!> @file urban_surface_mod.f90 !--------------------------------------------------------------------------------! ! This file is part of PALM. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 2015-2016 Czech Technical University in Prague ! Copyright 1997-2016 Leibniz Universitaet Hannover !--------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: urban_surface_mod.f90 2012 2016-09-19 17:31:38Z hellstea $ ! ! 2011 2016-09-19 17:29:57Z kanani ! Major reformatting according to PALM coding standard (comments, blanks, ! alphabetical ordering, etc.), ! removed debug_prints, ! removed auxiliary SUBROUTINE get_usm_info, instead, USM flag urban_surface is ! defined in MODULE control_parameters (modules.f90) to avoid circular ! dependencies, ! renamed canopy_heat_flux to pc_heating_rate, as meaning of quantity changed. ! ! 2007 2016-08-24 15:47:17Z kanani ! Initial revision ! ! ! Description: ! ------------ ! 2016/6/9 - Initial version of the USM (Urban Surface Model) ! authors: Jaroslav Resler, Pavel Krc (CTU in Prague, ICS AS in Prague) ! with contributions: Michal Belda, Nina Benesova, Ondrej Vlcek ! partly inspired by PALM LSM (B. Maronga) ! parameterizations of Ra checked with TUF3D (E. S. Krayenhoff) !> Module for Urban Surface Model (USM) !> The module includes: !> 1. radiation model with direct/diffuse radiation, shading, reflections !> and integration with plant canopy !> 2. wall and wall surface model !> 3. surface layer energy balance !> 4. anthropogenic heat (only from transportation so far) !> 5. necessary auxiliary subroutines (reading inputs, writing outputs, !> restart simulations, ...) !> It also make use of standard radiation and integrates it into !> urban surface model. !> !> Further work: !> ------------- !> 1. Reduce number of shape view factors by merging factors for distant surfaces !> under shallow angles. Idea: Iteratively select the smallest shape view !> factor by value (among all sources and targets) which has a similarly !> oriented source neighbor (or near enough) SVF and merge them by adding !> value of the smaller SVF to the larger one and deleting the smaller one. !> This will allow for better scaling at higher resolutions. !> !> 2. Remove global arrays surfouts, surfoutl and only keep track of radiosity !> from surfaces that are visible from local surfaces (i.e. there is a SVF !> where target is local). To do that, radiosity will be exchanged after each !> reflection step using MPI_Alltoall instead of current MPI_Allgather. !> !------------------------------------------------------------------------------! MODULE urban_surface_mod USE arrays_3d, & ONLY: zu, pt, pt_1, pt_2, p, ol, shf, ts, us, u, v, w, hyp, tend USE cloud_parameters, & ONLY: cp, r_d USE constants, & ONLY: pi USE control_parameters, & ONLY: dz, topography, dt_3d, intermediate_timestep_count, & initializing_actions, intermediate_timestep_count_max, & simulated_time, end_time, timestep_scheme, tsc, & coupling_char, io_blocks, io_group, message_string, & time_since_reference_point, surface_pressure, & g, pt_surface, large_scale_forcing, lsf_surf, & time_do3d, dt_do3d, average_count_3d, urban_surface USE cpulog, & ONLY: cpu_log, log_point, log_point_s USE grid_variables, & ONLY: dx, dy, ddx, ddy, ddx2, ddy2 USE indices, & ONLY: nx, ny, nnx, nny, nnz, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, & nysg, nzb_s_inner, nzb_s_outer, nzb, nzt, nbgp USE, INTRINSIC :: iso_c_binding USE kinds USE pegrid USE plant_canopy_model_mod, & ONLY: plant_canopy, pch_index, & pc_heating_rate, lad_s USE radiation_model_mod, & ONLY: radiation, calc_zenith, zenith, day_init, time_utc_init, & rad_net, rad_sw_in, rad_lw_in, rad_sw_out, rad_lw_out, & sigma_sb, sun_direction, sun_dir_lat, sun_dir_lon, & force_radiation_call USE statistics, & ONLY: hom, statistic_regions IMPLICIT NONE !-- configuration parameters (they can be setup in PALM config) LOGICAL :: split_diffusion_radiation = .TRUE. !< split direct and diffusion dw radiation !< (.F. in case the radiation model already does it) LOGICAL :: usm_energy_balance_land = .TRUE. !< flag parameter indicating wheather the energy balance is calculated for land and roofs LOGICAL :: usm_energy_balance_wall = .TRUE. !< flag parameter indicating wheather the energy balance is calculated for land and roofs LOGICAL :: usm_material_model = .TRUE. !< flag parameter indicating wheather the model of heat in materials is used LOGICAL :: usm_anthropogenic_heat = .FALSE. !< flag parameter indicating wheather the anthropogenic heat sources (e.g.transportation) are used LOGICAL :: force_radiation_call_l = .FALSE. !< flag parameter for unscheduled radiation model calls LOGICAL :: mrt_factors = .FALSE. !< whether to generate MRT factor files during init LOGICAL :: write_svf_on_init = .FALSE. LOGICAL :: read_svf_on_init = .FALSE. LOGICAL :: usm_lad_rma = .TRUE. !< use MPI RMA to access LAD for raytracing (instead of global array) INTEGER(iwp) :: nrefsteps = 0 !< number of reflection steps to perform INTEGER(iwp) :: land_category = 2 !< default category for land surface INTEGER(iwp) :: wall_category = 2 !< default category for wall surface over pedestrian zone INTEGER(iwp) :: pedestrant_category = 2 !< default category for wall surface in pedestrian zone INTEGER(iwp) :: roof_category = 2 !< default category for root surface REAL(wp) :: roof_height_limit = 4._wp !< height for distinguish between land surfaces and roofs REAL(wp), PARAMETER :: ext_coef = 0.6_wp !< extinction coefficient (a.k.a. alpha) REAL(wp) :: ra_horiz_coef = 5.0_wp !< mysterious coefficient for correction of overestimation !< of r_a for horizontal surfaces -> TODO !-- parameters of urban surface model INTEGER(iwp), PARAMETER :: usm_version_len = 10 !< length of identification string of usm version CHARACTER(usm_version_len), PARAMETER :: usm_version = 'USM v. 1.0' !< identification of version of binary svf and restart files INTEGER(iwp), PARAMETER :: svf_code_len = 15 !< length of code for verification of the end of svf file CHARACTER(svf_code_len), PARAMETER :: svf_code = '*** end svf ***' !< code for verification of the end of svf file INTEGER(iwp) :: nzu !< number of layers of urban surface (will be calculated) INTEGER(iwp) :: nzub,nzut !< bottom and top layer of urban surface (will be calculated) INTEGER(iwp), PARAMETER :: nzut_free = 3 !< number of free layers in urban surface layer above top of buildings INTEGER(iwp), PARAMETER :: ndsvf = 2 !< number of dimensions of real values in SVF INTEGER(iwp), PARAMETER :: ndcsf = 2 !< number of dimensions of real values in CSF INTEGER(iwp), PARAMETER :: kdcsf = 4 !< number of dimensions of integer values in CSF INTEGER(iwp), PARAMETER :: id = 1 !< position of d-index in surfl and surf INTEGER(iwp), PARAMETER :: iz = 2 !< position of k-index in surfl and surf INTEGER(iwp), PARAMETER :: iy = 3 !< position of j-index in surfl and surf INTEGER(iwp), PARAMETER :: ix = 4 !< position of i-index in surfl and surf INTEGER(iwp), PARAMETER :: iroof = 0 !< 0 - index of ground or roof INTEGER(iwp), PARAMETER :: isouth = 1 !< 1 - index of south facing wall INTEGER(iwp), PARAMETER :: inorth = 2 !< 2 - index of north facing wall INTEGER(iwp), PARAMETER :: iwest = 3 !< 3 - index of west facing wall INTEGER(iwp), PARAMETER :: ieast = 4 !< 4 - index of east facing wall INTEGER(iwp), PARAMETER :: isky = 5 !< 5 - index of top border of the urban surface layer ("urban sky") INTEGER(iwp), PARAMETER :: inorthb = 6 !< 6 - index of free north border of the domain (south facing) INTEGER(iwp), PARAMETER :: isouthb = 7 !< 7 - index of north south border of the domain (north facing) INTEGER(iwp), PARAMETER :: ieastb = 8 !< 8 - index of east border of the domain (west facing) INTEGER(iwp), PARAMETER :: iwestb = 9 !< 9 - index of wast border of the domain (east facing) INTEGER(iwp), DIMENSION(0:9), PARAMETER :: idir = (/0,0,0,-1,1,0,0,0,-1,1/) !< surface normal direction x indices INTEGER(iwp), DIMENSION(0:9), PARAMETER :: jdir = (/0,-1,1,0,0,0,-1,1,0,0/) !< surface normal direction y indices INTEGER(iwp), DIMENSION(0:9), PARAMETER :: kdir = (/1,0,0,0,0,-1,0,0,0,0/) !< surface normal direction z indices REAL(wp), DIMENSION(1:4) :: ddxy2 !< 1/dx^2 or 1/dy^2 (in surface normal direction) INTEGER(iwp), DIMENSION(1:4,6:9) :: ijdb !< start and end of the local domain border coordinates (set in code) LOGICAL, DIMENSION(6:9) :: isborder !< is PE on the border of the domain in four corresponding directions !< parameter but set in the code !-- indices and sizes of urban surface model INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: surfl !< coordinates of i-th local surface in local grid - surfl[:,k] = [d, z, y, x] INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: surf !< coordinates of i-th surface in grid - surf[:,k] = [d, z, y, x] INTEGER(iwp) :: nsurfl !< number of all surfaces in local processor INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nsurfs !< array of number of all surfaces in individual processors INTEGER(iwp) :: startsky !< start index of block of sky INTEGER(iwp) :: endsky !< end index of block of sky INTEGER(iwp) :: nskys !< number of sky surfaces in local processor INTEGER(iwp) :: startland !< start index of block of land and roof surfaces INTEGER(iwp) :: endland !< end index of block of land and roof surfaces INTEGER(iwp) :: nlands !< number of land and roof surfaces in local processor INTEGER(iwp) :: startwall !< start index of block of wall surfaces INTEGER(iwp) :: endwall !< end index of block of wall surfaces INTEGER(iwp) :: nwalls !< number of wall surfaces in local processor INTEGER(iwp) :: startenergy !< start index of block of real surfaces (land, walls and roofs) INTEGER(iwp) :: endenergy !< end index of block of real surfaces (land, walls and roofs) INTEGER(iwp) :: nenergy !< number of real surfaces in local processor INTEGER(iwp) :: nsurf !< global number of surfaces in index array of surfaces (nsurf = Σproc nsurfs) INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: surfstart !< starts of blocks of surfaces for individual processors in array surf !< respective block for particular processor is surfstart[iproc]+1 : surfstart[iproc+1] INTEGER(iwp) :: nsvfl !< number of svf (excluding csf) for local processor INTEGER(iwp) :: ncsfl !< no. of csf in local processor !< needed only during calc_svf but must be here because it is !< shared between subroutines usm_calc_svf and usm_raytrace INTEGER(iwp) :: nsvfcsfl !< sum of svf+csf for local processor !-- type for calculation of svf TYPE t_svf INTEGER(iwp) :: isurflt !< INTEGER(iwp) :: isurfs !< REAL(wp) :: rsvf !< REAL(wp) :: rtransp !< END TYPE !-- type for calculation of csf TYPE t_csf INTEGER(iwp) :: ip !< INTEGER(iwp) :: itx !< INTEGER(iwp) :: ity !< INTEGER(iwp) :: itz !< INTEGER(iwp) :: isurfs !< REAL(wp) :: rsvf !< REAL(wp) :: rtransp !< END TYPE !-- arrays for calculation of svf and csf TYPE(t_svf), DIMENSION(:), POINTER :: asvf !< pointer to growing svc array TYPE(t_csf), DIMENSION(:), POINTER :: acsf !< pointer to growing csf array TYPE(t_svf), DIMENSION(:), ALLOCATABLE, TARGET :: asvf1, asvf2 !< realizations of svf array TYPE(t_csf), DIMENSION(:), ALLOCATABLE, TARGET :: acsf1, acsf2 !< realizations of csf array INTEGER(iwp) :: nsvfla !< dimmension of array allocated for storage of svf in local processor INTEGER(iwp) :: ncsfla !< dimmension of array allocated for storage of csf in local processor INTEGER(iwp) :: msvf, mcsf !< mod for swapping the growing array INTEGER(iwp), PARAMETER :: gasize = 10000 !< initial size of growing arrays !-- arrays storing the values of USM INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: svfsurf !< svfsurf[:,isvf] = index of source and target surface for svf[isvf] REAL(wp), DIMENSION(:,:), ALLOCATABLE :: svf !< array of shape view factors+direct irradiation factors !< for individual local surfaces and plant canopy sinks REAL(wp), DIMENSION(:), ALLOCATABLE :: surfins !< array of sw radiation falling to local surface after i-th reflection REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinl !< array of lw radiation for local surface after i-th reflection !< Inward radiation is also valid for virtual surfaces (radiation leaving domain) REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinsw !< array of sw radiation falling to local surface including radiation from reflections REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlw !< array of lw radiation falling to local surface including radiation from reflections REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdir !< array of direct sw radiation falling to local surface REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdif !< array of diffuse sw radiation from sky and model boundary falling to local surface REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwdif !< array of diffuse lw radiation from sky and model boundary falling to local surface !< Outward radiation is only valid for nonvirtual surfaces REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsl !< array of reflected sw radiation for local surface in i-th reflection REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutll !< array of reflected + emitted lw radiation for local surface in i-th reflection REAL(wp), DIMENSION(:), ALLOCATABLE :: surfouts !< array of reflected sw radiation for all surfaces in i-th reflection REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutl !< array of reflected + emitted lw radiation for all surfaces in i-th reflection REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsw !< array of total sw radiation outgoing from nonvirtual surfaces surfaces after all reflection REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutlw !< array of total lw radiation outgoing from nonvirtual surfaces surfaces after all reflection REAL(wp), DIMENSION(:), ALLOCATABLE :: surfhf !< array of total radiation flux incoming to minus outgoing from local surface REAL(wp), DIMENSION(:), ALLOCATABLE :: rad_net_l !< local copy of rad_net (net radiation at surface) !-- arrays for time averages REAL(wp), DIMENSION(:), ALLOCATABLE :: rad_net_av !< average of rad_net_l REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinsw_av !< average of sw radiation falling to local surface including radiation from reflections REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlw_av !< average of lw radiation falling to local surface including radiation from reflections REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdir_av !< average of direct sw radiation falling to local surface REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdif_av !< average of diffuse sw radiation from sky and model boundary falling to local surface REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwdif_av !< average of diffuse lw radiation from sky and model boundary falling to local surface REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswref_av !< average of sw radiation falling to surface from reflections REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwref_av !< average of lw radiation falling to surface from reflections REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsw_av !< average of total sw radiation outgoing from nonvirtual surfaces surfaces after all reflection REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutlw_av !< average of total lw radiation outgoing from nonvirtual surfaces surfaces after all reflection REAL(wp), DIMENSION(:), ALLOCATABLE :: surfhf_av !< average of total radiation flux incoming to minus outgoing from local surface !-- block variables needed for calculation of the plant canopy model inside the urban surface model REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pcbl !< z,y,x coordinates of i-th local plant canopy box pcbl[:,i] = [z, y, x] INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: gridpcbl !< index of local pcb[z,y,x] REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinsw !< array of absorbed sw radiation for local plant canopy box REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinlw !< array of absorbed lw radiation for local plant canopy box INTEGER(iwp) :: npcbl !< number of the plant canopy gridboxes in local processor INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch !< heights of the plant canopy INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pct !< top layer of the plant canopy REAL(wp), DIMENSION(:,:,:), POINTER :: usm_lad !< subset of lad_s within urban surface, transformed to plain Z coordinate REAL(wp), DIMENSION(:), POINTER :: usm_lad_g !< usm_lad globalized (used to avoid MPI RMA calls in raytracing) REAL(wp) :: prototype_lad !< prototype leaf area density for computing effective optical depth INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nzterr, plantt !< temporary global arrays for raytracing !-- radiation related arrays (it should be better in interface of radiation module of PALM REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_dir !< direct sw radiation REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_diff !< diffusion sw radiation REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_in_diff !< diffusion lw radiation !