) + & 3.0_wp * sigma_sb * & t_surf_green_v(l)%t(m)**4 - 4.0_wp * sigma_sb * & t_surf_green_v(l)%t(m)**3 * t_surf_green_v_p(l)%t(m) ) surf_usm_v(l)%wghf_eb_window(m) = lambda_surface_window * & ( t_surf_window_v_p(l)%t(m) - t_window_v(l)%t(nzb_wall,m) ) surf_usm_v(l)%wghf_eb(m) = lambda_surface * & ( t_surf_wall_v_p(l)%t(m) - t_wall_v(l)%t(nzb_wall,m) ) surf_usm_v(l)%wghf_eb_green(m) = lambda_surface_green * & ( t_surf_green_v_p(l)%t(m) - t_green_v(l)%t(nzb_wall,m) ) ! !-- ground/wall/roof surface heat flux surf_usm_v(l)%wshf_eb(m) = & - f_shf * ( surf_usm_v(l)%pt1(m) - & t_surf_wall_v_p(l)%t(m) / exner(k) ) * surf_usm_v(l)%frac(ind_veg_wall,m) & - f_shf_window * ( surf_usm_v(l)%pt1(m) - & t_surf_window_v_p(l)%t(m) / exner(k) ) * surf_usm_v(l)%frac(ind_wat_win,m)& - f_shf_green * ( surf_usm_v(l)%pt1(m) - & t_surf_green_v_p(l)%t(m) / exner(k) ) * surf_usm_v(l)%frac(ind_pav_green,m) ! !-- store kinematic surface heat fluxes for utilization in other processes !-- diffusion_s, surface_layer_fluxes,... surf_usm_v(l)%shf(m) = surf_usm_v(l)%wshf_eb(m) / c_p ! !-- If the indoor model is applied, further add waste heat from buildings to the !-- kinematic flux. IF ( indoor_model ) THEN surf_usm_v(l)%shf(m) = surf_usm_v(l)%shf(m) + & surf_usm_v(l)%waste_heat(m) / c_p ENDIF IF ( surf_usm_v(l)%frac(ind_pav_green,m) > 0.0_wp ) THEN IF ( humidity ) THEN surf_usm_v(l)%qsws(m) = - f_qsws * ( qv1 - q_s + dq_s_dt & * t_surf_green_v(l)%t(m) - dq_s_dt * & t_surf_green_v_p(l)%t(m) ) surf_usm_v(l)%qsws(m) = surf_usm_v(l)%qsws(m) / l_v surf_usm_v(l)%qsws_veg(m) = - f_qsws_veg * ( qv1 - q_s & + dq_s_dt * t_surf_green_v(l)%t(m) - dq_s_dt & * t_surf_green_v_p(l)%t(m) ) ! surf_usm_h%qsws_liq(m) = - f_qsws_liq * ( qv1 - q_s & ! + dq_s_dt * t_surf_green_h(m) - dq_s_dt & ! * t_surf_green_h_p(m) ) ENDIF ! !-- Calculate the true surface resistance IF ( .NOT. humidity ) THEN surf_usm_v(l)%r_s(m) = 1.0E10_wp ELSE surf_usm_v(l)%r_s(m) = - rho_lv * ( qv1 - q_s + dq_s_dt & * t_surf_green_v(l)%t(m) - dq_s_dt * & t_surf_green_v_p(l)%t(m) ) / & (surf_usm_v(l)%qsws(m) + 1.0E-20) - surf_usm_v(l)%r_a(m) ENDIF ! !-- Calculate change in liquid water reservoir due to dew fall or !-- evaporation of liquid water IF ( humidity ) THEN ! !-- If the air is saturated, check the reservoir water level IF ( surf_usm_v(l)%qsws(m) < 0.0_wp ) THEN ! !-- In case qsws_veg becomes negative (unphysical behavior), !-- let the water enter the liquid water reservoir as dew on the !-- plant IF ( surf_usm_v(l)%qsws_veg(m) < 0.0_wp ) THEN ! surf_usm_h%qsws_liq(m) = surf_usm_h%qsws_liq(m) + surf_usm_h%qsws_veg(m) surf_usm_v(l)%qsws_veg(m) = 0.0_wp ENDIF ENDIF ENDIF ELSE surf_usm_v(l)%r_s(m) = 1.0E10_wp ENDIF ! !-- During spinup green and window fraction are set to zero. Here, the original !-- values are restored. IF ( during_spinup ) THEN surf_usm_v(l)%frac(ind_wat_win,m) = frac_win surf_usm_v(l)%frac(ind_veg_wall,m) = frac_wall surf_usm_v(l)%frac(ind_pav_green,m) = frac_green ENDIF ENDDO ENDDO !$OMP END PARALLEL ! !-- Add-up anthropogenic heat, for now only at upward-facing surfaces IF ( usm_anthropogenic_heat .AND. & intermediate_timestep_count == intermediate_timestep_count_max ) THEN ! !-- application of the additional anthropogenic heat sources !-- we considere the traffic for now so all heat is absorbed !-- to the first layer, generalization would be worth. !-- calculation of actual profile coefficient !-- ??? check time_since_reference_point ??? dtime = mod(simulated_time + time_utc_init, 24.0_wp*3600.0_wp) dhour = INT(dtime/3600.0_wp) !-- TO_DO: activate, if testcase is available !-- !$OMP PARALLEL DO PRIVATE (i, j, k, acoef, rho_cp) !-- it may also improve performance to move get_topography_top_index_ji before the k-loop DO i = nxl, nxr DO j = nys, nyn DO k = nz_urban_b, min(nz_urban_t,naheatlayers) IF ( k > get_topography_top_index_ji( j, i, 's' ) ) THEN ! !-- increase of pt in box i,j,k in time dt_3d !-- given to anthropogenic heat aheat*acoef (W*m-2) !-- linear interpolation of coeficient acoef = (REAL(dhour+1,wp)-dtime/3600.0_wp)*aheatprof(k,dhour) + & (dtime/3600.0_wp-REAL(dhour,wp))*aheatprof(k,dhour+1) IF ( aheat(k,j,i) > 0.0_wp ) THEN ! !-- calculate rho * c_p coefficient at layer k rho_cp = c_p * hyp(k) / ( r_d * pt(k+1,j,i) * exner(k) ) pt(k,j,i) = pt(k,j,i) + aheat(k,j,i)*acoef*dt_3d/(exner(k)*rho_cp*dz(1)) ENDIF ENDIF ENDDO ENDDO ENDDO ENDIF ! !-- pt and shf are defined on nxlg:nxrg,nysg:nyng !-- get the borders from neighbours CALL exchange_horiz( pt, nbgp ) ! !-- calculation of force_radiation_call: !-- Make logical OR for all processes. !-- Force radiation call if at least one processor forces it. IF ( intermediate_timestep_count == intermediate_timestep_count_max-1 )& THEN #if defined( __parallel ) IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) CALL MPI_ALLREDUCE( force_radiation_call_l, force_radiation_call, & 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr ) #else force_radiation_call = force_radiation_call_l #endif force_radiation_call_l = .FALSE. ENDIF ! ! ! !-- Calculate surface specific humidity ! IF ( humidity ) THEN ! CALL calc_q_surface_usm ! ENDIF ! CONTAINS ! !------------------------------------------------------------------------------! ! ! Description: ! ! ------------ ! !> Calculation of specific humidity of the skin layer (surface). It is assumend ! !> that the skin is always saturated. ! !------------------------------------------------------------------------------! ! SUBROUTINE calc_q_surface_usm ! ! IMPLICIT NONE ! ! REAL(wp) :: resistance !< aerodynamic and soil resistance term ! ! DO m = 1, surf_usm_h%ns ! ! i = surf_usm_h%i(m) ! j = surf_usm_h%j(m) ! k = surf_usm_h%k(m) ! !! !!-- Calculate water vapour pressure at saturation ! e_s = 0.01_wp * 610.78_wp * EXP( 17.269_wp * & ! ( t_surf_green_h_p(m) - 273.16_wp ) / & ! ( t_surf_green_h_p(m) - 35.86_wp ) & ! ) ! !! !!-- Calculate specific humidity at saturation ! q_s = 0.622_wp * e_s / ( surface_pressure - e_s ) ! !! surf_usm_h%r_a_green(m) = ( surf_usm_h%pt1(m) - t_surf_green_h(m) / exner(k) ) / & !! ( surf_usm_h%ts(m) * surf_usm_h%us(m) + 1.0E-10_wp ) !! !! !-- make sure that the resistance does not drop to zero !! IF ( ABS(surf_usm_h%r_a_green(m)) < 1.0E-10_wp ) surf_usm_h%r_a_green(m) = 1.0E-10_wp ! ! resistance = surf_usm_h%r_a_green(m) / ( surf_usm_h%r_a_green(m) + surf_usm_h%r_s(m) + 1E-5_wp ) ! !! !!-- Calculate specific humidity at surface ! IF ( bulk_cloud_model ) THEN ! q(k,j,i) = resistance * q_s + & ! ( 1.0_wp - resistance ) * & ! ( q(k,j,i) - ql(k,j,i) ) ! ELSE ! q(k,j,i) = resistance * q_s + & ! ( 1.0_wp - resistance ) * & ! q(k,j,i) ! ENDIF ! !! !!-- Update virtual potential temperature ! vpt(k,j,i) = pt(k,j,i) * & ! ( 1.0_wp + 0.61_wp * q(k,j,i) ) ! ! ENDDO ! !! !!-- Now, treat vertical surface elements ! DO l = 0, 3 ! DO m = 1, surf_usm_v(l)%ns !! !!-- Get indices of respective grid point ! i = surf_usm_v(l)%i(m) ! j = surf_usm_v(l)%j(m) ! k = surf_usm_v(l)%k(m) ! !! !!-- Calculate water vapour pressure at saturation ! e_s = 0.01_wp * 610.78_wp * EXP( 17.269_wp * & ! ( t_surf_green_v_p(l)%t(m) - 273.16_wp ) / & ! ( t_surf_green_v_p(l)%t(m) - 35.86_wp ) & ! ) ! !! !!-- Calculate specific humidity at saturation ! q_s = 0.622_wp * e_s / ( surface_pressure -e_s ) ! !! !!-- Calculate specific humidity at surface ! IF ( bulk_cloud_model ) THEN ! q(k,j,i) = ( q(k,j,i) - ql(k,j,i) ) ! ELSE ! q(k,j,i) = q(k,j,i) ! ENDIF !! !!-- Update virtual potential temperature ! vpt(k,j,i) = pt(k,j,i) * & ! ( 1.0_wp + 0.61_wp * q(k,j,i) ) ! ! ENDDO ! ! ENDDO ! ! END SUBROUTINE calc_q_surface_usm IF ( debug_output_timestep ) THEN WRITE( debug_string, * ) 'usm_surface_energy_balance | during_spinup: ',& during_spinup CALL debug_message( debug_string, 'end' ) ENDIF END SUBROUTINE usm_surface_energy_balance !------------------------------------------------------------------------------! ! Description: ! ------------ !> Swapping of timelevels for t_surf and t_wall !> called out from subroutine swap_timelevel !------------------------------------------------------------------------------! SUBROUTINE usm_swap_timelevel( mod_count ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: mod_count SELECT CASE ( mod_count ) CASE ( 0 ) ! !-- Horizontal surfaces t_surf_wall_h => t_surf_wall_h_1; t_surf_wall_h_p => t_surf_wall_h_2 t_wall_h => t_wall_h_1; t_wall_h_p => t_wall_h_2 t_surf_window_h => t_surf_window_h_1; t_surf_window_h_p => t_surf_window_h_2 t_window_h => t_window_h_1; t_window_h_p => t_window_h_2 t_surf_green_h => t_surf_green_h_1; t_surf_green_h_p => t_surf_green_h_2 t_green_h => t_green_h_1; t_green_h_p => t_green_h_2 ! !-- Vertical surfaces t_surf_wall_v => t_surf_wall_v_1; t_surf_wall_v_p => t_surf_wall_v_2 t_wall_v => t_wall_v_1; t_wall_v_p => t_wall_v_2 t_surf_window_v => t_surf_window_v_1; t_surf_window_v_p => t_surf_window_v_2 t_window_v => t_window_v_1; t_window_v_p => t_window_v_2 t_surf_green_v => t_surf_green_v_1; t_surf_green_v_p => t_surf_green_v_2 t_green_v => t_green_v_1; t_green_v_p => t_green_v_2 CASE ( 1 ) ! !-- Horizontal surfaces t_surf_wall_h => t_surf_wall_h_2; t_surf_wall_h_p => t_surf_wall_h_1 t_wall_h => t_wall_h_2; t_wall_h_p => t_wall_h_1 t_surf_window_h => t_surf_window_h_2; t_surf_window_h_p => t_surf_window_h_1 t_window_h => t_window_h_2; t_window_h_p => t_window_h_1 t_surf_green_h => t_surf_green_h_2; t_surf_green_h_p => t_surf_green_h_1 t_green_h => t_green_h_2; t_green_h_p => t_green_h_1 ! !-- Vertical surfaces t_surf_wall_v => t_surf_wall_v_2; t_surf_wall_v_p => t_surf_wall_v_1 t_wall_v => t_wall_v_2; t_wall_v_p => t_wall_v_1 t_surf_window_v => t_surf_window_v_2; t_surf_window_v_p => t_surf_window_v_1 t_window_v => t_window_v_2; t_window_v_p => t_window_v_1 t_surf_green_v => t_surf_green_v_2; t_surf_green_v_p => t_surf_green_v_1 t_green_v => t_green_v_2; t_green_v_p => t_green_v_1 END SELECT END SUBROUTINE usm_swap_timelevel !