!> @file urban_surface_mod.f90
!--------------------------------------------------------------------------------!
! This file is part of PALM.
!
! PALM is free software: you can redistribute it and/or modify it under the
! terms of the GNU General Public License as published by the Free Software
! Foundation, either version 3 of the License, or (at your option) any later
! version.
!
! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
! A PARTICULAR PURPOSE. See the GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License along with
! PALM. If not, see .
!
! Copyright 2015-2016 Czech Technical University in Prague
! Copyright 1997-2016 Leibniz Universitaet Hannover
!--------------------------------------------------------------------------------!
!
! Current revisions:
! ------------------
!
!
! Former revisions:
! -----------------
! $Id: urban_surface_mod.f90 2012 2016-09-19 17:31:38Z hellstea $
!
! 2011 2016-09-19 17:29:57Z kanani
! Major reformatting according to PALM coding standard (comments, blanks,
! alphabetical ordering, etc.),
! removed debug_prints,
! removed auxiliary SUBROUTINE get_usm_info, instead, USM flag urban_surface is
! defined in MODULE control_parameters (modules.f90) to avoid circular
! dependencies,
! renamed canopy_heat_flux to pc_heating_rate, as meaning of quantity changed.
!
! 2007 2016-08-24 15:47:17Z kanani
! Initial revision
!
!
! Description:
! ------------
! 2016/6/9 - Initial version of the USM (Urban Surface Model)
! authors: Jaroslav Resler, Pavel Krc (CTU in Prague, ICS AS in Prague)
! with contributions: Michal Belda, Nina Benesova, Ondrej Vlcek
! partly inspired by PALM LSM (B. Maronga)
! parameterizations of Ra checked with TUF3D (E. S. Krayenhoff)
!> Module for Urban Surface Model (USM)
!> The module includes:
!> 1. radiation model with direct/diffuse radiation, shading, reflections
!> and integration with plant canopy
!> 2. wall and wall surface model
!> 3. surface layer energy balance
!> 4. anthropogenic heat (only from transportation so far)
!> 5. necessary auxiliary subroutines (reading inputs, writing outputs,
!> restart simulations, ...)
!> It also make use of standard radiation and integrates it into
!> urban surface model.
!>
!> Further work:
!> -------------
!> 1. Reduce number of shape view factors by merging factors for distant surfaces
!> under shallow angles. Idea: Iteratively select the smallest shape view
!> factor by value (among all sources and targets) which has a similarly
!> oriented source neighbor (or near enough) SVF and merge them by adding
!> value of the smaller SVF to the larger one and deleting the smaller one.
!> This will allow for better scaling at higher resolutions.
!>
!> 2. Remove global arrays surfouts, surfoutl and only keep track of radiosity
!> from surfaces that are visible from local surfaces (i.e. there is a SVF
!> where target is local). To do that, radiosity will be exchanged after each
!> reflection step using MPI_Alltoall instead of current MPI_Allgather.
!>
!------------------------------------------------------------------------------!
MODULE urban_surface_mod
USE arrays_3d, &
ONLY: zu, pt, pt_1, pt_2, p, ol, shf, ts, us, u, v, w, hyp, tend
USE cloud_parameters, &
ONLY: cp, r_d
USE constants, &
ONLY: pi
USE control_parameters, &
ONLY: dz, topography, dt_3d, intermediate_timestep_count, &
initializing_actions, intermediate_timestep_count_max, &
simulated_time, end_time, timestep_scheme, tsc, &
coupling_char, io_blocks, io_group, message_string, &
time_since_reference_point, surface_pressure, &
g, pt_surface, large_scale_forcing, lsf_surf, &
time_do3d, dt_do3d, average_count_3d, urban_surface
USE cpulog, &
ONLY: cpu_log, log_point, log_point_s
USE grid_variables, &
ONLY: dx, dy, ddx, ddy, ddx2, ddy2
USE indices, &
ONLY: nx, ny, nnx, nny, nnz, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, &
nysg, nzb_s_inner, nzb_s_outer, nzb, nzt, nbgp
USE, INTRINSIC :: iso_c_binding
USE kinds
USE pegrid
USE plant_canopy_model_mod, &
ONLY: plant_canopy, pch_index, &
pc_heating_rate, lad_s
USE radiation_model_mod, &
ONLY: radiation, calc_zenith, zenith, day_init, time_utc_init, &
rad_net, rad_sw_in, rad_lw_in, rad_sw_out, rad_lw_out, &
sigma_sb, sun_direction, sun_dir_lat, sun_dir_lon, &
force_radiation_call
USE statistics, &
ONLY: hom, statistic_regions
IMPLICIT NONE
!-- configuration parameters (they can be setup in PALM config)
LOGICAL :: split_diffusion_radiation = .TRUE. !< split direct and diffusion dw radiation
!< (.F. in case the radiation model already does it)
LOGICAL :: usm_energy_balance_land = .TRUE. !< flag parameter indicating wheather the energy balance is calculated for land and roofs
LOGICAL :: usm_energy_balance_wall = .TRUE. !< flag parameter indicating wheather the energy balance is calculated for land and roofs
LOGICAL :: usm_material_model = .TRUE. !< flag parameter indicating wheather the model of heat in materials is used
LOGICAL :: usm_anthropogenic_heat = .FALSE. !< flag parameter indicating wheather the anthropogenic heat sources (e.g.transportation) are used
LOGICAL :: force_radiation_call_l = .FALSE. !< flag parameter for unscheduled radiation model calls
LOGICAL :: mrt_factors = .FALSE. !< whether to generate MRT factor files during init
LOGICAL :: write_svf_on_init = .FALSE.
LOGICAL :: read_svf_on_init = .FALSE.
LOGICAL :: usm_lad_rma = .TRUE. !< use MPI RMA to access LAD for raytracing (instead of global array)
INTEGER(iwp) :: nrefsteps = 0 !< number of reflection steps to perform
INTEGER(iwp) :: land_category = 2 !< default category for land surface
INTEGER(iwp) :: wall_category = 2 !< default category for wall surface over pedestrian zone
INTEGER(iwp) :: pedestrant_category = 2 !< default category for wall surface in pedestrian zone
INTEGER(iwp) :: roof_category = 2 !< default category for root surface
REAL(wp) :: roof_height_limit = 4._wp !< height for distinguish between land surfaces and roofs
REAL(wp), PARAMETER :: ext_coef = 0.6_wp !< extinction coefficient (a.k.a. alpha)
REAL(wp) :: ra_horiz_coef = 5.0_wp !< mysterious coefficient for correction of overestimation
!< of r_a for horizontal surfaces -> TODO
!-- parameters of urban surface model
INTEGER(iwp), PARAMETER :: usm_version_len = 10 !< length of identification string of usm version
CHARACTER(usm_version_len), PARAMETER :: usm_version = 'USM v. 1.0' !< identification of version of binary svf and restart files
INTEGER(iwp), PARAMETER :: svf_code_len = 15 !< length of code for verification of the end of svf file
CHARACTER(svf_code_len), PARAMETER :: svf_code = '*** end svf ***' !< code for verification of the end of svf file
INTEGER(iwp) :: nzu !< number of layers of urban surface (will be calculated)
INTEGER(iwp) :: nzub,nzut !< bottom and top layer of urban surface (will be calculated)
INTEGER(iwp), PARAMETER :: nzut_free = 3 !< number of free layers in urban surface layer above top of buildings
INTEGER(iwp), PARAMETER :: ndsvf = 2 !< number of dimensions of real values in SVF
INTEGER(iwp), PARAMETER :: ndcsf = 2 !< number of dimensions of real values in CSF
INTEGER(iwp), PARAMETER :: kdcsf = 4 !< number of dimensions of integer values in CSF
INTEGER(iwp), PARAMETER :: id = 1 !< position of d-index in surfl and surf
INTEGER(iwp), PARAMETER :: iz = 2 !< position of k-index in surfl and surf
INTEGER(iwp), PARAMETER :: iy = 3 !< position of j-index in surfl and surf
INTEGER(iwp), PARAMETER :: ix = 4 !< position of i-index in surfl and surf
INTEGER(iwp), PARAMETER :: iroof = 0 !< 0 - index of ground or roof
INTEGER(iwp), PARAMETER :: isouth = 1 !< 1 - index of south facing wall
INTEGER(iwp), PARAMETER :: inorth = 2 !< 2 - index of north facing wall
INTEGER(iwp), PARAMETER :: iwest = 3 !< 3 - index of west facing wall
INTEGER(iwp), PARAMETER :: ieast = 4 !< 4 - index of east facing wall
INTEGER(iwp), PARAMETER :: isky = 5 !< 5 - index of top border of the urban surface layer ("urban sky")
INTEGER(iwp), PARAMETER :: inorthb = 6 !< 6 - index of free north border of the domain (south facing)
INTEGER(iwp), PARAMETER :: isouthb = 7 !< 7 - index of north south border of the domain (north facing)
INTEGER(iwp), PARAMETER :: ieastb = 8 !< 8 - index of east border of the domain (west facing)
INTEGER(iwp), PARAMETER :: iwestb = 9 !< 9 - index of wast border of the domain (east facing)
INTEGER(iwp), DIMENSION(0:9), PARAMETER :: idir = (/0,0,0,-1,1,0,0,0,-1,1/) !< surface normal direction x indices
INTEGER(iwp), DIMENSION(0:9), PARAMETER :: jdir = (/0,-1,1,0,0,0,-1,1,0,0/) !< surface normal direction y indices
INTEGER(iwp), DIMENSION(0:9), PARAMETER :: kdir = (/1,0,0,0,0,-1,0,0,0,0/) !< surface normal direction z indices
REAL(wp), DIMENSION(1:4) :: ddxy2 !< 1/dx^2 or 1/dy^2 (in surface normal direction)
INTEGER(iwp), DIMENSION(1:4,6:9) :: ijdb !< start and end of the local domain border coordinates (set in code)
LOGICAL, DIMENSION(6:9) :: isborder !< is PE on the border of the domain in four corresponding directions
!< parameter but set in the code
!-- indices and sizes of urban surface model
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: surfl !< coordinates of i-th local surface in local grid - surfl[:,k] = [d, z, y, x]
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: surf !< coordinates of i-th surface in grid - surf[:,k] = [d, z, y, x]
INTEGER(iwp) :: nsurfl !< number of all surfaces in local processor
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nsurfs !< array of number of all surfaces in individual processors
INTEGER(iwp) :: startsky !< start index of block of sky
INTEGER(iwp) :: endsky !< end index of block of sky
INTEGER(iwp) :: nskys !< number of sky surfaces in local processor
INTEGER(iwp) :: startland !< start index of block of land and roof surfaces
INTEGER(iwp) :: endland !< end index of block of land and roof surfaces
INTEGER(iwp) :: nlands !< number of land and roof surfaces in local processor
INTEGER(iwp) :: startwall !< start index of block of wall surfaces
INTEGER(iwp) :: endwall !< end index of block of wall surfaces
INTEGER(iwp) :: nwalls !< number of wall surfaces in local processor
INTEGER(iwp) :: startenergy !< start index of block of real surfaces (land, walls and roofs)
INTEGER(iwp) :: endenergy !< end index of block of real surfaces (land, walls and roofs)
INTEGER(iwp) :: nenergy !< number of real surfaces in local processor
INTEGER(iwp) :: nsurf !< global number of surfaces in index array of surfaces (nsurf = Σproc nsurfs)
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: surfstart !< starts of blocks of surfaces for individual processors in array surf
!< respective block for particular processor is surfstart[iproc]+1 : surfstart[iproc+1]
INTEGER(iwp) :: nsvfl !< number of svf (excluding csf) for local processor
INTEGER(iwp) :: ncsfl !< no. of csf in local processor
!< needed only during calc_svf but must be here because it is
!< shared between subroutines usm_calc_svf and usm_raytrace
INTEGER(iwp) :: nsvfcsfl !< sum of svf+csf for local processor
!-- type for calculation of svf
TYPE t_svf
INTEGER(iwp) :: isurflt !<
INTEGER(iwp) :: isurfs !<
REAL(wp) :: rsvf !<
REAL(wp) :: rtransp !<
END TYPE
!-- type for calculation of csf
TYPE t_csf
INTEGER(iwp) :: ip !<
INTEGER(iwp) :: itx !<
INTEGER(iwp) :: ity !<
INTEGER(iwp) :: itz !<
INTEGER(iwp) :: isurfs !<
REAL(wp) :: rsvf !<
REAL(wp) :: rtransp !<
END TYPE
!-- arrays for calculation of svf and csf
TYPE(t_svf), DIMENSION(:), POINTER :: asvf !< pointer to growing svc array
TYPE(t_csf), DIMENSION(:), POINTER :: acsf !< pointer to growing csf array
TYPE(t_svf), DIMENSION(:), ALLOCATABLE, TARGET :: asvf1, asvf2 !< realizations of svf array
TYPE(t_csf), DIMENSION(:), ALLOCATABLE, TARGET :: acsf1, acsf2 !< realizations of csf array
INTEGER(iwp) :: nsvfla !< dimmension of array allocated for storage of svf in local processor
INTEGER(iwp) :: ncsfla !< dimmension of array allocated for storage of csf in local processor
INTEGER(iwp) :: msvf, mcsf !< mod for swapping the growing array
INTEGER(iwp), PARAMETER :: gasize = 10000 !< initial size of growing arrays
!-- arrays storing the values of USM
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: svfsurf !< svfsurf[:,isvf] = index of source and target surface for svf[isvf]
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: svf !< array of shape view factors+direct irradiation factors
!< for individual local surfaces and plant canopy sinks
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfins !< array of sw radiation falling to local surface after i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinl !< array of lw radiation for local surface after i-th reflection
!< Inward radiation is also valid for virtual surfaces (radiation leaving domain)