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- anthropogenic heat sources !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! REAL(wp), DIMENSION(:,:), ALLOCATABLE :: aheat !< daily average of anthropogenic heat (W/m2) REAL(wp), DIMENSION(:), ALLOCATABLE :: aheatprof !< diurnal profile of anthropogenic heat !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- wall surface model !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- wall surface model constants INTEGER(iwp), PARAMETER :: nzb_wall = 0 !< inner side of the wall model (to be switched) INTEGER(iwp), PARAMETER :: nzt_wall = 3 !< outer side of the wall model (to be switched) INTEGER(iwp), PARAMETER :: nzw = 4 !< number of wall layers (fixed for now) REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: zwn_default = (/0.0242_wp, 0.0969_wp, 0.346_wp, 1.0_wp /) !< normalized soil, wall and roof layer depths (m/m) REAL(wp) :: wall_inner_temperature = 296.0_wp !< temperature of the inner wall surface (~23 degrees C) (K) REAL(wp) :: roof_inner_temperature = 296.0_wp !< temperature of the inner roof surface (~23 degrees C) (K) REAL(wp) :: soil_inner_temperature = 283.0_wp !< temperature of the deep soil (~10 degrees C) (K) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- surface and material model variables for walls, ground, roofs !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: surface_types !< array of types of wall parameters REAL(wp), DIMENSION(:), ALLOCATABLE :: zwn !< normalized wall layer depths (m) REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddz_wall !< 1/dz_wall REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddz_wall_stag !< 1/dz_wall_stag REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dz_wall !< wall grid spacing (center-center) REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dz_wall_stag !< wall grid spacing (edge-edge) REAL(wp), DIMENSION(:,:), ALLOCATABLE :: zw !< wall layer depths (m) #if defined( __nopointer ) REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf !< wall surface temperature (K) REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_p !< progn. wall surface temperature (K) #else REAL(wp), DIMENSION(:), POINTER :: t_surf REAL(wp), DIMENSION(:), POINTER :: t_surf_p REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_1 REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_2 #endif REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_av !< average of wall surface temperature (K) !-- Temporal tendencies for time stepping REAL(wp), DIMENSION(:), ALLOCATABLE :: tt_surface_m !< surface temperature tendency (K) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- Energy balance variables !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- parameters of the land, roof and wall surfaces LOGICAL, DIMENSION(:), ALLOCATABLE :: isroof_surf !< is the surface the part of a roof REAL(wp), DIMENSION(:), ALLOCATABLE :: albedo_surf !< albedo of the surface !-- parameters of the wall surfaces REAL(wp), DIMENSION(:), ALLOCATABLE :: c_surface !< heat capacity of the wall surface skin ( J m−2 K−1 ) REAL(wp), DIMENSION(:), ALLOCATABLE :: emiss_surf !< emissivity of the wall surface REAL(wp), DIMENSION(:), ALLOCATABLE :: lambda_surf !< heat conductivity λS between air and surface ( W m−2 K−1 ) !-- parameters of the walls material REAL(wp), DIMENSION(:), ALLOCATABLE :: thickness_wall !< thickness of the wall, roof and soil layers REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rho_c_wall !< volumetric heat capacity of the material ( J m-3 K-1 ) (= 2.19E6) REAL(wp), DIMENSION(:,:), ALLOCATABLE :: lambda_h !< heat conductivity λT of the material ( W m-1 K-1 ) REAL(wp), DIMENSION(:), ALLOCATABLE :: roughness_wall !< roughness relative to concrete !-- output wall heat flux arrays REAL(wp), DIMENSION(:), ALLOCATABLE :: wshf !< kinematic wall heat flux of sensible heat (needed for diffusion_s!<) REAL(wp), DIMENSION(:), ALLOCATABLE :: wshf_eb !< wall heat flux of sensible heat in wall normal direction REAL(wp), DIMENSION(:), ALLOCATABLE :: wshf_eb_av !< average of wshf_eb REAL(wp), DIMENSION(:), ALLOCATABLE :: wghf_eb !< wall ground heat flux REAL(wp), DIMENSION(:), ALLOCATABLE :: wghf_eb_av !< average of wghf_eb #if defined( __nopointer ) REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_wall !< Wall temperature (K) REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_wall_av !< Average of t_wall REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_wall_p !< Prog. wall temperature (K) #else REAL(wp), DIMENSION(:,:), POINTER :: t_wall, t_wall_p REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_wall_av, t_wall_1, t_wall_2 #endif !-- Wall temporal tendencies for time stepping REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tt_wall_m !< t_wall prognostic array !-- Surface and material parameters classes (surface_type) !-- albedo, emissivity, lambda_surf, roughness, thickness, volumetric heat capacity, thermal conductivity INTEGER(iwp) :: n_surface_types !< number of the wall type categories INTEGER(iwp), PARAMETER :: n_surface_params = 8 !< number of parameters for each type of the wall INTEGER(iwp), PARAMETER :: ialbedo = 1 !< albedo of the surface INTEGER(iwp), PARAMETER :: iemiss = 2 !< emissivity of the surface INTEGER(iwp), PARAMETER :: ilambdas = 3 !< heat conductivity λS between air and surface ( W m−2 K−1 ) INTEGER(iwp), PARAMETER :: irough = 4 !< roughness relative to concrete INTEGER(iwp), PARAMETER :: icsurf = 5 !< Surface skin layer heat capacity (J m−2 K−1 ) INTEGER(iwp), PARAMETER :: ithick = 6 !< thickness of the surface (wall, roof, land) ( m ) INTEGER(iwp), PARAMETER :: irhoC = 7 !< volumetric heat capacity rho*C of the material ( J m−3 K−1 ) INTEGER(iwp), PARAMETER :: ilambdah = 8 !< thermal conductivity λH of the wall (W m−1 K−1 ) CHARACTER(12), DIMENSION(:), ALLOCATABLE :: surface_type_names !< names of wall types (used only for reports) INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: surface_type_codes !< codes of wall types REAL(wp), DIMENSION(:,:), ALLOCATABLE :: surface_params !< parameters of wall types CHARACTER(len=*), PARAMETER :: svf_file_name='usm_svf' !-- interfaces of subroutines accessed from outside of this module INTERFACE usm_check_data_output MODULE PROCEDURE usm_check_data_output END INTERFACE usm_check_data_output INTERFACE usm_check_parameters MODULE PROCEDURE usm_check_parameters END INTERFACE usm_check_parameters INTERFACE usm_data_output_3d MODULE PROCEDURE usm_data_output_3d END INTERFACE usm_data_output_3d INTERFACE usm_define_netcdf_grid MODULE PROCEDURE usm_define_netcdf_grid END INTERFACE usm_define_netcdf_grid INTERFACE usm_init_urban_surface MODULE PROCEDURE usm_init_urban_surface END INTERFACE usm_init_urban_surface INTERFACE usm_material_heat_model MODULE PROCEDURE usm_material_heat_model END INTERFACE usm_material_heat_model INTERFACE usm_parin MODULE PROCEDURE usm_parin END INTERFACE usm_parin INTERFACE usm_radiation MODULE PROCEDURE usm_radiation END INTERFACE usm_radiation INTERFACE usm_read_restart_data MODULE PROCEDURE usm_read_restart_data END INTERFACE usm_read_restart_data INTERFACE usm_surface_energy_balance MODULE PROCEDURE usm_surface_energy_balance END INTERFACE usm_surface_energy_balance INTERFACE usm_swap_timelevel MODULE PROCEDURE usm_swap_timelevel END INTERFACE usm_swap_timelevel INTERFACE usm_wall_heat_flux MODULE PROCEDURE usm_wall_heat_flux MODULE PROCEDURE usm_wall_heat_flux_ij END INTERFACE usm_wall_heat_flux INTERFACE usm_write_restart_data MODULE PROCEDURE usm_write_restart_data END INTERFACE usm_write_restart_data SAVE PRIVATE !-- Public parameters, constants and initial values PUBLIC split_diffusion_radiation, & usm_anthropogenic_heat, usm_material_model, mrt_factors, & usm_check_parameters, & usm_energy_balance_land, usm_energy_balance_wall, nrefsteps, & usm_init_urban_surface, usm_radiation, usm_read_restart_data, & usm_wall_heat_flux, & usm_surface_energy_balance, usm_material_heat_model, & usm_swap_timelevel, usm_check_data_output, usm_average_3d_data, & usm_data_output_3d, usm_define_netcdf_grid, usm_parin, & usm_write_restart_data, & nzub, nzut, ra_horiz_coef, usm_lad_rma, & land_category, pedestrant_category, wall_category, roof_category, & write_svf_on_init, read_svf_on_init CONTAINS !------------------------------------------------------------------------------! ! Description: ! ------------ !> This subroutine creates the necessary indices of the urban surfaces !> and plant canopy and it allocates the needed arrays for USM !------------------------------------------------------------------------------! SUBROUTINE usm_allocate_urban_surface IMPLICIT NONE INTEGER(iwp) :: i, j, k, d, l, ir, jr, ids INTEGER(iwp) :: nzubl, nzutl, isurf, ipcgb INTEGER :: procid !-- auxiliary vars ddxy2 = (/ddy2,ddy2,ddx2,ddx2/) !< 1/dx^2 or 1/dy^2 (in surface normal direction) CALL location_message( '', .TRUE. ) CALL location_message( ' allocation of needed arrays', .TRUE. ) !-- find nzub, nzut, nzu nzubl = minval(nzb_s_inner(nys:nyn,nxl:nxr)) nzutl = maxval(nzb_s_inner(nys:nyn,nxl:nxr)) nzubl = max(nzubl,nzb) IF ( plant_canopy ) THEN !-- allocate needed arrays ALLOCATE( pct(nys:nyn,nxl:nxr) ) ALLOCATE( pch(nys:nyn,nxl:nxr) ) !-- calculate plant canopy height npcbl = 0 pct = 0.0_wp pch = 0.0_wp DO i = nxl, nxr DO j = nys, nyn DO k = nzt+1, 0, -1 IF ( lad_s(k,j,i) /= 0.0_wp ) THEN !-- we are at the top of the pcs pct(j,i) = k + nzb_s_inner(j,i) pch(j,i) = k npcbl = npcbl + pch(j,i) EXIT ENDIF ENDDO ENDDO ENDDO nzutl = max(nzutl, maxval(pct)) !-- code of plant canopy model uses parameter pch_index !-- we need to setup it here to right value !-- (pch_index, lad_s and other arrays in PCM are defined flat) pch_index = maxval(pch) prototype_lad = maxval(lad_s) * .9_wp !< better be *1.0 if lad is either 0 or maxval(lad) everywhere IF ( prototype_lad <= 0._wp ) prototype_lad = .3_wp !WRITE(message_string, '(a,f6.3)') 'Precomputing effective box optical ' & ! // 'depth using prototype leaf area density = ', prototype_lad !CALL message('usm_init_urban_surface', 'PA0520', 0, 0, -1, 6, 0) ENDIF nzutl = min(nzutl+nzut_free, nzt) #if defined( __parallel ) CALL MPI_AllReduce(nzubl,nzub,1,MPI_INTEGER,MPI_MIN,comm2d,ierr); CALL MPI_AllReduce(nzutl,nzut,1,MPI_INTEGER,MPI_MAX,comm2d,ierr); #else nzub = nzubl nzut = nzutl #endif !-- global number of urban layers nzu = nzut - nzub + 1 !-- allocate urban surfaces grid !-- calc number of surfaces in local proc CALL location_message( ' calculation of indices for surfaces', .TRUE. ) nsurfl = 0 !-- calculate land surface and roof startland = nsurfl+1 nsurfl = nsurfl+(nxr-nxl+1)*(nyn-nys+1) endland = nsurfl nlands = endland-startland+1 !-- calculation of the walls startwall = nsurfl+1 DO i = nxl, nxr DO j = nys, nyn !-- test for walls !-- (we don't use array flags because it isn't calculated in case of masking_method=.T.) DO ids = 1, 4 !-- four wall directions jr = min(max(j-jdir(ids),0),ny) ir = min(max(i-idir(ids),0),nx) nsurfl = nsurfl + max(0, nzb_s_inner(jr,ir)-nzb_s_inner(j,i)) ENDDO ENDDO ENDDO endwall = nsurfl nwalls = endwall-startwall+1 !-- range of energy balance surfaces nenergy = 0 IF ( usm_energy_balance_land ) THEN startenergy = startland nenergy = nenergy + nlands ELSE startenergy = startwall ENDIF IF ( usm_energy_balance_wall ) THEN endenergy = endwall nenergy = nenergy + nwalls ELSE endenergy = endland ENDIF !!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- block of virtual surfaces !!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- calculate sky surfaces startsky = nsurfl+1 nsurfl = nsurfl+(nxr-nxl+1)*(nyn-nys+1) endsky = nsurfl nskys = endsky-startsky+1 !-- border flags #if defined( __parallel ) isborder = (/ north_border_pe, south_border_pe, right_border_pe, left_border_pe /) #else isborder = (/.TRUE.,.TRUE.,.TRUE.,.TRUE./) #endif !-- fill array of the limits of the local domain borders ijdb = RESHAPE( (/ nxl,nxr,nyn,nyn,nxl,nxr,nys,nys,nxr,nxr,nys,nyn,nxl,nxl,nys,nyn /), (/4, 4/) ) !-- calulation of the free borders of the domain DO ids = 6,9 IF ( isborder(ids) ) THEN !-- free border of the domain in direction ids DO i = ijdb(1,ids), ijdb(2,ids) DO j = ijdb(3,ids), ijdb(4,ids) k = nzut - max(nzb_s_inner(j,i), nzb_s_inner(j-jdir(ids),i-idir(ids))) nsurfl = nsurfl + k ENDDO ENDDO ENDIF ENDDO !-- fill gridpcbl and pcbl IF ( plant_canopy ) THEN ALLOCATE( pcbl(iz:ix, 1:npcbl) ) ALLOCATE( gridpcbl(nzub:nzut,nys:nyn,nxl:nxr) ) gridpcbl(:,:,:) = 0 ipcgb = 0 DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i)+1, pct(j,i) ipcgb = ipcgb + 1 gridpcbl(k,j,i) = ipcgb pcbl(:,ipcgb) = (/ k, j, i /) ENDDO ENDDO ENDDO ALLOCATE( pcbinsw( 1:npcbl ) ) ALLOCATE( pcbinlw( 1:npcbl ) ) ENDIF !-- fill surfl ALLOCATE(surfl(4,nsurfl)) isurf = 0 !-- add land surfaces or roofs DO i = nxl, nxr DO j = nys, nyn isurf = isurf + 1 k = nzb_s_inner(j,i)+1 surfl(:,isurf) = (/iroof,k,j,i/) ENDDO ENDDO !-- add walls DO i = nxl, nxr DO j = nys, nyn DO ids = 1, 4 !> four wall directions jr = min(max(j-jdir(ids),0),ny) ir = min(max(i-idir(ids),0),nx) DO k = nzb_s_inner(j,i)+1, nzb_s_inner(jr,ir) isurf = isurf + 1 surfl(:,isurf) = (/ids,k,j,i/) ENDDO ENDDO ENDDO ENDDO !-- add sky DO i = nxl, nxr DO j = nys, nyn isurf = isurf + 1 k = nzut surfl(:,isurf) = (/isky,k,j,i/) ENDDO ENDDO !-- calulation of the free borders of the domain DO ids = 6,9 IF ( isborder(ids) ) THEN !-- free border of the domain in direction ids DO i = ijdb(1,ids), ijdb(2,ids) DO j = ijdb(3,ids), ijdb(4,ids) DO k = max(nzb_s_inner(j,i),nzb_s_inner(j-jdir(ids),i-idir(ids)))+1, nzut isurf = isurf + 1 surfl(:,isurf) = (/ids,k,j,i/) ENDDO ENDDO ENDDO ENDIF ENDDO !-- global array surf of indices of surfaces and displacement index array surfstart ALLOCATE(nsurfs(0:numprocs-1)) #if defined( __parallel ) CALL MPI_Allgather(nsurfl,1,MPI_INTEGER,nsurfs,1,MPI_INTEGER,comm2d,ierr) #else nsurfs(0) = nsurfl #endif ALLOCATE(surfstart(0:numprocs)) k = 0 DO i=0,numprocs-1 surfstart(i) = k k = k+nsurfs(i) ENDDO surfstart(numprocs) = k nsurf = k ALLOCATE(surf(4,nsurf)) #if defined( __parallel ) CALL MPI_AllGatherv(surfl, nsurfl*4, MPI_INTEGER, surf, nsurfs*4, surfstart*4, MPI_INTEGER, comm2d, ierr) #else surf = surfl #endif !-- !-- allocation of the arrays for direct and diffusion radiation CALL location_message( ' allocation of radiation arrays', .TRUE. ) !-- rad_sw_in, rad_lw_in are computed in radiation model, !-- splitting of direct and diffusion part is done !-- in usm_calc_diffusion_radiation for now ALLOCATE( rad_sw_in_dir(nysg:nyng,nxlg:nxrg) ) ALLOCATE( rad_sw_in_diff(nysg:nyng,nxlg:nxrg) ) ALLOCATE( rad_lw_in_diff(nysg:nyng,nxlg:nxrg) ) !-- allocate radiation arrays ALLOCATE( surfins(nsurfl) ) ALLOCATE( surfinl(nsurfl) ) ALLOCATE( surfinsw(nsurfl) ) ALLOCATE( surfinlw(nsurfl) ) ALLOCATE( surfinswdir(nsurfl) ) ALLOCATE( surfinswdif(nsurfl) ) ALLOCATE( surfinlwdif(nsurfl) ) ALLOCATE( surfoutsl(startenergy:endenergy) ) ALLOCATE( surfoutll(startenergy:endenergy) ) ALLOCATE( surfoutsw(startenergy:endenergy) ) ALLOCATE( surfoutlw(startenergy:endenergy) ) ALLOCATE( surfouts(nsurf) ) !TODO: global surfaces without virtual ALLOCATE( surfoutl(nsurf) ) !TODO: global surfaces without virtual ALLOCATE( surfhf(startenergy:endenergy) ) ALLOCATE( rad_net_l(startenergy:endenergy) ) !-- Wall surface model !-- allocate arrays for wall surface model and define pointers !-- allocate array of wall types and wall parameters ALLOCATE ( surface_types(startenergy:endenergy) ) !-- broadband albedo of the land, roof and wall surface !-- for domain border and sky set artifically to 1.0 !-- what allows us to calculate heat flux leaving over !-- side and top borders of the domain ALLOCATE ( albedo_surf(nsurfl) ) albedo_surf = 1.0_wp !-- wall and roof surface parameters ALLOCATE ( isroof_surf(startenergy:endenergy) ) ALLOCATE ( emiss_surf(startenergy:endenergy) ) ALLOCATE ( lambda_surf(startenergy:endenergy) ) ALLOCATE ( c_surface(startenergy:endenergy) ) ALLOCATE ( roughness_wall(startenergy:endenergy) ) !-- allocate wall and roof material parameters ALLOCATE ( thickness_wall(startenergy:endenergy) ) ALLOCATE ( lambda_h(nzb_wall:nzt_wall,startenergy:endenergy) ) ALLOCATE ( rho_c_wall(nzb_wall:nzt_wall,startenergy:endenergy) ) !-- allocate wall and roof layers sizes ALLOCATE ( zwn(nzb_wall:nzt_wall) ) ALLOCATE ( dz_wall(nzb_wall:nzt_wall+1, startenergy:endenergy) ) ALLOCATE ( ddz_wall(nzb_wall:nzt_wall+1, startenergy:endenergy) ) ALLOCATE ( dz_wall_stag(nzb_wall:nzt_wall, startenergy:endenergy) ) ALLOCATE ( ddz_wall_stag(nzb_wall:nzt_wall, startenergy:endenergy) ) ALLOCATE ( zw(nzb_wall:nzt_wall, startenergy:endenergy) ) !-- allocate wall and roof temperature arrays #if defined( __nopointer ) ALLOCATE ( t_surf(startenergy:endenergy) ) ALLOCATE ( t_surf_p(startenergy:endenergy) ) ALLOCATE ( t_wall(nzb_wall:nzt_wall+1,startenergy:endenergy) ) ALLOCATE ( t_wall_p(nzb_wall:nzt_wall+1,startenergy:endenergy) ) #else ALLOCATE ( t_surf_1(startenergy:endenergy) ) ALLOCATE ( t_surf_2(startenergy:endenergy) ) ALLOCATE ( t_wall_1(nzb_wall:nzt_wall+1,startenergy:endenergy) ) ALLOCATE ( t_wall_2(nzb_wall:nzt_wall+1,startenergy:endenergy) ) !