------------------------------------------------------------------------------! ! Description: ! ------------ !> Subroutine writes t_surf and t_wall data into restart files !------------------------------------------------------------------------------! SUBROUTINE usm_wrd_local IMPLICIT NONE CHARACTER(LEN=1) :: dum !< dummy string to create output-variable name INTEGER(iwp) :: l !< index surface type orientation CALL wrd_write_string( 'ns_h_on_file_usm' ) WRITE ( 14 ) surf_usm_h%ns CALL wrd_write_string( 'ns_v_on_file_usm' ) WRITE ( 14 ) surf_usm_v(0:3)%ns CALL wrd_write_string( 'usm_start_index_h' ) WRITE ( 14 ) surf_usm_h%start_index CALL wrd_write_string( 'usm_end_index_h' ) WRITE ( 14 ) surf_usm_h%end_index CALL wrd_write_string( 't_surf_wall_h' ) WRITE ( 14 ) t_surf_wall_h CALL wrd_write_string( 't_surf_window_h' ) WRITE ( 14 ) t_surf_window_h CALL wrd_write_string( 't_surf_green_h' ) WRITE ( 14 ) t_surf_green_h ! !-- Write restart data which is especially needed for the urban-surface !-- model. In order to do not fill up the restart routines in !-- surface_mod. !-- Output of waste heat from indoor model. Restart data is required in !-- this special case, because the indoor model where waste heat is !-- computed is call each hour (current default), so that waste heat would !-- have zero value until next call of indoor model. IF ( indoor_model ) THEN CALL wrd_write_string( 'waste_heat_h' ) WRITE ( 14 ) surf_usm_h%waste_heat ENDIF DO l = 0, 3 CALL wrd_write_string( 'usm_start_index_v' ) WRITE ( 14 ) surf_usm_v(l)%start_index CALL wrd_write_string( 'usm_end_index_v' ) WRITE ( 14 ) surf_usm_v(l)%end_index WRITE( dum, '(I1)') l CALL wrd_write_string( 't_surf_wall_v(' // dum // ')' ) WRITE ( 14 ) t_surf_wall_v(l)%t CALL wrd_write_string( 't_surf_window_v(' // dum // ')' ) WRITE ( 14 ) t_surf_window_v(l)%t CALL wrd_write_string( 't_surf_green_v(' // dum // ')' ) WRITE ( 14 ) t_surf_green_v(l)%t IF ( indoor_model ) THEN CALL wrd_write_string( 'waste_heat_v(' // dum // ')' ) WRITE ( 14 ) surf_usm_v(l)%waste_heat ENDIF ENDDO CALL wrd_write_string( 'usm_start_index_h' ) WRITE ( 14 ) surf_usm_h%start_index CALL wrd_write_string( 'usm_end_index_h' ) WRITE ( 14 ) surf_usm_h%end_index CALL wrd_write_string( 't_wall_h' ) WRITE ( 14 ) t_wall_h CALL wrd_write_string( 't_window_h' ) WRITE ( 14 ) t_window_h CALL wrd_write_string( 't_green_h' ) WRITE ( 14 ) t_green_h DO l = 0, 3 CALL wrd_write_string( 'usm_start_index_v' ) WRITE ( 14 ) surf_usm_v(l)%start_index CALL wrd_write_string( 'usm_end_index_v' ) WRITE ( 14 ) surf_usm_v(l)%end_index WRITE( dum, '(I1)') l CALL wrd_write_string( 't_wall_v(' // dum // ')' ) WRITE ( 14 ) t_wall_v(l)%t CALL wrd_write_string( 't_window_v(' // dum // ')' ) WRITE ( 14 ) t_window_v(l)%t CALL wrd_write_string( 't_green_v(' // dum // ')' ) WRITE ( 14 ) t_green_v(l)%t ENDDO END SUBROUTINE usm_wrd_local !------------------------------------------------------------------------------! ! Description: ! ------------ !> Define building properties !------------------------------------------------------------------------------! SUBROUTINE usm_define_pars ! !-- Define the building_pars building_pars(:,1) = (/ & 0.7_wp, & !< parameter 0 - wall fraction above ground floor level 0.3_wp, & !< parameter 1 - window fraction above ground floor level 0.0_wp, & !< parameter 2 - green fraction above ground floor level 0.0_wp, & !< parameter 3 - green fraction roof above ground floor level 1.5_wp, & !< parameter 4 - LAI roof 1.5_wp, & !< parameter 5 - LAI on wall above ground floor level 2200000.0_wp, & !< parameter 6 - heat capacity 1st/2nd wall layer above ground floor level 1400000.0_wp, & !< parameter 7 - heat capacity 3rd wall layer above ground floor level 1300000.0_wp, & !< parameter 8 - heat capacity 4th wall layer above ground floor level 0.35_wp, & !< parameter 9 - thermal conductivity 1st/2nd wall layer above ground floor level 0.8_wp, & !< parameter 10 - thermal conductivity 3rd wall layer above ground floor level 2.1_wp, & !< parameter 11 - thermal conductivity 4th wall layer above ground floor level 299.15_wp, & !< parameter 12 - indoor target summer temperature 293.15_wp, & !< parameter 13 - indoor target winter temperature 0.93_wp, & !< parameter 14 - wall emissivity above ground floor level 0.86_wp, & !< parameter 15 - green emissivity above ground floor level 0.91_wp, & !< parameter 16 - window emissivity above ground floor level 0.75_wp, & !< parameter 17 - window transmissivity above ground floor level 0.001_wp, & !< parameter 18 - z0 roughness above ground floor level 0.0001_wp, & !< parameter 19 - z0h/z0g roughness heat/humidity above ground floor level 4.0_wp, & !< parameter 20 - ground floor level height 0.75_wp, & !< parameter 21 - wall fraction ground floor level 0.25_wp, & !< parameter 22 - window fraction ground floor level 0.0_wp, & !< parameter 23 - green fraction ground floor level 0.0_wp, & !< parameter 24 - green fraction roof ground floor level 1.5_wp, & !< parameter 25 - LAI on wall ground floor level 2200000.0_wp, & !< parameter 26 - heat capacity 1st/2nd wall layer ground floor level 1400000.0_wp, & !< parameter 27 - heat capacity 3rd wall layer ground floor level 1300000.0_wp, & !< parameter 28 - heat capacity 4th wall layer ground floor level 0.35_wp, & !< parameter 29 - thermal conductivity 1st/2nd wall layer ground floor level 0.8_wp, & !< parameter 30 - thermal conductivity 3rd wall layer ground floor level 2.1_wp, & !< parameter 31 - thermal conductivity 4th wall layer ground floor level 0.93_wp, & !< parameter 32 - wall emissivity ground floor level 0.91_wp, & !< parameter 33 - window emissivity ground floor level 0.86_wp, & !< parameter 34 - green emissivity ground floor level 0.75_wp, & !< parameter 35 - window transmissivity ground floor level 0.001_wp, & !< parameter 36 - z0 roughness ground floor level 0.0001_wp, & !< parameter 37 - z0h/z0q roughness heat/humidity 27.0_wp, & !< parameter 38 - wall albedo above ground floor level 5.0_wp, & !< parameter 39 - green albedo above ground floor level 27.0_wp, & !< parameter 40 - window albedo above ground floor level 0.005_wp, & !< parameter 41 - 1st wall layer thickness above ground floor level 0.01_wp, & !< parameter 42 - 2nd wall layer thickness above ground floor level 0.39_wp, & !< parameter 43 - 3rd wall layer thickness above ground floor level 0.63_wp, & !< parameter 44 - 4th wall layer thickness above ground floor level 20000.0_wp, & !< parameter 45 - heat capacity wall surface 23.0_wp, & !< parameter 46 - thermal conductivity of wall surface 20000.0_wp, & !< parameter 47 - heat capacity of window surface 20000.0_wp, & !< parameter 48 - heat capacity of green surface 23.0_wp, & !< parameter 49 - thermal conductivity of window surface 10.0_wp, & !< parameter 50 - thermal conductivty of green surface 1.0_wp, & !< parameter 51 - wall fraction ground plate 0.005_wp, & !< parameter 52 - 1st wall layer thickness ground plate 0.01_wp, & !< parameter 53 - 2nd wall layer thickness ground plate 0.39_wp, & !< parameter 54 - 3rd wall layer thickness ground plate 0.63_wp, & !< parameter 55 - 4th wall layer thickness ground plate 2200000.0_wp, & !< parameter 56 - heat capacity 1st/2nd wall layer ground plate 1400000.0_wp, & !< parameter 57 - heat capacity 3rd wall layer ground plate 1300000.0_wp, & !< parameter 58 - heat capacity 4th wall layer ground plate 0.35_wp, & !< parameter 59 - thermal conductivity 1st/2nd wall layer ground plate 0.8_wp, & !< parameter 60 - thermal conductivity 3rd wall layer ground plate 2.1_wp, & !< parameter 61 - thermal conductivity 4th wall layer ground plate 0.005_wp, & !< parameter 62 - 1st wall layer thickness ground floor level 0.01_wp, & !< parameter 63 - 2nd wall layer thickness ground floor level 0.39_wp, & !< parameter 64 - 3rd wall layer thickness ground floor level 0.63_wp, & !< parameter 65 - 4th wall layer thickness ground floor level 27.0_wp, & !< parameter 66 - wall albedo ground floor level 0.003_wp, & !< parameter 67 - 1st window layer thickness ground floor level 0.006_wp, & !< parameter 68 - 2nd window layer thickness ground floor level 0.012_wp, & !< parameter 69 - 3rd window layer thickness ground floor level 0.018_wp, & !< parameter 70 - 4th window layer thickness ground floor level 1736000.0_wp, & !< parameter 71 - heat capacity 1st/2nd window layer ground floor level 1736000.0_wp, & !< parameter 72 - heat capacity 3rd window layer ground floor level 1736000.0_wp, & !< parameter 73 - heat capacity 4th window layer ground floor level 0.57_wp, & !< parameter 74 - thermal conductivity 1st/2nd window layer ground floor level 0.57_wp, & !< parameter 75 - thermal conductivity 3rd window layer ground floor level 0.57_wp, & !< parameter 76 - thermal conductivity 4th window layer ground floor level 27.0_wp, & !< parameter 77 - window albedo ground floor level 5.0_wp, & !< parameter 78 - green albedo ground floor level 0.003_wp, & !< parameter 79 - 1st window layer thickness above ground floor level 0.006_wp, & !< parameter 80 - 2nd thickness window layer above ground floor level 0.012_wp, & !< parameter 81 - 3rd window layer thickness above ground floor level 0.018_wp, & !< parameter 82 - 4th window layer thickness above ground floor level 1736000.0_wp, & !< parameter 83 - heat capacity 1st/2nd window layer above ground floor level 1736000.0_wp, & !< parameter 84 - heat capacity 3rd window layer above ground floor level 1736000.0_wp, & !< parameter 85 - heat capacity 4th window layer above ground floor level 0.57_wp, & !< parameter 86 - thermal conductivity 1st/2nd window layer above ground floor level 0.57_wp, & !< parameter 87 - thermal conductivity 3rd window layer above ground floor level 0.57_wp, & !< parameter 88 - thermal conductivity 4th window layer above ground floor level 1.0_wp, & !< parameter 89 - wall fraction roof 0.005_wp, & !< parameter 90 - 1st wall layer thickness roof 0.01_wp, & !