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinsw !< array of sw radiation falling to local surface including radiation from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlw !< array of lw radiation falling to local surface including radiation from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdir !< array of direct sw radiation falling to local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdif !< array of diffuse sw radiation from sky and model boundary falling to local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwdif !< array of diffuse lw radiation from sky and model boundary falling to local surface
!< Outward radiation is only valid for nonvirtual surfaces
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsl !< array of reflected sw radiation for local surface in i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutll !< array of reflected + emitted lw radiation for local surface in i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfouts !< array of reflected sw radiation for all surfaces in i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutl !< array of reflected + emitted lw radiation for all surfaces in i-th reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsw !< array of total sw radiation outgoing from nonvirtual surfaces surfaces after all reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutlw !< array of total lw radiation outgoing from nonvirtual surfaces surfaces after all reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfhf !< array of total radiation flux incoming to minus outgoing from local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: rad_net_l !< local copy of rad_net (net radiation at surface)
!-- arrays for time averages
REAL(wp), DIMENSION(:), ALLOCATABLE :: rad_net_av !< average of rad_net_l
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinsw_av !< average of sw radiation falling to local surface including radiation from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlw_av !< average of lw radiation falling to local surface including radiation from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdir_av !< average of direct sw radiation falling to local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswdif_av !< average of diffuse sw radiation from sky and model boundary falling to local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwdif_av !< average of diffuse lw radiation from sky and model boundary falling to local surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinswref_av !< average of sw radiation falling to surface from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfinlwref_av !< average of lw radiation falling to surface from reflections
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutsw_av !< average of total sw radiation outgoing from nonvirtual surfaces surfaces after all reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfoutlw_av !< average of total lw radiation outgoing from nonvirtual surfaces surfaces after all reflection
REAL(wp), DIMENSION(:), ALLOCATABLE :: surfhf_av !< average of total radiation flux incoming to minus outgoing from local surface
!-- block variables needed for calculation of the plant canopy model inside the urban surface model
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pcbl !< z,y,x coordinates of i-th local plant canopy box pcbl[:,i] = [z, y, x]
INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: gridpcbl !< index of local pcb[z,y,x]
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinsw !< array of absorbed sw radiation for local plant canopy box
REAL(wp), DIMENSION(:), ALLOCATABLE :: pcbinlw !< array of absorbed lw radiation for local plant canopy box
INTEGER(iwp) :: npcbl !< number of the plant canopy gridboxes in local processor
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pch !< heights of the plant canopy
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: pct !< top layer of the plant canopy
REAL(wp), DIMENSION(:,:,:), POINTER :: usm_lad !< subset of lad_s within urban surface, transformed to plain Z coordinate
REAL(wp), DIMENSION(:), POINTER :: usm_lad_g !< usm_lad globalized (used to avoid MPI RMA calls in raytracing)
REAL(wp) :: prototype_lad !< prototype leaf area density for computing effective optical depth
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: nzterr, plantt !< temporary global arrays for raytracing
!-- radiation related arrays (it should be better in interface of radiation module of PALM
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_dir !< direct sw radiation
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_sw_in_diff !< diffusion sw radiation
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rad_lw_in_diff !< diffusion lw radiation
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- anthropogenic heat sources
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: aheat !< daily average of anthropogenic heat (W/m2)
REAL(wp), DIMENSION(:), ALLOCATABLE :: aheatprof !< diurnal profile of anthropogenic heat
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- wall surface model
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- wall surface model constants
INTEGER(iwp), PARAMETER :: nzb_wall = 0 !< inner side of the wall model (to be switched)
INTEGER(iwp), PARAMETER :: nzt_wall = 3 !< outer side of the wall model (to be switched)
INTEGER(iwp), PARAMETER :: nzw = 4 !< number of wall layers (fixed for now)
REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: zwn_default = (/0.0242_wp, 0.0969_wp, 0.346_wp, 1.0_wp /)
!< normalized soil, wall and roof layer depths (m/m)
REAL(wp) :: wall_inner_temperature = 296.0_wp !< temperature of the inner wall surface (~23 degrees C) (K)
REAL(wp) :: roof_inner_temperature = 296.0_wp !< temperature of the inner roof surface (~23 degrees C) (K)
REAL(wp) :: soil_inner_temperature = 283.0_wp !< temperature of the deep soil (~10 degrees C) (K)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- surface and material model variables for walls, ground, roofs
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: surface_types !< array of types of wall parameters
REAL(wp), DIMENSION(:), ALLOCATABLE :: zwn !< normalized wall layer depths (m)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddz_wall !< 1/dz_wall
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddz_wall_stag !< 1/dz_wall_stag
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dz_wall !< wall grid spacing (center-center)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: dz_wall_stag !< wall grid spacing (edge-edge)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: zw !< wall layer depths (m)
#if defined( __nopointer )
REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf !< wall surface temperature (K)
REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_p !< progn. wall surface temperature (K)
#else
REAL(wp), DIMENSION(:), POINTER :: t_surf
REAL(wp), DIMENSION(:), POINTER :: t_surf_p
REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_1
REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_2
#endif
REAL(wp), DIMENSION(:), ALLOCATABLE, TARGET :: t_surf_av !< average of wall surface temperature (K)
!-- Temporal tendencies for time stepping
REAL(wp), DIMENSION(:), ALLOCATABLE :: tt_surface_m !< surface temperature tendency (K)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- Energy balance variables
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- parameters of the land, roof and wall surfaces
LOGICAL, DIMENSION(:), ALLOCATABLE :: isroof_surf !< is the surface the part of a roof
REAL(wp), DIMENSION(:), ALLOCATABLE :: albedo_surf !< albedo of the surface
!-- parameters of the wall surfaces
REAL(wp), DIMENSION(:), ALLOCATABLE :: c_surface !< heat capacity of the wall surface skin ( J m−2 K−1 )
REAL(wp), DIMENSION(:), ALLOCATABLE :: emiss_surf !< emissivity of the wall surface
REAL(wp), DIMENSION(:), ALLOCATABLE :: lambda_surf !< heat conductivity λS between air and surface ( W m−2 K−1 )
!-- parameters of the walls material
REAL(wp), DIMENSION(:), ALLOCATABLE :: thickness_wall !< thickness of the wall, roof and soil layers
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: rho_c_wall !< volumetric heat capacity of the material ( J m-3 K-1 ) (= 2.19E6)
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: lambda_h !< heat conductivity λT of the material ( W m-1 K-1 )
REAL(wp), DIMENSION(:), ALLOCATABLE :: roughness_wall !< roughness relative to concrete
!-- output wall heat flux arrays
REAL(wp), DIMENSION(:), ALLOCATABLE :: wshf !< kinematic wall heat flux of sensible heat (needed for diffusion_s!<)
REAL(wp), DIMENSION(:), ALLOCATABLE :: wshf_eb !< wall heat flux of sensible heat in wall normal direction
REAL(wp), DIMENSION(:), ALLOCATABLE :: wshf_eb_av !< average of wshf_eb
REAL(wp), DIMENSION(:), ALLOCATABLE :: wghf_eb !< wall ground heat flux
REAL(wp), DIMENSION(:), ALLOCATABLE :: wghf_eb_av !< average of wghf_eb
#if defined( __nopointer )
REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_wall !< Wall temperature (K)
REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_wall_av !< Average of t_wall
REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_wall_p !< Prog. wall temperature (K)
#else
REAL(wp), DIMENSION(:,:), POINTER :: t_wall, t_wall_p
REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_wall_av, t_wall_1, t_wall_2
#endif
!-- Wall temporal tendencies for time stepping
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tt_wall_m !< t_wall prognostic array
!-- Surface and material parameters classes (surface_type)
!-- albedo, emissivity, lambda_surf, roughness, thickness, volumetric heat capacity, thermal conductivity
INTEGER(iwp) :: n_surface_types !< number of the wall type categories
INTEGER(iwp), PARAMETER :: n_surface_params = 8 !< number of parameters for each type of the wall
INTEGER(iwp), PARAMETER :: ialbedo = 1 !< albedo of the surface
INTEGER(iwp), PARAMETER :: iemiss = 2 !< emissivity of the surface
INTEGER(iwp), PARAMETER :: ilambdas = 3 !< heat conductivity λS between air and surface ( W m−2 K−1 )
INTEGER(iwp), PARAMETER :: irough = 4 !< roughness relative to concrete
INTEGER(iwp), PARAMETER :: icsurf = 5 !< Surface skin layer heat capacity (J m−2 K−1 )
INTEGER(iwp), PARAMETER :: ithick = 6 !< thickness of the surface (wall, roof, land) ( m )
INTEGER(iwp), PARAMETER :: irhoC = 7 !< volumetric heat capacity rho*C of the material ( J m−3 K−1 )
INTEGER(iwp), PARAMETER :: ilambdah = 8 !< thermal conductivity λH of the wall (W m−1 K−1 )
CHARACTER(12), DIMENSION(:), ALLOCATABLE :: surface_type_names !< names of wall types (used only for reports)
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: surface_type_codes !< codes of wall types
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: surface_params !< parameters of wall types
CHARACTER(len=*), PARAMETER :: svf_file_name='usm_svf'
!-- interfaces of subroutines accessed from outside of this module
INTERFACE usm_check_data_output
MODULE PROCEDURE usm_check_data_output
END INTERFACE usm_check_data_output
INTERFACE usm_check_parameters
MODULE PROCEDURE usm_check_parameters
END INTERFACE usm_check_parameters
INTERFACE usm_data_output_3d
MODULE PROCEDURE usm_data_output_3d
END INTERFACE usm_data_output_3d
INTERFACE usm_define_netcdf_grid
MODULE PROCEDURE usm_define_netcdf_grid
END INTERFACE usm_define_netcdf_grid
INTERFACE usm_init_urban_surface
MODULE PROCEDURE usm_init_urban_surface
END INTERFACE usm_init_urban_surface
INTERFACE usm_material_heat_model
MODULE PROCEDURE usm_material_heat_model
END INTERFACE usm_material_heat_model
INTERFACE usm_parin
MODULE PROCEDURE usm_parin
END INTERFACE usm_parin
INTERFACE usm_radiation
MODULE PROCEDURE usm_radiation
END INTERFACE usm_radiation
INTERFACE usm_read_restart_data
MODULE PROCEDURE usm_read_restart_data
END INTERFACE usm_read_restart_data
INTERFACE usm_surface_energy_balance
MODULE PROCEDURE usm_surface_energy_balance
END INTERFACE usm_surface_energy_balance
INTERFACE usm_swap_timelevel
MODULE PROCEDURE usm_swap_timelevel
END INTERFACE usm_swap_timelevel
INTERFACE usm_wall_heat_flux
MODULE PROCEDURE usm_wall_heat_flux
MODULE PROCEDURE usm_wall_heat_flux_ij
END INTERFACE usm_wall_heat_flux
INTERFACE usm_write_restart_data
MODULE PROCEDURE usm_write_restart_data
END INTERFACE usm_write_restart_data
SAVE
PRIVATE
!-- Public parameters, constants and initial values
PUBLIC split_diffusion_radiation, &
usm_anthropogenic_heat, usm_material_model, mrt_factors, &
usm_check_parameters, &
usm_energy_balance_land, usm_energy_balance_wall, nrefsteps, &
usm_init_urban_surface, usm_radiation, usm_read_restart_data, &
usm_wall_heat_flux, &
usm_surface_energy_balance, usm_material_heat_model, &
usm_swap_timelevel, usm_check_data_output, usm_average_3d_data, &
usm_data_output_3d, usm_define_netcdf_grid, usm_parin, &
usm_write_restart_data, &
nzub, nzut, ra_horiz_coef, usm_lad_rma, &
land_category, pedestrant_category, wall_category, roof_category, &
write_svf_on_init, read_svf_on_init
CONTAINS
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This subroutine creates the necessary indices of the urban surfaces
!> and plant canopy and it allocates the needed arrays for USM
!------------------------------------------------------------------------------!