-- initial assignment of the pointers t_wall => t_wall_1; t_wall_p => t_wall_2 t_surf => t_surf_1; t_surf_p => t_surf_2 #endif !-- allocate intermediate timestep arrays ALLOCATE ( tt_surface_m(startenergy:endenergy) ) ALLOCATE ( tt_wall_m(nzb_wall:nzt_wall+1,startenergy:endenergy) ) !-- allocate wall heat flux output array ALLOCATE ( wshf(startwall:endwall) ) ALLOCATE ( wshf_eb(startenergy:endenergy) ) ALLOCATE ( wghf_eb(startenergy:endenergy) ) !-- set inital values for prognostic quantities tt_surface_m = 0.0_wp tt_wall_m = 0.0_wp wshf = 0.0_wp wshf_eb = 0.0_wp wghf_eb = 0.0_wp END SUBROUTINE usm_allocate_urban_surface !------------------------------------------------------------------------------! ! Description: ! ------------ !> Sum up and time-average urban surface output quantities as well as allocate !> the array necessary for storing the average. !------------------------------------------------------------------------------! SUBROUTINE usm_average_3d_data( mode, variable ) IMPLICIT NONE CHARACTER (len=*), INTENT(IN) :: mode CHARACTER (len=*), INTENT(IN) :: variable INTEGER(iwp) :: i, j, k, l, ids, iwl,istat CHARACTER (len=20) :: var, surfid INTEGER(iwp), PARAMETER :: nd = 5 CHARACTER(len=6), DIMENSION(0:nd-1), PARAMETER :: dirname = (/ '_roof ', '_south', '_north', '_west ', '_east ' /) !-- find the real name of the variable var = TRIM(variable) DO i = 0, nd-1 k = len(TRIM(var)) j = len(TRIM(dirname(i))) IF ( var(k-j+1:k) == dirname(i) ) THEN ids = i var = var(:k-j) EXIT ENDIF ENDDO IF ( ids == -1 ) THEN var = TRIM(variable) ENDIF IF ( var(1:11) == 'usm_t_wall_' .AND. len(TRIM(var)) >= 12 ) THEN !-- wall layers READ(var(12:12), '(I1)', iostat=istat ) iwl IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN var = var(1:10) ELSE !-- wrong wall layer index RETURN ENDIF ENDIF IF ( mode == 'allocate' ) THEN SELECT CASE ( TRIM( var ) ) CASE ( 'usm_radnet' ) !-- array of complete radiation balance IF ( .NOT. ALLOCATED(rad_net_av) ) THEN ALLOCATE( rad_net_av(startenergy:endenergy) ) rad_net_av = 0.0_wp ENDIF CASE ( 'usm_rad_insw' ) !-- array of sw radiation falling to surface after i-th reflection IF ( .NOT. ALLOCATED(surfinsw_av) ) THEN ALLOCATE( surfinsw_av(startenergy:endenergy) ) surfinsw_av = 0.0_wp ENDIF CASE ( 'usm_rad_inlw' ) !-- array of lw radiation falling to surface after i-th reflection IF ( .NOT. ALLOCATED(surfinlw_av) ) THEN ALLOCATE( surfinlw_av(startenergy:endenergy) ) surfinlw_av = 0.0_wp ENDIF CASE ( 'usm_rad_inswdir' ) !-- array of direct sw radiation falling to surface from sun IF ( .NOT. ALLOCATED(surfinswdir_av) ) THEN ALLOCATE( surfinswdir_av(startenergy:endenergy) ) surfinswdir_av = 0.0_wp ENDIF CASE ( 'usm_rad_inswdif' ) !-- array of difusion sw radiation falling to surface from sky and borders of the domain IF ( .NOT. ALLOCATED(surfinswdif_av) ) THEN ALLOCATE( surfinswdif_av(startenergy:endenergy) ) surfinswdif_av = 0.0_wp ENDIF CASE ( 'usm_rad_inswref' ) !-- array of sw radiation falling to surface from reflections IF ( .NOT. ALLOCATED(surfinswref_av) ) THEN ALLOCATE( surfinswref_av(startenergy:endenergy) ) surfinswref_av = 0.0_wp ENDIF CASE ( 'usm_rad_inlwdif' ) !-- array of sw radiation falling to surface after i-th reflection IF ( .NOT. ALLOCATED(surfinlwdif_av) ) THEN ALLOCATE( surfinlwdif_av(startenergy:endenergy) ) surfinlwdif_av = 0.0_wp ENDIF CASE ( 'usm_rad_inlwref' ) !-- array of lw radiation falling to surface from reflections IF ( .NOT. ALLOCATED(surfinlwref_av) ) THEN ALLOCATE( surfinlwref_av(startenergy:endenergy) ) surfinlwref_av = 0.0_wp ENDIF CASE ( 'usm_rad_outsw' ) !-- array of sw radiation emitted from surface after i-th reflection IF ( .NOT. ALLOCATED(surfoutsw_av) ) THEN ALLOCATE( surfoutsw_av(startenergy:endenergy) ) surfoutsw_av = 0.0_wp ENDIF CASE ( 'usm_rad_outlw' ) !-- array of lw radiation emitted from surface after i-th reflection IF ( .NOT. ALLOCATED(surfoutlw_av) ) THEN ALLOCATE( surfoutlw_av(startenergy:endenergy) ) surfoutlw_av = 0.0_wp ENDIF CASE ( 'usm_rad_hf' ) !-- array of heat flux from radiation for surfaces after i-th reflection IF ( .NOT. ALLOCATED(surfhf_av) ) THEN ALLOCATE( surfhf_av(startenergy:endenergy) ) surfhf_av = 0.0_wp ENDIF CASE ( 'usm_wshf' ) !-- array of sensible heat flux from surfaces !-- land surfaces IF ( .NOT. ALLOCATED(wshf_eb_av) ) THEN ALLOCATE( wshf_eb_av(startenergy:endenergy) ) wshf_eb_av = 0.0_wp ENDIF CASE ( 'usm_wghf' ) !-- array of heat flux from ground (wall, roof, land) IF ( .NOT. ALLOCATED(wghf_eb_av) ) THEN ALLOCATE( wghf_eb_av(startenergy:endenergy) ) wghf_eb_av = 0.0_wp ENDIF CASE ( 'usm_t_surf' ) !-- surface temperature for surfaces IF ( .NOT. ALLOCATED(t_surf_av) ) THEN ALLOCATE( t_surf_av(startenergy:endenergy) ) t_surf_av = 0.0_wp ENDIF CASE ( 'usm_t_wall' ) !-- wall temperature for iwl layer of walls and land IF ( .NOT. ALLOCATED(t_wall_av) ) THEN ALLOCATE( t_wall_av(nzb_wall:nzt_wall,startenergy:endenergy) ) t_wall_av = 0.0_wp ENDIF CASE DEFAULT CONTINUE END SELECT ELSEIF ( mode == 'sum' ) THEN SELECT CASE ( TRIM( var ) ) CASE ( 'usm_radnet' ) !-- array of complete radiation balance DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN rad_net_av(l) = rad_net_av(l) + rad_net_l(l) ENDIF ENDDO CASE ( 'usm_rad_insw' ) !-- array of sw radiation falling to surface after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinsw_av(l) = surfinsw_av(l) + surfinsw(l) ENDIF ENDDO CASE ( 'usm_rad_inlw' ) !-- array of lw radiation falling to surface after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinlw_av(l) = surfinlw_av(l) + surfinlw(l) ENDIF ENDDO CASE ( 'usm_rad_inswdir' ) !-- array of direct sw radiation falling to surface from sun DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinswdir_av(l) = surfinswdir_av(l) + surfinswdir(l) ENDIF ENDDO CASE ( 'usm_rad_inswdif' ) !-- array of difusion sw radiation falling to surface from sky and borders of the domain DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinswdif_av(l) = surfinswdif_av(l) + surfinswdif(l) ENDIF ENDDO CASE ( 'usm_rad_inswref' ) !-- array of sw radiation falling to surface from reflections DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinswref_av(l) = surfinswref_av(l) + surfinsw(l) - & surfinswdir(l) - surfinswdif(l) ENDIF ENDDO CASE ( 'usm_rad_inlwdif' ) !-- array of sw radiation falling to surface after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinlwdif_av(l) = surfinlwdif_av(l) + surfinlwdif(l) ENDIF ENDDO CASE ( 'usm_rad_inlwref' ) !-- array of lw radiation falling to surface from reflections DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinlwref_av(l) = surfinlwref_av(l) + & surfinlw(l) - surfinlwdif(l) ENDIF ENDDO CASE ( 'usm_rad_outsw' ) !-- array of sw radiation emitted from surface after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfoutsw_av(l) = surfoutsw_av(l) + surfoutsw(l) ENDIF ENDDO CASE ( 'usm_rad_outlw' ) !-- array of lw radiation emitted from surface after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfoutlw_av(l) = surfoutlw_av(l) + surfoutlw(l) ENDIF ENDDO CASE ( 'usm_rad_hf' ) !-- array of heat flux from radiation for surfaces after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfhf_av(l) = surfhf_av(l) + surfhf(l) ENDIF ENDDO CASE ( 'usm_wshf' ) !-- array of sensible heat flux from surfaces (land, roof, wall) DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN wshf_eb_av(l) = wshf_eb_av(l) + wshf_eb(l) ENDIF ENDDO CASE ( 'usm_wghf' ) !-- array of heat flux from ground (wall, roof, land) DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN wghf_eb_av(l) = wghf_eb_av(l) + wghf_eb(l) ENDIF ENDDO CASE ( 'usm_t_surf' ) !-- surface temperature for surfaces DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN t_surf_av(l) = t_surf_av(l) + t_surf(l) ENDIF ENDDO CASE ( 'usm_t_wall' ) !-- wall temperature for iwl layer of walls and land DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN t_wall_av(iwl, l) = t_wall_av(iwl,l) + t_wall(iwl, l) ENDIF ENDDO CASE DEFAULT CONTINUE END SELECT ELSEIF ( mode == 'average' ) THEN SELECT CASE ( TRIM( var ) ) CASE ( 'usm_radnet' ) !-- array of complete radiation balance DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN rad_net_av(l) = rad_net_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_rad_insw' ) !-- array of sw radiation falling to surface after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinsw_av(l) = surfinsw_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_rad_inlw' ) !-- array of lw radiation falling to surface after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinlw_av(l) = surfinlw_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_rad_inswdir' ) !-- array of direct sw radiation falling to surface from sun DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinswdir_av(l) = surfinswdir_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_rad_inswdif' ) !-- array of difusion sw radiation falling to surface from sky and borders of the domain DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinswdif_av(l) = surfinswdif_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_rad_inswref' ) !-- array of sw radiation falling to surface from reflections DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinswref_av(l) = surfinswref_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_rad_inlwdif' ) !-- array of sw radiation falling to surface after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinlwdif_av(l) = surfinlwdif_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_rad_inlwref' ) !-- array of lw radiation falling to surface from reflections DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfinlwref_av(l) = surfinlwref_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_rad_outsw' ) !-- array of sw radiation emitted from surface after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfoutsw_av(l) = surfoutsw_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_rad_outlw' ) !-- array of lw radiation emitted from surface after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfoutlw_av(l) = surfoutlw_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_rad_hf' ) !-- array of heat flux from radiation for surfaces after i-th reflection DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN surfhf_av(l) = surfhf_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_wshf' ) !-- array of sensible heat flux from surfaces (land, roof, wall) DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN wshf_eb_av(l) = wshf_eb_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_wghf' ) !-- array of heat flux from ground (wall, roof, land) DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN wghf_eb_av(l) = wghf_eb_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_t_surf' ) !-- surface temperature for surfaces DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN t_surf_av(l) = t_surf_av(l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO CASE ( 'usm_t_wall' ) !-- wall temperature for iwl layer of walls and land DO l = startenergy, endenergy IF ( surfl(id,l) == ids ) THEN t_wall_av(iwl, l) = t_wall_av(iwl,l) / REAL( average_count_3d, kind=wp ) ENDIF ENDDO END SELECT ENDIF END SUBROUTINE usm_average_3d_data !------------------------------------------------------------------------------! !> Calculates radiation absorbed by box with given size and LAD. !> !> Simulates resol**2 rays (by equally spacing a bounding horizontal square !> conatining all possible rays that would cross the box) and calculates !> average transparency per ray. Returns fraction of absorbed radiation flux !> and area for which this fraction is effective. !------------------------------------------------------------------------------! PURE SUBROUTINE usm_box_absorb(boxsize, resol, dens, uvec, area, absorb) IMPLICIT NONE REAL(wp), DIMENSION(3), INTENT(in) :: & boxsize, & !< z, y, x size of box in m uvec !< z, y, x unit vector of incoming flux INTEGER(iwp), INTENT(in) :: & resol !< No. of rays in x and y dimensions REAL(wp), INTENT(in) :: & dens !< box density (e.g. Leaf Area Density) REAL(wp), INTENT(out) :: & area, & !< horizontal area for flux absorbtion absorb !< fraction of absorbed flux REAL(wp) :: & xshift, yshift, & xmin, xmax, ymin, ymax, & xorig, yorig, & dx1, dy1, dz1, dx2, dy2, dz2, & crdist, & transp INTEGER(iwp) :: & i, j xshift = uvec(3) / uvec(1) * boxsize(1) xmin = min(0._wp, -xshift) xmax = boxsize(3) + max(0._wp, -xshift) yshift = uvec(2) / uvec(1) * boxsize(1) ymin = min(0._wp, -yshift) ymax = boxsize(2) + max(0._wp, -yshift) transp = 0._wp DO i = 1, resol xorig = xmin + (xmax-xmin) * (i-.5_wp) / resol DO j = 1, resol yorig = ymin + (ymax-ymin) * (j-.5_wp) / resol dz1 = 0._wp dz2 = boxsize(1)/uvec(1) IF ( uvec(2) > 0._wp ) THEN dy1 = -yorig / uvec(2) !< crossing with y=0 dy2 = (boxsize(2)-yorig) / uvec(2) !< crossing with y=boxsize(2) ELSE IF ( uvec(2) < 0._wp ) THEN dy1 = (boxsize(2)-yorig) / uvec(2) !< crossing with y=boxsize(2) dy2 = -yorig / uvec(2) !< crossing with y=0 ELSE !uvec(2)==0 dy1 = -huge(1._wp) dy2 = huge(1._wp) ENDIF IF ( uvec(3) > 0._wp ) THEN dx1 = -xorig / uvec(3) !< crossing with x=0 dx2 = (boxsize(3)-xorig) / uvec(3) !< crossing with x=boxsize(3) ELSE IF ( uvec(3) < 0._wp ) THEN dx1 = (boxsize(3)-xorig) / uvec(3) !< crossing with x=boxsize(3) dx2 = -xorig / uvec(3) !< crossing with x=0 ELSE !uvec(1)==0 dx1 = -huge(1._wp) dx2 = huge(1._wp) ENDIF crdist = max(0._wp, (min(dz2, dy2, dx2) - max(dz1, dy1, dx1))) transp = transp + exp(-ext_coef * dens * crdist) ENDDO ENDDO transp = transp / resol**2 area = (boxsize(3)+xshift)*(boxsize(2)+yshift) absorb = 1._wp - transp END SUBROUTINE usm_box_absorb !------------------------------------------------------------------------------! ! Description: ! ------------ !> This subroutine splits direct and diffusion dw radiation !> It sould not be called in case the radiation model already does it !> It follows !------------------------------------------------------------------------------! SUBROUTINE usm_calc_diffusion_radiation REAL(wp), PARAMETER :: sol_const = 1367.0_wp !< solar conbstant REAL(wp), PARAMETER :: lowest_solarUp = 0.1_wp !< limit the sun elevation to protect stability of the calculation INTEGER(iwp) :: i, j REAL(wp), PARAMETER :: year_seconds = 86400._wp * 365._wp REAL(wp) :: year_angle !< angle REAL(wp) :: etr !< extraterestrial radiation REAL(wp) :: corrected_solarUp !< corrected solar up radiation REAL(wp) :: horizontalETR !< horizontal extraterestrial radiation REAL(wp) :: clearnessIndex !< clearness index REAL(wp) :: diff_frac !< diffusion fraction of the radiation !-- Calculate current day and time based on the initial values and simulation time year_angle = ((day_init*86400) + time_utc_init+time_since_reference_point) & / year_seconds * 2.0_wp * pi etr = sol_const * (1.00011_wp + & 0.034221_wp * cos(year_angle) + & 0.001280_wp * sin(year_angle) + & 0.000719_wp * cos(2.0_wp * year_angle) + & 0.000077_wp * sin(2.0_wp * year_angle)) !-- !-- Under a very low angle, we keep extraterestrial radiation at !-- the last small value, therefore the clearness index will be pushed !-- towards 0 while keeping full continuity. !-- IF ( zenith(0) <= lowest_solarUp ) THEN corrected_solarUp = lowest_solarUp ELSE corrected_solarUp = zenith(0) ENDIF horizontalETR = etr * corrected_solarUp DO i = nxlg, nxrg DO j = nysg, nyng clearnessIndex = rad_sw_in(0,j,i) / horizontalETR diff_frac = 1.0_wp / (1.0_wp + exp(-5.0033_wp + 8.6025_wp * clearnessIndex)) rad_sw_in_diff(j,i) = rad_sw_in(0,j,i) * diff_frac rad_sw_in_dir(j,i) = rad_sw_in(0,j,i) * (1.0_wp - diff_frac) rad_lw_in_diff(j,i) = rad_lw_in(0,j,i) ENDDO ENDDO END SUBROUTINE usm_calc_diffusion_radiation !------------------------------------------------------------------------------! ! Description: ! ------------ !> Calculates shape view factors SVF and plant sink canopy factors PSCF !> !!!!!DESCRIPTION!!!!!!!!!! !------------------------------------------------------------------------------! SUBROUTINE usm_calc_svf IMPLICIT NONE INTEGER(iwp) :: i, j, k, l, d, ip, jp INTEGER(iwp) :: isvf, ksvf, icsf, kcsf, npcsfl, isvf_surflt, imrtt, imrtf INTEGER(iwp) :: sd, td, ioln, iproc REAL(wp), DIMENSION(0:9) :: facearea INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nzterrl, planthl REAL(wp), DIMENSION(:,:), ALLOCATABLE :: csflt, pcsflt INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: kcsflt,kpcsflt INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: icsflt,dcsflt,ipcsflt,dpcsflt REAL(wp), DIMENSION(3) :: uv LOGICAL :: visible REAL(wp) :: sz, sy, sx, tz, ty, tx, transparency, rirrf, sqdist, svfsum !REAL(wp) :: rsvf INTEGER(iwp) :: isurflt, isurfs, isurflt_prev INTEGER(iwp) :: itx, ity, itz CHARACTER(len=7) :: pid_char = '' INTEGER(iwp) :: win_lad, minfo REAL(wp), DIMENSION(:,:,:), POINTER :: lad_s_rma !< fortran pointer, but lower bounds are 1 TYPE(c_ptr) :: lad_s_rma_p !< allocated c pointer INTEGER(kind=MPI_ADDRESS_KIND) :: size_lad_rma !-- calculation of the SVF CALL location_message( ' calculation of SVF and CSF', .TRUE. ) !-- precalculate face areas for different face directions using normal vector DO d = 0, 9 facearea(d) = 1._wp IF ( idir(d) == 0 ) facearea(d) = facearea(d) * dx IF ( jdir(d) == 0 ) facearea(d) = facearea(d) * dy IF ( kdir(d) == 0 ) facearea(d) = facearea(d) * dz ENDDO !