< parameter 91 - 2nd wall layer thickness roof 0.31_wp, & !< parameter 92 - 3rd wall layer thickness roof 0.63_wp, & !< parameter 93 - 4th wall layer thickness roof 2200000.0_wp, & !< parameter 94 - heat capacity 1st/2nd wall layer roof 1400000.0_wp, & !< parameter 95 - heat capacity 3rd wall layer roof 1300000.0_wp, & !< parameter 96 - heat capacity 4th wall layer roof 0.35_wp, & !< parameter 97 - thermal conductivity 1st/2nd wall layer roof 0.8_wp, & !< parameter 98 - thermal conductivity 3rd wall layer roof 2.1_wp, & !< parameter 99 - thermal conductivity 4th wall layer roof 0.93_wp, & !< parameter 100 - wall emissivity roof 27.0_wp, & !< parameter 101 - wall albedo roof 0.0_wp, & !< parameter 102 - window fraction roof 0.003_wp, & !< parameter 103 - window 1st layer thickness roof 0.006_wp, & !< parameter 104 - window 2nd layer thickness roof 0.012_wp, & !< parameter 105 - window 3rd layer thickness roof 0.018_wp, & !< parameter 106 - window 4th layer thickness roof 1736000.0_wp, & !< parameter 107 - heat capacity 1st/2nd window layer roof 1736000.0_wp, & !< parameter 108 - heat capacity 3rd window layer roof 1736000.0_wp, & !< parameter 109 - heat capacity 4th window layer roof 0.57_wp, & !< parameter 110 - thermal conductivity 1st/2nd window layer roof 0.57_wp, & !< parameter 111 - thermal conductivity 3rd window layer roof 0.57_wp, & !< parameter 112 - thermal conductivity 4th window layer roof 0.91_wp, & !< parameter 113 - window emissivity roof 0.75_wp, & !< parameter 114 - window transmissivity roof 27.0_wp, & !< parameter 115 - window albedo roof 0.86_wp, & !< parameter 116 - green emissivity roof 5.0_wp, & !< parameter 117 - green albedo roof 0.0_wp, & !< parameter 118 - green type roof 0.8_wp, & !< parameter 119 - shading factor 0.76_wp, & !< parameter 120 - g-value windows 5.0_wp, & !< parameter 121 - u-value windows 0.1_wp, & !< parameter 122 - basical airflow without occupancy of the room 0.5_wp, & !< parameter 123 - additional airflow depend of occupancy of the room 0.0_wp, & !< parameter 124 - heat recovery efficiency 3.5_wp, & !< parameter 125 - dynamic parameter specific effective surface 370000.0_wp, & !< parameter 126 - dynamic parameter innner heatstorage 4.5_wp, & !< parameter 127 - ratio internal surface/floor area 100000.0_wp, & !< parameter 128 - maximal heating capacity 0.0_wp, & !< parameter 129 - maximal cooling capacity 3.0_wp, & !< parameter 130 - additional internal heat gains dependent on occupancy of the room 10.0_wp, & !< parameter 131 - basic internal heat gains without occupancy of the room 3.0_wp, & !< parameter 132 - storey height 0.2_wp & !< parameter 133 - ceiling construction height /) building_pars(:,2) = (/ & 0.73_wp, & !< parameter 0 - wall fraction above ground floor level 0.27_wp, & !< parameter 1 - window fraction above ground floor level 0.0_wp, & !< parameter 2 - green fraction above ground floor level 0.0_wp, & !< parameter 3 - green fraction roof above ground floor level 1.5_wp, & !< parameter 4 - LAI roof 1.5_wp, & !< parameter 5 - LAI on wall above ground floor level 2000000.0_wp, & !< parameter 6 - heat capacity 1st/2nd wall layer above ground floor level 103000.0_wp, & !< parameter 7 - heat capacity 3rd wall layer above ground floor level 900000.0_wp, & !< parameter 8 - heat capacity 4th wall layer above ground floor level 0.35_wp, & !< parameter 9 - thermal conductivity 1st/2nd wall layer above ground floor level 0.38_wp, & !< parameter 10 - thermal conductivity 3rd wall layer above ground floor level 0.04_wp, & !< parameter 11 - thermal conductivity 4th wall layer above ground floor level 299.15_wp, & !< parameter 12 - indoor target summer temperature 293.15_wp, & !< parameter 13 - indoor target winter temperature 0.92_wp, & !< parameter 14 - wall emissivity above ground floor level 0.86_wp, & !< parameter 15 - green emissivity above ground floor level 0.87_wp, & !< parameter 16 - window emissivity above ground floor level 0.7_wp, & !< parameter 17 - window transmissivity above ground floor level 0.001_wp, & !< parameter 18 - z0 roughness above ground floor level 0.0001_wp, & !< parameter 19 - z0h/z0g roughness heat/humidity above ground floor level 4.0_wp, & !< parameter 20 - ground floor level height 0.78_wp, & !< parameter 21 - wall fraction ground floor level 0.22_wp, & !< parameter 22 - window fraction ground floor level 0.0_wp, & !< parameter 23 - green fraction ground floor level 0.0_wp, & !< parameter 24 - green fraction roof ground floor level 1.5_wp, & !< parameter 25 - LAI on wall ground floor level 2000000.0_wp, & !< parameter 26 - heat capacity 1st/2nd wall layer ground floor level 103000.0_wp, & !< parameter 27 - heat capacity 3rd wall layer ground floor level 900000.0_wp, & !< parameter 28 - heat capacity 4th wall layer ground floor level 0.35_wp, & !< parameter 29 - thermal conductivity 1st/2nd wall layer ground floor level 0.38_wp, & !< parameter 30 - thermal conductivity 3rd wall layer ground floor level 0.04_wp, & !< parameter 31 - thermal conductivity 4th wall layer ground floor level 0.92_wp, & !< parameter 32 - wall emissivity ground floor level 0.11_wp, & !< parameter 33 - window emissivity ground floor level 0.86_wp, & !< parameter 34 - green emissivity ground floor level 0.7_wp, & !< parameter 35 - window transmissivity ground floor level 0.001_wp, & !< parameter 36 - z0 roughness ground floor level 0.0001_wp, & !< parameter 37 - z0h/z0q roughness heat/humidity 27.0_wp, & !< parameter 38 - wall albedo above ground floor level 5.0_wp, & !< parameter 39 - green albedo above ground floor level 27.0_wp, & !< parameter 40 - window albedo above ground floor level 0.005_wp, & !< parameter 41 - 1st wall layer thickness above ground floor level 0.01_wp, & !< parameter 42 - 2nd wall layer thickness above ground floor level 0.31_wp, & !< parameter 43 - 3rd wall layer thickness above ground floor level 0.43_wp, & !< parameter 44 - 4th wall layer thickness above ground floor level 20000.0_wp, & !< parameter 45 - heat capacity wall surface 23.0_wp, & !< parameter 46 - thermal conductivity of wall surface 20000.0_wp, & !< parameter 47 - heat capacity of window surface 20000.0_wp, & !< parameter 48 - heat capacity of green surface 23.0_wp, & !< parameter 49 - thermal conductivity of window surface 10.0_wp, & !< parameter 50 - thermal conductivty of green surface 1.0_wp, & !< parameter 51 - wall fraction ground plate 0.005_wp, & !< parameter 52 - 1st wall layer thickness ground plate 0.01_wp, & !< parameter 53 - 2nd wall layer thickness ground plate 0.31_wp, & !< parameter 54 - 3rd wall layer thickness ground plate 0.42_wp, & !< parameter 55 - 4th wall layer thickness ground plate 2000000.0_wp, & !< parameter 56 - heat capacity 1st/2nd wall layer ground plate 103000.0_wp, & !< parameter 57 - heat capacity 3rd wall layer ground plate 900000.0_wp, & !< parameter 58 - heat capacity 4th wall layer ground plate 0.35_wp, & !< parameter 59 - thermal conductivity 1st/2nd wall layer ground plate 0.38_wp, & !< parameter 60 - thermal conductivity 3rd wall layer ground plate 0.04_wp, & !< parameter 61 - thermal conductivity 4th wall layer ground plate 0.005_wp, & !< parameter 62 - 1st wall layer thickness ground floor level 0.01_wp, & !< parameter 63 - 2nd wall layer thickness ground floor level 0.31_wp, & !< parameter 64 - 3rd wall layer thickness ground floor level 0.43_wp, & !< parameter 65 - 4th wall layer thickness ground floor level 27.0_wp, & !< parameter 66 - wall albedo ground floor level 0.003_wp, & !< parameter 67 - 1st window layer thickness ground floor level 0.006_wp, & !< parameter 68 - 2nd window layer thickness ground floor level 0.012_wp, & !< parameter 69 - 3rd window layer thickness ground floor level 0.018_wp, & !< parameter 70 - 4th window layer thickness ground floor level 1736000.0_wp, & !< parameter 71 - heat capacity 1st/2nd window layer ground floor level 1736000.0_wp, & !< parameter 72 - heat capacity 3rd window layer ground floor level 1736000.0_wp, & !< parameter 73 - heat capacity 4th window layer ground floor level 0.11_wp, & !< parameter 74 - thermal conductivity 1st/2nd window layer ground floor level 0.11_wp, & !< parameter 75 - thermal conductivity 3rd window layer ground floor level 0.11_wp, & !< parameter 76 - thermal conductivity 4th window layer ground floor level 27.0_wp, & !< parameter 77 - window albedo ground floor level 5.0_wp, & !< parameter 78 - green albedo ground floor level 0.003_wp, & !< parameter 79 - 1st window layer thickness above ground floor level 0.006_wp, & !< parameter 80 - 2nd thickness window layer above ground floor level 0.012_wp, & !< parameter 81 - 3rd window layer thickness above ground floor level 0.018_wp, & !< parameter 82 - 4th window layer thickness above ground floor level 1736000.0_wp, & !< parameter 83 - heat capacity 1st/2nd window layer above ground floor level 1736000.0_wp, & !< parameter 84 - heat capacity 3rd window layer above ground floor level 1736000.0_wp, & !< parameter 85 - heat capacity 4th window layer above ground floor level 0.11_wp, & !< parameter 86 - thermal conductivity 1st/2nd window layer above ground floor level 0.11_wp, & !< parameter 87 - thermal conductivity 3rd window layer above ground floor level 0.11_wp, & !< parameter 88 - thermal conductivity 4th window layer above ground floor level 1.0_wp, & !< parameter 89 - wall fraction roof 0.005_wp, & !< parameter 90 - 1st wall layer thickness roof 0.01_wp, & !< parameter 91 - 2nd wall layer thickness roof 0.5_wp, & !< parameter 92 - 3rd wall layer thickness roof 0.79_wp, & !< parameter 93 - 4th wall layer thickness roof 2000000.0_wp, & !< parameter 94 - heat capacity 1st/2nd wall layer roof 103000.0_wp, & !< parameter 95 - heat capacity 3rd wall layer roof 900000.0_wp, & !< parameter 96 - heat capacity 4th wall layer roof 0.35_wp, & !< parameter 97 - thermal conductivity 1st/2nd wall layer roof 0.38_wp, & !