SUBROUTINE usm_allocate_urban_surface
IMPLICIT NONE
INTEGER(iwp) :: i, j, k, d, l, ir, jr, ids
INTEGER(iwp) :: nzubl, nzutl, isurf, ipcgb
INTEGER :: procid
!-- auxiliary vars
ddxy2 = (/ddy2,ddy2,ddx2,ddx2/) !< 1/dx^2 or 1/dy^2 (in surface normal direction)
CALL location_message( '', .TRUE. )
CALL location_message( ' allocation of needed arrays', .TRUE. )
!-- find nzub, nzut, nzu
nzubl = minval(nzb_s_inner(nys:nyn,nxl:nxr))
nzutl = maxval(nzb_s_inner(nys:nyn,nxl:nxr))
nzubl = max(nzubl,nzb)
IF ( plant_canopy ) THEN
!-- allocate needed arrays
ALLOCATE( pct(nys:nyn,nxl:nxr) )
ALLOCATE( pch(nys:nyn,nxl:nxr) )
!-- calculate plant canopy height
npcbl = 0
pct = 0.0_wp
pch = 0.0_wp
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzt+1, 0, -1
IF ( lad_s(k,j,i) /= 0.0_wp ) THEN
!-- we are at the top of the pcs
pct(j,i) = k + nzb_s_inner(j,i)
pch(j,i) = k
npcbl = npcbl + pch(j,i)
EXIT
ENDIF
ENDDO
ENDDO
ENDDO
nzutl = max(nzutl, maxval(pct))
!-- code of plant canopy model uses parameter pch_index
!-- we need to setup it here to right value
!-- (pch_index, lad_s and other arrays in PCM are defined flat)
pch_index = maxval(pch)
prototype_lad = maxval(lad_s) * .9_wp !< better be *1.0 if lad is either 0 or maxval(lad) everywhere
IF ( prototype_lad <= 0._wp ) prototype_lad = .3_wp
!WRITE(message_string, '(a,f6.3)') 'Precomputing effective box optical ' &
! // 'depth using prototype leaf area density = ', prototype_lad
!CALL message('usm_init_urban_surface', 'PA0520', 0, 0, -1, 6, 0)
ENDIF
nzutl = min(nzutl+nzut_free, nzt)
#if defined( __parallel )
CALL MPI_AllReduce(nzubl,nzub,1,MPI_INTEGER,MPI_MIN,comm2d,ierr);
CALL MPI_AllReduce(nzutl,nzut,1,MPI_INTEGER,MPI_MAX,comm2d,ierr);
#else
nzub = nzubl
nzut = nzutl
#endif
!-- global number of urban layers
nzu = nzut - nzub + 1
!-- allocate urban surfaces grid
!-- calc number of surfaces in local proc
CALL location_message( ' calculation of indices for surfaces', .TRUE. )
nsurfl = 0
!-- calculate land surface and roof
startland = nsurfl+1
nsurfl = nsurfl+(nxr-nxl+1)*(nyn-nys+1)
endland = nsurfl
nlands = endland-startland+1
!-- calculation of the walls
startwall = nsurfl+1
DO i = nxl, nxr
DO j = nys, nyn
!-- test for walls
!-- (we don't use array flags because it isn't calculated in case of masking_method=.T.)
DO ids = 1, 4 !-- four wall directions
jr = min(max(j-jdir(ids),0),ny)
ir = min(max(i-idir(ids),0),nx)
nsurfl = nsurfl + max(0, nzb_s_inner(jr,ir)-nzb_s_inner(j,i))
ENDDO
ENDDO
ENDDO
endwall = nsurfl
nwalls = endwall-startwall+1
!-- range of energy balance surfaces
nenergy = 0
IF ( usm_energy_balance_land ) THEN
startenergy = startland
nenergy = nenergy + nlands
ELSE
startenergy = startwall
ENDIF
IF ( usm_energy_balance_wall ) THEN
endenergy = endwall
nenergy = nenergy + nwalls
ELSE
endenergy = endland
ENDIF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- block of virtual surfaces
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- calculate sky surfaces
startsky = nsurfl+1
nsurfl = nsurfl+(nxr-nxl+1)*(nyn-nys+1)
endsky = nsurfl
nskys = endsky-startsky+1
!-- border flags
#if defined( __parallel )
isborder = (/ north_border_pe, south_border_pe, right_border_pe, left_border_pe /)
#else
isborder = (/.TRUE.,.TRUE.,.TRUE.,.TRUE./)
#endif
!-- fill array of the limits of the local domain borders
ijdb = RESHAPE( (/ nxl,nxr,nyn,nyn,nxl,nxr,nys,nys,nxr,nxr,nys,nyn,nxl,nxl,nys,nyn /), (/4, 4/) )
!-- calulation of the free borders of the domain
DO ids = 6,9
IF ( isborder(ids) ) THEN
!-- free border of the domain in direction ids
DO i = ijdb(1,ids), ijdb(2,ids)
DO j = ijdb(3,ids), ijdb(4,ids)
k = nzut - max(nzb_s_inner(j,i), nzb_s_inner(j-jdir(ids),i-idir(ids)))
nsurfl = nsurfl + k
ENDDO
ENDDO
ENDIF
ENDDO
!-- fill gridpcbl and pcbl
IF ( plant_canopy ) THEN
ALLOCATE( pcbl(iz:ix, 1:npcbl) )
ALLOCATE( gridpcbl(nzub:nzut,nys:nyn,nxl:nxr) )
gridpcbl(:,:,:) = 0
ipcgb = 0
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i)+1, pct(j,i)
ipcgb = ipcgb + 1
gridpcbl(k,j,i) = ipcgb
pcbl(:,ipcgb) = (/ k, j, i /)
ENDDO
ENDDO
ENDDO
ALLOCATE( pcbinsw( 1:npcbl ) )
ALLOCATE( pcbinlw( 1:npcbl ) )
ENDIF
!-- fill surfl
ALLOCATE(surfl(4,nsurfl))
isurf = 0
!-- add land surfaces or roofs
DO i = nxl, nxr
DO j = nys, nyn
isurf = isurf + 1
k = nzb_s_inner(j,i)+1
surfl(:,isurf) = (/iroof,k,j,i/)
ENDDO
ENDDO
!-- add walls
DO i = nxl, nxr
DO j = nys, nyn
DO ids = 1, 4 !> four wall directions
jr = min(max(j-jdir(ids),0),ny)
ir = min(max(i-idir(ids),0),nx)
DO k = nzb_s_inner(j,i)+1, nzb_s_inner(jr,ir)
isurf = isurf + 1
surfl(:,isurf) = (/ids,k,j,i/)
ENDDO
ENDDO
ENDDO
ENDDO
!-- add sky
DO i = nxl, nxr
DO j = nys, nyn
isurf = isurf + 1
k = nzut
surfl(:,isurf) = (/isky,k,j,i/)
ENDDO
ENDDO
!-- calulation of the free borders of the domain
DO ids = 6,9
IF ( isborder(ids) ) THEN
!-- free border of the domain in direction ids
DO i = ijdb(1,ids), ijdb(2,ids)
DO j = ijdb(3,ids), ijdb(4,ids)
DO k = max(nzb_s_inner(j,i),nzb_s_inner(j-jdir(ids),i-idir(ids)))+1, nzut
isurf = isurf + 1
surfl(:,isurf) = (/ids,k,j,i/)
ENDDO
ENDDO
ENDDO
ENDIF
ENDDO
!-- global array surf of indices of surfaces and displacement index array surfstart
ALLOCATE(nsurfs(0:numprocs-1))
#if defined( __parallel )
CALL MPI_Allgather(nsurfl,1,MPI_INTEGER,nsurfs,1,MPI_INTEGER,comm2d,ierr)
#else
nsurfs(0) = nsurfl
#endif
ALLOCATE(surfstart(0:numprocs))
k = 0
DO i=0,numprocs-1
surfstart(i) = k
k = k+nsurfs(i)
ENDDO
surfstart(numprocs) = k
nsurf = k
ALLOCATE(surf(4,nsurf))
#if defined( __parallel )
CALL MPI_AllGatherv(surfl, nsurfl*4, MPI_INTEGER, surf, nsurfs*4, surfstart*4, MPI_INTEGER, comm2d, ierr)
#else
surf = surfl
#endif
!--
!-- allocation of the arrays for direct and diffusion radiation
CALL location_message( ' allocation of radiation arrays', .TRUE. )
!-- rad_sw_in, rad_lw_in are computed in radiation model,
!-- splitting of direct and diffusion part is done
!-- in usm_calc_diffusion_radiation for now
ALLOCATE( rad_sw_in_dir(nysg:nyng,nxlg:nxrg) )
ALLOCATE( rad_sw_in_diff(nysg:nyng,nxlg:nxrg) )
ALLOCATE( rad_lw_in_diff(nysg:nyng,nxlg:nxrg) )
!-- allocate radiation arrays
ALLOCATE( surfins(nsurfl) )
ALLOCATE( surfinl(nsurfl) )
ALLOCATE( surfinsw(nsurfl) )
ALLOCATE( surfinlw(nsurfl) )
ALLOCATE( surfinswdir(nsurfl) )
ALLOCATE( surfinswdif(nsurfl) )
ALLOCATE( surfinlwdif(nsurfl) )
ALLOCATE( surfoutsl(startenergy:endenergy) )
ALLOCATE( surfoutll(startenergy:endenergy) )
ALLOCATE( surfoutsw(startenergy:endenergy) )
ALLOCATE( surfoutlw(startenergy:endenergy) )
ALLOCATE( surfouts(nsurf) ) !TODO: global surfaces without virtual
ALLOCATE( surfoutl(nsurf) ) !TODO: global surfaces without virtual
ALLOCATE( surfhf(startenergy:endenergy) )
ALLOCATE( rad_net_l(startenergy:endenergy) )
!-- Wall surface model
!-- allocate arrays for wall surface model and define pointers
!-- allocate array of wall types and wall parameters
ALLOCATE ( surface_types(startenergy:endenergy) )
!-- broadband albedo of the land, roof and wall surface
!-- for domain border and sky set artifically to 1.0
!-- what allows us to calculate heat flux leaving over
!-- side and top borders of the domain
ALLOCATE ( albedo_surf(nsurfl) )
albedo_surf = 1.0_wp
!-- wall and roof surface parameters
ALLOCATE ( isroof_surf(startenergy:endenergy) )
ALLOCATE ( emiss_surf(startenergy:endenergy) )
ALLOCATE ( lambda_surf(startenergy:endenergy) )
ALLOCATE ( c_surface(startenergy:endenergy) )
ALLOCATE ( roughness_wall(startenergy:endenergy) )
!-- allocate wall and roof material parameters
ALLOCATE ( thickness_wall(startenergy:endenergy) )
ALLOCATE ( lambda_h(nzb_wall:nzt_wall,startenergy:endenergy) )
ALLOCATE ( rho_c_wall(nzb_wall:nzt_wall,startenergy:endenergy) )
!-- allocate wall and roof layers sizes
ALLOCATE ( zwn(nzb_wall:nzt_wall) )
ALLOCATE ( dz_wall(nzb_wall:nzt_wall+1, startenergy:endenergy) )
ALLOCATE ( ddz_wall(nzb_wall:nzt_wall+1, startenergy:endenergy) )
ALLOCATE ( dz_wall_stag(nzb_wall:nzt_wall, startenergy:endenergy) )
ALLOCATE ( ddz_wall_stag(nzb_wall:nzt_wall, startenergy:endenergy) )
ALLOCATE ( zw(nzb_wall:nzt_wall, startenergy:endenergy) )
!-- allocate wall and roof temperature arrays
#if defined( __nopointer )
ALLOCATE ( t_surf(startenergy:endenergy) )
ALLOCATE ( t_surf_p(startenergy:endenergy) )
ALLOCATE ( t_wall(nzb_wall:nzt_wall+1,startenergy:endenergy) )
ALLOCATE ( t_wall_p(nzb_wall:nzt_wall+1,startenergy:endenergy) )
#else
ALLOCATE ( t_surf_1(startenergy:endenergy) )
ALLOCATE ( t_surf_2(startenergy:endenergy) )
ALLOCATE ( t_wall_1(nzb_wall:nzt_wall+1,startenergy:endenergy) )
ALLOCATE ( t_wall_2(nzb_wall:nzt_wall+1,startenergy:endenergy) )
!-- initial assignment of the pointers
t_wall => t_wall_1; t_wall_p => t_wall_2
t_surf => t_surf_1; t_surf_p => t_surf_2
#endif
!-- allocate intermediate timestep arrays
ALLOCATE ( tt_surface_m(startenergy:endenergy) )
ALLOCATE ( tt_wall_m(nzb_wall:nzt_wall+1,startenergy:endenergy) )
!-- allocate wall heat flux output array
ALLOCATE ( wshf(startwall:endwall) )
ALLOCATE ( wshf_eb(startenergy:endenergy) )
ALLOCATE ( wghf_eb(startenergy:endenergy) )
!-- set inital values for prognostic quantities
tt_surface_m = 0.0_wp
tt_wall_m = 0.0_wp
wshf = 0.0_wp
wshf_eb = 0.0_wp
wghf_eb = 0.0_wp
END SUBROUTINE usm_allocate_urban_surface
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Sum up and time-average urban surface output quantities as well as allocate
!> the array necessary for storing the average.