-- initialize variables and temporary arrays for calculation of svf and csf nsvfl = 0 ncsfl = 0 nsvfla = gasize msvf = 1 ALLOCATE( asvf1(nsvfla) ) asvf => asvf1 IF ( plant_canopy ) THEN ncsfla = gasize mcsf = 1 ALLOCATE( acsf1(ncsfla) ) acsf => acsf1 ENDIF !-- initialize temporary terrain and plant canopy height arrays (global 2D array!) ALLOCATE( nzterr(0:(nx+1)*(ny+1)-1) ) #if defined( __parallel ) ALLOCATE( nzterrl(nys:nyn,nxl:nxr) ) nzterrl = nzb_s_inner(nys:nyn,nxl:nxr) CALL MPI_AllGather( nzterrl, nnx*nny, MPI_INTEGER, & nzterr, nnx*nny, MPI_INTEGER, comm2d, ierr ) DEALLOCATE(nzterrl) #else nzterr = RESHAPE( nzb_s_inner(nys:nyn,nxl:nxr), (/(nx+1)*(ny+1)/) ) #endif IF ( plant_canopy ) THEN ALLOCATE( plantt(0:(nx+1)*(ny+1)-1) ) #if defined( __parallel ) ALLOCATE( planthl(nys:nyn,nxl:nxr) ) planthl = pch(nys:nyn,nxl:nxr) CALL MPI_AllGather( planthl, nnx*nny, MPI_INTEGER, & plantt, nnx*nny, MPI_INTEGER, comm2d, ierr ) DEALLOCATE(planthl) IF ( usm_lad_rma ) THEN CALL MPI_Info_create(minfo, ierr) CALL MPI_Info_set(minfo, 'accumulate_ordering', '', ierr) CALL MPI_Info_set(minfo, 'accumulate_ops', 'same_op', ierr) CALL MPI_Info_set(minfo, 'same_size', 'true', ierr) CALL MPI_Info_set(minfo, 'same_disp_unit', 'true', ierr) !-- Allocate and initialize the MPI RMA window !-- must be in accordance with allocation of lad_s in plant_canopy_model !-- optimization of memory should be done !-- Argument X of function c_sizeof(X) needs arbitrary REAL(wp) value, set to 1.0_wp for now size_lad_rma = c_sizeof(1.0_wp)*nnx*nny*nzu CALL MPI_Win_allocate(size_lad_rma, c_sizeof(1.0_wp), minfo, comm2d, & lad_s_rma_p, win_lad, ierr) CALL c_f_pointer(lad_s_rma_p, lad_s_rma, (/ nzu, nny, nnx /)) usm_lad(nzub:, nys:, nxl:) => lad_s_rma(:,:,:) ELSE ALLOCATE(usm_lad(nzub:nzut, nys:nyn, nxl:nxr)) ENDIF #else plantt = RESHAPE( pct(nys:nyn,nxl:nxr), (/(nx+1)*(ny+1)/) ) ALLOCATE(usm_lad(nzub:nzut, nys:nyn, nxl:nxr)) #endif usm_lad(:,:,:) = 0._wp DO i = nxl, nxr DO j = nys, nyn k = nzb_s_inner(j, i) usm_lad(k:nzut, j, i) = lad_s(0:nzut-k, j, i) ENDDO ENDDO #if defined( __parallel ) IF ( usm_lad_rma ) THEN CALL MPI_Info_free(minfo, ierr) CALL MPI_Win_lock_all(0, win_lad, ierr) ELSE ALLOCATE( usm_lad_g(0:(nx+1)*(ny+1)*nzu-1) ) CALL MPI_AllGather( usm_lad, nnx*nny*nzu, MPI_REAL, & usm_lad_g, nnx*nny*nzu, MPI_REAL, comm2d, ierr ) ENDIF #endif ENDIF IF ( mrt_factors ) THEN OPEN(153, file='MRT_TARGETS', access='SEQUENTIAL', & action='READ', status='OLD', form='FORMATTED', err=524) OPEN(154, file='MRT_FACTORS'//myid_char, access='DIRECT', recl=(5*4+2*8), & action='WRITE', status='REPLACE', form='UNFORMATTED', err=525) imrtf = 1 DO READ(153, *, end=526, err=524) imrtt, i, j, k IF ( i < nxl .OR. i > nxr & .OR. j < nys .OR. j > nyn ) CYCLE tx = REAL(i) ty = REAL(j) tz = REAL(k) DO isurfs = 1, nsurf IF ( .NOT. usm_facing(i, j, k, -1, & surf(ix, isurfs), surf(iy, isurfs), & surf(iz, isurfs), surf(id, isurfs)) ) THEN CYCLE ENDIF sd = surf(id, isurfs) sz = REAL(surf(iz, isurfs), wp) - 0.5_wp * kdir(sd) sy = REAL(surf(iy, isurfs), wp) - 0.5_wp * jdir(sd) sx = REAL(surf(ix, isurfs), wp) - 0.5_wp * idir(sd) !-- unit vector source -> target uv = (/ (tz-sz)*dz, (ty-sy)*dy, (tx-sx)*dx /) sqdist = SUM(uv(:)**2) uv = uv / SQRT(sqdist) !-- irradiance factor - see svf. Here we consider that target face is always normal, !-- i.e. the second dot product equals 1 rirrf = dot_product((/ kdir(sd), jdir(sd), idir(sd) /), uv) & / (pi * sqdist) * facearea(sd) !-- raytrace while not creating any canopy sink factors CALL usm_raytrace((/sz,sy,sx/), (/tz,ty,tx/), isurfs, rirrf, 1._wp, .FALSE., & visible, transparency, win_lad) IF ( .NOT. visible ) CYCLE !rsvf = rirrf * transparency WRITE(154, rec=imrtf, err=525) INT(imrtt, kind=4), & INT(surf(id, isurfs), kind=4), & INT(surf(iz, isurfs), kind=4), & INT(surf(iy, isurfs), kind=4), & INT(surf(ix, isurfs), kind=4), & REAL(rirrf, kind=8), REAL(transparency, kind=8) imrtf = imrtf + 1 ENDDO !< isurfs ENDDO !< MRT_TARGETS record 524 message_string = 'error reading file MRT_TARGETS' CALL message( 'usm_calc_svf', 'PA0524', 1, 2, 0, 6, 0 ) 525 message_string = 'error writing file MRT_FACTORS'//myid_char CALL message( 'usm_calc_svf', 'PA0525', 1, 2, 0, 6, 0 ) 526 CLOSE(153) CLOSE(154) ENDIF !< mrt_factors DO isurflt = 1, nsurfl !-- determine face centers td = surfl(id, isurflt) IF ( td >= isky .AND. .NOT. plant_canopy ) CYCLE tz = REAL(surfl(iz, isurflt), wp) - 0.5_wp * kdir(td) ty = REAL(surfl(iy, isurflt), wp) - 0.5_wp * jdir(td) tx = REAL(surfl(ix, isurflt), wp) - 0.5_wp * idir(td) DO isurfs = 1, nsurf IF ( .NOT. usm_facing(surfl(ix, isurflt), surfl(iy, isurflt), & surfl(iz, isurflt), surfl(id, isurflt), & surf(ix, isurfs), surf(iy, isurfs), & surf(iz, isurfs), surf(id, isurfs)) ) THEN CYCLE ENDIF sd = surf(id, isurfs) sz = REAL(surf(iz, isurfs), wp) - 0.5_wp * kdir(sd) sy = REAL(surf(iy, isurfs), wp) - 0.5_wp * jdir(sd) sx = REAL(surf(ix, isurfs), wp) - 0.5_wp * idir(sd) !-- unit vector source -> target uv = (/ (tz-sz)*dz, (ty-sy)*dy, (tx-sx)*dx /) sqdist = SUM(uv(:)**2) uv = uv / SQRT(sqdist) !-- irradiance factor (our unshaded shape view factor) = view factor per differential target area * source area rirrf = dot_product((/ kdir(sd), jdir(sd), idir(sd) /), uv) & ! cosine of source normal and direction * dot_product((/ kdir(td), jdir(td), idir(td) /), -uv) & ! cosine of target normal and reverse direction / (pi * sqdist) & ! square of distance between centers * facearea(sd) !-- raytrace + process plant canopy sinks within CALL usm_raytrace((/sz,sy,sx/), (/tz,ty,tx/), isurfs, rirrf, facearea(td), .TRUE., & visible, transparency, win_lad) IF ( .NOT. visible ) CYCLE IF ( td >= isky ) CYCLE !< we calculated these only for raytracing !< to find plant canopy sinks, we don't need svf for them ! rsvf = rirrf * transparency !-- write to the svf array nsvfl = nsvfl + 1 !-- check dimmension of asvf array and enlarge it if needed IF ( nsvfla < nsvfl ) THEN k = nsvfla * 2 IF ( msvf == 0 ) THEN msvf = 1 ALLOCATE( asvf1(k) ) asvf => asvf1 asvf1(1:nsvfla) = asvf2 DEALLOCATE( asvf2 ) ELSE msvf = 0 ALLOCATE( asvf2(k) ) asvf => asvf2 asvf2(1:nsvfla) = asvf1 DEALLOCATE( asvf1 ) ENDIF nsvfla = k ENDIF !-- write svf values into the array asvf(nsvfl)%isurflt = isurflt asvf(nsvfl)%isurfs = isurfs asvf(nsvfl)%rsvf = rirrf !we postopne multiplication by transparency asvf(nsvfl)%rtransp = transparency !a.k.a. Direct Irradiance Factor ENDDO ENDDO CALL location_message( ' waiting for completion of SVF and CSF calculation in all processes', .TRUE. ) #if defined( __parallel ) IF ( plant_canopy ) THEN IF ( usm_lad_rma ) THEN CALL MPI_Win_flush_all(win_lad, ierr) !-- unlock MPI window CALL MPI_Win_unlock_all(win_lad, ierr) !-- free MPI window CALL MPI_Win_free(win_lad, ierr) ELSE DEALLOCATE(usm_lad) DEALLOCATE(usm_lad_g) ENDIF ENDIF #else DEALLOCATE(usm_lad) #endif !-- deallocate temporary global arrays IF ( ALLOCATED(nzterr) ) DEALLOCATE(nzterr) IF ( ALLOCATED(plantt) ) DEALLOCATE(plantt) !-- sort svf ( a version of quicksort ) CALL quicksort_svf(asvf,1,nsvfl) npcsfl = 0 IF ( plant_canopy ) THEN !-- sort and merge csf for the last time, keeping the array size to minimum CALL usm_merge_and_grow_csf(-1) !-- aggregate csb among processors !-- allocate necessary arrays ALLOCATE( csflt(ndcsf,max(ncsfl,ndcsf)) ) ALLOCATE( kcsflt(kdcsf,max(ncsfl,kdcsf)) ) ALLOCATE( icsflt(0:numprocs-1) ) ALLOCATE( dcsflt(0:numprocs-1) ) ALLOCATE( ipcsflt(0:numprocs-1) ) ALLOCATE( dpcsflt(0:numprocs-1) ) !-- fill out arrays of csf values and !-- arrays of number of elements and displacements !-- for particular precessors icsflt = 0 dcsflt = 0 ip = -1 j = -1 d = 0 DO kcsf = 1, ncsfl j = j+1 IF ( acsf(kcsf)%ip /= ip ) THEN !-- new block of the processor !-- number of elements of previous block IF ( ip>=0) icsflt(ip) = j d = d+j !-- blank blocks DO jp = ip+1, acsf(kcsf)%ip-1 !-- number of elements is zero, displacement is equal to previous icsflt(jp) = 0 dcsflt(jp) = d ENDDO !-- the actual block ip = acsf(kcsf)%ip dcsflt(ip) = d j = 0 ENDIF !-- fill out real values of rsvf, rtransp csflt(1,kcsf) = acsf(kcsf)%rsvf csflt(2,kcsf) = acsf(kcsf)%rtransp !-- fill out integer values of itz,ity,itx,isurfs kcsflt(1,kcsf) = acsf(kcsf)%itz kcsflt(2,kcsf) = acsf(kcsf)%ity kcsflt(3,kcsf) = acsf(kcsf)%itx kcsflt(4,kcsf) = acsf(kcsf)%isurfs ENDDO !-- last blank blocks at the end of array j = j+1 IF ( ip>=0 ) icsflt(ip) = j d = d+j DO jp = ip+1, numprocs-1 !-- number of elements is zero, displacement is equal to previous icsflt(jp) = 0 dcsflt(jp) = d ENDDO !-- deallocate temporary acsf array !-- DEALLOCATE(acsf) - ifort has a problem with deallocation of allocatable target !-- via pointing pointer - we need to test original targets IF ( ALLOCATED(acsf1) ) THEN DEALLOCATE(acsf1) ENDIF IF ( ALLOCATED(acsf2) ) THEN DEALLOCATE(acsf2) ENDIF #if defined( __parallel ) !-- scatter and gather the number of elements to and from all processor !-- and calculate displacements CALL mpi_alltoall(icsflt,1,MPI_INTEGER,ipcsflt,1,MPI_INTEGER,comm2d, ierr) npcsfl = SUM(ipcsflt) d = 0 DO i = 0, numprocs-1 dpcsflt(i) = d d = d + ipcsflt(i) ENDDO !-- exchange csf fields between processors ALLOCATE( pcsflt(ndcsf,max(npcsfl,ndcsf)) ) ALLOCATE( kpcsflt(kdcsf,max(npcsfl,kdcsf)) ) CALL MPI_AlltoAllv(csflt, ndcsf*icsflt, ndcsf*dcsflt, MPI_REAL, & pcsflt, ndcsf*ipcsflt, ndcsf*dpcsflt, MPI_REAL, comm2d, ierr) CALL MPI_AlltoAllv(kcsflt, kdcsf*icsflt, kdcsf*dcsflt, MPI_INTEGER, & kpcsflt, kdcsf*ipcsflt, kdcsf*dpcsflt, MPI_INTEGER, comm2d, ierr) #else npcsfl = ncsfl ALLOCATE( pcsflt(ndcsf,max(npcsfl,ndcsf)) ) ALLOCATE( kpcsflt(kdcsf,max(npcsfl,kdcsf)) ) pcsflt = csflt kpcsflt = kcsflt #endif !-- deallocate temporary arrays DEALLOCATE( csflt ) DEALLOCATE( kcsflt ) DEALLOCATE( icsflt ) DEALLOCATE( dcsflt ) DEALLOCATE( ipcsflt ) DEALLOCATE( dpcsflt ) !-- sort csf ( a version of quicksort ) CALL quicksort_csf2(kpcsflt, pcsflt, 1, npcsfl) !-- aggregate canopy sink factor records with identical box & source !-- againg across all values from all processors IF ( npcsfl > 0 ) THEN icsf = 1 !< reading index kcsf = 1 !< writing index DO while (icsf < npcsfl) !-- here kpcsf(kcsf) already has values from kpcsf(icsf) IF ( kpcsflt(3,icsf) == kpcsflt(3,icsf+1) .AND. & kpcsflt(2,icsf) == kpcsflt(2,icsf+1) .AND. & kpcsflt(1,icsf) == kpcsflt(1,icsf+1) .AND. & kpcsflt(4,icsf) == kpcsflt(4,icsf+1) ) THEN !-- We could simply take either first or second rtransp, both are valid. As a very simple heuristic about which ray !-- probably passes nearer the center of the target box, we choose DIF from the entry with greater CSF, since that !-- might mean that the traced beam passes longer through the canopy box. IF ( pcsflt(1,kcsf) < pcsflt(1,icsf+1) ) THEN pcsflt(2,kcsf) = pcsflt(2,icsf+1) ENDIF pcsflt(1,kcsf) = pcsflt(1,kcsf) + pcsflt(1,icsf+1) !-- advance reading index, keep writing index icsf = icsf + 1 ELSE !-- not identical, just advance and copy icsf = icsf + 1 kcsf = kcsf + 1 kpcsflt(:,kcsf) = kpcsflt(:,icsf) pcsflt(:,kcsf) = pcsflt(:,icsf) ENDIF ENDDO !-- last written item is now also the last item in valid part of array npcsfl = kcsf ENDIF ENDIF !< plant_canopy CALL location_message( ' calculation of the complete SVF array', .TRUE. ) nsvfcsfl = nsvfl + npcsfl ALLOCATE( svf(ndsvf,nsvfcsfl) ) ALLOCATE( svfsurf(ndsvf,nsvfcsfl) ) !< load svf from the structure array to plain arrays isurflt_prev = -1 ksvf = 1 svfsum = 0._wp DO isvf = 1, nsvfl !-- normalize svf per target face IF ( asvf(ksvf)%isurflt /= isurflt_prev ) THEN IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN !-- TODO detect and log when normalization differs too much from 1 svf(1, isvf_surflt:isvf-1) = svf(1, isvf_surflt:isvf-1) / svfsum ENDIF isurflt_prev = asvf(ksvf)%isurflt isvf_surflt = isvf svfsum = asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp ELSE svfsum = svfsum + asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp ENDIF svf(:, isvf) = (/ asvf(ksvf)%rsvf, asvf(ksvf)%rtransp /) svfsurf(:, isvf) = (/ asvf(ksvf)%isurflt, asvf(ksvf)%isurfs /) !-- next element ksvf = ksvf + 1 ENDDO IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN !-- TODO detect and log when normalization differs too much from 1 svf(1, isvf_surflt:nsvfl) = svf(1, isvf_surflt:nsvfl) / svfsum ENDIF !-- deallocate temporary asvf array !-- DEALLOCATE(asvf) - ifort has a problem with deallocation of allocatable target !-- via pointing pointer - we need to test original targets IF ( ALLOCATED(asvf1) ) THEN DEALLOCATE(asvf1) ENDIF IF ( ALLOCATED(asvf2) ) THEN DEALLOCATE(asvf2) ENDIF IF ( plant_canopy ) THEN CALL location_message( ' calculation of the complete CSF part of the array', .TRUE. ) IF ( npcsfl > 0 ) THEN DO isvf = 1, npcsfl svf(:,nsvfl+isvf) = pcsflt(:,isvf) svfsurf(1,nsvfl+isvf) = gridpcbl(kpcsflt(1,isvf),kpcsflt(2,isvf),kpcsflt(3,isvf)) svfsurf(2,nsvfl+isvf) = kpcsflt(4,isvf) ENDDO ENDIF !-- deallocation of temporary arrays DEALLOCATE( pcsflt ) DEALLOCATE( kpcsflt ) ENDIF RETURN 301 WRITE( message_string, * ) & 'I/O error when processing shape view factors / ', & 'plant canopy sink factors / direct irradiance factors.' CALL message( 'init_urban_surface', 'PA0502', 2, 2, 0, 6, 0 ) END SUBROUTINE usm_calc_svf !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Subroutine checks variables and assigns units. !> It is caaled out from subroutine check_parameters. !------------------------------------------------------------------------------! SUBROUTINE usm_check_data_output( variable, unit ) IMPLICIT NONE CHARACTER (len=*),INTENT(IN) :: variable !: CHARACTER (len=*),INTENT(OUT) :: unit !: CHARACTER (len=20) :: var var = TRIM(variable) IF ( var(1:11)=='usm_radnet_' .OR. var(1:13)=='usm_rad_insw_' .OR. & var(1:13)=='usm_rad_inlw_' .OR. var(1:16)=='usm_rad_inswdir_' .OR. & var(1:16)=='usm_rad_inswdif_' .OR. var(1:16)=='usm_rad_inswref_' .OR. & var(1:16)=='usm_rad_inlwdif_' .OR. var(1:16)=='usm_rad_inlwref_' .OR. & var(1:14)=='usm_rad_outsw_' .OR. var(1:14)=='usm_rad_outlw_' .OR. & var(1:11)=='usm_rad_hf_' .OR. & var(1:9) =='usm_wshf_' .OR. var(1:9)=='usm_wghf_' ) THEN unit = 'W/m2' ELSE IF ( var(1:10) =='usm_t_surf' .OR. var(1:10) =='usm_t_wall' ) THEN unit = 'K' ELSE IF ( var(1:9) =='usm_surfz' .OR. var(1:7) =='usm_svf' .OR. & var(1:7) =='usm_dif' .OR. var(1:11) =='usm_surfcat' .OR. & var(1:11) =='usm_surfalb' .OR. var(1:12) =='usm_surfemis') THEN unit = '1' ELSE IF ( plant_canopy .AND. var(1:7) =='usm_lad' ) THEN unit = 'm2/m3' ELSE IF ( plant_canopy .AND. var(1:14) == 'usm_canopy_khf' ) THEN unit = 'K/s' ELSE unit = 'illegal' ENDIF END SUBROUTINE usm_check_data_output !------------------------------------------------------------------------------! ! Description: ! ------------ !> Check parameters routine for urban surface model !------------------------------------------------------------------------------! SUBROUTINE usm_check_parameters USE control_parameters, & ONLY: bc_pt_b, bc_q_b, constant_flux_layer, large_scale_forcing, & lsf_surf, topography ! !-- Dirichlet boundary conditions are required as the surface fluxes are !-- calculated from the temperature/humidity gradients in the urban surface !-- model IF ( bc_pt_b == 'neumann' .OR. bc_q_b == 'neumann' ) THEN message_string = 'urban surface model requires setting of '// & 'bc_pt_b = "dirichlet" and '// & 'bc_q_b = "dirichlet"' CALL message( 'check_parameters', 'PA0590', 1, 2, 0, 6, 0 ) ENDIF IF ( .NOT. constant_flux_layer ) THEN message_string = 'urban surface model requires '// & 'constant_flux_layer = .T.' CALL message( 'check_parameters', 'PA0591', 1, 2, 0, 6, 0 ) ENDIF ! !-- Surface forcing has to be disabled for LSF in case of enabled !-- urban surface module IF ( large_scale_forcing ) THEN lsf_surf = .FALSE. ENDIF ! !-- Topography IF ( topography == 'flat' ) THEN message_string = 'topography /= "flat" is required '// & 'when using the urban surface model' CALL message( 'check_parameters', 'PA0592', 1, 2, 0, 6, 0 ) ENDIF END SUBROUTINE usm_check_parameters !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Output of the 3D-arrays in netCDF and/or AVS format !> for variables of urban_surface model. !> It resorts the urban surface module output quantities from surf style !> indexing into temporary 3D array with indices (i,j,k). !> It is called from subroutine data_output_3d. !------------------------------------------------------------------------------! SUBROUTINE usm_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do ) IMPLICIT NONE INTEGER(iwp), INTENT(IN) :: av !< CHARACTER (len=*), INTENT(IN) :: variable !< INTEGER(iwp), INTENT(IN) :: nzb_do !< lower limit of the data output (usually 0) INTEGER(iwp), INTENT(IN) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) LOGICAL, INTENT(OUT) :: found !< REAL(sp), DIMENSION(nxlg:nxrg,nysg:nyng,nzb_do:nzt_do) :: local_pf !< sp - it has to correspond to module data_output_3d REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: temp_pf !