< parameter 98 - thermal conductivity 3rd wall layer roof 0.04_wp, & !< parameter 99 - thermal conductivity 4th wall layer roof 0.93_wp, & !< parameter 100 - wall emissivity roof 27.0_wp, & !< parameter 101 - wall albedo roof 0.0_wp, & !< parameter 102 - window fraction roof 0.003_wp, & !< parameter 103 - window 1st layer thickness roof 0.006_wp, & !< parameter 104 - window 2nd layer thickness roof 0.012_wp, & !< parameter 105 - window 3rd layer thickness roof 0.018_wp, & !< parameter 106 - window 4th layer thickness roof 1736000.0_wp, & !< parameter 107 - heat capacity 1st/2nd window layer roof 1736000.0_wp, & !< parameter 108 - heat capacity 3rd window layer roof 1736000.0_wp, & !< parameter 109 - heat capacity 4th window layer roof 0.11_wp, & !< parameter 110 - thermal conductivity 1st/2nd window layer roof 0.11_wp, & !< parameter 111 - thermal conductivity 3rd window layer roof 0.11_wp, & !< parameter 112 - thermal conductivity 4th window layer roof 0.87_wp, & !< parameter 113 - window emissivity roof 0.7_wp, & !< parameter 114 - window transmissivity roof 27.0_wp, & !< parameter 115 - window albedo roof 0.86_wp, & !< parameter 116 - green emissivity roof 5.0_wp, & !< parameter 117 - green albedo roof 0.0_wp, & !< parameter 118 - green type roof 0.8_wp, & !< parameter 119 - shading factor 0.6_wp, & !< parameter 120 - g-value windows 3.0_wp, & !< parameter 121 - u-value windows 0.1_wp, & !< parameter 122 - basical airflow without occupancy of the room 0.5_wp, & !< parameter 123 - additional airflow depend of occupancy of the room 0.0_wp, & !< parameter 124 - heat recovery efficiency 2.5_wp, & !< parameter 125 - dynamic parameter specific effective surface 165000.0_wp, & !< parameter 126 - dynamic parameter innner heatstorage 4.5_wp, & !< parameter 127 - ratio internal surface/floor area 100000.0_wp, & !< parameter 128 - maximal heating capacity 0.0_wp, & !< parameter 129 - maximal cooling capacity 4.0_wp, & !< parameter 130 - additional internal heat gains dependent on occupancy of the room 8.0_wp, & !< parameter 131 - basic internal heat gains without occupancy of the room 3.0_wp, & !< parameter 132 - storey height 0.2_wp & !< parameter 133 - ceiling construction height /) building_pars(:,3) = (/ & 0.7_wp, & !< parameter 0 - wall fraction above ground floor level 0.3_wp, & !< parameter 1 - window fraction above ground floor level 0.0_wp, & !< parameter 2 - green fraction above ground floor level 0.0_wp, & !< parameter 3 - green fraction roof above ground floor level 1.5_wp, & !< parameter 4 - LAI roof 1.5_wp, & !< parameter 5 - LAI on wall above ground floor level 2000000.0_wp, & !< parameter 6 - heat capacity 1st/2nd wall layer above ground floor level 103000.0_wp, & !< parameter 7 - heat capacity 3rd wall layer above ground floor level 900000.0_wp, & !< parameter 8 - heat capacity 4th wall layer above ground floor level 0.35_wp, & !< parameter 9 - thermal conductivity 1st/2nd wall layer above ground floor level 0.14_wp, & !< parameter 10 - thermal conductivity 3rd wall layer above ground floor level 0.035_wp, & !< parameter 11 - thermal conductivity 4th wall layer above ground floor level 299.15_wp, & !< parameter 12 - indoor target summer temperature 293.15_wp, & !< parameter 13 - indoor target winter temperature 0.92_wp, & !< parameter 14 - wall emissivity above ground floor level 0.86_wp, & !< parameter 15 - green emissivity above ground floor level 0.8_wp, & !< parameter 16 - window emissivity above ground floor level 0.6_wp, & !< parameter 17 - window transmissivity above ground floor level 0.001_wp, & !< parameter 18 - z0 roughness above ground floor level 0.0001_wp, & !< parameter 19 - z0h/z0g roughness heat/humidity above ground floor level 4.0_wp, & !< parameter 20 - ground floor level height 0.75_wp, & !< parameter 21 - wall fraction ground floor level 0.25_wp, & !< parameter 22 - window fraction ground floor level 0.0_wp, & !< parameter 23 - green fraction ground floor level 0.0_wp, & !< parameter 24 - green fraction roof ground floor level 1.5_wp, & !< parameter 25 - LAI on wall ground floor level 2000000.0_wp, & !< parameter 26 - heat capacity 1st/2nd wall layer ground floor level 103000.0_wp, & !< parameter 27 - heat capacity 3rd wall layer ground floor level 900000.0_wp, & !< parameter 28 - heat capacity 4th wall layer ground floor level 0.35_wp, & !< parameter 29 - thermal conductivity 1st/2nd wall layer ground floor level 0.14_wp, & !< parameter 30 - thermal conductivity 3rd wall layer ground floor level 0.035_wp, & !< parameter 31 - thermal conductivity 4th wall layer ground floor level 0.92_wp, & !< parameter 32 - wall emissivity ground floor level 0.8_wp, & !< parameter 33 - window emissivity ground floor level 0.86_wp, & !< parameter 34 - green emissivity ground floor level 0.6_wp, & !< parameter 35 - window transmissivity ground floor level 0.001_wp, & !< parameter 36 - z0 roughness ground floor level 0.0001_wp, & !< parameter 37 - z0h/z0q roughness heat/humidity 27.0_wp, & !< parameter 38 - wall albedo above ground floor level 5.0_wp, & !< parameter 39 - green albedo above ground floor level 27.0_wp, & !< parameter 40 - window albedo above ground floor level 0.005_wp, & !< parameter 41 - 1st wall layer thickness above ground floor level 0.01_wp, & !< parameter 42 - 2nd wall layer thickness above ground floor level 0.41_wp, & !< parameter 43 - 3rd wall layer thickness above ground floor level 0.7_wp, & !< parameter 44 - 4th wall layer thickness above ground floor level 20000.0_wp, & !< parameter 45 - heat capacity wall surface 23.0_wp, & !< parameter 46 - thermal conductivity of wall surface 20000.0_wp, & !< parameter 47 - heat capacity of window surface 20000.0_wp, & !< parameter 48 - heat capacity of green surface 23.0_wp, & !< parameter 49 - thermal conductivity of window surface 10.0_wp, & !< parameter 50 - thermal conductivty of green surface 1.0_wp, & !< parameter 51 - wall fraction ground plate 0.005_wp, & !< parameter 52 - 1st wall layer thickness ground plate 0.01_wp, & !< parameter 53 - 2nd wall layer thickness ground plate 0.41_wp, & !< parameter 54 - 3rd wall layer thickness ground plate 0.7_wp, & !< parameter 55 - 4th wall layer thickness ground plate 2000000.0_wp, & !< parameter 56 - heat capacity 1st/2nd wall layer ground plate 103000.0_wp, & !< parameter 57 - heat capacity 3rd wall layer ground plate 900000.0_wp, & !< parameter 58 - heat capacity 4th wall layer ground plate 0.35_wp, & !< parameter 59 - thermal conductivity 1st/2nd wall layer ground plate 0.14_wp, & !< parameter 60 - thermal conductivity 3rd wall layer ground plate 0.035_wp, & !< parameter 61 - thermal conductivity 4th wall layer ground plate 0.005_wp, & !< parameter 62 - 1st wall layer thickness ground floor level 0.01_wp, & !< parameter 63 - 2nd wall layer thickness ground floor level 0.41_wp, & !< parameter 64 - 3rd wall layer thickness ground floor level 0.7_wp, & !< parameter 65 - 4th wall layer thickness ground floor level 27.0_wp, & !< parameter 66 - wall albedo ground floor level 0.003_wp, & !< parameter 67 - 1st window layer thickness ground floor level 0.006_wp, & !< parameter 68 - 2nd window layer thickness ground floor level 0.012_wp, & !< parameter 69 - 3rd window layer thickness ground floor level 0.018_wp, & !< parameter 70 - 4th window layer thickness ground floor level 1736000.0_wp, & !< parameter 71 - heat capacity 1st/2nd window layer ground floor level 1736000.0_wp, & !< parameter 72 - heat capacity 3rd window layer ground floor level 1736000.0_wp, & !< parameter 73 - heat capacity 4th window layer ground floor level 0.037_wp, & !< parameter 74 - thermal conductivity 1st/2nd window layer ground floor level 0.037_wp, & !< parameter 75 - thermal conductivity 3rd window layer ground floor level 0.037_wp, & !< parameter 76 - thermal conductivity 4th window layer ground floor level 27.0_wp, & !< parameter 77 - window albedo ground floor level 5.0_wp, & !< parameter 78 - green albedo ground floor level 0.003_wp, & !< parameter 79 - 1st window layer thickness above ground floor level 0.006_wp, & !< parameter 80 - 2nd thickness window layer above ground floor level 0.012_wp, & !< parameter 81 - 3rd window layer thickness above ground floor level 0.018_wp, & !< parameter 82 - 4th window layer thickness above ground floor level 1736000.0_wp, & !< parameter 83 - heat capacity 1st/2nd window layer above ground floor level 1736000.0_wp, & !< parameter 84 - heat capacity 3rd window layer above ground floor level 1736000.0_wp, & !< parameter 85 - heat capacity 4th window layer above ground floor level 0.037_wp, & !< parameter 86 - thermal conductivity 1st/2nd window layer above ground floor level 0.037_wp, & !< parameter 87 - thermal conductivity 3rd window layer above ground floor level 0.037_wp, & !< parameter 88 - thermal conductivity 4th window layer above ground floor level 1.0_wp, & !< parameter 89 - wall fraction roof 0.005_wp, & !< parameter 90 - 1st wall layer thickness roof 0.01_wp, & !< parameter 91 - 2nd wall layer thickness roof 0.41_wp, & !< parameter 92 - 3rd wall layer thickness roof 0.7_wp, & !< parameter 93 - 4th wall layer thickness roof 2000000.0_wp, & !< parameter 94 - heat capacity 1st/2nd wall layer roof 103000.0_wp, & !< parameter 95 - heat capacity 3rd wall layer roof 900000.0_wp, & !< parameter 96 - heat capacity 4th wall layer roof 0.35_wp, & !< parameter 97 - thermal conductivity 1st/2nd wall layer roof 0.14_wp, & !< parameter 98 - thermal conductivity 3rd wall layer roof 0.035_wp, & !< parameter 99 - thermal conductivity 4th wall layer roof 0.93_wp, & !< parameter 100 - wall emissivity roof 27.0_wp, & !< parameter 101 - wall albedo roof 0.0_wp, & !< parameter 102 - window fraction roof 0.003_wp, & !< parameter 103 - window 1st layer thickness roof 0.006_wp, & !< parameter 104 - window 2nd layer thickness roof 0.012_wp, & !< parameter 105 - window 3rd layer thickness roof 0.018_wp, & !