!------------------------------------------------------------------------------!
SUBROUTINE usm_average_3d_data( mode, variable )
IMPLICIT NONE
CHARACTER (len=*), INTENT(IN) :: mode
CHARACTER (len=*), INTENT(IN) :: variable
INTEGER(iwp) :: i, j, k, l, ids, iwl,istat
CHARACTER (len=20) :: var, surfid
INTEGER(iwp), PARAMETER :: nd = 5
CHARACTER(len=6), DIMENSION(0:nd-1), PARAMETER :: dirname = (/ '_roof ', '_south', '_north', '_west ', '_east ' /)
!-- find the real name of the variable
var = TRIM(variable)
DO i = 0, nd-1
k = len(TRIM(var))
j = len(TRIM(dirname(i)))
IF ( var(k-j+1:k) == dirname(i) ) THEN
ids = i
var = var(:k-j)
EXIT
ENDIF
ENDDO
IF ( ids == -1 ) THEN
var = TRIM(variable)
ENDIF
IF ( var(1:11) == 'usm_t_wall_' .AND. len(TRIM(var)) >= 12 ) THEN
!-- wall layers
READ(var(12:12), '(I1)', iostat=istat ) iwl
IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN
var = var(1:10)
ELSE
!-- wrong wall layer index
RETURN
ENDIF
ENDIF
IF ( mode == 'allocate' ) THEN
SELECT CASE ( TRIM( var ) )
CASE ( 'usm_radnet' )
!-- array of complete radiation balance
IF ( .NOT. ALLOCATED(rad_net_av) ) THEN
ALLOCATE( rad_net_av(startenergy:endenergy) )
rad_net_av = 0.0_wp
ENDIF
CASE ( 'usm_rad_insw' )
!-- array of sw radiation falling to surface after i-th reflection
IF ( .NOT. ALLOCATED(surfinsw_av) ) THEN
ALLOCATE( surfinsw_av(startenergy:endenergy) )
surfinsw_av = 0.0_wp
ENDIF
CASE ( 'usm_rad_inlw' )
!-- array of lw radiation falling to surface after i-th reflection
IF ( .NOT. ALLOCATED(surfinlw_av) ) THEN
ALLOCATE( surfinlw_av(startenergy:endenergy) )
surfinlw_av = 0.0_wp
ENDIF
CASE ( 'usm_rad_inswdir' )
!-- array of direct sw radiation falling to surface from sun
IF ( .NOT. ALLOCATED(surfinswdir_av) ) THEN
ALLOCATE( surfinswdir_av(startenergy:endenergy) )
surfinswdir_av = 0.0_wp
ENDIF
CASE ( 'usm_rad_inswdif' )
!-- array of difusion sw radiation falling to surface from sky and borders of the domain
IF ( .NOT. ALLOCATED(surfinswdif_av) ) THEN
ALLOCATE( surfinswdif_av(startenergy:endenergy) )
surfinswdif_av = 0.0_wp
ENDIF
CASE ( 'usm_rad_inswref' )
!-- array of sw radiation falling to surface from reflections
IF ( .NOT. ALLOCATED(surfinswref_av) ) THEN
ALLOCATE( surfinswref_av(startenergy:endenergy) )
surfinswref_av = 0.0_wp
ENDIF
CASE ( 'usm_rad_inlwdif' )
!-- array of sw radiation falling to surface after i-th reflection
IF ( .NOT. ALLOCATED(surfinlwdif_av) ) THEN
ALLOCATE( surfinlwdif_av(startenergy:endenergy) )
surfinlwdif_av = 0.0_wp
ENDIF
CASE ( 'usm_rad_inlwref' )
!-- array of lw radiation falling to surface from reflections
IF ( .NOT. ALLOCATED(surfinlwref_av) ) THEN
ALLOCATE( surfinlwref_av(startenergy:endenergy) )
surfinlwref_av = 0.0_wp
ENDIF
CASE ( 'usm_rad_outsw' )
!-- array of sw radiation emitted from surface after i-th reflection
IF ( .NOT. ALLOCATED(surfoutsw_av) ) THEN
ALLOCATE( surfoutsw_av(startenergy:endenergy) )
surfoutsw_av = 0.0_wp
ENDIF
CASE ( 'usm_rad_outlw' )
!-- array of lw radiation emitted from surface after i-th reflection
IF ( .NOT. ALLOCATED(surfoutlw_av) ) THEN
ALLOCATE( surfoutlw_av(startenergy:endenergy) )
surfoutlw_av = 0.0_wp
ENDIF
CASE ( 'usm_rad_hf' )
!-- array of heat flux from radiation for surfaces after i-th reflection
IF ( .NOT. ALLOCATED(surfhf_av) ) THEN
ALLOCATE( surfhf_av(startenergy:endenergy) )
surfhf_av = 0.0_wp
ENDIF
CASE ( 'usm_wshf' )
!-- array of sensible heat flux from surfaces
!-- land surfaces
IF ( .NOT. ALLOCATED(wshf_eb_av) ) THEN
ALLOCATE( wshf_eb_av(startenergy:endenergy) )
wshf_eb_av = 0.0_wp
ENDIF
CASE ( 'usm_wghf' )
!-- array of heat flux from ground (wall, roof, land)
IF ( .NOT. ALLOCATED(wghf_eb_av) ) THEN
ALLOCATE( wghf_eb_av(startenergy:endenergy) )
wghf_eb_av = 0.0_wp
ENDIF
CASE ( 'usm_t_surf' )
!-- surface temperature for surfaces
IF ( .NOT. ALLOCATED(t_surf_av) ) THEN
ALLOCATE( t_surf_av(startenergy:endenergy) )
t_surf_av = 0.0_wp
ENDIF
CASE ( 'usm_t_wall' )
!-- wall temperature for iwl layer of walls and land
IF ( .NOT. ALLOCATED(t_wall_av) ) THEN
ALLOCATE( t_wall_av(nzb_wall:nzt_wall,startenergy:endenergy) )
t_wall_av = 0.0_wp
ENDIF
CASE DEFAULT
CONTINUE
END SELECT
ELSEIF ( mode == 'sum' ) THEN
SELECT CASE ( TRIM( var ) )
CASE ( 'usm_radnet' )
!-- array of complete radiation balance
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
rad_net_av(l) = rad_net_av(l) + rad_net_l(l)
ENDIF
ENDDO
CASE ( 'usm_rad_insw' )
!-- array of sw radiation falling to surface after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinsw_av(l) = surfinsw_av(l) + surfinsw(l)
ENDIF
ENDDO
CASE ( 'usm_rad_inlw' )
!-- array of lw radiation falling to surface after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinlw_av(l) = surfinlw_av(l) + surfinlw(l)
ENDIF
ENDDO
CASE ( 'usm_rad_inswdir' )
!-- array of direct sw radiation falling to surface from sun
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinswdir_av(l) = surfinswdir_av(l) + surfinswdir(l)
ENDIF
ENDDO
CASE ( 'usm_rad_inswdif' )
!-- array of difusion sw radiation falling to surface from sky and borders of the domain
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinswdif_av(l) = surfinswdif_av(l) + surfinswdif(l)
ENDIF
ENDDO
CASE ( 'usm_rad_inswref' )
!-- array of sw radiation falling to surface from reflections
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinswref_av(l) = surfinswref_av(l) + surfinsw(l) - &
surfinswdir(l) - surfinswdif(l)
ENDIF
ENDDO
CASE ( 'usm_rad_inlwdif' )
!-- array of sw radiation falling to surface after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinlwdif_av(l) = surfinlwdif_av(l) + surfinlwdif(l)
ENDIF
ENDDO
CASE ( 'usm_rad_inlwref' )
!-- array of lw radiation falling to surface from reflections
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinlwref_av(l) = surfinlwref_av(l) + &
surfinlw(l) - surfinlwdif(l)
ENDIF
ENDDO
CASE ( 'usm_rad_outsw' )
!-- array of sw radiation emitted from surface after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfoutsw_av(l) = surfoutsw_av(l) + surfoutsw(l)
ENDIF
ENDDO
CASE ( 'usm_rad_outlw' )
!-- array of lw radiation emitted from surface after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfoutlw_av(l) = surfoutlw_av(l) + surfoutlw(l)
ENDIF
ENDDO
CASE ( 'usm_rad_hf' )
!-- array of heat flux from radiation for surfaces after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfhf_av(l) = surfhf_av(l) + surfhf(l)
ENDIF
ENDDO
CASE ( 'usm_wshf' )
!-- array of sensible heat flux from surfaces (land, roof, wall)
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
wshf_eb_av(l) = wshf_eb_av(l) + wshf_eb(l)
ENDIF
ENDDO
CASE ( 'usm_wghf' )
!-- array of heat flux from ground (wall, roof, land)
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
wghf_eb_av(l) = wghf_eb_av(l) + wghf_eb(l)
ENDIF
ENDDO
CASE ( 'usm_t_surf' )
!-- surface temperature for surfaces
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
t_surf_av(l) = t_surf_av(l) + t_surf(l)
ENDIF
ENDDO
CASE ( 'usm_t_wall' )
!-- wall temperature for iwl layer of walls and land
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
t_wall_av(iwl, l) = t_wall_av(iwl,l) + t_wall(iwl, l)
ENDIF
ENDDO
CASE DEFAULT
CONTINUE
END SELECT
ELSEIF ( mode == 'average' ) THEN
SELECT CASE ( TRIM( var ) )
CASE ( 'usm_radnet' )
!-- array of complete radiation balance
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
rad_net_av(l) = rad_net_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_rad_insw' )
!-- array of sw radiation falling to surface after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinsw_av(l) = surfinsw_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_rad_inlw' )
!-- array of lw radiation falling to surface after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinlw_av(l) = surfinlw_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_rad_inswdir' )
!-- array of direct sw radiation falling to surface from sun
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinswdir_av(l) = surfinswdir_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_rad_inswdif' )
!-- array of difusion sw radiation falling to surface from sky and borders of the domain
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinswdif_av(l) = surfinswdif_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_rad_inswref' )
!-- array of sw radiation falling to surface from reflections
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinswref_av(l) = surfinswref_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_rad_inlwdif' )
!-- array of sw radiation falling to surface after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinlwdif_av(l) = surfinlwdif_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_rad_inlwref' )
!-- array of lw radiation falling to surface from reflections
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfinlwref_av(l) = surfinlwref_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_rad_outsw' )
!-- array of sw radiation emitted from surface after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfoutsw_av(l) = surfoutsw_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_rad_outlw' )
!-- array of lw radiation emitted from surface after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfoutlw_av(l) = surfoutlw_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_rad_hf' )
!-- array of heat flux from radiation for surfaces after i-th reflection
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
surfhf_av(l) = surfhf_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_wshf' )
!-- array of sensible heat flux from surfaces (land, roof, wall)
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
wshf_eb_av(l) = wshf_eb_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_wghf' )
!-- array of heat flux from ground (wall, roof, land)
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
wghf_eb_av(l) = wghf_eb_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_t_surf' )
!-- surface temperature for surfaces
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
t_surf_av(l) = t_surf_av(l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
CASE ( 'usm_t_wall' )
!-- wall temperature for iwl layer of walls and land
DO l = startenergy, endenergy
IF ( surfl(id,l) == ids ) THEN
t_wall_av(iwl, l) = t_wall_av(iwl,l) / REAL( average_count_3d, kind=wp )
ENDIF
ENDDO
END SELECT
ENDIF
END SUBROUTINE usm_average_3d_data
!------------------------------------------------------------------------------!
!> Calculates radiation absorbed by box with given size and LAD.
!>
!> Simulates resol**2 rays (by equally spacing a bounding horizontal square
!> conatining all possible rays that would cross the box) and calculates
!> average transparency per ray. Returns fraction of absorbed radiation flux
!> and area for which this fraction is effective.
!------------------------------------------------------------------------------!