< temp array for urban surface output procedure CHARACTER (len=20) :: var, surfid INTEGER(iwp), PARAMETER :: nd = 5 CHARACTER(len=6), DIMENSION(0:nd-1), PARAMETER :: dirname = (/ '_roof ', '_south', '_north', '_west ', '_east ' /) INTEGER(iwp), DIMENSION(0:nd-1), PARAMETER :: dirint = (/ iroof, isouth, inorth, iwest, ieast /) INTEGER(iwp), DIMENSION(0:nd-1) :: dirstart INTEGER(iwp), DIMENSION(0:nd-1) :: dirend INTEGER(iwp) :: ids,isurf,isvf,isurfs,isurflt INTEGER(iwp) :: is,js,ks,i,j,k,iwl,istat dirstart = (/ startland, startwall, startwall, startwall, startwall /) dirend = (/ endland, endwall, endwall, endwall, endwall /) found = .TRUE. temp_pf = -1._wp ids = -1 var = TRIM(variable) DO i = 0, nd-1 k = len(TRIM(var)) j = len(TRIM(dirname(i))) IF ( var(k-j+1:k) == dirname(i) ) THEN ids = i var = var(:k-j) EXIT ENDIF ENDDO IF ( ids == -1 ) THEN var = TRIM(variable) ENDIF IF ( var(1:11) == 'usm_t_wall_' .AND. len(TRIM(var)) >= 12 ) THEN !-- wall layers READ(var(12:12), '(I1)', iostat=istat ) iwl IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN var = var(1:10) ENDIF ENDIF IF ( (var(1:8) == 'usm_svf_' .OR. var(1:8) == 'usm_dif_') .AND. len(TRIM(var)) >= 13 ) THEN !-- svf values to particular surface surfid = var(9:) i = index(surfid,'_') j = index(surfid(i+1:),'_') READ(surfid(1:i-1),*, iostat=istat ) is IF ( istat == 0 ) THEN READ(surfid(i+1:i+j-1),*, iostat=istat ) js ENDIF IF ( istat == 0 ) THEN READ(surfid(i+j+1:),*, iostat=istat ) ks ENDIF IF ( istat == 0 ) THEN var = var(1:7) ENDIF ENDIF SELECT CASE ( TRIM(var) ) CASE ( 'usm_surfz' ) !-- array of lw radiation falling to local surface after i-th reflection DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( surfl(id,isurf) == iroof ) THEN temp_pf(0,surfl(iy,isurf),surfl(ix,isurf)) = & max(temp_pf(0,surfl(iy,isurf),surfl(ix,isurf)), & REAL(surfl(iz,isurf),wp)) ELSE temp_pf(0,surfl(iy,isurf),surfl(ix,isurf)) = & max(temp_pf(0,surfl(iy,isurf),surfl(ix,isurf)), & REAL(surfl(iz,isurf),wp)+1.0_wp) ENDIF ENDIF ENDDO CASE ( 'usm_surfcat' ) !-- surface category DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surface_types(isurf) ENDIF ENDDO CASE ( 'usm_surfalb' ) !-- surface albedo DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = albedo_surf(isurf) ENDIF ENDDO CASE ( 'usm_surfemis' ) !-- surface albedo DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = emiss_surf(isurf) ENDIF ENDDO CASE ( 'usm_svf', 'usm_dif' ) !-- shape view factors or iradiance factors to selected surface IF ( TRIM(var)=='usm_svf' ) THEN k = 1 ELSE k = 2 ENDIF DO isvf = 1, nsvfl isurflt = svfsurf(1, isvf) isurfs = svfsurf(2, isvf) IF ( surf(ix,isurfs) == is .AND. surf(iy,isurfs) == js .AND. & surf(iz,isurfs) == ks .AND. surf(id,isurfs) == ids ) THEN !-- correct source surface temp_pf(surfl(iz,isurflt),surfl(iy,isurflt),surfl(ix,isurflt)) = svf(k,isvf) ENDIF ENDDO CASE ( 'usm_radnet' ) !-- array of complete radiation balance DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = rad_net_l(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = rad_net_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_rad_insw' ) !-- array of sw radiation falling to surface after i-th reflection DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinsw(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinsw_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_rad_inlw' ) !-- array of lw radiation falling to surface after i-th reflection DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlw(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlw_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_rad_inswdir' ) !-- array of direct sw radiation falling to surface from sun DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdir(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdir_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_rad_inswdif' ) !-- array of difusion sw radiation falling to surface from sky and borders of the domain DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdif(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdif_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_rad_inswref' ) !-- array of sw radiation falling to surface from reflections DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = & surfinsw(isurf) - surfinswdir(isurf) - surfinswdif(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswref_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_rad_inlwdif' ) !-- array of sw radiation falling to surface after i-th reflection DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlwdif(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlwdif_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_rad_inlwref' ) !-- array of lw radiation falling to surface from reflections DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlw(isurf) - surfinlwdif(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlwref_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_rad_outsw' ) !-- array of sw radiation emitted from surface after i-th reflection DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutsw(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutsw_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_rad_outlw' ) !-- array of lw radiation emitted from surface after i-th reflection DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutlw(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutlw_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_rad_hf' ) !-- array of heat flux from radiation for surfaces after all reflections DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfhf(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfhf_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_wshf' ) !-- array of sensible heat flux from surfaces !-- horizontal surfaces DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = wshf_eb(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = wshf_eb_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_wghf' ) !-- array of heat flux from ground (land, wall, roof) DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = wghf_eb(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = wghf_eb_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_t_surf' ) !-- surface temperature for surfaces DO isurf = max(startenergy,dirstart(ids)), min(endenergy,dirend(ids)) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = t_surf(isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = t_surf_av(isurf) ENDIF ENDIF ENDDO CASE ( 'usm_t_wall' ) !-- wall temperature for iwl layer of walls and land DO isurf = dirstart(ids), dirend(ids) IF ( surfl(id,isurf) == ids ) THEN IF ( av == 0 ) THEN temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = t_wall(iwl,isurf) ELSE temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = t_wall_av(iwl,isurf) ENDIF ENDIF ENDDO CASE ( 'usm_lad' ) !-- leaf area density DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i), nzut temp_pf(k,j,i) = lad_s(k-nzb_s_inner(j,i),j,i) ENDDO ENDDO ENDDO CASE ( 'usm_canopy_khf' ) !-- canopy kinematic heat flux DO i = nxl, nxr DO j = nys, nyn DO k = nzb_s_inner(j,i), nzut temp_pf(k,j,i) = pc_heating_rate(k-nzb_s_inner(j,i),j,i) ENDDO ENDDO ENDDO CASE DEFAULT found = .FALSE. END SELECT !-- fill out array local_pf which is subsequently treated by data_output_3d CALL exchange_horiz( temp_pf, nbgp ) DO j = nysg,nyng DO i = nxlg,nxrg DO k = nzb_do, nzt_do local_pf(i,j,k) = temp_pf(k,j,i) ENDDO ENDDO ENDDO END SUBROUTINE usm_data_output_3d !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Soubroutine defines appropriate grid for netcdf variables. !> It is called out from subroutine netcdf. !------------------------------------------------------------------------------! SUBROUTINE usm_define_netcdf_grid( variable, found, grid_x, grid_y, grid_z ) IMPLICIT NONE CHARACTER (len=*), INTENT(IN) :: variable !< LOGICAL, INTENT(OUT) :: found !< CHARACTER (len=*), INTENT(OUT) :: grid_x !< CHARACTER (len=*), INTENT(OUT) :: grid_y !< CHARACTER (len=*), INTENT(OUT) :: grid_z !< CHARACTER (len=20) :: var var = TRIM(variable) IF ( var(1:11)=='usm_radnet_' .OR. var(1:13) =='usm_rad_insw_' .OR. & var(1:13) =='usm_rad_inlw_' .OR. var(1:16) =='usm_rad_inswdir_' .OR. & var(1:16) =='usm_rad_inswdif_' .OR. var(1:16) =='usm_rad_inswref_' .OR. & var(1:16) =='usm_rad_inlwdif_' .OR. var(1:16) =='usm_rad_inlwref_' .OR. & var(1:14) =='usm_rad_outsw_' .OR. var(1:14) =='usm_rad_outlw_' .OR. & var(1:11) =='usm_rad_hf_' .OR. & var(1:9) == 'usm_wshf_' .OR. var(1:9)== 'usm_wghf_' .OR. & var(1:10) == 'usm_t_surf' .OR. var(1:10) == 'usm_t_wall' .OR. & var(1:9) == 'usm_surfz' .OR. var(1:7) == 'usm_svf' .OR. & var(1:7) =='usm_dif' .OR. var(1:11) =='usm_surfcat' .OR. & var(1:11) =='usm_surfalb' .OR. var(1:12) =='usm_surfemis' .OR. & var(1:7) == 'usm_lad' .OR. var(1:14) == 'usm_canopy_khf' ) THEN found = .TRUE. grid_x = 'x' grid_y = 'y' grid_z = 'zu' ELSE found = .FALSE. grid_x = 'none' grid_y = 'none' grid_z = 'none' ENDIF END SUBROUTINE usm_define_netcdf_grid !------------------------------------------------------------------------------! !> Finds first model boundary crossed by a ray !------------------------------------------------------------------------------! PURE SUBROUTINE usm_find_boundary_face(origin, uvect, bdycross) IMPLICIT NONE REAL(wp), DIMENSION(3), INTENT(in) :: origin !< ray origin REAL(wp), DIMENSION(3), INTENT(in) :: uvect !< ray unit vector INTEGER(iwp), DIMENSION(4), INTENT(out) :: bdycross !< found boundary crossing (d, z, y, x) REAL(wp), DIMENSION(3) :: crossdist !< crossing distance INTEGER(iwp), DIMENSION(3) :: bdyd !< boundary direction REAL(wp) :: bdydim !< REAL(wp) :: dist !< INTEGER(iwp) :: seldim !< found fist crossing index INTEGER(iwp) :: d !< bdydim = nzut + .5_wp !< top boundary bdyd(1) = isky crossdist(1) = (bdydim - origin(1)) / uvect(1) IF ( uvect(2) >= 0._wp ) THEN bdydim = ny + .5_wp !< north global boundary bdyd(2) = inorthb ELSE bdydim = -.5_wp !< south global boundary bdyd(2) = isouthb ENDIF crossdist(2) = (bdydim - origin(2)) / uvect(2) IF ( uvect(3) >= 0._wp ) THEN bdydim = nx + .5_wp !< east global boundary bdyd(3) = ieastb ELSE bdydim = -.5_wp !< west global boundary bdyd(3) = iwestb ENDIF crossdist(3) = (bdydim - origin(3)) / uvect(3) seldim = minloc(crossdist, 1) dist = crossdist(seldim) d = bdyd(seldim) bdycross(1) = d bdycross(2:4) = NINT( origin(:) + uvect(:)*dist & + .5_wp * (/ kdir(d), jdir(d), idir(d) /) ) END SUBROUTINE !------------------------------------------------------------------------------! !> Determines whether two faces are oriented towards each other !------------------------------------------------------------------------------! PURE LOGICAL FUNCTION usm_facing(x, y, z, d, x2, y2, z2, d2) IMPLICIT NONE INTEGER(iwp), INTENT(in) :: x, y, z, d, x2, y2, z2, d2 usm_facing = .FALSE. IF ( d==iroof .AND. d2==iroof ) RETURN IF ( d==isky .AND. d2==isky ) RETURN IF ( (d==isouth .OR. d==inorthb) .AND. (d2==isouth.OR.d2==inorthb) ) RETURN IF ( (d==inorth .OR. d==isouthb) .AND. (d2==inorth.OR.d2==isouthb) ) RETURN IF ( (d==iwest .OR. d==ieastb) .AND. (d2==iwest.OR.d2==ieastb) ) RETURN IF ( (d==ieast .OR. d==iwestb) .AND. (d2==ieast.OR.d2==iwestb) ) RETURN SELECT CASE (d) CASE (iroof) !< ground, roof IF ( z2 < z ) RETURN CASE (isky) !< sky IF ( z2 > z ) RETURN CASE (isouth, inorthb) !< south facing IF ( y2 > y ) RETURN CASE (inorth, isouthb) !< north facing IF ( y2 < y ) RETURN CASE (iwest, ieastb) !< west facing IF ( x2 > x ) RETURN CASE (ieast, iwestb) !< east facing IF ( x2 < x ) RETURN END SELECT SELECT CASE (d2) CASE (iroof) !< ground, roof IF ( z < z2 ) RETURN CASE (isky) !< sky IF ( z > z2 ) RETURN CASE (isouth, inorthb) !< south facing IF ( y > y2 ) RETURN CASE (inorth, isouthb) !< north facing IF ( y < y2 ) RETURN CASE (iwest, ieastb) !< west facing IF ( x > x2 ) RETURN CASE (ieast, iwestb) !< east facing IF ( x < x2 ) RETURN CASE (-1) CONTINUE END SELECT usm_facing = .TRUE. END FUNCTION usm_facing !------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialization of the wall surface model !------------------------------------------------------------------------------! SUBROUTINE usm_init_material_model IMPLICIT NONE INTEGER(iwp) :: k, l !< running indices CALL location_message( ' initialization of wall surface model', .TRUE. ) !-- Calculate wall grid spacings. !-- Temperature is defined at the center of the wall layers, !-- whereas gradients/fluxes are defined at the edges (_stag) DO l = nzb_wall, nzt_wall zwn(l) = zwn_default(l) ENDDO !-- apply for all particular wall grids DO l = startenergy, endenergy zw(:,l) = zwn(:) * thickness_wall(l) dz_wall(nzb_wall,l) = zw(nzb_wall,l) DO k = nzb_wall+1, nzt_wall dz_wall(k,l) = zw(k,l) - zw(k-1,l) ENDDO dz_wall(nzt_wall+1,l) = dz_wall(nzt_wall,l) DO k = nzb_wall, nzt_wall-1 dz_wall_stag(k,l) = 0.5 * (dz_wall(k+1,l) + dz_wall(k,l)) ENDDO dz_wall_stag(nzt_wall,l) = dz_wall(nzt_wall,l) ENDDO ddz_wall = 1.0_wp / dz_wall ddz_wall_stag = 1.0_wp / dz_wall_stag CALL location_message( ' wall structures filed out', .TRUE. ) CALL location_message( ' initialization of wall surface model finished', .TRUE. ) END SUBROUTINE usm_init_material_model !------------------------------------------------------------------------------! ! Description: ! ------------ !> Initialization of the urban surface model !------------------------------------------------------------------------------! SUBROUTINE usm_init_urban_surface IMPLICIT NONE INTEGER(iwp) :: i, j, k, l !< running indices REAL(wp) :: c, d, tin, exn CALL cpu_log( log_point_s(78), 'usm_init', 'start' ) !-- surface forcing have to be disabled for LSF !-- in case of enabled urban surface module IF ( large_scale_forcing ) THEN lsf_surf = .FALSE. ENDIF !-- init anthropogenic sources of heat CALL usm_allocate_urban_surface() !-- read the surface_types array somewhere CALL usm_read_urban_surface_types() !-- init material heat model CALL usm_init_material_model() IF ( usm_anthropogenic_heat ) THEN !-- init anthropogenic sources of heat (from transportation for now) CALL usm_read_anthropogenic_heat() ENDIF IF ( read_svf_on_init ) THEN !-- read svf and svfsurf data from file CALL location_message( ' Start reading SVF from file', .TRUE. ) CALL usm_read_svf_from_file() CALL location_message( ' Reading SVF from file has finished', .TRUE. ) ELSE !-- calculate SFV and CSF CALL location_message( ' Start calculation of SVF', .TRUE. ) CALL cpu_log( log_point_s(79), 'usm_calc_svf', 'start' ) CALL usm_calc_svf() CALL cpu_log( log_point_s(79), 'usm_calc_svf', 'stop' ) CALL location_message( ' Calculation of SVF has finished', .TRUE. ) ENDIF IF ( write_svf_on_init ) THEN !-- write svf and svfsurf data to file CALL usm_write_svf_to_file() ENDIF IF ( plant_canopy ) THEN !-- gridpcbl was only necessary for initialization DEALLOCATE( gridpcbl ) IF ( .NOT. ALLOCATED(pc_heating_rate) ) THEN !-- then pc_heating_rate is allocated in init_plant_canopy !-- in case of cthf /= 0 => we need to allocate it for our use here ALLOCATE( pc_heating_rate(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ENDIF ENDIF !-- Intitialization of the surface and wall/ground/roof temperature !-- Initialization for restart runs IF ( TRIM( initializing_actions ) == 'read_restart_data' ) THEN !-- restore data from restart file CALL usm_read_restart_data() ELSE !-- Calculate initial surface temperature exn = ( surface_pressure / 1000.0_wp )**0.286_wp DO l = startenergy, endenergy k = surfl(iz,l) j = surfl(iy,l) i = surfl(ix,l) !-- Initial surface temperature set from pt of adjacent gridbox t_surf(l) = pt(k,j,i) * exn ENDDO !-- initial values for t_wall !-- outer value is set to surface temperature !-- inner value is set to wall_inner_temperature !-- and profile is logaritmic (linear in nz) DO l = startenergy, endenergy IF ( isroof_surf(l) ) THEN tin = roof_inner_temperature ELSE IF ( surf(id,l)==iroof ) THEN tin = soil_inner_temperature ELSE tin = wall_inner_temperature ENDIF DO k = nzb_wall, nzt_wall+1 c = REAL(k-nzb_wall,wp)/REAL(nzt_wall+1-nzb_wall,wp) t_wall(k,:) = (1.0_wp-c)*t_surf(:) + c*tin ENDDO ENDDO ENDIF !-- !-- Possibly DO user-defined actions (e.g. define heterogeneous wall surface) CALL user_init_urban_surface !-- initialize prognostic values for the first timestep t_surf_p = t_surf t_wall_p = t_wall !-- Adjust radiative fluxes for urban surface at model start CALL usm_radiation CALL cpu_log( log_point_s(78), 'usm_init', 'stop' ) END SUBROUTINE usm_init_urban_surface !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> Wall model as part of the urban surface model. The model predicts wall !> temperature. !------------------------------------------------------------------------------! SUBROUTINE usm_material_heat_model IMPLICIT NONE INTEGER(iwp) :: i,j,k,l,kw !< running indices REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: wtend !< tendency DO l = startenergy, endenergy !-- calculate frequently used parameters k = surfl(iz,l) j = surfl(iy,l) i = surfl(ix,l) ! !-- prognostic equation for ground/wall/roof temperature t_wall wtend(:) = 0.0_wp wtend(nzb_wall) = (1.0_wp/rho_c_wall(nzb_wall,l)) * & ( lambda_h(nzb_wall,l) * ( t_wall(nzb_wall+1,l) & - t_wall(nzb_wall,l) ) * ddz_wall(nzb_wall+1,l) & + wghf_eb(l) ) * ddz_wall_stag(nzb_wall,l) DO kw = nzb_wall+1, nzt_wall wtend(kw) = (1.0_wp/rho_c_wall(kw,l)) & * ( lambda_h(kw,l) & * ( t_wall(kw+1,l) - t_wall(kw,l) ) & * ddz_wall(kw+1,l) & - lambda_h(kw-1,l) & * ( t_wall(kw,l) - t_wall(kw-1,l) ) & * ddz_wall(kw,l) & ) * ddz_wall_stag(kw,l) ENDDO t_wall_p(nzb_wall:nzt_wall,l) = t_wall(nzb_wall:nzt_wall,l) & + dt_3d * ( tsc(2) & * wtend(nzb_wall:nzt_wall) + tsc(3) & * tt_wall_m(nzb_wall:nzt_wall,l) ) ! !