< parameter 106 - window 4th layer thickness roof 1736000.0_wp, & !< parameter 107 - heat capacity 1st/2nd window layer roof 1736000.0_wp, & !< parameter 108 - heat capacity 3rd window layer roof 1736000.0_wp, & !< parameter 109 - heat capacity 4th window layer roof 0.037_wp, & !< parameter 110 - thermal conductivity 1st/2nd window layer roof 0.037_wp, & !< parameter 111 - thermal conductivity 3rd window layer roof 0.037_wp, & !< parameter 112 - thermal conductivity 4th window layer roof 0.8_wp, & !< parameter 113 - window emissivity roof 0.6_wp, & !< parameter 114 - window transmissivity roof 27.0_wp, & !< parameter 115 - window albedo roof 0.86_wp, & !< parameter 116 - green emissivity roof 5.0_wp, & !< parameter 117 - green albedo roof 0.0_wp, & !< parameter 118 - green type roof 0.8_wp, & !< parameter 119 - shading factor 0.5_wp, & !< parameter 120 - g-value windows 0.6_wp, & !< parameter 121 - u-value windows 0.1_wp, & !< parameter 122 - basical airflow without occupancy of the room 0.5_wp, & !< parameter 123 - additional airflow depend of occupancy of the room 0.8_wp, & !< parameter 124 - heat recovery efficiency 2.5_wp, & !< parameter 125 - dynamic parameter specific effective surface 80000.0_wp, & !< parameter 126 - dynamic parameter innner heatstorage 4.5_wp, & !< parameter 127 - ratio internal surface/floor area 100000.0_wp, & !< parameter 128 - maximal heating capacity 0.0_wp, & !< parameter 129 - maximal cooling capacity 3.0_wp, & !< parameter 130 - additional internal heat gains dependent on occupancy of the room 8.0_wp, & !< parameter 131 - basic internal heat gains without occupancy of the room 3.0_wp, & !< parameter 132 - storey height 0.2_wp & !< parameter 133 - ceiling construction height /) building_pars(:,4) = (/ & 0.5_wp, & !< parameter 0 - wall fraction above ground floor level 0.5_wp, & !< parameter 1 - window fraction above ground floor level 0.0_wp, & !< parameter 2 - green fraction above ground floor level 0.0_wp, & !< parameter 3 - green fraction roof above ground floor level 1.5_wp, & !< parameter 4 - LAI roof 1.5_wp, & !< parameter 5 - LAI on wall above ground floor level 2200000.0_wp, & !< parameter 6 - heat capacity 1st/2nd wall layer above ground floor level 1400000.0_wp, & !< parameter 7 - heat capacity 3rd wall layer above ground floor level 1300000.0_wp, & !< parameter 8 - heat capacity 4th wall layer above ground floor level 0.35_wp, & !< parameter 9 - thermal conductivity 1st/2nd wall layer above ground floor level 0.8_wp, & !< parameter 10 - thermal conductivity 3rd wall layer above ground floor level 2.1_wp, & !< parameter 11 - thermal conductivity 4th wall layer above ground floor level 299.15_wp, & !< parameter 12 - indoor target summer temperature 293.15_wp, & !< parameter 13 - indoor target winter temperature 0.93_wp, & !< parameter 14 - wall emissivity above ground floor level 0.86_wp, & !< parameter 15 - green emissivity above ground floor level 0.91_wp, & !< parameter 16 - window emissivity above ground floor level 0.75_wp, & !< parameter 17 - window transmissivity above ground floor level 0.001_wp, & !< parameter 18 - z0 roughness above ground floor level 0.0001_wp, & !< parameter 19 - z0h/z0g roughness heat/humidity above ground floor level 4.0_wp, & !< parameter 20 - ground floor level height 0.55_wp, & !< parameter 21 - wall fraction ground floor level 0.45_wp, & !< parameter 22 - window fraction ground floor level 0.0_wp, & !< parameter 23 - green fraction ground floor level 0.0_wp, & !< parameter 24 - green fraction roof ground floor level 1.5_wp, & !< parameter 25 - LAI on wall ground floor level 2200000.0_wp, & !< parameter 26 - heat capacity 1st/2nd wall layer ground floor level 1400000.0_wp, & !< parameter 27 - heat capacity 3rd wall layer ground floor level 1300000.0_wp, & !< parameter 28 - heat capacity 4th wall layer ground floor level 0.35_wp, & !< parameter 29 - thermal conductivity 1st/2nd wall layer ground floor level 0.8_wp, & !< parameter 30 - thermal conductivity 3rd wall layer ground floor level 2.1_wp, & !< parameter 31 - thermal conductivity 4th wall layer ground floor level 0.93_wp, & !< parameter 32 - wall emissivity ground floor level 0.91_wp, & !< parameter 33 - window emissivity ground floor level 0.86_wp, & !< parameter 34 - green emissivity ground floor level 0.75_wp, & !< parameter 35 - window transmissivity ground floor level 0.001_wp, & !< parameter 36 - z0 roughness ground floor level 0.0001_wp, & !< parameter 37 - z0h/z0q roughness heat/humidity 27.0_wp, & !< parameter 38 - wall albedo above ground floor level 5.0_wp, & !< parameter 39 - green albedo above ground floor level 27.0_wp, & !< parameter 40 - window albedo above ground floor level 0.005_wp, & !< parameter 41 - 1st wall layer thickness above ground floor level 0.01_wp, & !< parameter 42 - 2nd wall layer thickness above ground floor level 0.39_wp, & !< parameter 43 - 3rd wall layer thickness above ground floor level 0.63_wp, & !< parameter 44 - 4th wall layer thickness above ground floor level 20000.0_wp, & !< parameter 45 - heat capacity wall surface 23.0_wp, & !< parameter 46 - thermal conductivity of wall surface 20000.0_wp, & !< parameter 47 - heat capacity of window surface 20000.0_wp, & !< parameter 48 - heat capacity of green surface 23.0_wp, & !< parameter 49 - thermal conductivity of window surface 10.0_wp, & !< parameter 50 - thermal conductivty of green surface 1.0_wp, & !< parameter 51 - wall fraction ground plate 0.005_wp, & !< parameter 52 - 1st wall layer thickness ground plate 0.01_wp, & !< parameter 53 - 2nd wall layer thickness ground plate 0.39_wp, & !< parameter 54 - 3rd wall layer thickness ground plate 0.63_wp, & !< parameter 55 - 4th wall layer thickness ground plate 2200000.0_wp, & !< parameter 56 - heat capacity 1st/2nd wall layer ground plate 1400000.0_wp, & !< parameter 57 - heat capacity 3rd wall layer ground plate 1300000.0_wp, & !< parameter 58 - heat capacity 4th wall layer ground plate 0.35_wp, & !< parameter 59 - thermal conductivity 1st/2nd wall layer ground plate 0.8_wp, & !< parameter 60 - thermal conductivity 3rd wall layer ground plate 2.1_wp, & !< parameter 61 - thermal conductivity 4th wall layer ground plate 0.005_wp, & !< parameter 62 - 1st wall layer thickness ground floor level 0.01_wp, & !< parameter 63 - 2nd wall layer thickness ground floor level 0.39_wp, & !< parameter 64 - 3rd wall layer thickness ground floor level 0.63_wp, & !< parameter 65 - 4th wall layer thickness ground floor level 27.0_wp, & !< parameter 66 - wall albedo ground floor level 0.003_wp, & !< parameter 67 - 1st window layer thickness ground floor level 0.006_wp, & !< parameter 68 - 2nd window layer thickness ground floor level 0.012_wp, & !< parameter 69 - 3rd window layer thickness ground floor level 0.018_wp, & !< parameter 70 - 4th window layer thickness ground floor level 1736000.0_wp, & !< parameter 71 - heat capacity 1st/2nd window layer ground floor level 1736000.0_wp, & !< parameter 72 - heat capacity 3rd window layer ground floor level 1736000.0_wp, & !< parameter 73 - heat capacity 4th window layer ground floor level 0.57_wp, & !< parameter 74 - thermal conductivity 1st/2nd window layer ground floor level 0.57_wp, & !< parameter 75 - thermal conductivity 3rd window layer ground floor level 0.57_wp, & !< parameter 76 - thermal conductivity 4th window layer ground floor level 27.0_wp, & !< parameter 77 - window albedo ground floor level 5.0_wp, & !< parameter 78 - green albedo ground floor level 0.003_wp, & !< parameter 79 - 1st window layer thickness above ground floor level 0.006_wp, & !< parameter 80 - 2nd thickness window layer above ground floor level 0.012_wp, & !< parameter 81 - 3rd window layer thickness above ground floor level 0.018_wp, & !< parameter 82 - 4th window layer thickness above ground floor level 1736000.0_wp, & !< parameter 83 - heat capacity 1st/2nd window layer above ground floor level 1736000.0_wp, & !< parameter 84 - heat capacity 3rd window layer above ground floor level 1736000.0_wp, & !< parameter 85 - heat capacity 4th window layer above ground floor level 0.57_wp, & !< parameter 86 - thermal conductivity 1st/2nd window layer above ground floor level 0.57_wp, & !< parameter 87 - thermal conductivity 3rd window layer above ground floor level 0.57_wp, & !< parameter 88 - thermal conductivity 4th window layer above ground floor level 1.0_wp, & !< parameter 89 - wall fraction roof 0.005_wp, & !< parameter 90 - 1st wall layer thickness roof 0.01_wp, & !< parameter 91 - 2nd wall layer thickness roof 0.39_wp, & !< parameter 92 - 3rd wall layer thickness roof 0.63_wp, & !< parameter 93 - 4th wall layer thickness roof 2200000.0_wp, & !< parameter 94 - heat capacity 1st/2nd wall layer roof 1400000.0_wp, & !< parameter 95 - heat capacity 3rd wall layer roof 1300000.0_wp, & !< parameter 96 - heat capacity 4th wall layer roof 0.35_wp, & !< parameter 97 - thermal conductivity 1st/2nd wall layer roof 0.8_wp, & !< parameter 98 - thermal conductivity 3rd wall layer roof 2.1_wp, & !< parameter 99 - thermal conductivity 4th wall layer roof 0.93_wp, & !< parameter 100 - wall emissivity roof 27.0_wp, & !< parameter 101 - wall albedo roof 0.0_wp, & !< parameter 102 - window fraction roof 0.003_wp, & !< parameter 103 - window 1st layer thickness roof 0.006_wp, & !< parameter 104 - window 2nd layer thickness roof 0.012_wp, & !< parameter 105 - window 3rd layer thickness roof 0.018_wp, & !< parameter 106 - window 4th layer thickness roof 1736000.0_wp, & !< parameter 107 - heat capacity 1st/2nd window layer roof 1736000.0_wp, & !< parameter 108 - heat capacity 3rd window layer roof 1736000.0_wp, & !< parameter 109 - heat capacity 4th window layer roof 0.57_wp, & !< parameter 110 - thermal conductivity 1st/2nd window layer roof 0.57_wp, & !< parameter 111 - thermal conductivity 3rd window layer roof 0.57_wp, & !