PURE SUBROUTINE usm_box_absorb(boxsize, resol, dens, uvec, area, absorb)
IMPLICIT NONE
REAL(wp), DIMENSION(3), INTENT(in) :: &
boxsize, & !< z, y, x size of box in m
uvec !< z, y, x unit vector of incoming flux
INTEGER(iwp), INTENT(in) :: &
resol !< No. of rays in x and y dimensions
REAL(wp), INTENT(in) :: &
dens !< box density (e.g. Leaf Area Density)
REAL(wp), INTENT(out) :: &
area, & !< horizontal area for flux absorbtion
absorb !< fraction of absorbed flux
REAL(wp) :: &
xshift, yshift, &
xmin, xmax, ymin, ymax, &
xorig, yorig, &
dx1, dy1, dz1, dx2, dy2, dz2, &
crdist, &
transp
INTEGER(iwp) :: &
i, j
xshift = uvec(3) / uvec(1) * boxsize(1)
xmin = min(0._wp, -xshift)
xmax = boxsize(3) + max(0._wp, -xshift)
yshift = uvec(2) / uvec(1) * boxsize(1)
ymin = min(0._wp, -yshift)
ymax = boxsize(2) + max(0._wp, -yshift)
transp = 0._wp
DO i = 1, resol
xorig = xmin + (xmax-xmin) * (i-.5_wp) / resol
DO j = 1, resol
yorig = ymin + (ymax-ymin) * (j-.5_wp) / resol
dz1 = 0._wp
dz2 = boxsize(1)/uvec(1)
IF ( uvec(2) > 0._wp ) THEN
dy1 = -yorig / uvec(2) !< crossing with y=0
dy2 = (boxsize(2)-yorig) / uvec(2) !< crossing with y=boxsize(2)
ELSE IF ( uvec(2) < 0._wp ) THEN
dy1 = (boxsize(2)-yorig) / uvec(2) !< crossing with y=boxsize(2)
dy2 = -yorig / uvec(2) !< crossing with y=0
ELSE !uvec(2)==0
dy1 = -huge(1._wp)
dy2 = huge(1._wp)
ENDIF
IF ( uvec(3) > 0._wp ) THEN
dx1 = -xorig / uvec(3) !< crossing with x=0
dx2 = (boxsize(3)-xorig) / uvec(3) !< crossing with x=boxsize(3)
ELSE IF ( uvec(3) < 0._wp ) THEN
dx1 = (boxsize(3)-xorig) / uvec(3) !< crossing with x=boxsize(3)
dx2 = -xorig / uvec(3) !< crossing with x=0
ELSE !uvec(1)==0
dx1 = -huge(1._wp)
dx2 = huge(1._wp)
ENDIF
crdist = max(0._wp, (min(dz2, dy2, dx2) - max(dz1, dy1, dx1)))
transp = transp + exp(-ext_coef * dens * crdist)
ENDDO
ENDDO
transp = transp / resol**2
area = (boxsize(3)+xshift)*(boxsize(2)+yshift)
absorb = 1._wp - transp
END SUBROUTINE usm_box_absorb
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This subroutine splits direct and diffusion dw radiation
!> It sould not be called in case the radiation model already does it
!> It follows
!------------------------------------------------------------------------------!
SUBROUTINE usm_calc_diffusion_radiation
REAL(wp), PARAMETER :: sol_const = 1367.0_wp !< solar conbstant
REAL(wp), PARAMETER :: lowest_solarUp = 0.1_wp !< limit the sun elevation to protect stability of the calculation
INTEGER(iwp) :: i, j
REAL(wp), PARAMETER :: year_seconds = 86400._wp * 365._wp
REAL(wp) :: year_angle !< angle
REAL(wp) :: etr !< extraterestrial radiation
REAL(wp) :: corrected_solarUp !< corrected solar up radiation
REAL(wp) :: horizontalETR !< horizontal extraterestrial radiation
REAL(wp) :: clearnessIndex !< clearness index
REAL(wp) :: diff_frac !< diffusion fraction of the radiation
!-- Calculate current day and time based on the initial values and simulation time
year_angle = ((day_init*86400) + time_utc_init+time_since_reference_point) &
/ year_seconds * 2.0_wp * pi
etr = sol_const * (1.00011_wp + &
0.034221_wp * cos(year_angle) + &
0.001280_wp * sin(year_angle) + &
0.000719_wp * cos(2.0_wp * year_angle) + &
0.000077_wp * sin(2.0_wp * year_angle))
!--
!-- Under a very low angle, we keep extraterestrial radiation at
!-- the last small value, therefore the clearness index will be pushed
!-- towards 0 while keeping full continuity.
!--
IF ( zenith(0) <= lowest_solarUp ) THEN
corrected_solarUp = lowest_solarUp
ELSE
corrected_solarUp = zenith(0)
ENDIF
horizontalETR = etr * corrected_solarUp
DO i = nxlg, nxrg
DO j = nysg, nyng
clearnessIndex = rad_sw_in(0,j,i) / horizontalETR
diff_frac = 1.0_wp / (1.0_wp + exp(-5.0033_wp + 8.6025_wp * clearnessIndex))
rad_sw_in_diff(j,i) = rad_sw_in(0,j,i) * diff_frac
rad_sw_in_dir(j,i) = rad_sw_in(0,j,i) * (1.0_wp - diff_frac)
rad_lw_in_diff(j,i) = rad_lw_in(0,j,i)
ENDDO
ENDDO
END SUBROUTINE usm_calc_diffusion_radiation
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Calculates shape view factors SVF and plant sink canopy factors PSCF
!> !!!!!DESCRIPTION!!!!!!!!!!
!------------------------------------------------------------------------------!
SUBROUTINE usm_calc_svf
IMPLICIT NONE
INTEGER(iwp) :: i, j, k, l, d, ip, jp
INTEGER(iwp) :: isvf, ksvf, icsf, kcsf, npcsfl, isvf_surflt, imrtt, imrtf
INTEGER(iwp) :: sd, td, ioln, iproc
REAL(wp), DIMENSION(0:9) :: facearea
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: nzterrl, planthl
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: csflt, pcsflt
INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: kcsflt,kpcsflt
INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: icsflt,dcsflt,ipcsflt,dpcsflt
REAL(wp), DIMENSION(3) :: uv
LOGICAL :: visible
REAL(wp) :: sz, sy, sx, tz, ty, tx, transparency, rirrf, sqdist, svfsum
!REAL(wp) :: rsvf
INTEGER(iwp) :: isurflt, isurfs, isurflt_prev
INTEGER(iwp) :: itx, ity, itz
CHARACTER(len=7) :: pid_char = ''
INTEGER(iwp) :: win_lad, minfo
REAL(wp), DIMENSION(:,:,:), POINTER :: lad_s_rma !< fortran pointer, but lower bounds are 1
TYPE(c_ptr) :: lad_s_rma_p !< allocated c pointer
INTEGER(kind=MPI_ADDRESS_KIND) :: size_lad_rma
!-- calculation of the SVF
CALL location_message( ' calculation of SVF and CSF', .TRUE. )
!-- precalculate face areas for different face directions using normal vector
DO d = 0, 9
facearea(d) = 1._wp
IF ( idir(d) == 0 ) facearea(d) = facearea(d) * dx
IF ( jdir(d) == 0 ) facearea(d) = facearea(d) * dy
IF ( kdir(d) == 0 ) facearea(d) = facearea(d) * dz
ENDDO
!-- initialize variables and temporary arrays for calculation of svf and csf
nsvfl = 0
ncsfl = 0
nsvfla = gasize
msvf = 1
ALLOCATE( asvf1(nsvfla) )
asvf => asvf1
IF ( plant_canopy ) THEN
ncsfla = gasize
mcsf = 1
ALLOCATE( acsf1(ncsfla) )
acsf => acsf1
ENDIF
!-- initialize temporary terrain and plant canopy height arrays (global 2D array!)
ALLOCATE( nzterr(0:(nx+1)*(ny+1)-1) )
#if defined( __parallel )
ALLOCATE( nzterrl(nys:nyn,nxl:nxr) )
nzterrl = nzb_s_inner(nys:nyn,nxl:nxr)
CALL MPI_AllGather( nzterrl, nnx*nny, MPI_INTEGER, &
nzterr, nnx*nny, MPI_INTEGER, comm2d, ierr )
DEALLOCATE(nzterrl)
#else
nzterr = RESHAPE( nzb_s_inner(nys:nyn,nxl:nxr), (/(nx+1)*(ny+1)/) )
#endif
IF ( plant_canopy ) THEN
ALLOCATE( plantt(0:(nx+1)*(ny+1)-1) )
#if defined( __parallel )
ALLOCATE( planthl(nys:nyn,nxl:nxr) )
planthl = pch(nys:nyn,nxl:nxr)
CALL MPI_AllGather( planthl, nnx*nny, MPI_INTEGER, &
plantt, nnx*nny, MPI_INTEGER, comm2d, ierr )
DEALLOCATE(planthl)
IF ( usm_lad_rma ) THEN
CALL MPI_Info_create(minfo, ierr)
CALL MPI_Info_set(minfo, 'accumulate_ordering', '', ierr)
CALL MPI_Info_set(minfo, 'accumulate_ops', 'same_op', ierr)
CALL MPI_Info_set(minfo, 'same_size', 'true', ierr)
CALL MPI_Info_set(minfo, 'same_disp_unit', 'true', ierr)
!-- Allocate and initialize the MPI RMA window
!-- must be in accordance with allocation of lad_s in plant_canopy_model
!-- optimization of memory should be done
!-- Argument X of function c_sizeof(X) needs arbitrary REAL(wp) value, set to 1.0_wp for now
size_lad_rma = c_sizeof(1.0_wp)*nnx*nny*nzu
CALL MPI_Win_allocate(size_lad_rma, c_sizeof(1.0_wp), minfo, comm2d, &
lad_s_rma_p, win_lad, ierr)
CALL c_f_pointer(lad_s_rma_p, lad_s_rma, (/ nzu, nny, nnx /))
usm_lad(nzub:, nys:, nxl:) => lad_s_rma(:,:,:)
ELSE
ALLOCATE(usm_lad(nzub:nzut, nys:nyn, nxl:nxr))
ENDIF
#else
plantt = RESHAPE( pct(nys:nyn,nxl:nxr), (/(nx+1)*(ny+1)/) )
ALLOCATE(usm_lad(nzub:nzut, nys:nyn, nxl:nxr))
#endif
usm_lad(:,:,:) = 0._wp
DO i = nxl, nxr
DO j = nys, nyn
k = nzb_s_inner(j, i)
usm_lad(k:nzut, j, i) = lad_s(0:nzut-k, j, i)
ENDDO
ENDDO
#if defined( __parallel )
IF ( usm_lad_rma ) THEN
CALL MPI_Info_free(minfo, ierr)
CALL MPI_Win_lock_all(0, win_lad, ierr)
ELSE
ALLOCATE( usm_lad_g(0:(nx+1)*(ny+1)*nzu-1) )
CALL MPI_AllGather( usm_lad, nnx*nny*nzu, MPI_REAL, &
usm_lad_g, nnx*nny*nzu, MPI_REAL, comm2d, ierr )
ENDIF
#endif
ENDIF
IF ( mrt_factors ) THEN
OPEN(153, file='MRT_TARGETS', access='SEQUENTIAL', &
action='READ', status='OLD', form='FORMATTED', err=524)
OPEN(154, file='MRT_FACTORS'//myid_char, access='DIRECT', recl=(5*4+2*8), &
action='WRITE', status='REPLACE', form='UNFORMATTED', err=525)
imrtf = 1
DO
READ(153, *, end=526, err=524) imrtt, i, j, k
IF ( i < nxl .OR. i > nxr &
.OR. j < nys .OR. j > nyn ) CYCLE
tx = REAL(i)
ty = REAL(j)
tz = REAL(k)
DO isurfs = 1, nsurf
IF ( .NOT. usm_facing(i, j, k, -1, &
surf(ix, isurfs), surf(iy, isurfs), &
surf(iz, isurfs), surf(id, isurfs)) ) THEN
CYCLE
ENDIF
sd = surf(id, isurfs)
sz = REAL(surf(iz, isurfs), wp) - 0.5_wp * kdir(sd)
sy = REAL(surf(iy, isurfs), wp) - 0.5_wp * jdir(sd)
sx = REAL(surf(ix, isurfs), wp) - 0.5_wp * idir(sd)
!-- unit vector source -> target
uv = (/ (tz-sz)*dz, (ty-sy)*dy, (tx-sx)*dx /)
sqdist = SUM(uv(:)**2)
uv = uv / SQRT(sqdist)
!-- irradiance factor - see svf. Here we consider that target face is always normal,
!-- i.e. the second dot product equals 1
rirrf = dot_product((/ kdir(sd), jdir(sd), idir(sd) /), uv) &
/ (pi * sqdist) * facearea(sd)
!-- raytrace while not creating any canopy sink factors
CALL usm_raytrace((/sz,sy,sx/), (/tz,ty,tx/), isurfs, rirrf, 1._wp, .FALSE., &
visible, transparency, win_lad)
IF ( .NOT. visible ) CYCLE
!rsvf = rirrf * transparency
WRITE(154, rec=imrtf, err=525) INT(imrtt, kind=4), &
INT(surf(id, isurfs), kind=4), &
INT(surf(iz, isurfs), kind=4), &