-- calculate t_wall tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN DO kw = nzb_wall, nzt_wall tt_wall_m(kw,l) = wtend(kw) ENDDO ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN DO kw = nzb_wall, nzt_wall tt_wall_m(kw,l) = -9.5625_wp * wtend(kw) + 5.3125_wp & * tt_wall_m(kw,l) ENDDO ENDIF ENDIF ENDDO END SUBROUTINE usm_material_heat_model !------------------------------------------------------------------------------! ! Description: ! ------------ !> This subroutine calculates interaction of the solar radiation !> with urban surface and updates surface, roofs and walls heatfluxes. !> It also updates rad_sw_out and rad_lw_out. !------------------------------------------------------------------------------! SUBROUTINE usm_radiation IMPLICIT NONE INTEGER(iwp) :: i, j, k, kk, is, js, d, ku, refstep INTEGER(iwp) :: nzubl, nzutl, isurf, isurfsrc, isurf1, isvf, ipcgb INTEGER(iwp), DIMENSION(4) :: bdycross REAL(wp), DIMENSION(3,3) :: mrot !< grid rotation matrix (xyz) REAL(wp), DIMENSION(3,0:9) :: vnorm !< face direction normal vectors (xyz) REAL(wp), DIMENSION(3) :: sunorig !< grid rotated solar direction unit vector (xyz) REAL(wp), DIMENSION(3) :: sunorig_grid !< grid squashed solar direction unit vector (zyx) REAL(wp), DIMENSION(0:9) :: costheta !< direct irradiance factor of solar angle REAL(wp), DIMENSION(nzub:nzut) :: pchf_prep !< precalculated factor for canopy temp tendency REAL(wp), PARAMETER :: alpha = 0._wp !< grid rotation (TODO: add to namelist or remove) REAL(wp) :: rx, ry, rz REAL(wp) :: pc_box_area, pc_abs_frac, pc_abs_eff INTEGER(iwp) :: pc_box_dimshift !< transform for best accuracy IF ( plant_canopy ) THEN pchf_prep(:) = r_d * (hyp(nzub:nzut) / 100000.0_wp)**0.286_wp & / (cp * hyp(nzub:nzut) * dx*dy*dz) !< equals to 1 / (rho * c_p * Vbox * T) ENDIF sun_direction = .TRUE. CALL calc_zenith !< required also for diffusion radiation !-- prepare rotated normal vectors and irradiance factor vnorm(1,:) = idir(:) vnorm(2,:) = jdir(:) vnorm(3,:) = kdir(:) mrot(1, :) = (/ cos(alpha), -sin(alpha), 0._wp /) mrot(2, :) = (/ sin(alpha), cos(alpha), 0._wp /) mrot(3, :) = (/ 0._wp, 0._wp, 1._wp /) sunorig = (/ sun_dir_lon, sun_dir_lat, zenith(0) /) sunorig = matmul(mrot, sunorig) DO d = 0, 9 costheta(d) = dot_product(sunorig, vnorm(:,d)) ENDDO IF ( zenith(0) > 0 ) THEN !-- now we will "squash" the sunorig vector by grid box size in !-- each dimension, so that this new direction vector will allow us !-- to traverse the ray path within grid coordinates directly sunorig_grid = (/ sunorig(3)/dz, sunorig(2)/dy, sunorig(1)/dx /) !-- sunorig_grid = sunorig_grid / norm2(sunorig_grid) sunorig_grid = sunorig_grid / SQRT(SUM(sunorig_grid**2)) IF ( plant_canopy ) THEN !-- precompute effective box depth with prototype Leaf Area Density pc_box_dimshift = maxloc(sunorig, 1) - 1 CALL usm_box_absorb(cshift((/dx,dy,dz/), pc_box_dimshift), & 60, prototype_lad, & cshift(sunorig, pc_box_dimshift), & pc_box_area, pc_abs_frac) pc_box_area = pc_box_area * sunorig(pc_box_dimshift+1) / sunorig(3) pc_abs_eff = log(1._wp - pc_abs_frac) / prototype_lad ENDIF ENDIF !-- split diffusion and direct part of the solar downward radiation !-- comming from radiation model and store it in 2D arrays !-- rad_sw_in_diff, rad_sw_in_dir and rad_lw_in_diff IF ( split_diffusion_radiation ) THEN CALL usm_calc_diffusion_radiation ELSE rad_sw_in_diff = 0.0_wp rad_sw_in_dir(:,:) = rad_sw_in(0,:,:) rad_lw_in_diff(:,:) = rad_lw_in(0,:,:) ENDIF !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- First pass: direct + diffuse irradiance !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! surfinswdir = 0._wp surfinswdif = 0._wp surfinlwdif = 0._wp surfins = 0._wp surfinl = 0._wp surfoutsl = 0._wp surfoutll = 0._wp !-- Set up thermal radiation from surfaces !-- emiss_surf is defined only for surfaces for which energy balance is calculated surfoutll(startenergy:endenergy) = emiss_surf(startenergy:endenergy) * sigma_sb & * t_surf(startenergy:endenergy)**4 #if defined( __parallel ) !-- might be optimized and gather only values relevant for current processor CALL MPI_AllGatherv(surfoutll, nenergy, MPI_REAL, & surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr) #else surfoutl(:) = surfoutll(:) #endif isurf1 = -1 !< previous processed surface DO isvf = 1, nsvfl isurf = svfsurf(1, isvf) k = surfl(iz, isurf) j = surfl(iy, isurf) i = surfl(ix, isurf) isurfsrc = svfsurf(2, isvf) IF ( zenith(0) > 0 .AND. isurf /= isurf1 ) THEN !-- locate the virtual surface where the direct solar ray crosses domain boundary !-- (once per target surface) d = surfl(id, isurf) rz = REAL(k, wp) - 0.5_wp * kdir(d) ry = REAL(j, wp) - 0.5_wp * jdir(d) rx = REAL(i, wp) - 0.5_wp * idir(d) CALL usm_find_boundary_face( (/ rz, ry, rx /), sunorig_grid, bdycross) isurf1 = isurf ENDIF IF ( surf(id, isurfsrc) >= isky ) THEN !-- diffuse rad from boundary surfaces. Since it is a simply !-- calculated value, it is not assigned to surfref(s/l), !-- instead it is used directly here !-- we consider the radiation from the radiation model falling on surface !-- as the radiation falling on the top of urban layer into the place of the source surface !-- we consider it as a very reasonable simplification which allow as avoid !-- necessity of other global range arrays and some all to all mpi communication surfinswdif(isurf) = surfinswdif(isurf) + rad_sw_in_diff(j,i) * svf(1,isvf) * svf(2,isvf) !< canopy shading is applied only to shortwave surfinlwdif(isurf) = surfinlwdif(isurf) + rad_lw_in_diff(j,i) * svf(1,isvf) ELSE !-- for surface-to-surface factors we calculate thermal radiation in 1st pass surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc) ENDIF IF ( zenith(0) > 0 .AND. all( surf(:, isurfsrc) == bdycross ) ) THEN !-- found svf between model boundary and the face => face isn't shaded surfinswdir(isurf) = rad_sw_in_dir(j, i) & * costheta(surfl(id, isurf)) * svf(2,isvf) / zenith(0) ENDIF ENDDO IF ( plant_canopy ) THEN pcbinsw(:) = 0._wp pcbinlw(:) = 0._wp !< will stay always 0 since we don't absorb lw anymore ! !-- pcsf first pass isurf1 = -1 !< previous processed pcgb DO isvf = nsvfl+1, nsvfcsfl ipcgb = svfsurf(1, isvf) i = pcbl(ix,ipcgb) j = pcbl(iy,ipcgb) k = pcbl(iz,ipcgb) isurfsrc = svfsurf(2, isvf) IF ( zenith(0) > 0 .AND. ipcgb /= isurf1 ) THEN !-- locate the virtual surface where the direct solar ray crosses domain boundary !-- (once per target PC gridbox) rz = REAL(k, wp) ry = REAL(j, wp) rx = REAL(i, wp) CALL usm_find_boundary_face( (/ rz, ry, rx /), & sunorig_grid, bdycross) isurf1 = ipcgb ENDIF IF ( surf(id, isurfsrc) >= isky ) THEN !-- Diffuse rad from boundary surfaces. See comments for svf above. pcbinsw(ipcgb) = pcbinsw(ipcgb) + svf(1,isvf) * svf(2,isvf) * rad_sw_in_diff(j,i) !-- canopy shading is applied only to shortwave, therefore no absorbtion for lw !-- pcbinlw(ipcgb) = pcbinlw(ipcgb) + svf(1,isvf) * rad_lw_in_diff(j,i) !ELSE !-- Thermal radiation in 1st pass !-- pcbinlw(ipcgb) = pcbinlw(ipcgb) + svf(1,isvf) * surfoutl(isurfsrc) ENDIF IF ( zenith(0) > 0 .AND. all( surf(:, isurfsrc) == bdycross ) ) THEN !-- found svf between model boundary and the pcgb => pcgb isn't shaded pc_abs_frac = 1._wp - exp(pc_abs_eff * lad_s(k,j,i)) pcbinsw(ipcgb) = pcbinsw(ipcgb) & + rad_sw_in_dir(j, i) * pc_box_area * svf(2,isvf) * pc_abs_frac ENDIF ENDDO ENDIF surfins(startenergy:endenergy) = surfinswdir(startenergy:endenergy) + surfinswdif(startenergy:endenergy) surfinl(startenergy:endenergy) = surfinl(startenergy:endenergy) + surfinlwdif(startenergy:endenergy) surfinsw(:) = surfins(:) surfinlw(:) = surfinl(:) surfoutsw(:) = 0.0_wp surfoutlw(:) = surfoutll(:) surfhf(startenergy:endenergy) = surfinsw(startenergy:endenergy) + surfinlw(startenergy:endenergy) & - surfoutsw(startenergy:endenergy) - surfoutlw(startenergy:endenergy) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- Next passes - reflections !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! DO refstep = 1, nrefsteps surfoutsl(startenergy:endenergy) = albedo_surf(startenergy:endenergy) * surfins(startenergy:endenergy) !-- for non-transparent surfaces, longwave albedo is 1 - emissivity surfoutll(startenergy:endenergy) = (1._wp - emiss_surf(startenergy:endenergy)) * surfinl(startenergy:endenergy) #if defined( __parallel ) CALL MPI_AllGatherv(surfoutsl, nsurfl, MPI_REAL, & surfouts, nsurfs, surfstart, MPI_REAL, comm2d, ierr) CALL MPI_AllGatherv(surfoutll, nsurfl, MPI_REAL, & surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr) #else surfouts(:) = surfoutsl(:) surfoutl(:) = surfoutll(:) #endif !-- reset for next pass input surfins(:) = 0._wp surfinl(:) = 0._wp !-- reflected radiation DO isvf = 1, nsvfl isurf = svfsurf(1, isvf) isurfsrc = svfsurf(2, isvf) !-- TODO: to remove if, use start+end for isvf IF ( surf(id, isurfsrc) < isky ) THEN surfins(isurf) = surfins(isurf) + svf(1,isvf) * svf(2,isvf) * surfouts(isurfsrc) surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc) ENDIF ENDDO !-- radiation absorbed by plant canopy DO isvf = nsvfl+1, nsvfcsfl ipcgb = svfsurf(1, isvf) isurfsrc = svfsurf(2, isvf) IF ( surf(id, isurfsrc) < isky ) THEN pcbinsw(ipcgb) = pcbinsw(ipcgb) + svf(1,isvf) * svf(2,isvf) * surfouts(isurfsrc) !-- pcbinlw(ipcgb) = pcbinlw(ipcgb) + svf(1,isvf) * surfoutl(isurfsrc) ENDIF ENDDO surfinsw(:) = surfinsw(:) + surfins(:) surfinlw(:) = surfinlw(:) + surfinl(:) surfoutsw(startenergy:endenergy) = surfoutsw(startenergy:endenergy) + surfoutsl(startenergy:endenergy) surfoutlw(startenergy:endenergy) = surfoutlw(startenergy:endenergy) + surfoutll(startenergy:endenergy) surfhf(startenergy:endenergy) = surfinsw(startenergy:endenergy) + surfinlw(startenergy:endenergy) & - surfoutsw(startenergy:endenergy) - surfoutlw(startenergy:endenergy) ENDDO !-- push heat flux absorbed by plant canopy to respective 3D arrays IF ( plant_canopy ) THEN pc_heating_rate(:,:,:) = 0._wp DO ipcgb = 1, npcbl j = pcbl(iy, ipcgb) i = pcbl(ix, ipcgb) k = pcbl(iz, ipcgb) kk = k - nzb_s_inner(j,i) !- lad arrays are defined flat pc_heating_rate(kk, j, i) = (pcbinsw(ipcgb) + pcbinlw(ipcgb)) & * pchf_prep(k) * pt(k, j, i) !-- = dT/dt ENDDO ENDIF !-- return surface radiation to horizontal surfaces !-- to rad_sw_in, rad_lw_in and rad_net for outputs !!!!!!!!!! !-- we need the original radiation on urban top layer !-- for calculation of MRT so we can't do adjustment here for now !!!!!!!!!! !!!DO isurf = 1, nsurfl !!! i = surfl(ix,isurf) !!! j = surfl(iy,isurf) !!! k = surfl(iz,isurf) !!! d = surfl(id,isurf) !!! IF ( d==iroof ) THEN !!! rad_sw_in(:,j,i) = surfinsw(isurf) !!! rad_lw_in(:,j,i) = surfinlw(isurf) !!! rad_net(j,i) = rad_sw_in(k,j,i) - rad_sw_out(k,j,i) + rad_lw_in(k,j,i) - rad_lw_out(k,j,i) !!! ENDIF !!!ENDDO END SUBROUTINE usm_radiation !------------------------------------------------------------------------------! ! Description: ! ------------ !> Raytracing for detecting obstacles and calculating compound canopy sink !> factors. (A simple obstacle detection would only need to process faces in !> 3 dimensions without any ordering.) !> Assumtions: !> ----------- !> 1. The ray always originates from a face midpoint (only one coordinate equals !> *.5, i.e. wall) and doesn't travel parallel to the surface (that would mean !> shape factor=0). Therefore, the ray may never travel exactly along a face !> or an edge. !> 2. From grid bottom to urban surface top the grid has to be *equidistant* !> within each of the dimensions, including vertical (but the resolution !> doesn't need to be the same in all three dimensions). !------------------------------------------------------------------------------! SUBROUTINE usm_raytrace(src, targ, isrc, rirrf, atarg, create_csf, visible, transparency, win_lad) IMPLICIT NONE REAL(wp), DIMENSION(3), INTENT(in) :: src, targ !< real coordinates z,y,x INTEGER(iwp), INTENT(in) :: isrc !< index of source face for csf REAL(wp), INTENT(in) :: rirrf !< irradiance factor for csf REAL(wp), INTENT(in) :: atarg !< target surface area for csf LOGICAL, INTENT(in) :: create_csf !< whether to generate new CSFs during raytracing LOGICAL, INTENT(out) :: visible REAL(wp), INTENT(out) :: transparency !< along whole path INTEGER(iwp), INTENT(in) :: win_lad INTEGER(iwp) :: k, d INTEGER(iwp) :: seldim !< dimension to be incremented INTEGER(iwp) :: ncsb !< no of written plant canopy sinkboxes INTEGER(iwp) :: maxboxes !< max no of gridboxes visited REAL(wp) :: distance !< euclidean along path REAL(wp) :: crlen !< length of gridbox crossing REAL(wp) :: lastdist !< beginning of current crossing REAL(wp) :: nextdist !< end of current crossing REAL(wp) :: realdist !< distance in meters per unit distance REAL(wp) :: crmid !< midpoint of crossing REAL(wp) :: cursink !< sink factor for current canopy box REAL(wp), DIMENSION(3) :: delta !< path vector REAL(wp), DIMENSION(3) :: uvect !< unit vector REAL(wp), DIMENSION(3) :: dimnextdist !< distance for each dimension increments INTEGER(iwp), DIMENSION(3) :: box !< gridbox being crossed INTEGER(iwp), DIMENSION(3) :: dimnext !< next dimension increments along path INTEGER(iwp), DIMENSION(3) :: dimdelta !< dimension direction = +- 1 INTEGER(iwp) :: px, py !< number of processors in x and y dir before !< the processor in the question INTEGER(iwp) :: ig, ip REAL(wp) :: lad_s_target INTEGER(kind=MPI_ADDRESS_KIND) :: lad_disp REAL(wp), PARAMETER :: grow_factor = 1.5_wp !-- Maximum number of gridboxes visited equals to maximum number of boundaries crossed in each dimension plus one. That's also !-- the maximum number of plant canopy boxes written. We grow the acsf array accordingly using exponential factor. maxboxes = SUM(ABS(NINT(targ) - NINT(src))) + 1 IF ( plant_canopy .AND. ncsfl + maxboxes > ncsfla ) THEN !-- use this code for growing by fixed exponential increments (equivalent to case where ncsfl always increases by 1) !-- k = CEILING(grow_factor ** real(CEILING(log(real(ncsfl + maxboxes, kind=wp)) & !-- / log(grow_factor)), kind=wp)) !-- or use this code to simply always keep some extra space after growing k = CEILING(REAL(ncsfl + maxboxes, kind=wp) * grow_factor) CALL usm_merge_and_grow_csf(k) ENDIF transparency = 1._wp ncsb = 0 delta(:) = targ(:) - src(:) distance = SQRT(SUM(delta(:)**2)) IF ( distance == 0._wp ) THEN visible = .TRUE. RETURN ENDIF uvect(:) = delta(:) / distance realdist = SQRT(SUM( (uvect(:)*(/dz,dy,dx/))**2 )) lastdist = 0._wp !-- Since all face coordinates have values *.5 and we'd like to use !-- integers, all these have .5 added DO d = 1, 3 IF ( uvect(d) == 0._wp ) THEN dimnext(d) = 999999999 dimdelta(d) = 999999999 dimnextdist(d) = 1.0E20_wp ELSE IF ( uvect(d) > 0._wp ) THEN dimnext(d) = CEILING(src(d) + .5_wp) dimdelta(d) = 1 dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d) ELSE dimnext(d) = FLOOR(src(d) + .5_wp) dimdelta(d) = -1 dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d) ENDIF ENDDO DO !-- along what dimension will the next wall crossing be? seldim = minloc(dimnextdist, 1) nextdist = dimnextdist(seldim) IF ( nextdist > distance ) nextdist = distance crlen = nextdist - lastdist IF ( crlen > .001_wp ) THEN crmid = (lastdist + nextdist) * .5_wp box = NINT(src(:) + uvect(:) * crmid) !-- calculate index of the grid with global indices (box(2),box(3)) !-- in the array nzterr and plantt and id of the coresponding processor px = box(3)/nnx py = box(2)/nny ip = px*pdims(2)+py ig = ip*nnx*nny + (box(3)-px*nnx)*nny + box(2)-py*nny IF ( box(1) <= nzterr(ig) ) THEN visible = .FALSE. IF ( ncsb > 0 ) THEN !-- rewind written plant canopy sink factors - they are invalid ncsfl = ncsfl - ncsb ENDIF RETURN ENDIF IF ( plant_canopy ) THEN IF ( box(1) <= plantt(ig) ) THEN #if defined( __parallel ) lad_disp = (box(3)-px*nnx)*(nny*nzu) + (box(2)-py*nny)*nzu + box(1)-nzub IF ( usm_lad_rma ) THEN !-- Read LAD using MPI RMA CALL cpu_log( log_point_s(77), 'usm_init_rma', 'start' ) CALL MPI_Get(lad_s_target, 1, MPI_REAL, ip, lad_disp, 1, MPI_REAL, & win_lad, ierr) IF ( ierr /= 0 ) THEN WRITE(message_string, *) 'MPI error ', ierr, ' at MPI_Get' CALL message( 'usm_raytrace', 'PA0519', 1, 2, 0, 6, 0 ) ENDIF CALL MPI_Win_flush_local(ip, win_lad, ierr) IF ( ierr /= 0 ) THEN WRITE(message_string, *) 'MPI error ', ierr, ' at MPI_Win_flush_local' CALL message( 'usm_raytrace', 'PA0519', 1, 2, 0, 6, 0 ) ENDIF CALL cpu_log( log_point_s(77), 'usm_init_rma', 'stop' ) ELSE lad_s_target = usm_lad_g(ip*nnx*nny*nzu + lad_disp) ENDIF #else lad_s_target = usm_lad(box(1),box(2),box(3)) #endif cursink = 1._wp - exp(-ext_coef * lad_s_target & * crlen*realdist) IF ( create_csf ) THEN !-- write svf values into the array ncsb = ncsb + 1 ncsfl = ncsfl + 1 acsf(ncsfl)%ip = ip acsf(ncsfl)%itx = box(3) acsf(ncsfl)%ity = box(2) acsf(ncsfl)%itz = box(1) acsf(ncsfl)%isurfs = isrc acsf(ncsfl)%rsvf = REAL(cursink*rirrf*atarg, wp) !-- we postpone multiplication by transparency acsf(ncsfl)%rtransp = REAL(transparency, wp) ENDIF !