< parameter 112 - thermal conductivity 4th window layer roof 0.91_wp, & !< parameter 113 - window emissivity roof 0.75_wp, & !< parameter 114 - window transmissivity roof 27.0_wp, & !< parameter 115 - window albedo roof 0.86_wp, & !< parameter 116 - green emissivity roof 5.0_wp, & !< parameter 117 - green albedo roof 0.0_wp, & !< parameter 118 - green type roof 0.8_wp, & !< parameter 119 - shading factor 0.76_wp, & !< parameter 120 - g-value windows 5.0_wp, & !< parameter 121 - u-value windows 0.1_wp, & !< parameter 122 - basical airflow without occupancy of the room 1.5_wp, & !< parameter 123 - additional airflow depend of occupancy of the room 0.0_wp, & !< parameter 124 - heat recovery efficiency 3.5_wp, & !< parameter 125 - dynamic parameter specific effective surface 370000.0_wp, & !< parameter 126 - dynamic parameter innner heatstorage 4.5_wp, & !< parameter 127 - ratio internal surface/floor area 100000.0_wp, & !< parameter 128 - maximal heating capacity 0.0_wp, & !< parameter 129 - maximal cooling capacity 3.0_wp, & !< parameter 130 - additional internal heat gains dependent on occupancy of the room 10.0_wp, & !< parameter 131 - basic internal heat gains without occupancy of the room 3.0_wp, & !< parameter 132 - storey height 0.2_wp & !< parameter 133 - ceiling construction height /) building_pars(:,5) = (/ & 0.5_wp, & !< parameter 0 - wall fraction above ground floor level 0.5_wp, & !< parameter 1 - window fraction above ground floor level 0.0_wp, & !< parameter 2 - green fraction above ground floor level 0.0_wp, & !< parameter 3 - green fraction roof above ground floor level 1.5_wp, & !< parameter 4 - LAI roof 1.5_wp, & !< parameter 5 - LAI on wall above ground floor level 2000000.0_wp, & !< parameter 6 - heat capacity 1st/2nd wall layer above ground floor level 103000.0_wp, & !< parameter 7 - heat capacity 3rd wall layer above ground floor level 900000.0_wp, & !< parameter 8 - heat capacity 4th wall layer above ground floor level 0.35_wp, & !< parameter 9 - thermal conductivity 1st/2nd wall layer above ground floor level 0.38_wp, & !< parameter 10 - thermal conductivity 3rd wall layer above ground floor level 0.04_wp, & !< parameter 11 - thermal conductivity 4th wall layer above ground floor level 299.15_wp, & !< parameter 12 - indoor target summer temperature 293.15_wp, & !< parameter 13 - indoor target winter temperature 0.92_wp, & !< parameter 14 - wall emissivity above ground floor level 0.86_wp, & !< parameter 15 - green emissivity above ground floor level 0.87_wp, & !< parameter 16 - window emissivity above ground floor level 0.7_wp, & !< parameter 17 - window transmissivity above ground floor level 0.001_wp, & !< parameter 18 - z0 roughness above ground floor level 0.0001_wp, & !< parameter 19 - z0h/z0g roughness heat/humidity above ground floor level 4.0_wp, & !< parameter 20 - ground floor level height 0.55_wp, & !< parameter 21 - wall fraction ground floor level 0.45_wp, & !< parameter 22 - window fraction ground floor level 0.0_wp, & !< parameter 23 - green fraction ground floor level 0.0_wp, & !< parameter 24 - green fraction roof ground floor level 1.5_wp, & !< parameter 25 - LAI on wall ground floor level 2000000.0_wp, & !< parameter 26 - heat capacity 1st/2nd wall layer ground floor level 103000.0_wp, & !< parameter 27 - heat capacity 3rd wall layer ground floor level 900000.0_wp, & !< parameter 28 - heat capacity 4th wall layer ground floor level 0.35_wp, & !< parameter 29 - thermal conductivity 1st/2nd wall layer ground floor level 0.38_wp, & !< parameter 30 - thermal conductivity 3rd wall layer ground floor level 0.04_wp, & !< parameter 31 - thermal conductivity 4th wall layer ground floor level 0.92_wp, & !< parameter 32 - wall emissivity ground floor level 0.87_wp, & !< parameter 33 - window emissivity ground floor level 0.86_wp, & !< parameter 34 - green emissivity ground floor level 0.7_wp, & !< parameter 35 - window transmissivity ground floor level 0.001_wp, & !< parameter 36 - z0 roughness ground floor level 0.0001_wp, & !< parameter 37 - z0h/z0q roughness heat/humidity 27.0_wp, & !< parameter 38 - wall albedo above ground floor level 5.0_wp, & !< parameter 39 - green albedo above ground floor level 27.0_wp, & !< parameter 40 - window albedo above ground floor level 0.005_wp, & !< parameter 41 - 1st wall layer thickness above ground floor level 0.01_wp, & !< parameter 42 - 2nd wall layer thickness above ground floor level 0.31_wp, & !< parameter 43 - 3rd wall layer thickness above ground floor level 0.43_wp, & !< parameter 44 - 4th wall layer thickness above ground floor level 20000.0_wp, & !< parameter 45 - heat capacity wall surface 23.0_wp, & !< parameter 46 - thermal conductivity of wall surface 20000.0_wp, & !< parameter 47 - heat capacity of window surface 20000.0_wp, & !< parameter 48 - heat capacity of green surface 23.0_wp, & !< parameter 49 - thermal conductivity of window surface 10.0_wp, & !< parameter 50 - thermal conductivty of green surface 1.0_wp, & !< parameter 51 - wall fraction ground plate 0.005_wp, & !< parameter 52 - 1st wall layer thickness ground plate 0.01_wp, & !< parameter 53 - 2nd wall layer thickness ground plate 0.31_wp, & !< parameter 54 - 3rd wall layer thickness ground plate 0.43_wp, & !< parameter 55 - 4th wall layer thickness ground plate 2000000.0_wp, & !< parameter 56 - heat capacity 1st/2nd wall layer ground plate 103000.0_wp, & !< parameter 57 - heat capacity 3rd wall layer ground plate 900000.0_wp, & !< parameter 58 - heat capacity 4th wall layer ground plate 0.35_wp, & !< parameter 59 - thermal conductivity 1st/2nd wall layer ground plate 0.38_wp, & !< parameter 60 - thermal conductivity 3rd wall layer ground plate 0.04_wp, & !< parameter 61 - thermal conductivity 4th wall layer ground plate 0.005_wp, & !< parameter 62 - 1st wall layer thickness ground floor level 0.01_wp, & !< parameter 63 - 2nd wall layer thickness ground floor level 0.31_wp, & !< parameter 64 - 3rd wall layer thickness ground floor level 0.43_wp, & !< parameter 65 - 4th wall layer thickness ground floor level 27.0_wp, & !< parameter 66 - wall albedo ground floor level 0.003_wp, & !< parameter 67 - 1st window layer thickness ground floor level 0.006_wp, & !< parameter 68 - 2nd window layer thickness ground floor level 0.012_wp, & !< parameter 69 - 3rd window layer thickness ground floor level 0.018_wp, & !< parameter 70 - 4th window layer thickness ground floor level 1736000.0_wp, & !< parameter 71 - heat capacity 1st/2nd window layer ground floor level 1736000.0_wp, & !< parameter 72 - heat capacity 3rd window layer ground floor level 1736000.0_wp, & !< parameter 73 - heat capacity 4th window layer ground floor level 0.11_wp, & !< parameter 74 - thermal conductivity 1st/2nd window layer ground floor level 0.11_wp, & !< parameter 75 - thermal conductivity 3rd window layer ground floor level 0.11_wp, & !< parameter 76 - thermal conductivity 4th window layer ground floor level 27.0_wp, & !< parameter 77 - window albedo ground floor level 5.0_wp, & !< parameter 78 - green albedo ground floor level 0.003_wp, & !< parameter 79 - 1st window layer thickness above ground floor level 0.006_wp, & !< parameter 80 - 2nd thickness window layer above ground floor level 0.012_wp, & !< parameter 81 - 3rd window layer thickness above ground floor level 0.018_wp, & !< parameter 82 - 4th window layer thickness above ground floor level 1736000.0_wp, & !< parameter 83 - heat capacity 1st/2nd window layer above ground floor level 1736000.0_wp, & !< parameter 84 - heat capacity 3rd window layer above ground floor level 1736000.0_wp, & !< parameter 85 - heat capacity 4th window layer above ground floor level 0.11_wp, & !< parameter 86 - thermal conductivity 1st/2nd window layer above ground floor level 0.11_wp, & !< parameter 87 - thermal conductivity 3rd window layer above ground floor level 0.11_wp, & !< parameter 88 - thermal conductivity 4th window layer above ground floor level 1.0_wp, & !< parameter 89 - wall fraction roof 0.005_wp, & !< parameter 90 - 1st wall layer thickness roof 0.01_wp, & !< parameter 91 - 2nd wall layer thickness roof 0.31_wp, & !< parameter 92 - 3rd wall layer thickness roof 0.43_wp, & !< parameter 93 - 4th wall layer thickness roof 2000000.0_wp, & !< parameter 94 - heat capacity 1st/2nd wall layer roof 103000.0_wp, & !< parameter 95 - heat capacity 3rd wall layer roof 900000.0_wp, & !< parameter 96 - heat capacity 4th wall layer roof 0.35_wp, & !< parameter 97 - thermal conductivity 1st/2nd wall layer roof 0.38_wp, & !< parameter 98 - thermal conductivity 3rd wall layer roof 0.04_wp, & !< parameter 99 - thermal conductivity 4th wall layer roof 0.91_wp, & !< parameter 100 - wall emissivity roof 27.0_wp, & !< parameter 101 - wall albedo roof 0.0_wp, & !< parameter 102 - window fraction roof 0.003_wp, & !< parameter 103 - window 1st layer thickness roof 0.006_wp, & !< parameter 104 - window 2nd layer thickness roof 0.012_wp, & !< parameter 105 - window 3rd layer thickness roof 0.018_wp, & !< parameter 106 - window 4th layer thickness roof 1736000.0_wp, & !< parameter 107 - heat capacity 1st/2nd window layer roof 1736000.0_wp, & !< parameter 108 - heat capacity 3rd window layer roof 1736000.0_wp, & !< parameter 109 - heat capacity 4th window layer roof 0.11_wp, & !< parameter 110 - thermal conductivity 1st/2nd window layer roof 0.11_wp, & !< parameter 111 - thermal conductivity 3rd window layer roof 0.11_wp, & !< parameter 112 - thermal conductivity 4th window layer roof 0.87_wp, & !< parameter 113 - window emissivity roof 0.7_wp, & !< parameter 114 - window transmissivity roof 27.0_wp, & !< parameter 115 - window albedo roof 0.86_wp, & !< parameter 116 - green emissivity roof 5.0_wp, & !< parameter 117 - green albedo roof 0.0_wp, & !< parameter 118 - green type roof 0.8_wp, & !< parameter 119 - shading factor 0.6_wp, & !< parameter 120 - g-value windows 3.0_wp, & !