INT(surf(iy, isurfs), kind=4), &
INT(surf(ix, isurfs), kind=4), &
REAL(rirrf, kind=8), REAL(transparency, kind=8)
imrtf = imrtf + 1
ENDDO !< isurfs
ENDDO !< MRT_TARGETS record
524 message_string = 'error reading file MRT_TARGETS'
CALL message( 'usm_calc_svf', 'PA0524', 1, 2, 0, 6, 0 )
525 message_string = 'error writing file MRT_FACTORS'//myid_char
CALL message( 'usm_calc_svf', 'PA0525', 1, 2, 0, 6, 0 )
526 CLOSE(153)
CLOSE(154)
ENDIF !< mrt_factors
DO isurflt = 1, nsurfl
!-- determine face centers
td = surfl(id, isurflt)
IF ( td >= isky .AND. .NOT. plant_canopy ) CYCLE
tz = REAL(surfl(iz, isurflt), wp) - 0.5_wp * kdir(td)
ty = REAL(surfl(iy, isurflt), wp) - 0.5_wp * jdir(td)
tx = REAL(surfl(ix, isurflt), wp) - 0.5_wp * idir(td)
DO isurfs = 1, nsurf
IF ( .NOT. usm_facing(surfl(ix, isurflt), surfl(iy, isurflt), &
surfl(iz, isurflt), surfl(id, isurflt), &
surf(ix, isurfs), surf(iy, isurfs), &
surf(iz, isurfs), surf(id, isurfs)) ) THEN
CYCLE
ENDIF
sd = surf(id, isurfs)
sz = REAL(surf(iz, isurfs), wp) - 0.5_wp * kdir(sd)
sy = REAL(surf(iy, isurfs), wp) - 0.5_wp * jdir(sd)
sx = REAL(surf(ix, isurfs), wp) - 0.5_wp * idir(sd)
!-- unit vector source -> target
uv = (/ (tz-sz)*dz, (ty-sy)*dy, (tx-sx)*dx /)
sqdist = SUM(uv(:)**2)
uv = uv / SQRT(sqdist)
!-- irradiance factor (our unshaded shape view factor) = view factor per differential target area * source area
rirrf = dot_product((/ kdir(sd), jdir(sd), idir(sd) /), uv) & ! cosine of source normal and direction
* dot_product((/ kdir(td), jdir(td), idir(td) /), -uv) & ! cosine of target normal and reverse direction
/ (pi * sqdist) & ! square of distance between centers
* facearea(sd)
!-- raytrace + process plant canopy sinks within
CALL usm_raytrace((/sz,sy,sx/), (/tz,ty,tx/), isurfs, rirrf, facearea(td), .TRUE., &
visible, transparency, win_lad)
IF ( .NOT. visible ) CYCLE
IF ( td >= isky ) CYCLE !< we calculated these only for raytracing
!< to find plant canopy sinks, we don't need svf for them
! rsvf = rirrf * transparency
!-- write to the svf array
nsvfl = nsvfl + 1
!-- check dimmension of asvf array and enlarge it if needed
IF ( nsvfla < nsvfl ) THEN
k = nsvfla * 2
IF ( msvf == 0 ) THEN
msvf = 1
ALLOCATE( asvf1(k) )
asvf => asvf1
asvf1(1:nsvfla) = asvf2
DEALLOCATE( asvf2 )
ELSE
msvf = 0
ALLOCATE( asvf2(k) )
asvf => asvf2
asvf2(1:nsvfla) = asvf1
DEALLOCATE( asvf1 )
ENDIF
nsvfla = k
ENDIF
!-- write svf values into the array
asvf(nsvfl)%isurflt = isurflt
asvf(nsvfl)%isurfs = isurfs
asvf(nsvfl)%rsvf = rirrf !we postopne multiplication by transparency
asvf(nsvfl)%rtransp = transparency !a.k.a. Direct Irradiance Factor
ENDDO
ENDDO
CALL location_message( ' waiting for completion of SVF and CSF calculation in all processes', .TRUE. )
#if defined( __parallel )
IF ( plant_canopy ) THEN
IF ( usm_lad_rma ) THEN
CALL MPI_Win_flush_all(win_lad, ierr)
!-- unlock MPI window
CALL MPI_Win_unlock_all(win_lad, ierr)
!-- free MPI window
CALL MPI_Win_free(win_lad, ierr)
ELSE
DEALLOCATE(usm_lad)
DEALLOCATE(usm_lad_g)
ENDIF
ENDIF
#else
DEALLOCATE(usm_lad)
#endif
!-- deallocate temporary global arrays
IF ( ALLOCATED(nzterr) ) DEALLOCATE(nzterr)
IF ( ALLOCATED(plantt) ) DEALLOCATE(plantt)
!-- sort svf ( a version of quicksort )
CALL quicksort_svf(asvf,1,nsvfl)
npcsfl = 0
IF ( plant_canopy ) THEN
!-- sort and merge csf for the last time, keeping the array size to minimum
CALL usm_merge_and_grow_csf(-1)
!-- aggregate csb among processors
!-- allocate necessary arrays
ALLOCATE( csflt(ndcsf,max(ncsfl,ndcsf)) )
ALLOCATE( kcsflt(kdcsf,max(ncsfl,kdcsf)) )
ALLOCATE( icsflt(0:numprocs-1) )
ALLOCATE( dcsflt(0:numprocs-1) )
ALLOCATE( ipcsflt(0:numprocs-1) )
ALLOCATE( dpcsflt(0:numprocs-1) )
!-- fill out arrays of csf values and
!-- arrays of number of elements and displacements
!-- for particular precessors
icsflt = 0
dcsflt = 0
ip = -1
j = -1
d = 0
DO kcsf = 1, ncsfl
j = j+1
IF ( acsf(kcsf)%ip /= ip ) THEN
!-- new block of the processor
!-- number of elements of previous block
IF ( ip>=0) icsflt(ip) = j
d = d+j
!-- blank blocks
DO jp = ip+1, acsf(kcsf)%ip-1
!-- number of elements is zero, displacement is equal to previous
icsflt(jp) = 0
dcsflt(jp) = d
ENDDO
!-- the actual block
ip = acsf(kcsf)%ip
dcsflt(ip) = d
j = 0
ENDIF
!-- fill out real values of rsvf, rtransp
csflt(1,kcsf) = acsf(kcsf)%rsvf
csflt(2,kcsf) = acsf(kcsf)%rtransp
!-- fill out integer values of itz,ity,itx,isurfs
kcsflt(1,kcsf) = acsf(kcsf)%itz
kcsflt(2,kcsf) = acsf(kcsf)%ity
kcsflt(3,kcsf) = acsf(kcsf)%itx
kcsflt(4,kcsf) = acsf(kcsf)%isurfs
ENDDO
!-- last blank blocks at the end of array
j = j+1
IF ( ip>=0 ) icsflt(ip) = j
d = d+j
DO jp = ip+1, numprocs-1
!-- number of elements is zero, displacement is equal to previous
icsflt(jp) = 0
dcsflt(jp) = d
ENDDO
!-- deallocate temporary acsf array
!-- DEALLOCATE(acsf) - ifort has a problem with deallocation of allocatable target
!-- via pointing pointer - we need to test original targets
IF ( ALLOCATED(acsf1) ) THEN
DEALLOCATE(acsf1)
ENDIF
IF ( ALLOCATED(acsf2) ) THEN
DEALLOCATE(acsf2)
ENDIF
#if defined( __parallel )
!-- scatter and gather the number of elements to and from all processor
!-- and calculate displacements
CALL mpi_alltoall(icsflt,1,MPI_INTEGER,ipcsflt,1,MPI_INTEGER,comm2d, ierr)
npcsfl = SUM(ipcsflt)
d = 0
DO i = 0, numprocs-1
dpcsflt(i) = d
d = d + ipcsflt(i)
ENDDO
!-- exchange csf fields between processors
ALLOCATE( pcsflt(ndcsf,max(npcsfl,ndcsf)) )
ALLOCATE( kpcsflt(kdcsf,max(npcsfl,kdcsf)) )
CALL MPI_AlltoAllv(csflt, ndcsf*icsflt, ndcsf*dcsflt, MPI_REAL, &
pcsflt, ndcsf*ipcsflt, ndcsf*dpcsflt, MPI_REAL, comm2d, ierr)
CALL MPI_AlltoAllv(kcsflt, kdcsf*icsflt, kdcsf*dcsflt, MPI_INTEGER, &
kpcsflt, kdcsf*ipcsflt, kdcsf*dpcsflt, MPI_INTEGER, comm2d, ierr)
#else
npcsfl = ncsfl
ALLOCATE( pcsflt(ndcsf,max(npcsfl,ndcsf)) )
ALLOCATE( kpcsflt(kdcsf,max(npcsfl,kdcsf)) )
pcsflt = csflt
kpcsflt = kcsflt
#endif
!-- deallocate temporary arrays
DEALLOCATE( csflt )
DEALLOCATE( kcsflt )
DEALLOCATE( icsflt )
DEALLOCATE( dcsflt )
DEALLOCATE( ipcsflt )
DEALLOCATE( dpcsflt )
!-- sort csf ( a version of quicksort )
CALL quicksort_csf2(kpcsflt, pcsflt, 1, npcsfl)
!-- aggregate canopy sink factor records with identical box & source
!-- againg across all values from all processors
IF ( npcsfl > 0 ) THEN
icsf = 1 !< reading index
kcsf = 1 !< writing index
DO while (icsf < npcsfl)
!-- here kpcsf(kcsf) already has values from kpcsf(icsf)
IF ( kpcsflt(3,icsf) == kpcsflt(3,icsf+1) .AND. &
kpcsflt(2,icsf) == kpcsflt(2,icsf+1) .AND. &
kpcsflt(1,icsf) == kpcsflt(1,icsf+1) .AND. &
kpcsflt(4,icsf) == kpcsflt(4,icsf+1) ) THEN
!-- We could simply take either first or second rtransp, both are valid. As a very simple heuristic about which ray
!-- probably passes nearer the center of the target box, we choose DIF from the entry with greater CSF, since that
!-- might mean that the traced beam passes longer through the canopy box.
IF ( pcsflt(1,kcsf) < pcsflt(1,icsf+1) ) THEN
pcsflt(2,kcsf) = pcsflt(2,icsf+1)
ENDIF
pcsflt(1,kcsf) = pcsflt(1,kcsf) + pcsflt(1,icsf+1)
!-- advance reading index, keep writing index
icsf = icsf + 1
ELSE
!-- not identical, just advance and copy
icsf = icsf + 1
kcsf = kcsf + 1
kpcsflt(:,kcsf) = kpcsflt(:,icsf)
pcsflt(:,kcsf) = pcsflt(:,icsf)
ENDIF
ENDDO
!-- last written item is now also the last item in valid part of array
npcsfl = kcsf
ENDIF
ENDIF !< plant_canopy
CALL location_message( ' calculation of the complete SVF array', .TRUE. )
nsvfcsfl = nsvfl + npcsfl
ALLOCATE( svf(ndsvf,nsvfcsfl) )
ALLOCATE( svfsurf(ndsvf,nsvfcsfl) )
!< load svf from the structure array to plain arrays
isurflt_prev = -1
ksvf = 1
svfsum = 0._wp
DO isvf = 1, nsvfl
!-- normalize svf per target face
IF ( asvf(ksvf)%isurflt /= isurflt_prev ) THEN
IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN
!-- TODO detect and log when normalization differs too much from 1
svf(1, isvf_surflt:isvf-1) = svf(1, isvf_surflt:isvf-1) / svfsum
ENDIF
isurflt_prev = asvf(ksvf)%isurflt
isvf_surflt = isvf
svfsum = asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp
ELSE
svfsum = svfsum + asvf(ksvf)%rsvf !?? / asvf(ksvf)%rtransp
ENDIF
svf(:, isvf) = (/ asvf(ksvf)%rsvf, asvf(ksvf)%rtransp /)
svfsurf(:, isvf) = (/ asvf(ksvf)%isurflt, asvf(ksvf)%isurfs /)
!-- next element
ksvf = ksvf + 1
ENDDO
IF ( isurflt_prev /= -1 .AND. svfsum /= 0._wp ) THEN
!-- TODO detect and log when normalization differs too much from 1
svf(1, isvf_surflt:nsvfl) = svf(1, isvf_surflt:nsvfl) / svfsum
ENDIF
!-- deallocate temporary asvf array
!-- DEALLOCATE(asvf) - ifort has a problem with deallocation of allocatable target
!-- via pointing pointer - we need to test original targets
IF ( ALLOCATED(asvf1) ) THEN
DEALLOCATE(asvf1)
ENDIF
IF ( ALLOCATED(asvf2) ) THEN
DEALLOCATE(asvf2)
ENDIF
IF ( plant_canopy ) THEN
CALL location_message( ' calculation of the complete CSF part of the array', .TRUE. )
IF ( npcsfl > 0 ) THEN
DO isvf = 1, npcsfl
svf(:,nsvfl+isvf) = pcsflt(:,isvf)
svfsurf(1,nsvfl+isvf) = gridpcbl(kpcsflt(1,isvf),kpcsflt(2,isvf),kpcsflt(3,isvf))
svfsurf(2,nsvfl+isvf) = kpcsflt(4,isvf)
ENDDO
ENDIF
!-- deallocation of temporary arrays
DEALLOCATE( pcsflt )
DEALLOCATE( kpcsflt )
ENDIF
RETURN
301 WRITE( message_string, * ) &
'I/O error when processing shape view factors / ', &
'plant canopy sink factors / direct irradiance factors.'