< create_csf transparency = transparency * (1._wp - cursink) ENDIF ENDIF ENDIF IF ( nextdist >= distance ) EXIT lastdist = nextdist dimnext(seldim) = dimnext(seldim) + dimdelta(seldim) dimnextdist(seldim) = (dimnext(seldim) - .5_wp - src(seldim)) / uvect(seldim) ENDDO visible = .TRUE. END SUBROUTINE usm_raytrace !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> This subroutine is part of the urban surface model. !> It reads daily heat produced by anthropogenic sources !> and the diurnal cycle of the heat. !------------------------------------------------------------------------------! SUBROUTINE usm_read_anthropogenic_heat INTEGER(iwp) :: i,j,ii REAL(wp) :: heat !-- allocation of array of sources of anthropogenic heat and their diural profile ALLOCATE( aheat(nys:nyn,nxl:nxr) ) ALLOCATE( aheatprof(0:24) ) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- read daily amount of heat and its daily cycle !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! aheat = 0.0_wp DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN !-- open anthropogenic heat file OPEN( 151, file='ANTHROPOGENIC_HEAT'//TRIM(coupling_char), action='read', & status='old', form='formatted', err=11 ) i = 0 j = 0 DO READ( 151, *, err=12, end=13 ) i, j, heat IF ( i >= nxl .AND. i <= nxr .AND. j >= nys .AND. j <= nyn ) THEN !-- write heat into the array aheat(j,i) = heat ENDIF CYCLE 12 WRITE(message_string,'(a,2i4)') 'error in file ANTHROPOGENIC_HEAT'//TRIM(coupling_char)//' after line ',i,j CALL message( 'usm_read_anthropogenic_heat', 'PA0515', 0, 1, 0, 6, 0 ) ENDDO 13 CLOSE(151) CYCLE 11 message_string = 'file ANTHROPOGENIC_HEAT'//TRIM(coupling_char)//' does not exist' CALL message( 'usm_read_anthropogenic_heat', 'PA0516', 1, 2, 0, 6, 0 ) ENDIF #if defined( __parallel ) && ! defined ( __check ) CALL mpi_barrier( comm2d, ierr ) #endif ENDDO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- read diurnal profiles of heat sources !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! aheatprof = 0.0_wp DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN !-- open anthropogenic heat profile file OPEN( 151, file='ANTHROPOGENIC_HEAT_PROFILE'//TRIM(coupling_char), action='read', & status='old', form='formatted', err=21 ) i = 0 DO READ( 151, *, err=22, end=23 ) i, heat IF ( i >= 0 .AND. i <= 24 ) THEN !-- write heat into the array aheatprof(i) = heat ENDIF CYCLE 22 WRITE(message_string,'(a,i4)') 'error in file ANTHROPOGENIC_HEAT_PROFILE'// & TRIM(coupling_char)//' after line ',i CALL message( 'usm_read_anthropogenic_heat', 'PA0517', 0, 1, 0, 6, 0 ) ENDDO aheatprof(24) = aheatprof(0) 23 CLOSE(151) CYCLE 21 message_string = 'file ANTHROPOGENIC_HEAT_PROFILE'//TRIM(coupling_char)//' does not exist' CALL message( 'usm_read_anthropogenic_heat', 'PA0518', 1, 2, 0, 6, 0 ) ENDIF #if defined( __parallel ) && ! defined ( __check ) CALL mpi_barrier( comm2d, ierr ) #endif ENDDO END SUBROUTINE usm_read_anthropogenic_heat !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Soubroutine reads t_surf and t_wall data from restart files !kanani: Renamed this routine according to corresponging routines in PALM !kanani: Modified the routine to match read_var_list, from where usm_read_restart_data ! shall be called in the future. This part has not been tested yet. (see virtual_flight_mod) ! Also, I had some trouble with the allocation of t_surf, since this is a pointer. ! So, I added some directives here. !------------------------------------------------------------------------------! SUBROUTINE usm_read_restart_data IMPLICIT NONE CHARACTER (LEN=30) :: variable_chr !< dummy variable to read string INTEGER :: i !< running index DO i = 0, io_blocks-1 IF ( i == io_group ) THEN READ ( 13 ) variable_chr DO WHILE ( TRIM( variable_chr ) /= '*** end usm ***' ) SELECT CASE ( TRIM( variable_chr ) ) CASE ( 't_surf' ) #if defined( __nopointer ) IF ( .NOT. ALLOCATED( t_surf ) ) & ALLOCATE( t_surf(startenergy:endenergy) ) READ ( 13 ) t_surf #else IF ( .NOT. ALLOCATED( t_surf_1 ) ) & ALLOCATE( t_surf_1(startenergy:endenergy) ) READ ( 13 ) t_surf_1 #endif CASE ( 't_wall' ) #if defined( __nopointer ) IF ( .NOT. ALLOCATED( t_wall ) ) & ALLOCATE( t_wall(nzb_wall:nzt_wall+1,startenergy:endenergy) ) READ ( 13 ) t_wall #else IF ( .NOT. ALLOCATED( t_wall_1 ) ) & ALLOCATE( t_wall_1(nzb_wall:nzt_wall+1,startenergy:endenergy) ) READ ( 13 ) t_wall_1 #endif CASE DEFAULT WRITE ( message_string, * ) 'unknown variable named "', & TRIM( variable_chr ), '" found in', & '&data from prior run on PE ', myid CALL message( 'user_read_restart_data', 'UI0012', 1, 2, 0, 6, 0 ) END SELECT READ ( 13 ) variable_chr ENDDO ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO END SUBROUTINE usm_read_restart_data !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Soubroutine reads svf and svfsurf data from saved file !------------------------------------------------------------------------------! SUBROUTINE usm_read_svf_from_file IMPLICIT NONE INTEGER :: fsvf = 89 INTEGER :: i CHARACTER(usm_version_len) :: usm_version_field CHARACTER(svf_code_len) :: svf_code_field DO i = 0, io_blocks-1 IF ( i == io_group ) THEN OPEN ( fsvf, file=TRIM(svf_file_name)//TRIM(coupling_char)//myid_char, & form='unformatted', status='old' ) !-- read and check version READ ( fsvf ) usm_version_field IF ( TRIM(usm_version_field) /= TRIM(usm_version) ) THEN WRITE( message_string, * ) 'Version of binary SVF file "', & TRIM(usm_version_field), '" does not match ', & 'the version of model "', TRIM(usm_version), '"' CALL message( 'usm_read_svf_from_file', 'UI0012', 1, 2, 0, 6, 0 ) ENDIF !-- read nsvfcsfl, nsvfl READ ( fsvf ) nsvfcsfl, nsvfl IF ( nsvfcsfl <= 0 ) THEN WRITE( message_string, * ) 'Wrong number of SVF or CSF' CALL message( 'usm_read_svf_from_file', 'UI0012', 1, 2, 0, 6, 0 ) ELSE WRITE(message_string,*) ' Number of SVF and CSF to read', nsvfcsfl, nsvfl CALL location_message( message_string, .TRUE. ) ENDIF ALLOCATE(svf(ndsvf,nsvfcsfl)) ALLOCATE(svfsurf(ndsvf,nsvfcsfl)) READ(fsvf) svf READ(fsvf) svfsurf READ ( fsvf ) svf_code_field IF ( TRIM(svf_code_field) /= TRIM(svf_code) ) THEN WRITE( message_string, * ) 'Wrong structure of binary svf file' CALL message( 'usm_read_svf_from_file', 'UI0012', 1, 2, 0, 6, 0 ) ENDIF CLOSE (fsvf) ENDIF #if defined( __parallel ) CALL mpi_barrier( comm2d, ierr ) #endif ENDDO END SUBROUTINE usm_read_svf_from_file !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> This subroutine reads walls, roofs and land categories and it parameters !> from input files. !------------------------------------------------------------------------------! SUBROUTINE usm_read_urban_surface_types CHARACTER(12) :: wtn INTEGER :: wtc REAL(wp), DIMENSION(n_surface_params) :: wtp INTEGER(iwp), DIMENSION(0:17, nysg:nyng, nxlg:nxrg) :: usm_par REAL(wp), DIMENSION(1:14, nysg:nyng, nxlg:nxrg) :: usm_val INTEGER(iwp) :: k, l, d, iw, jw, kw, it, ip, ii, ij INTEGER(iwp) :: i, j INTEGER(iwp) :: nz, roof, dirwe, dirsn INTEGER(iwp) :: category INTEGER(iwp) :: weheight1, wecat1, snheight1, sncat1 INTEGER(iwp) :: weheight2, wecat2, snheight2, sncat2 INTEGER(iwp) :: weheight3, wecat3, snheight3, sncat3 REAL(wp) :: height, albedo, thick REAL(wp) :: wealbedo1, wethick1, snalbedo1, snthick1 REAL(wp) :: wealbedo2, wethick2, snalbedo2, snthick2 REAL(wp) :: wealbedo3, wethick3, snalbedo3, snthick3 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- read categories of walls and their parameters !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN !-- open urban surface file OPEN( 151, file='SURFACE_PARAMETERS'//coupling_char, action='read', & status='old', form='formatted', err=15 ) !-- first test and get n_surface_types k = 0 l = 0 DO l = l+1 READ( 151, *, err=11, end=12 ) wtc, wtp, wtn k = k+1 CYCLE 11 CONTINUE ENDDO 12 n_surface_types = k ALLOCATE( surface_type_names(n_surface_types) ) ALLOCATE( surface_type_codes(n_surface_types) ) ALLOCATE( surface_params(n_surface_params, n_surface_types) ) !-- real reading rewind( 151 ) k = 0 DO READ( 151, *, err=13, end=14 ) wtc, wtp, wtn k = k+1 surface_type_codes(k) = wtc surface_params(:,k) = wtp surface_type_names(k) = wtn CYCLE 13 WRITE(6,'(i3,a,2i5)') myid, 'readparams2 error k=', k FLUSH(6) CONTINUE ENDDO 14 CLOSE(151) CYCLE 15 message_string = 'file SURFACE_PARAMETERS'//TRIM(coupling_char)//' does not exist' CALL message( 'usm_read_urban_surface_types', 'PA0513', 1, 2, 0, 6, 0 ) ENDIF ENDDO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-- read types of surfaces !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! usm_par = 0 DO ii = 0, io_blocks-1 IF ( ii == io_group ) THEN ! !-- open csv urban surface file OPEN( 151, file='URBAN_SURFACE'//TRIM(coupling_char), action='read', & status='old', form='formatted', err=23 ) l = 0 DO l = l+1 !-- i, j, height, nz, roof, dirwe, dirsn, category, soilcat, !-- weheight1, wecat1, snheight1, sncat1, weheight2, wecat2, snheight2, sncat2, !-- weheight3, wecat3, snheight3, sncat3 READ( 151, *, err=21, end=25 ) i, j, height, nz, roof, dirwe, dirsn, & category, albedo, thick, & weheight1, wecat1, wealbedo1, wethick1, & weheight2, wecat2, wealbedo2, wethick2, & weheight3, wecat3, wealbedo3, wethick3, & snheight1, sncat1, snalbedo1, snthick1, & snheight2, sncat2, snalbedo2, snthick2, & snheight3, sncat3, snalbedo3, snthick3 IF ( i >= nxlg .AND. i <= nxrg .AND. j >= nysg .AND. j <= nyng ) THEN !-- write integer variables into array usm_par(:,j,i) = (/1, nz, roof, dirwe, dirsn, category, & weheight1, wecat1, weheight2, wecat2, weheight3, wecat3, & snheight1, sncat1, snheight2, sncat2, snheight3, sncat3 /) !-- write real values into array usm_val(:,j,i) = (/ albedo, thick, & wealbedo1, wethick1, wealbedo2, wethick2, & wealbedo3, wethick3, snalbedo1, snthick1, & snalbedo2, snthick2, snalbedo3, snthick3 /) ENDIF CYCLE 21 WRITE (message_string, "(A,I5)") 'errors in file URBAN_SURFACE'//TRIM(coupling_char)//' on line ', l CALL message( 'usm_read_urban_surface_types', 'PA0512', 0, 1, 0, 6, 0 ) ENDDO 23 message_string = 'file URBAN_SURFACE'//TRIM(coupling_char)//' does not exist' CALL message( 'usm_read_urban_surface_types', 'PA0514', 1, 2, 0, 6, 0 ) 25 CLOSE( 90 ) ENDIF #if defined( __parallel ) && ! defined ( __check ) CALL mpi_barrier( comm2d, ierr ) #endif ENDDO ! !-- check completeness and formal correctness of the data DO i = nxlg, nxrg DO j = nysg, nyng IF ( usm_par(0,j,i) /= 0 .AND. ( & !< incomplete data,supply default values later usm_par(1,j,i) < nzb .OR. & usm_par(1,j,i) > nzt .OR. & !< incorrect height (nz < nzb .OR. nz > nzt) usm_par(2,j,i) < 0 .OR. & usm_par(2,j,i) > 1 .OR. & !< incorrect roof sign usm_par(3,j,i) < nzb-nzt .OR. & usm_par(3,j,i) > nzt-nzb .OR. & !< incorrect west-east wall direction sign usm_par(4,j,i) < nzb-nzt .OR. & usm_par(4,j,i) > nzt-nzb .OR. & !< incorrect south-north wall direction sign usm_par(6,j,i) < nzb .OR. & usm_par(6,j,i) > nzt .OR. & !< incorrect pedestrian level height for west-east wall usm_par(8,j,i) > nzt .OR. & usm_par(10,j,i) > nzt .OR. & !< incorrect wall or roof level height for west-east wall usm_par(12,j,i) < nzb .OR. & usm_par(12,j,i) > nzt .OR. & !< incorrect pedestrian level height for south-north wall usm_par(14,j,i) > nzt .OR. & usm_par(16,j,i) > nzt & !< incorrect wall or roof level height for south-north wall ) ) THEN !-- incorrect input data WRITE (message_string, "(A,2I5)") 'missing or incorrect data in file URBAN_SURFACE'// & TRIM(coupling_char)//' for i,j=', i,j CALL message( 'usm_read_urban_surface', 'PA0504', 1, 2, 0, 6, 0 ) ENDIF ENDDO ENDDO !-- assign the surface types to local surface array DO l = startenergy, endenergy d = surfl(id,l) kw = surfl(iz,l) j = surfl(iy,l) i = surfl(ix,l) IF ( d == iroof ) THEN !-- horizontal surface - land or roof iw = i jw = j IF ( usm_par(5,jw,iw) == 0 ) THEN IF ( zu(kw) >= roof_height_limit ) THEN isroof_surf(l) = .TRUE. surface_types(l) = roof_category !< default category for root surface ELSE isroof_surf(l) = .FALSE. surface_types(l) = land_category !< default category for land surface ENDIF albedo_surf(l) = -1.0_wp thickness_wall(l) = -1.0_wp ELSE IF ( usm_par(2,jw,iw)==0 ) THEN isroof_surf(l) = .FALSE. thickness_wall(l) = -1.0_wp ELSE isroof_surf(l) = .TRUE. thickness_wall(l) = usm_val(2,jw,iw) ENDIF surface_types(l) = usm_par(5,jw,iw) albedo_surf(l) = usm_val(1,jw,iw) ENDIF ELSE SELECT CASE (d) CASE (iwest) iw = i jw = j ii = 6 ij = 3 CASE (ieast) iw = i-1 jw = j ii = 6 ij = 3 CASE (isouth) iw = i jw = j ii = 12 ij = 9 CASE (inorth) iw = i jw = j-1 ii = 12 ij = 9 END SELECT IF ( kw <= usm_par(ii,jw,iw) ) THEN !-- pedestrant zone isroof_surf(l) = .FALSE. IF ( usm_par(ii+1,jw,iw) == 0 ) THEN surface_types(l) = pedestrant_category !< default category for wall surface in pedestrant zone albedo_surf(l) = -1.0_wp thickness_wall(l) = -1.0_wp ELSE surface_types(l) = usm_par(ii+1,jw,iw) albedo_surf(l) = usm_val(ij,jw,iw) thickness_wall(l) = usm_val(ij+1,jw,iw) ENDIF ELSE IF ( kw <= usm_par(ii+2,jw,iw) ) THEN !-- wall zone isroof_surf(l) = .FALSE. IF ( usm_par(ii+3,jw,iw) == 0 ) THEN surface_types(l) = wall_category !< default category for wall surface albedo_surf(l) = -1.0_wp thickness_wall(l) = -1.0_wp ELSE surface_types(l) = usm_par(ii+3,jw,iw) albedo_surf(l) = usm_val(ij+2,jw,iw) thickness_wall(l) = usm_val(ij+3,jw,iw) ENDIF ELSE IF ( kw <= usm_par(ii+4,jw,iw) ) THEN !-- roof zone isroof_surf(l) = .TRUE. IF ( usm_par(ii+5,jw,iw) == 0 ) THEN surface_types(l) = roof_category !< default category for roof surface albedo_surf(l) = -1.0_wp thickness_wall(l) = -1.0_wp ELSE surface_types(l) = usm_par(ii+5,jw,iw) albedo_surf(l) = usm_val(ij+4,jw,iw) thickness_wall(l) = usm_val(ij+5,jw,iw) ENDIF ELSE !-- something wrong CALL message( 'usm_read_urban_surface', 'PA0505', 1, 2, 0, 6, 0 ) ENDIF ENDIF !-- find the type position it = surface_types(l) ip = -99999 DO k = 1, n_surface_types IF ( surface_type_codes(k) == it ) THEN ip = k EXIT ENDIF ENDDO IF ( ip == -99999 ) THEN !-- wall category not found WRITE (message_string, "(A,I5,A,3I5)") 'wall category ', it, ' not found for i,j,k=', iw,jw,kw CALL message( 'usm_read_urban_surface', 'PA0506', 1, 2, 0, 6, 0 ) ENDIF !-- Fill out the parameters of the wall !-- wall surface: !-- albedo IF ( albedo_surf(l) < 0.0_wp ) THEN albedo_surf(l) = surface_params(ialbedo, ip) ENDIF !-- emissivity of the wall emiss_surf(l) = surface_params(iemiss, ip) !-- heat conductivity λS between air and wall ( W m−2 K−1 ) lambda_surf(l) = surface_params(ilambdas, ip) !-- roughness relative to concrete roughness_wall(l) = surface_params(irough, ip) !-- Surface skin layer heat capacity (J m−2 K−1 ) c_surface(l) = surface_params(icsurf, ip) !-- wall material parameters: !-- thickness of the wall (m) !-- missing values are replaced by default value for category IF ( thickness_wall(l) <= 0.001_wp ) THEN thickness_wall(l) = surface_params(ithick, ip) ENDIF !-- volumetric heat capacity rho*C of the wall ( J m−3 K−1 ) rho_c_wall(:,l) = surface_params(irhoC, ip) !-- thermal conductivity λH of the wall (W m−1 K−1 ) lambda_h(:,l) = surface_params(ilambdah, ip) ENDDO CALL location_message( ' types and parameters of urban surfaces read', .TRUE. ) END SUBROUTINE usm_read_urban_surface_types !------------------------------------------------------------------------------! ! Description: ! ------------ !> Solver for the energy balance at the ground/roof/wall surface. !> It follows basic ideas and structure of lsm_energy_balance !> with many simplifications and adjustments. !> TODO better description !------------------------------------------------------------------------------! SUBROUTINE usm_surface_energy_balance IMPLICIT NONE INTEGER(iwp) :: i, j, k, l, d !< running indices REAL(wp) :: pt1 !< temperature at first grid box adjacent to surface REAL(wp) :: u1,v1,w1 !< near wall u,v,w REAL(wp) :: stend !< surface tendency REAL(wp) :: coef_1 !< first coeficient for prognostic equation REAL(wp) :: coef_2 !< second coeficient for prognostic equation REAL(wp) :: rho_cp !< rho_wall_surface * cp REAL(wp) :: r_a !< aerodynamic resistance for horizontal and vertical surfaces REAL(wp) :: f_shf !< factor for shf_eb REAL(wp) :: lambda_surface !< current value of lambda_surface (heat conductivity between air and wall) REAL(wp) :: Ueff !< effective wind speed for calculation of heat transfer coefficients REAL(wp) :: httc !< heat transfer coefficient REAL(wp), DIMENSION(nzub:nzut) :: exn !< value of the Exner function in layers REAL(wp), DIMENSION(0:4) :: dxdir !< surface normal direction gridbox length REAL(wp) :: dtime !< simulated time of day (in UTC) INTEGER(iwp) :: dhour !< simulated hour of day (in UTC) REAL(wp) :: acoef !< actual coefficient of diurnal profile of anthropogenic heat dxdir = (/dz,dy,dy,dx,dx/) exn(:) = (hyp(nzub:nzut) / 100000.0_wp )**0.286_wp !< Exner function !-- DO l = startenergy, endenergy !-- Calculate frequently used parameters d = surfl(id,l) k = surfl(iz,l) j = surfl(iy,l) i = surfl(ix,l) !-- TODO - how to calculate lambda_surface for horizontal surfaces !-- (lambda_surface is set according to stratification in land surface model) IF ( ol(j,i) >= 0.0_wp ) THEN lambda_surface = lambda_surf(l) ELSE lambda_surface = lambda_surf(l) ENDIF pt1 = pt(k,j,i) !-- calculate rho * cp coefficient at surface layer rho_cp = cp * hyp(k) / ( r_d * pt1 * exn(k) ) !