< parameter 121 - u-value windows 0.1_wp, & !< parameter 122 - basical airflow without occupancy of the room 1.5_wp, & !< parameter 123 - additional airflow depend of occupancy of the room 0.65_wp, & !< parameter 124 - heat recovery efficiency 2.5_wp, & !< parameter 125 - dynamic parameter specific effective surface 165000.0_wp, & !< parameter 126 - dynamic parameter innner heatstorage 4.5_wp, & !< parameter 127 - ratio internal surface/floor area 100000.0_wp, & !< parameter 128 - maximal heating capacity 0.0_wp, & !< parameter 129 - maximal cooling capacity 7.0_wp, & !< parameter 130 - additional internal heat gains dependent on occupancy of the room 20.0_wp, & !< parameter 131 - basic internal heat gains without occupancy of the room 3.0_wp, & !< parameter 132 - storey height 0.2_wp & !< parameter 133 - ceiling construction height /) building_pars(:,6) = (/ & 0.425_wp, & !< parameter 0 - wall fraction above ground floor level 0.575_wp, & !< parameter 1 - window fraction above ground floor level 0.0_wp, & !< parameter 2 - green fraction above ground floor level 0.0_wp, & !< parameter 3 - green fraction roof above ground floor level 1.5_wp, & !< parameter 4 - LAI roof 1.5_wp, & !< parameter 5 - LAI on wall above ground floor level 2000000.0_wp, & !< parameter 6 - heat capacity 1st/2nd wall layer above ground floor level 103000.0_wp, & !< parameter 7 - heat capacity 3rd wall layer above ground floor level 900000.0_wp, & !< parameter 8 - heat capacity 4th wall layer above ground floor level 0.35_wp, & !< parameter 9 - thermal conductivity 1st/2nd wall layer above ground floor level 0.14_wp, & !< parameter 10 - thermal conductivity 3rd wall layer above ground floor level 0.035_wp, & !< parameter 11 - thermal conductivity 4th wall layer above ground floor level 299.15_wp, & !< parameter 12 - indoor target summer temperature 293.15_wp, & !< parameter 13 - indoor target winter temperature 0.92_wp, & !< parameter 14 - wall emissivity above ground floor level 0.86_wp, & !< parameter 15 - green emissivity above ground floor level 0.8_wp, & !< parameter 16 - window emissivity above ground floor level 0.6_wp, & !< parameter 17 - window transmissivity above ground floor level 0.001_wp, & !< parameter 18 - z0 roughness above ground floor level 0.0001_wp, & !< parameter 19 - z0h/z0g roughness heat/humidity above ground floor level 4.0_wp, & !< parameter 20 - ground floor level height 0.475_wp, & !< parameter 21 - wall fraction ground floor level 0.525_wp, & !< parameter 22 - window fraction ground floor level 0.0_wp, & !< parameter 23 - green fraction ground floor level 0.0_wp, & !< parameter 24 - green fraction roof ground floor level 1.5_wp, & !< parameter 25 - LAI on wall ground floor level 2000000.0_wp, & !< parameter 26 - heat capacity 1st/2nd wall layer ground floor level 103000.0_wp, & !< parameter 27 - heat capacity 3rd wall layer ground floor level 900000.0_wp, & !< parameter 28 - heat capacity 4th wall layer ground floor level 0.35_wp, & !< parameter 29 - thermal conductivity 1st/2nd wall layer ground floor level 0.14_wp, & !< parameter 30 - thermal conductivity 3rd wall layer ground floor level 0.035_wp, & !< parameter 31 - thermal conductivity 4th wall layer ground floor level 0.92_wp, & !< parameter 32 - wall emissivity ground floor level 0.8_wp, & !< parameter 33 - window emissivity ground floor level 0.86_wp, & !< parameter 34 - green emissivity ground floor level 0.6_wp, & !< parameter 35 - window transmissivity ground floor level 0.001_wp, & !< parameter 36 - z0 roughness ground floor level 0.0001_wp, & !< parameter 37 - z0h/z0q roughness heat/humidity 27.0_wp, & !< parameter 38 - wall albedo above ground floor level 5.0_wp, & !< parameter 39 - green albedo above ground floor level 27.0_wp, & !< parameter 40 - window albedo above ground floor level 0.005_wp, & !< parameter 41 - 1st wall layer thickness above ground floor level 0.01_wp, & !< parameter 42 - 2nd wall layer thickness above ground floor level 0.41_wp, & !< parameter 43 - 3rd wall layer thickness above ground floor level 0.7_wp, & !< parameter 44 - 4th wall layer thickness above ground floor level 20000.0_wp, & !< parameter 45 - heat capacity wall surface 23.0_wp, & !< parameter 46 - thermal conductivity of wall surface 20000.0_wp, & !< parameter 47 - heat capacity of window surface 20000.0_wp, & !< parameter 48 - heat capacity of green surface 23.0_wp, & !< parameter 49 - thermal conductivity of window surface 10.0_wp, & !< parameter 50 - thermal conductivty of green surface 1.0_wp, & !< parameter 51 - wall fraction ground plate 0.005_wp, & !< parameter 52 - 1st wall layer thickness ground plate 0.01_wp, & !< parameter 53 - 2nd wall layer thickness ground plate 0.41_wp, & !< parameter 54 - 3rd wall layer thickness ground plate 0.7_wp, & !< parameter 55 - 4th wall layer thickness ground plate 2000000.0_wp, & !< parameter 56 - heat capacity 1st/2nd wall layer ground plate 103000.0_wp, & !< parameter 57 - heat capacity 3rd wall layer ground plate 900000.0_wp, & !< parameter 58 - heat capacity 4th wall layer ground plate 0.35_wp, & !< parameter 59 - thermal conductivity 1st/2nd wall layer ground plate 0.14_wp, & !< parameter 60 - thermal conductivity 3rd wall layer ground plate 0.035_wp, & !< parameter 61 - thermal conductivity 4th wall layer ground plate 0.005_wp, & !< parameter 62 - 1st wall layer thickness ground floor level 0.01_wp, & !< parameter 63 - 2nd wall layer thickness ground floor level 0.41_wp, & !< parameter 64 - 3rd wall layer thickness ground floor level 0.7_wp, & !< parameter 65 - 4th wall layer thickness ground floor level 27.0_wp, & !< parameter 66 - wall albedo ground floor level 0.003_wp, & !< parameter 67 - 1st window layer thickness ground floor level 0.006_wp, & !< parameter 68 - 2nd window layer thickness ground floor level 0.012_wp, & !< parameter 69 - 3rd window layer thickness ground floor level 0.018_wp, & !< parameter 70 - 4th window layer thickness ground floor level 1736000.0_wp, & !< parameter 71 - heat capacity 1st/2nd window layer ground floor level 1736000.0_wp, & !< parameter 72 - heat capacity 3rd window layer ground floor level 1736000.0_wp, & !< parameter 73 - heat capacity 4th window layer ground floor level 0.037_wp, & !< parameter 74 - thermal conductivity 1st/2nd window layer ground floor level 0.037_wp, & !< parameter 75 - thermal conductivity 3rd window layer ground floor level 0.037_wp, & !< parameter 76 - thermal conductivity 4th window layer ground floor level 27.0_wp, & !< parameter 77 - window albedo ground floor level 5.0_wp, & !< parameter 78 - green albedo ground floor level 0.003_wp, & !< parameter 79 - 1st window layer thickness above ground floor level 0.006_wp, & !< parameter 80 - 2nd thickness window layer above ground floor level 0.012_wp, & !< parameter 81 - 3rd window layer thickness above ground floor level 0.018_wp, & !< parameter 82 - 4th window layer thickness above ground floor level 1736000.0_wp, & !< parameter 83 - heat capacity 1st/2nd window layer above ground floor level 1736000.0_wp, & !< parameter 84 - heat capacity 3rd window layer above ground floor level 1736000.0_wp, & !< parameter 85 - heat capacity 4th window layer above ground floor level 0.037_wp, & !< parameter 86 - thermal conductivity 1st/2nd window layer above ground floor level 0.037_wp, & !< parameter 87 - thermal conductivity 3rd window layer above ground floor level 0.037_wp, & !< parameter 88 - thermal conductivity 4th window layer above ground floor level 1.0_wp, & !< parameter 89 - wall fraction roof 0.005_wp, & !< parameter 90 - 1st wall layer thickness roof 0.01_wp, & !< parameter 91 - 2nd wall layer thickness roof 0.41_wp, & !< parameter 92 - 3rd wall layer thickness roof 0.7_wp, & !< parameter 93 - 4th wall layer thickness roof 2000000.0_wp, & !< parameter 94 - heat capacity 1st/2nd wall layer roof 103000.0_wp, & !< parameter 95 - heat capacity 3rd wall layer roof 900000.0_wp, & !< parameter 96 - heat capacity 4th wall layer roof 0.35_wp, & !< parameter 97 - thermal conductivity 1st/2nd wall layer roof 0.14_wp, & !< parameter 98 - thermal conductivity 3rd wall layer roof 0.035_wp, & !< parameter 99 - thermal conductivity 4th wall layer roof 0.91_wp, & !< parameter 100 - wall emissivity roof 27.0_wp, & !< parameter 101 - wall albedo roof 0.0_wp, & !< parameter 102 - window fraction roof 0.003_wp, & !< parameter 103 - window 1st layer thickness roof 0.006_wp, & !< parameter 104 - window 2nd layer thickness roof 0.012_wp, & !< parameter 105 - window 3rd layer thickness roof 0.018_wp, & !< parameter 106 - window 4th layer thickness roof 1736000.0_wp, & !< parameter 107 - heat capacity 1st/2nd window layer roof 1736000.0_wp, & !< parameter 108 - heat capacity 3rd window layer roof 1736000.0_wp, & !< parameter 109 - heat capacity 4th window layer roof 0.037_wp, & !< parameter 110 - thermal conductivity 1st/2nd window layer roof 0.037_wp, & !< parameter 111 - thermal conductivity 3rd window layer roof 0.037_wp, & !< parameter 112 - thermal conductivity 4th window layer roof 0.8_wp, & !< parameter 113 - window emissivity roof 0.6_wp, & !< parameter 114 - window transmissivity roof 27.0_wp, & !< parameter 115 - window albedo roof 0.86_wp, & !< parameter 116 - green emissivity roof 5.0_wp, & !< parameter 117 - green albedo roof 0.0_wp, & !< parameter 118 - green type roof 0.8_wp, & !< parameter 119 - shading factor 0.5_wp, & !< parameter 120 - g-value windows 0.6_wp, & !< parameter 121 - u-value windows 0.1_wp, & !< parameter 122 - basical airflow without occupancy of the room 1.5_wp, & !< parameter 123 - additional airflow depend of occupancy of the room 0.9_wp, & !< parameter 124 - heat recovery efficiency 2.5_wp, & !< parameter 125 - dynamic parameter specific effective surface 80000.0_wp, & !< parameter 126 - dynamic parameter innner heatstorage 4.5_wp, & !< parameter 127 - ratio internal surface/floor area 100000.0_wp, & !