CALL message( 'init_urban_surface', 'PA0502', 2, 2, 0, 6, 0 )
END SUBROUTINE usm_calc_svf
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine checks variables and assigns units.
!> It is caaled out from subroutine check_parameters.
!------------------------------------------------------------------------------!
SUBROUTINE usm_check_data_output( variable, unit )
IMPLICIT NONE
CHARACTER (len=*),INTENT(IN) :: variable !:
CHARACTER (len=*),INTENT(OUT) :: unit !:
CHARACTER (len=20) :: var
var = TRIM(variable)
IF ( var(1:11)=='usm_radnet_' .OR. var(1:13)=='usm_rad_insw_' .OR. &
var(1:13)=='usm_rad_inlw_' .OR. var(1:16)=='usm_rad_inswdir_' .OR. &
var(1:16)=='usm_rad_inswdif_' .OR. var(1:16)=='usm_rad_inswref_' .OR. &
var(1:16)=='usm_rad_inlwdif_' .OR. var(1:16)=='usm_rad_inlwref_' .OR. &
var(1:14)=='usm_rad_outsw_' .OR. var(1:14)=='usm_rad_outlw_' .OR. &
var(1:11)=='usm_rad_hf_' .OR. &
var(1:9) =='usm_wshf_' .OR. var(1:9)=='usm_wghf_' ) THEN
unit = 'W/m2'
ELSE IF ( var(1:10) =='usm_t_surf' .OR. var(1:10) =='usm_t_wall' ) THEN
unit = 'K'
ELSE IF ( var(1:9) =='usm_surfz' .OR. var(1:7) =='usm_svf' .OR. &
var(1:7) =='usm_dif' .OR. var(1:11) =='usm_surfcat' .OR. &
var(1:11) =='usm_surfalb' .OR. var(1:12) =='usm_surfemis') THEN
unit = '1'
ELSE IF ( plant_canopy .AND. var(1:7) =='usm_lad' ) THEN
unit = 'm2/m3'
ELSE IF ( plant_canopy .AND. var(1:14) == 'usm_canopy_khf' ) THEN
unit = 'K/s'
ELSE
unit = 'illegal'
ENDIF
END SUBROUTINE usm_check_data_output
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Check parameters routine for urban surface model
!------------------------------------------------------------------------------!
SUBROUTINE usm_check_parameters
USE control_parameters, &
ONLY: bc_pt_b, bc_q_b, constant_flux_layer, large_scale_forcing, &
lsf_surf, topography
!
!-- Dirichlet boundary conditions are required as the surface fluxes are
!-- calculated from the temperature/humidity gradients in the urban surface
!-- model
IF ( bc_pt_b == 'neumann' .OR. bc_q_b == 'neumann' ) THEN
message_string = 'urban surface model requires setting of '// &
'bc_pt_b = "dirichlet" and '// &
'bc_q_b = "dirichlet"'
CALL message( 'check_parameters', 'PA0590', 1, 2, 0, 6, 0 )
ENDIF
IF ( .NOT. constant_flux_layer ) THEN
message_string = 'urban surface model requires '// &
'constant_flux_layer = .T.'
CALL message( 'check_parameters', 'PA0591', 1, 2, 0, 6, 0 )
ENDIF
!
!-- Surface forcing has to be disabled for LSF in case of enabled
!-- urban surface module
IF ( large_scale_forcing ) THEN
lsf_surf = .FALSE.
ENDIF
!
!-- Topography
IF ( topography == 'flat' ) THEN
message_string = 'topography /= "flat" is required '// &
'when using the urban surface model'
CALL message( 'check_parameters', 'PA0592', 1, 2, 0, 6, 0 )
ENDIF
END SUBROUTINE usm_check_parameters
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Output of the 3D-arrays in netCDF and/or AVS format
!> for variables of urban_surface model.
!> It resorts the urban surface module output quantities from surf style
!> indexing into temporary 3D array with indices (i,j,k).
!> It is called from subroutine data_output_3d.
!------------------------------------------------------------------------------!
SUBROUTINE usm_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do )
IMPLICIT NONE
INTEGER(iwp), INTENT(IN) :: av !<
CHARACTER (len=*), INTENT(IN) :: variable !<
INTEGER(iwp), INTENT(IN) :: nzb_do !< lower limit of the data output (usually 0)
INTEGER(iwp), INTENT(IN) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d)
LOGICAL, INTENT(OUT) :: found !<
REAL(sp), DIMENSION(nxlg:nxrg,nysg:nyng,nzb_do:nzt_do) :: local_pf !< sp - it has to correspond to module data_output_3d
REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: temp_pf !< temp array for urban surface output procedure
CHARACTER (len=20) :: var, surfid
INTEGER(iwp), PARAMETER :: nd = 5
CHARACTER(len=6), DIMENSION(0:nd-1), PARAMETER :: dirname = (/ '_roof ', '_south', '_north', '_west ', '_east ' /)
INTEGER(iwp), DIMENSION(0:nd-1), PARAMETER :: dirint = (/ iroof, isouth, inorth, iwest, ieast /)
INTEGER(iwp), DIMENSION(0:nd-1) :: dirstart
INTEGER(iwp), DIMENSION(0:nd-1) :: dirend
INTEGER(iwp) :: ids,isurf,isvf,isurfs,isurflt
INTEGER(iwp) :: is,js,ks,i,j,k,iwl,istat
dirstart = (/ startland, startwall, startwall, startwall, startwall /)
dirend = (/ endland, endwall, endwall, endwall, endwall /)
found = .TRUE.
temp_pf = -1._wp
ids = -1
var = TRIM(variable)
DO i = 0, nd-1
k = len(TRIM(var))
j = len(TRIM(dirname(i)))
IF ( var(k-j+1:k) == dirname(i) ) THEN
ids = i
var = var(:k-j)
EXIT
ENDIF
ENDDO
IF ( ids == -1 ) THEN
var = TRIM(variable)
ENDIF
IF ( var(1:11) == 'usm_t_wall_' .AND. len(TRIM(var)) >= 12 ) THEN
!-- wall layers
READ(var(12:12), '(I1)', iostat=istat ) iwl
IF ( istat == 0 .AND. iwl >= nzb_wall .AND. iwl <= nzt_wall ) THEN
var = var(1:10)
ENDIF
ENDIF
IF ( (var(1:8) == 'usm_svf_' .OR. var(1:8) == 'usm_dif_') .AND. len(TRIM(var)) >= 13 ) THEN
!-- svf values to particular surface
surfid = var(9:)
i = index(surfid,'_')
j = index(surfid(i+1:),'_')
READ(surfid(1:i-1),*, iostat=istat ) is
IF ( istat == 0 ) THEN
READ(surfid(i+1:i+j-1),*, iostat=istat ) js
ENDIF
IF ( istat == 0 ) THEN
READ(surfid(i+j+1:),*, iostat=istat ) ks
ENDIF
IF ( istat == 0 ) THEN
var = var(1:7)
ENDIF
ENDIF
SELECT CASE ( TRIM(var) )
CASE ( 'usm_surfz' )
!-- array of lw radiation falling to local surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( surfl(id,isurf) == iroof ) THEN
temp_pf(0,surfl(iy,isurf),surfl(ix,isurf)) = &
max(temp_pf(0,surfl(iy,isurf),surfl(ix,isurf)), &
REAL(surfl(iz,isurf),wp))
ELSE
temp_pf(0,surfl(iy,isurf),surfl(ix,isurf)) = &
max(temp_pf(0,surfl(iy,isurf),surfl(ix,isurf)), &
REAL(surfl(iz,isurf),wp)+1.0_wp)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_surfcat' )
!-- surface category
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surface_types(isurf)
ENDIF
ENDDO
CASE ( 'usm_surfalb' )
!-- surface albedo
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = albedo_surf(isurf)
ENDIF
ENDDO
CASE ( 'usm_surfemis' )
!-- surface albedo
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = emiss_surf(isurf)
ENDIF
ENDDO
CASE ( 'usm_svf', 'usm_dif' )
!-- shape view factors or iradiance factors to selected surface
IF ( TRIM(var)=='usm_svf' ) THEN
k = 1
ELSE
k = 2
ENDIF
DO isvf = 1, nsvfl
isurflt = svfsurf(1, isvf)
isurfs = svfsurf(2, isvf)
IF ( surf(ix,isurfs) == is .AND. surf(iy,isurfs) == js .AND. &
surf(iz,isurfs) == ks .AND. surf(id,isurfs) == ids ) THEN
!-- correct source surface
temp_pf(surfl(iz,isurflt),surfl(iy,isurflt),surfl(ix,isurflt)) = svf(k,isvf)
ENDIF
ENDDO
CASE ( 'usm_radnet' )
!-- array of complete radiation balance
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = rad_net_l(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = rad_net_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_rad_insw' )
!-- array of sw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinsw(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinsw_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_rad_inlw' )
!-- array of lw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlw(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlw_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_rad_inswdir' )
!-- array of direct sw radiation falling to surface from sun
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdir(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdir_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_rad_inswdif' )
!-- array of difusion sw radiation falling to surface from sky and borders of the domain
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdif(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswdif_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_rad_inswref' )
!-- array of sw radiation falling to surface from reflections
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = &
surfinsw(isurf) - surfinswdir(isurf) - surfinswdif(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinswref_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_rad_inlwdif' )
!-- array of sw radiation falling to surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlwdif(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlwdif_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_rad_inlwref' )
!-- array of lw radiation falling to surface from reflections
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlw(isurf) - surfinlwdif(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfinlwref_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_rad_outsw' )
!-- array of sw radiation emitted from surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutsw(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutsw_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_rad_outlw' )
!-- array of lw radiation emitted from surface after i-th reflection
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutlw(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfoutlw_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_rad_hf' )
!-- array of heat flux from radiation for surfaces after all reflections
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfhf(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = surfhf_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_wshf' )
!-- array of sensible heat flux from surfaces
!-- horizontal surfaces
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = wshf_eb(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = wshf_eb_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_wghf' )
!-- array of heat flux from ground (land, wall, roof)
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = wghf_eb(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = wghf_eb_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_t_surf' )
!-- surface temperature for surfaces
DO isurf = max(startenergy,dirstart(ids)), min(endenergy,dirend(ids))
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = t_surf(isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = t_surf_av(isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_t_wall' )
!-- wall temperature for iwl layer of walls and land
DO isurf = dirstart(ids), dirend(ids)
IF ( surfl(id,isurf) == ids ) THEN
IF ( av == 0 ) THEN
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = t_wall(iwl,isurf)
ELSE
temp_pf(surfl(iz,isurf),surfl(iy,isurf),surfl(ix,isurf)) = t_wall_av(iwl,isurf)
ENDIF
ENDIF
ENDDO
CASE ( 'usm_lad' )
!-- leaf area density
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i), nzut
temp_pf(k,j,i) = lad_s(k-nzb_s_inner(j,i),j,i)
ENDDO
ENDDO
ENDDO
CASE ( 'usm_canopy_khf' )
!-- canopy kinematic heat flux
DO i = nxl, nxr
DO j = nys, nyn
DO k = nzb_s_inner(j,i), nzut
temp_pf(k,j,i) = pc_heating_rate(k-nzb_s_inner(j,i),j,i)
ENDDO
ENDDO
ENDDO
CASE DEFAULT
found = .FALSE.
END SELECT
!-- fill out array local_pf which is subsequently treated by data_output_3d
CALL exchange_horiz( temp_pf, nbgp )
DO j = nysg,nyng
DO i = nxlg,nxrg
DO k = nzb_do, nzt_do
local_pf(i,j,k) = temp_pf(k,j,i)
ENDDO
ENDDO
ENDDO
END SUBROUTINE usm_data_output_3d
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Soubroutine defines appropriate grid for netcdf variables.
!> It is called out from subroutine netcdf.
!------------------------------------------------------------------------------!