-- calculate aerodyamic resistance. IF ( d == iroof ) THEN !-- calculation for horizontal surfaces follows LSM formulation !-- pt, us, ts are not available for the prognostic time step, !-- data from the last time step is used here. r_a = (pt1 - t_surf(l)/exn(k)) / (ts(j,i) * us(j,i) + 1.0E-10_wp) !-- make sure that the resistance does not drop to zero IF ( ABS(r_a) < 1.0E-10_wp ) r_a = 1.0E-10_wp !-- the parameterization is developed originally for larger scales !-- (compare with remark in TUF-3D) !-- our first experiences show that the parameterization underestimates !-- r_a in meter resolution. !-- temporary solution - multiplication by magic constant :-(. r_a = r_a * ra_horiz_coef !-- factor for shf_eb f_shf = rho_cp / r_a ELSE !-- calculation of r_a for vertical surfaces !-- !-- heat transfer coefficient for forced convection along vertical walls !-- follows formulation in TUF3d model (Krayenhoff & Voogt, 2006) !-- !-- H = httc (Tsfc - Tair) !-- httc = rw * (11.8 + 4.2 * Ueff) - 4.0 !-- !-- rw: wall patch roughness relative to 1.0 for concrete !-- Ueff: effective wind speed !-- - 4.0 is a reduction of Rowley et al (1930) formulation based on !-- Cole and Sturrock (1977) !-- !-- Ucan: Canyon wind speed !-- wstar: convective velocity !-- Qs: surface heat flux !-- zH: height of the convective layer !-- wstar = (g/Tcan*Qs*zH)**(1./3.) !-- staggered grid needs to be taken into consideration IF ( d == inorth ) THEN u1 = (u(k,j,i)+u(k,j,i+1))*0.5_wp v1 = v(k,j+1,i) ELSE IF ( d == isouth ) THEN u1 = (u(k,j,i)+u(k,j,i+1))*0.5_wp v1 = v(k,j,i) ELSE IF ( d == ieast ) THEN u1 = u(k,j,i+1) v1 = (v(k,j,i)+v(k,j+1,i))*0.5_wp ELSE IF ( d == iwest ) THEN u1 = u(k,j,i) v1 = (v(k,j,i)+v(k,j+1,i))*0.5_wp ELSE STOP ENDIF w1 = (w(k,j,i)+w(k-1,j,i))*0.5_wp Ueff = SQRT(u1**2 + v1**2 + w1**2) httc = roughness_wall(l) * (11.8 + 4.2 * Ueff) - 4.0 f_shf = httc ENDIF !-- add LW up so that it can be removed in prognostic equation rad_net_l(l) = surfinsw(l) - surfoutsw(l) + surfinlw(l) - surfoutlw(l) !-- numerator of the prognostic equation coef_1 = rad_net_l(l) + & ! coef +1 corresponds to -lwout included in calculation of radnet_l (3.0_wp+1.0_wp) * emiss_surf(l) * sigma_sb * t_surf(l) ** 4 + & f_shf * pt1 + & lambda_surface * t_wall(nzb_wall,l) !-- denominator of the prognostic equation coef_2 = 4.0_wp * emiss_surf(l) * sigma_sb * t_surf(l) ** 3 & + lambda_surface + f_shf / exn(k) !-- implicit solution when the surface layer has no heat capacity, !-- otherwise use RK3 scheme. t_surf_p(l) = ( coef_1 * dt_3d * tsc(2) + c_surface(l) * t_surf(l) ) / & ( c_surface(l) + coef_2 * dt_3d * tsc(2) ) !-- add RK3 term t_surf_p(l) = t_surf_p(l) + dt_3d * tsc(3) * tt_surface_m(l) !-- calculate true tendency stend = (t_surf_p(l) - t_surf(l) - dt_3d * tsc(3) * tt_surface_m(l)) / (dt_3d * tsc(2)) !-- calculate t_surf tendencies for the next Runge-Kutta step IF ( timestep_scheme(1:5) == 'runge' ) THEN IF ( intermediate_timestep_count == 1 ) THEN tt_surface_m(l) = stend ELSEIF ( intermediate_timestep_count < & intermediate_timestep_count_max ) THEN tt_surface_m(l) = -9.5625_wp * stend + 5.3125_wp & * tt_surface_m(l) ENDIF ENDIF !-- in case of fast changes in the skin temperature, it is required to !-- update the radiative fluxes in order to keep the solution stable IF ( ABS( t_surf_p(l) - t_surf(l) ) > 1.0_wp ) THEN force_radiation_call_l = .TRUE. ENDIF !-- for horizontal surfaces is pt(nzb_s_inner(j,i),j,i) = pt_surf. !-- there is no equivalent surface gridpoint for vertical surfaces. !-- pt(k,j,i) is calculated for all directions in diffusion_s !-- using surface and wall heat fluxes IF ( d == iroof ) THEN pt(nzb_s_inner(j,i),j,i) = t_surf_p(l) / exn(k) ENDIF !-- calculate fluxes !-- rad_net_l is never used! rad_net_l(l) = rad_net_l(l) + 3.0_wp * sigma_sb & * t_surf(l)**4 - 4.0_wp * sigma_sb & * t_surf(l)**3 * t_surf_p(l) wghf_eb(l) = lambda_surface * (t_surf_p(l) - t_wall(nzb_wall,l)) !-- ground/wall/roof surface heat flux wshf_eb(l) = - f_shf * ( pt1 - t_surf_p(l) ) !-- store kinematic surface heat fluxes for utilization in other processes !-- diffusion_s, surface_layer_fluxes,... IF ( d == iroof ) THEN !-- shf is used in diffusion_s and also !-- for calculation of surface layer fluxes !-- update for horizontal surfaces shf(j,i) = wshf_eb(l) / rho_cp ELSE !-- surface heat flux for vertical surfaces !-- used in diffusion_s wshf(l) = wshf_eb(l) / rho_cp ENDIF ENDDO IF ( usm_anthropogenic_heat .AND. & intermediate_timestep_count == intermediate_timestep_count_max ) THEN !-- application of the additional anthropogenic heat sources !-- we considere the traffic for now so all heat is absorbed !-- to the first layer, generalization would be worth !-- calculation of actual profile coefficient !-- ??? check time_since_reference_point ??? dtime = mod(simulated_time + time_utc_init, 24.0_wp*3600.0_wp) dhour = INT(dtime/3600.0_wp) !-- linear interpolation of coeficient acoef = (REAL(dhour+1,wp)-dtime/3600.0_wp)*aheatprof(dhour) + (dtime/3600.0_wp-REAL(dhour,wp))*aheatprof(dhour+1) DO i = nxl, nxr DO j = nys, nyn IF ( aheat(j,i) > 0.0_wp ) THEN !-- TODO the increase of pt in box i,j,nzb_s_inner(j,i)+1 in time dt_3d !-- given to anthropogenic heat aheat*acoef (W*m-2) !-- k = nzb_s_inner(j,i)+1 !-- pt(k,j,i) = pt(k,j,i) + aheat(j,i)*acoef*dt_3d/(exn(k)*rho_cp*dz) !-- Instead of this, we can adjust shf in case AH only at surface shf(j,i) = shf(j,i) + aheat(j,i)*acoef * ddx * ddy / rho_cp ENDIF ENDDO ENDDO ENDIF !-- pt and shf are defined on nxlg:nxrg,nysg:nyng !-- get the borders from neighbours CALL exchange_horiz( pt, nbgp ) CALL exchange_horiz_2d( shf ) !-- calculation of force_radiation_call: !-- Make logical OR for all processes. !-- Force radiation call if at least one processor forces it. IF ( intermediate_timestep_count == intermediate_timestep_count_max-1 ) & THEN #if defined( __parallel ) IF ( collective_wait ) CALL mpi_barrier( comm2d, ierr ) CALL mpi_allreduce( force_radiation_call_l, force_radiation_call, & 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr ) #else force_radiation_call = force_radiation_call_l #endif force_radiation_call_l = .FALSE. ENDIF END SUBROUTINE usm_surface_energy_balance !------------------------------------------------------------------------------! ! Description: ! ------------ !> Swapping of timelevels for t_surf and t_wall !> called out from subroutine swap_timelevel !------------------------------------------------------------------------------! SUBROUTINE usm_swap_timelevel ( mod_count ) IMPLICIT NONE INTEGER, INTENT(IN) :: mod_count INTEGER :: i #if defined( __nopointer ) t_surf = t_surf_p t_wall = t_wall_p #else SELECT CASE ( mod_count ) CASE ( 0 ) t_surf => t_surf_1; t_surf_p => t_surf_2 t_wall => t_wall_1; t_wall_p => t_wall_2 CASE ( 1 ) t_surf => t_surf_2; t_surf_p => t_surf_1 t_wall => t_wall_2; t_wall_p => t_wall_1 END SELECT #endif END SUBROUTINE usm_swap_timelevel !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> This function applies the kinematic wall heat fluxes !> for walls in four directions for all gridboxes in urban layer. !> It is called out from subroutine prognostic_equations. !> TODO Compare performance with cycle runnig l=startwall,endwall... !------------------------------------------------------------------------------! SUBROUTINE usm_wall_heat_flux IMPLICIT NONE INTEGER(iwp) :: i,j,k,d,l !< running indices DO l = startenergy, endenergy j = surfl(iy,l) i = surfl(ix,l) k = surfl(iz,l) d = surfl(id,l) tend(k,j,i) = tend(k,j,i) + wshf(l) * ddxy2(d) ENDDO END SUBROUTINE usm_wall_heat_flux !------------------------------------------------------------------------------! ! Description: ! ------------ ! !> This function applies the kinematic wall heat fluxes !> for walls in four directions around the gridbox i,j. !> It is called out from subroutine prognostic_equations. !------------------------------------------------------------------------------! SUBROUTINE usm_wall_heat_flux_ij(i,j) IMPLICIT NONE INTEGER(iwp), INTENT(in) :: i,j !< indices of grid box INTEGER(iwp) :: ii,jj,k,d,l DO l = startenergy, endenergy jj = surfl(iy,l) ii = surfl(ix,l) IF ( ii == i .AND. jj == j ) THEN k = surfl(iz,l) IF ( k >= nzb_s_inner(j,i)+1 .AND. k <= nzb_s_outer(j,i) ) THEN d = surfl(id,l) IF ( d >= 1 .and. d <= 4 ) THEN tend(k,j,i) = tend(k,j,i) + wshf(l) * ddxy2(d) ENDIF ENDIF ENDIF ENDDO END SUBROUTINE usm_wall_heat_flux_ij !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Subroutine writes t_surf and t_wall data into restart files !kanani: Renamed this routine according to corresponging routines in PALM !kanani: Modified the routine to match write_var_list, from where usm_write_restart_data ! shall be called in the future. This part has not been tested yet. (see virtual_flight_mod) ! Also, I had some trouble with the allocation of t_surf, since this is a pointer. ! So, I added some directives here. !------------------------------------------------------------------------------! SUBROUTINE usm_write_restart_data IMPLICIT NONE INTEGER :: i DO i = 0, io_blocks-1 IF ( i == io_group ) THEN WRITE ( 14 ) 't_surf ' #if defined( __nopointer ) WRITE ( 14 ) t_surf #else WRITE ( 14 ) t_surf_1 #endif WRITE ( 14 ) 't_wall ' #if defined( __nopointer ) WRITE ( 14 ) t_wall #else WRITE ( 14 ) t_wall_1 #endif WRITE ( 14 ) '*** end usm *** ' ENDIF #if defined( __parallel ) CALL MPI_BARRIER( comm2d, ierr ) #endif ENDDO END SUBROUTINE usm_write_restart_data !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Subroutine stores svf and svfsurf data to files !------------------------------------------------------------------------------! SUBROUTINE usm_write_svf_to_file IMPLICIT NONE INTEGER :: fsvf = 89 INTEGER :: i DO i = 0, io_blocks-1 IF ( i == io_group ) THEN OPEN ( fsvf, file=TRIM(svf_file_name)//TRIM(coupling_char)//myid_char, & form='unformatted', status='new' ) WRITE ( fsvf ) usm_version WRITE ( fsvf ) nsvfcsfl, nsvfl WRITE ( fsvf ) svf WRITE ( fsvf ) svfsurf WRITE ( fsvf ) TRIM(svf_code) CLOSE (fsvf) #if defined( __parallel ) CALL mpi_barrier( comm2d, ierr ) #endif ENDIF ENDDO END SUBROUTINE usm_write_svf_to_file !------------------------------------------------------------------------------! ! Description: ! ------------ !> Parin for &usm_par for urban surface model !------------------------------------------------------------------------------! SUBROUTINE usm_parin IMPLICIT NONE CHARACTER (LEN=80) :: line !< string containing current line of file PARIN NAMELIST /urban_surface_par/ & land_category, & mrt_factors, & nrefsteps, & pedestrant_category, & ra_horiz_coef, & read_svf_on_init, & roof_category, & split_diffusion_radiation, & urban_surface, & usm_anthropogenic_heat, & usm_energy_balance_land, & usm_energy_balance_wall, & usm_material_model, & usm_lad_rma, & wall_category, & write_svf_on_init line = ' ' ! !-- Try to find urban surface model package REWIND ( 11 ) line = ' ' DO WHILE ( INDEX( line, '&urban_surface_par' ) == 0 ) READ ( 11, '(A)', END=10 ) line ENDDO BACKSPACE ( 11 ) ! !-- Read user-defined namelist READ ( 11, urban_surface_par ) ! !-- Set flag that indicates that the land surface model is switched on urban_surface = .TRUE. 10 CONTINUE END SUBROUTINE usm_parin !------------------------------------------------------------------------------! ! ! Description: ! ------------ !> Block of auxiliary subroutines: !> 1. quicksort and corresponding comparison !> 2. usm_merge_and_grow_csf for implementation of "dynamical growing" array !> for svf and csf !------------------------------------------------------------------------------! PURE FUNCTION svf_lt(svf1,svf2) result (res) TYPE (t_svf), INTENT(in) :: svf1,svf2 LOGICAL :: res IF ( svf1%isurflt < svf2%isurflt .OR. & (svf1%isurflt == svf2%isurflt .AND. svf1%isurfs < svf2%isurfs) ) THEN res = .TRUE. ELSE res = .FALSE. ENDIF END FUNCTION svf_lt !-- quicksort.f -*-f90-*- !-- Author: t-nissie, adaptation J.Resler !-- License: GPLv3 !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea RECURSIVE SUBROUTINE quicksort_svf(svfl, first, last) IMPLICIT NONE TYPE(t_svf), DIMENSION(:), INTENT(INOUT) :: svfl INTEGER, INTENT(IN) :: first, last TYPE(t_svf) :: x, t INTEGER :: i, j IF ( first>=last ) RETURN x = svfl( (first+last) / 2 ) i = first j = last DO DO while ( svf_lt(svfl(i),x) ) i=i+1 ENDDO DO while ( svf_lt(x,svfl(j)) ) j=j-1 ENDDO IF ( i >= j ) EXIT t = svfl(i); svfl(i) = svfl(j); svfl(j) = t i=i+1 j=j-1 ENDDO IF ( first < i-1 ) CALL quicksort_svf(svfl, first, i-1) IF ( j+1 < last ) CALL quicksort_svf(svfl, j+1, last) END SUBROUTINE quicksort_svf PURE FUNCTION csf_lt(csf1,csf2) result (res) TYPE (t_csf), INTENT(in) :: csf1,csf2 LOGICAL :: res IF ( csf1%ip < csf2%ip .OR. & (csf1%ip == csf2%ip .AND. csf1%itx < csf2%itx) .OR. & (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity < csf2%ity) .OR. & (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. & csf1%itz < csf2%itz) .OR. & (csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. & csf1%itz == csf2%itz .AND. csf1%isurfs < csf2%isurfs) ) THEN res = .TRUE. ELSE res = .FALSE. ENDIF END FUNCTION csf_lt !-- quicksort.f -*-f90-*- !-- Author: t-nissie, adaptation J.Resler !-- License: GPLv3 !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea RECURSIVE SUBROUTINE quicksort_csf(csfl, first, last) IMPLICIT NONE TYPE(t_csf), DIMENSION(:), INTENT(INOUT) :: csfl INTEGER, INTENT(IN) :: first, last TYPE(t_csf) :: x, t INTEGER :: i, j IF ( first>=last ) RETURN x = csfl( (first+last)/2 ) i = first j = last DO DO while ( csf_lt(csfl(i),x) ) i=i+1 ENDDO DO while ( csf_lt(x,csfl(j)) ) j=j-1 ENDDO IF ( i >= j ) EXIT t = csfl(i); csfl(i) = csfl(j); csfl(j) = t i=i+1 j=j-1 ENDDO IF ( first < i-1 ) CALL quicksort_csf(csfl, first, i-1) IF ( j+1 < last ) CALL quicksort_csf(csfl, j+1, last) END SUBROUTINE quicksort_csf SUBROUTINE usm_merge_and_grow_csf(newsize) INTEGER(iwp), INTENT(in) :: newsize !< new array size after grow, must be >= ncsfl !< or -1 to shrink to minimum INTEGER(iwp) :: iread, iwrite TYPE(t_csf), DIMENSION(:), POINTER :: acsfnew IF ( newsize == -1 ) THEN !-- merge in-place acsfnew => acsf ELSE !-- allocate new array IF ( mcsf == 0 ) THEN ALLOCATE( acsf1(newsize) ) acsfnew => acsf1 ELSE ALLOCATE( acsf2(newsize) ) acsfnew => acsf2 ENDIF ENDIF IF ( ncsfl >= 1 ) THEN !-- sort csf in place (quicksort) CALL quicksort_csf(acsf,1,ncsfl) !-- while moving to a new array, aggregate canopy sink factor records with identical box & source acsfnew(1) = acsf(1) iwrite = 1 DO iread = 2, ncsfl !-- here acsf(kcsf) already has values from acsf(icsf) IF ( acsfnew(iwrite)%itx == acsf(iread)%itx & .AND. acsfnew(iwrite)%ity == acsf(iread)%ity & .AND. acsfnew(iwrite)%itz == acsf(iread)%itz & .AND. acsfnew(iwrite)%isurfs == acsf(iread)%isurfs ) THEN !-- We could simply take either first or second rtransp, both are valid. As a very simple heuristic about which ray !-- probably passes nearer the center of the target box, we choose DIF from the entry with greater CSF, since that !-- might mean that the traced beam passes longer through the canopy box. IF ( acsfnew(iwrite)%rsvf < acsf(iread)%rsvf ) THEN acsfnew(iwrite)%rtransp = acsf(iread)%rtransp ENDIF acsfnew(iwrite)%rsvf = acsfnew(iwrite)%rsvf + acsf(iread)%rsvf !-- advance reading index, keep writing index ELSE !-- not identical, just advance and copy iwrite = iwrite + 1 acsfnew(iwrite) = acsf(iread) ENDIF ENDDO ncsfl = iwrite ENDIF IF ( newsize == -1 ) THEN !-- allocate new array and copy shrinked data IF ( mcsf == 0 ) THEN ALLOCATE( acsf1(ncsfl) ) acsf1(1:ncsfl) = acsf2(1:ncsfl) ELSE ALLOCATE( acsf2(ncsfl) ) acsf2(1:ncsfl) = acsf1(1:ncsfl) ENDIF ENDIF !-- deallocate old array IF ( mcsf == 0 ) THEN mcsf = 1 acsf => acsf1 DEALLOCATE( acsf2 ) ELSE mcsf = 0 acsf => acsf2 DEALLOCATE( acsf1 ) ENDIF ncsfla = newsize END SUBROUTINE usm_merge_and_grow_csf !-- quicksort.f -*-f90-*- !-- Author: t-nissie, adaptation J.Resler !-- License: GPLv3 !-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea RECURSIVE SUBROUTINE quicksort_csf2(kpcsflt, pcsflt, first, last) IMPLICIT NONE INTEGER(iwp), DIMENSION(:,:), INTENT(INOUT) :: kpcsflt REAL(wp), DIMENSION(:,:), INTENT(INOUT) :: pcsflt INTEGER, INTENT(IN) :: first, last REAL(wp), DIMENSION(ndcsf) :: t2 INTEGER(iwp), DIMENSION(kdcsf) :: x, t1 INTEGER :: i, j IF ( first>=last ) RETURN x = kpcsflt(:, (first+last)/2 ) i = first j = last DO DO while ( csf_lt2(kpcsflt(:,i),x) ) i=i+1 ENDDO DO while ( csf_lt2(x,kpcsflt(:,j)) ) j=j-1 ENDDO IF ( i >= j ) EXIT t1 = kpcsflt(:,i); kpcsflt(:,i) = kpcsflt(:,j); kpcsflt(:,j) = t1 t2 = pcsflt(:,i); pcsflt(:,i) = pcsflt(:,j); pcsflt(:,j) = t2 i=i+1 j=j-1 ENDDO IF ( first < i-1 ) CALL quicksort_csf2(kpcsflt, pcsflt, first, i-1) IF ( j+1 < last ) CALL quicksort_csf2(kpcsflt, pcsflt, j+1, last) END SUBROUTINE quicksort_csf2 PURE FUNCTION csf_lt2(item1, item2) result(res) INTEGER(iwp), DIMENSION(kdcsf), INTENT(in) :: item1, item2 LOGICAL :: res res = ( (item1(3) < item2(3)) & .OR. (item1(3) == item2(3) .AND. item1(2) < item2(2)) & .OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) < item2(1)) & .OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) == item2(1) & .AND. item1(4) < item2(4)) ) END FUNCTION csf_lt2 END MODULE urban_surface_mod