< parameter 128 - maximal heating capacity 0.0_wp, & !< parameter 129 - maximal cooling capacity 5.0_wp, & !< parameter 130 - additional internal heat gains dependent on occupancy of the room 15.0_wp, & !< parameter 131 - basic internal heat gains without occupancy of the room 3.0_wp, & !< parameter 132 - storey height 0.2_wp & !< parameter 133 - ceiling construction height /) building_pars(:,7) = (/ & 1.0_wp, & !< parameter 0 - wall fraction above ground floor level 0.0_wp, & !< parameter 1 - window fraction above ground floor level 0.0_wp, & !< parameter 2 - green fraction above ground floor level 0.0_wp, & !< parameter 3 - green fraction roof above ground floor level 1.5_wp, & !< parameter 4 - LAI roof 1.5_wp, & !< parameter 5 - LAI on wall above ground floor level 1950400.0_wp, & !< parameter 6 - heat capacity 1st/2nd wall layer above ground floor level 1848000.0_wp, & !< parameter 7 - heat capacity 3rd wall layer above ground floor level 1848000.0_wp, & !< parameter 8 - heat capacity 4th wall layer above ground floor level 0.7_wp, & !< parameter 9 - thermal conductivity 1st/2nd wall layer above ground floor level 1.0_wp, & !< parameter 10 - thermal conductivity 3rd wall layer above ground floor level 1.0_wp, & !< parameter 11 - thermal conductivity 4th wall layer above ground floor level 299.15_wp, & !< parameter 12 - indoor target summer temperature 293.15_wp, & !< parameter 13 - indoor target winter temperature 0.9_wp, & !< parameter 14 - wall emissivity above ground floor level 0.86_wp, & !< parameter 15 - green emissivity above ground floor level 0.8_wp, & !< parameter 16 - window emissivity above ground floor level 0.6_wp, & !< parameter 17 - window transmissivity above ground floor level 0.001_wp, & !< parameter 18 - z0 roughness above ground floor level 0.0001_wp, & !< parameter 19 - z0h/z0g roughness heat/humidity above ground floor level 4.0_wp, & !< parameter 20 - ground floor level height 1.0_wp, & !< parameter 21 - wall fraction ground floor level 0.0_wp, & !< parameter 22 - window fraction ground floor level 0.0_wp, & !< parameter 23 - green fraction ground floor level 0.0_wp, & !< parameter 24 - green fraction roof ground floor level 1.5_wp, & !< parameter 25 - LAI on wall ground floor level 1950400.0_wp, & !< parameter 26 - heat capacity 1st/2nd wall layer ground floor level 1848000.0_wp, & !< parameter 27 - heat capacity 3rd wall layer ground floor level 1848000.0_wp, & !< parameter 28 - heat capacity 4th wall layer ground floor level 0.7_wp, & !< parameter 29 - thermal conductivity 1st/2nd wall layer ground floor level 1.0_wp, & !< parameter 30 - thermal conductivity 3rd wall layer ground floor level 1.0_wp, & !< parameter 31 - thermal conductivity 4th wall layer ground floor level 0.9_wp, & !< parameter 32 - wall emissivity ground floor level 0.8_wp, & !< parameter 33 - window emissivity ground floor level 0.86_wp, & !< parameter 34 - green emissivity ground floor level 0.6_wp, & !< parameter 35 - window transmissivity ground floor level 0.001_wp, & !< parameter 36 - z0 roughness ground floor level 0.0001_wp, & !< parameter 37 - z0h/z0q roughness heat/humidity 27.0_wp, & !< parameter 38 - wall albedo above ground floor level 5.0_wp, & !< parameter 39 - green albedo above ground floor level 27.0_wp, & !< parameter 40 - window albedo above ground floor level 0.29_wp, & !< parameter 41 - 1st wall layer thickness above ground floor level 0.295_wp, & !< parameter 42 - 2nd wall layer thickness above ground floor level 0.695_wp, & !< parameter 43 - 3rd wall layer thickness above ground floor level 0.985_wp, & !< parameter 44 - 4th wall layer thickness above ground floor level 20000.0_wp, & !< parameter 45 - heat capacity wall surface 23.0_wp, & !< parameter 46 - thermal conductivity of wall surface 20000.0_wp, & !< parameter 47 - heat capacity of window surface 20000.0_wp, & !< parameter 48 - heat capacity of green surface 23.0_wp, & !< parameter 49 - thermal conductivity of window surface 10.0_wp, & !< parameter 50 - thermal conductivty of green surface 1.0_wp, & !< parameter 51 - wall fraction ground plate 0.29_wp, & !< parameter 52 - 1st wall layer thickness ground plate 0.295_wp, & !< parameter 53 - 2nd wall layer thickness ground plate 0.695_wp, & !< parameter 54 - 3rd wall layer thickness ground plate 0.985_wp, & !< parameter 55 - 4th wall layer thickness ground plate 1950400.0_wp, & !< parameter 56 - heat capacity 1st/2nd wall layer ground plate 1848000.0_wp, & !< parameter 57 - heat capacity 3rd wall layer ground plate 1848000.0_wp, & !< parameter 58 - heat capacity 4th wall layer ground plate 0.7_wp, & !< parameter 59 - thermal conductivity 1st/2nd wall layer ground plate 1.0_wp, & !< parameter 60 - thermal conductivity 3rd wall layer ground plate 1.0_wp, & !< parameter 61 - thermal conductivity 4th wall layer ground plate 0.29_wp, & !< parameter 62 - 1st wall layer thickness ground floor level 0.295_wp, & !< parameter 63 - 2nd wall layer thickness ground floor level 0.695_wp, & !< parameter 64 - 3rd wall layer thickness ground floor level 0.985_wp, & !< parameter 65 - 4th wall layer thickness ground floor level 27.0_wp, & !< parameter 66 - wall albedo ground floor level 0.003_wp, & !< parameter 67 - 1st window layer thickness ground floor level 0.006_wp, & !< parameter 68 - 2nd window layer thickness ground floor level 0.012_wp, & !< parameter 69 - 3rd window layer thickness ground floor level 0.018_wp, & !< parameter 70 - 4th window layer thickness ground floor level 1736000.0_wp, & !< parameter 71 - heat capacity 1st/2nd window layer ground floor level 1736000.0_wp, & !< parameter 72 - heat capacity 3rd window layer ground floor level 1736000.0_wp, & !< parameter 73 - heat capacity 4th window layer ground floor level 0.57_wp, & !< parameter 74 - thermal conductivity 1st/2nd window layer ground floor level 0.57_wp, & !< parameter 75 - thermal conductivity 3rd window layer ground floor level 0.57_wp, & !< parameter 76 - thermal conductivity 4th window layer ground floor level 27.0_wp, & !< parameter 77 - window albedo ground floor level 5.0_wp, & !< parameter 78 - green albedo ground floor level 0.003_wp, & !< parameter 79 - 1st window layer thickness above ground floor level 0.006_wp, & !< parameter 80 - 2nd thickness window layer above ground floor level 0.012_wp, & !< parameter 81 - 3rd window layer thickness above ground floor level 0.018_wp, & !< parameter 82 - 4th window layer thickness above ground floor level 1736000.0_wp, & !< parameter 83 - heat capacity 1st/2nd window layer above ground floor level 1736000.0_wp, & !< parameter 84 - heat capacity 3rd window layer above ground floor level 1736000.0_wp, & !< parameter 85 - heat capacity 4th window layer above ground floor level 0.57_wp, & !< parameter 86 - thermal conductivity 1st/2nd window layer above ground floor level 0.57_wp, & !< parameter 87 - thermal conductivity 3rd window layer above ground floor level 0.57_wp, & !< parameter 88 - thermal conductivity 4th window layer above ground floor level 1.0_wp, & !< parameter 89 - wall fraction roof 0.29_wp, & !< parameter 90 - 1st wall layer thickness roof 0.295_wp, & !< parameter 91 - 2nd wall layer thickness roof 0.695_wp, & !< parameter 92 - 3rd wall layer thickness roof 0.985_wp, & !< parameter 93 - 4th wall layer thickness roof 1950400.0_wp, & !< parameter 94 - heat capacity 1st/2nd wall layer roof 1848000.0_wp, & !< parameter 95 - heat capacity 3rd wall layer roof 1848000.0_wp, & !< parameter 96 - heat capacity 4th wall layer roof 0.7_wp, & !< parameter 97 - thermal conductivity 1st/2nd wall layer roof 1.0_wp, & !< parameter 98 - thermal conductivity 3rd wall layer roof 1.0_wp, & !< parameter 99 - thermal conductivity 4th wall layer roof 0.9_wp, & !< parameter 100 - wall emissivity roof 27.0_wp, & !< parameter 101 - wall albedo roof 0.0_wp, & !< parameter 102 - window fraction roof 0.003_wp, & !< parameter 103 - window 1st layer thickness roof 0.006_wp, & !< parameter 104 - window 2nd layer thickness roof 0.012_wp, & !< parameter 105 - window 3rd layer thickness roof 0.018_wp, & !< parameter 106 - window 4th layer thickness roof 1736000.0_wp, & !< parameter 107 - heat capacity 1st/2nd window layer roof 1736000.0_wp, & !< parameter 108 - heat capacity 3rd window layer roof 1736000.0_wp, & !< parameter 109 - heat capacity 4th window layer roof 0.57_wp, & !< parameter 110 - thermal conductivity 1st/2nd window layer roof 0.57_wp, & !< parameter 111 - thermal conductivity 3rd window layer roof 0.57_wp, & !< parameter 112 - thermal conductivity 4th window layer roof 0.8_wp, & !< parameter 113 - window emissivity roof 0.6_wp, & !< parameter 114 - window transmissivity roof 27.0_wp, & !< parameter 115 - window albedo roof 0.86_wp, & !< parameter 116 - green emissivity roof 5.0_wp, & !< parameter 117 - green albedo roof 0.0_wp, & !< parameter 118 - green type roof 0.8_wp, & !< parameter 119 - shading factor 100.0_wp, & !< parameter 120 - g-value windows 100.0_wp, & !< parameter 121 - u-value windows 20.0_wp, & !< parameter 122 - basical airflow without occupancy of the room 20.0_wp, & !< parameter 123 - additional airflow depend of occupancy of the room 0.0_wp, & !< parameter 124 - heat recovery efficiency 1.0_wp, & !< parameter 125 - dynamic parameter specific effective surface 1.0_wp, & !< parameter 126 - dynamic parameter innner heatstorage 4.5_wp, & !< parameter 127 - ratio internal surface/floor area 100000.0_wp, & !< parameter 128 - maximal heating capacity 0.0_wp, & !< parameter 129 - maximal cooling capacity 0.0_wp, & !< parameter 130 - additional internal heat gains dependent on occupancy of the room 0.0_wp, & !< parameter 131 - basic internal heat gains without occupancy of the room 3.0_wp, & !< parameter 132 - storey height 0.2_wp & !< parameter 133 - ceiling construction height /) END SUBROUTINE usm_define_pars END MODULE urban_surface_mod