SUBROUTINE usm_define_netcdf_grid( variable, found, grid_x, grid_y, grid_z )
IMPLICIT NONE
CHARACTER (len=*), INTENT(IN) :: variable !<
LOGICAL, INTENT(OUT) :: found !<
CHARACTER (len=*), INTENT(OUT) :: grid_x !<
CHARACTER (len=*), INTENT(OUT) :: grid_y !<
CHARACTER (len=*), INTENT(OUT) :: grid_z !<
CHARACTER (len=20) :: var
var = TRIM(variable)
IF ( var(1:11)=='usm_radnet_' .OR. var(1:13) =='usm_rad_insw_' .OR. &
var(1:13) =='usm_rad_inlw_' .OR. var(1:16) =='usm_rad_inswdir_' .OR. &
var(1:16) =='usm_rad_inswdif_' .OR. var(1:16) =='usm_rad_inswref_' .OR. &
var(1:16) =='usm_rad_inlwdif_' .OR. var(1:16) =='usm_rad_inlwref_' .OR. &
var(1:14) =='usm_rad_outsw_' .OR. var(1:14) =='usm_rad_outlw_' .OR. &
var(1:11) =='usm_rad_hf_' .OR. &
var(1:9) == 'usm_wshf_' .OR. var(1:9)== 'usm_wghf_' .OR. &
var(1:10) == 'usm_t_surf' .OR. var(1:10) == 'usm_t_wall' .OR. &
var(1:9) == 'usm_surfz' .OR. var(1:7) == 'usm_svf' .OR. &
var(1:7) =='usm_dif' .OR. var(1:11) =='usm_surfcat' .OR. &
var(1:11) =='usm_surfalb' .OR. var(1:12) =='usm_surfemis' .OR. &
var(1:7) == 'usm_lad' .OR. var(1:14) == 'usm_canopy_khf' ) THEN
found = .TRUE.
grid_x = 'x'
grid_y = 'y'
grid_z = 'zu'
ELSE
found = .FALSE.
grid_x = 'none'
grid_y = 'none'
grid_z = 'none'
ENDIF
END SUBROUTINE usm_define_netcdf_grid
!------------------------------------------------------------------------------!
!> Finds first model boundary crossed by a ray
!------------------------------------------------------------------------------!
PURE SUBROUTINE usm_find_boundary_face(origin, uvect, bdycross)
IMPLICIT NONE
REAL(wp), DIMENSION(3), INTENT(in) :: origin !< ray origin
REAL(wp), DIMENSION(3), INTENT(in) :: uvect !< ray unit vector
INTEGER(iwp), DIMENSION(4), INTENT(out) :: bdycross !< found boundary crossing (d, z, y, x)
REAL(wp), DIMENSION(3) :: crossdist !< crossing distance
INTEGER(iwp), DIMENSION(3) :: bdyd !< boundary direction
REAL(wp) :: bdydim !<
REAL(wp) :: dist !<
INTEGER(iwp) :: seldim !< found fist crossing index
INTEGER(iwp) :: d !<
bdydim = nzut + .5_wp !< top boundary
bdyd(1) = isky
crossdist(1) = (bdydim - origin(1)) / uvect(1)
IF ( uvect(2) >= 0._wp ) THEN
bdydim = ny + .5_wp !< north global boundary
bdyd(2) = inorthb
ELSE
bdydim = -.5_wp !< south global boundary
bdyd(2) = isouthb
ENDIF
crossdist(2) = (bdydim - origin(2)) / uvect(2)
IF ( uvect(3) >= 0._wp ) THEN
bdydim = nx + .5_wp !< east global boundary
bdyd(3) = ieastb
ELSE
bdydim = -.5_wp !< west global boundary
bdyd(3) = iwestb
ENDIF
crossdist(3) = (bdydim - origin(3)) / uvect(3)
seldim = minloc(crossdist, 1)
dist = crossdist(seldim)
d = bdyd(seldim)
bdycross(1) = d
bdycross(2:4) = NINT( origin(:) + uvect(:)*dist &
+ .5_wp * (/ kdir(d), jdir(d), idir(d) /) )
END SUBROUTINE
!------------------------------------------------------------------------------!
!> Determines whether two faces are oriented towards each other
!------------------------------------------------------------------------------!
PURE LOGICAL FUNCTION usm_facing(x, y, z, d, x2, y2, z2, d2)
IMPLICIT NONE
INTEGER(iwp), INTENT(in) :: x, y, z, d, x2, y2, z2, d2
usm_facing = .FALSE.
IF ( d==iroof .AND. d2==iroof ) RETURN
IF ( d==isky .AND. d2==isky ) RETURN
IF ( (d==isouth .OR. d==inorthb) .AND. (d2==isouth.OR.d2==inorthb) ) RETURN
IF ( (d==inorth .OR. d==isouthb) .AND. (d2==inorth.OR.d2==isouthb) ) RETURN
IF ( (d==iwest .OR. d==ieastb) .AND. (d2==iwest.OR.d2==ieastb) ) RETURN
IF ( (d==ieast .OR. d==iwestb) .AND. (d2==ieast.OR.d2==iwestb) ) RETURN
SELECT CASE (d)
CASE (iroof) !< ground, roof
IF ( z2 < z ) RETURN
CASE (isky) !< sky
IF ( z2 > z ) RETURN
CASE (isouth, inorthb) !< south facing
IF ( y2 > y ) RETURN
CASE (inorth, isouthb) !< north facing
IF ( y2 < y ) RETURN
CASE (iwest, ieastb) !< west facing
IF ( x2 > x ) RETURN
CASE (ieast, iwestb) !< east facing
IF ( x2 < x ) RETURN
END SELECT
SELECT CASE (d2)
CASE (iroof) !< ground, roof
IF ( z < z2 ) RETURN
CASE (isky) !< sky
IF ( z > z2 ) RETURN
CASE (isouth, inorthb) !< south facing
IF ( y > y2 ) RETURN
CASE (inorth, isouthb) !< north facing
IF ( y < y2 ) RETURN
CASE (iwest, ieastb) !< west facing
IF ( x > x2 ) RETURN
CASE (ieast, iwestb) !< east facing
IF ( x < x2 ) RETURN
CASE (-1)
CONTINUE
END SELECT
usm_facing = .TRUE.
END FUNCTION usm_facing
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Initialization of the wall surface model
!------------------------------------------------------------------------------!
SUBROUTINE usm_init_material_model
IMPLICIT NONE
INTEGER(iwp) :: k, l !< running indices
CALL location_message( ' initialization of wall surface model', .TRUE. )
!-- Calculate wall grid spacings.
!-- Temperature is defined at the center of the wall layers,
!-- whereas gradients/fluxes are defined at the edges (_stag)
DO l = nzb_wall, nzt_wall
zwn(l) = zwn_default(l)
ENDDO
!-- apply for all particular wall grids
DO l = startenergy, endenergy
zw(:,l) = zwn(:) * thickness_wall(l)
dz_wall(nzb_wall,l) = zw(nzb_wall,l)
DO k = nzb_wall+1, nzt_wall
dz_wall(k,l) = zw(k,l) - zw(k-1,l)
ENDDO
dz_wall(nzt_wall+1,l) = dz_wall(nzt_wall,l)
DO k = nzb_wall, nzt_wall-1
dz_wall_stag(k,l) = 0.5 * (dz_wall(k+1,l) + dz_wall(k,l))
ENDDO
dz_wall_stag(nzt_wall,l) = dz_wall(nzt_wall,l)
ENDDO
ddz_wall = 1.0_wp / dz_wall
ddz_wall_stag = 1.0_wp / dz_wall_stag
CALL location_message( ' wall structures filed out', .TRUE. )
CALL location_message( ' initialization of wall surface model finished', .TRUE. )
END SUBROUTINE usm_init_material_model
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Initialization of the urban surface model
!------------------------------------------------------------------------------!
SUBROUTINE usm_init_urban_surface
IMPLICIT NONE
INTEGER(iwp) :: i, j, k, l !< running indices
REAL(wp) :: c, d, tin, exn
CALL cpu_log( log_point_s(78), 'usm_init', 'start' )
!-- surface forcing have to be disabled for LSF
!-- in case of enabled urban surface module
IF ( large_scale_forcing ) THEN
lsf_surf = .FALSE.
ENDIF
!-- init anthropogenic sources of heat
CALL usm_allocate_urban_surface()
!-- read the surface_types array somewhere
CALL usm_read_urban_surface_types()
!-- init material heat model
CALL usm_init_material_model()
IF ( usm_anthropogenic_heat ) THEN
!-- init anthropogenic sources of heat (from transportation for now)
CALL usm_read_anthropogenic_heat()
ENDIF
IF ( read_svf_on_init ) THEN
!-- read svf and svfsurf data from file
CALL location_message( ' Start reading SVF from file', .TRUE. )
CALL usm_read_svf_from_file()
CALL location_message( ' Reading SVF from file has finished', .TRUE. )
ELSE
!-- calculate SFV and CSF
CALL location_message( ' Start calculation of SVF', .TRUE. )
CALL cpu_log( log_point_s(79), 'usm_calc_svf', 'start' )
CALL usm_calc_svf()
CALL cpu_log( log_point_s(79), 'usm_calc_svf', 'stop' )
CALL location_message( ' Calculation of SVF has finished', .TRUE. )
ENDIF
IF ( write_svf_on_init ) THEN
!-- write svf and svfsurf data to file
CALL usm_write_svf_to_file()
ENDIF
IF ( plant_canopy ) THEN
!-- gridpcbl was only necessary for initialization
DEALLOCATE( gridpcbl )
IF ( .NOT. ALLOCATED(pc_heating_rate) ) THEN
!-- then pc_heating_rate is allocated in init_plant_canopy
!-- in case of cthf /= 0 => we need to allocate it for our use here
ALLOCATE( pc_heating_rate(nzb:nzt+1,nysg:nyng,nxlg:nxrg) )
ENDIF
ENDIF
!-- Intitialization of the surface and wall/ground/roof temperature
!-- Initialization for restart runs
IF ( TRIM( initializing_actions ) == 'read_restart_data' ) THEN
!-- restore data from restart file
CALL usm_read_restart_data()
ELSE
!-- Calculate initial surface temperature
exn = ( surface_pressure / 1000.0_wp )**0.286_wp
DO l = startenergy, endenergy
k = surfl(iz,l)
j = surfl(iy,l)
i = surfl(ix,l)
!-- Initial surface temperature set from pt of adjacent gridbox
t_surf(l) = pt(k,j,i) * exn
ENDDO
!-- initial values for t_wall
!-- outer value is set to surface temperature
!-- inner value is set to wall_inner_temperature
!-- and profile is logaritmic (linear in nz)
DO l = startenergy, endenergy
IF ( isroof_surf(l) ) THEN
tin = roof_inner_temperature
ELSE IF ( surf(id,l)==iroof ) THEN
tin = soil_inner_temperature
ELSE
tin = wall_inner_temperature
ENDIF
DO k = nzb_wall, nzt_wall+1
c = REAL(k-nzb_wall,wp)/REAL(nzt_wall+1-nzb_wall,wp)
t_wall(k,:) = (1.0_wp-c)*t_surf(:) + c*tin
ENDDO
ENDDO
ENDIF
!--
!-- Possibly DO user-defined actions (e.g. define heterogeneous wall surface)
CALL user_init_urban_surface
!-- initialize prognostic values for the first timestep
t_surf_p = t_surf
t_wall_p = t_wall
!-- Adjust radiative fluxes for urban surface at model start
CALL usm_radiation
CALL cpu_log( log_point_s(78), 'usm_init', 'stop' )
END SUBROUTINE usm_init_urban_surface
!------------------------------------------------------------------------------!
! Description:
! ------------
!
!> Wall model as part of the urban surface model. The model predicts wall
!> temperature.
!------------------------------------------------------------------------------!
SUBROUTINE usm_material_heat_model
IMPLICIT NONE
INTEGER(iwp) :: i,j,k,l,kw !< running indices
REAL(wp), DIMENSION(nzb_wall:nzt_wall) :: wtend !< tendency
DO l = startenergy, endenergy
!-- calculate frequently used parameters
k = surfl(iz,l)
j = surfl(iy,l)
i = surfl(ix,l)
!
!-- prognostic equation for ground/wall/roof temperature t_wall
wtend(:) = 0.0_wp
wtend(nzb_wall) = (1.0_wp/rho_c_wall(nzb_wall,l)) * &
( lambda_h(nzb_wall,l) * ( t_wall(nzb_wall+1,l) &
- t_wall(nzb_wall,l) ) * ddz_wall(nzb_wall+1,l) &
+ wghf_eb(l) ) * ddz_wall_stag(nzb_wall,l)
DO kw = nzb_wall+1, nzt_wall
wtend(kw) = (1.0_wp/rho_c_wall(kw,l)) &
* ( lambda_h(kw,l) &
* ( t_wall(kw+1,l) - t_wall(kw,l) ) &
* ddz_wall(kw+1,l) &
- lambda_h(kw-1,l) &
* ( t_wall(kw,l) - t_wall(kw-1,l) ) &
* ddz_wall(kw,l) &
) * ddz_wall_stag(kw,l)
ENDDO
t_wall_p(nzb_wall:nzt_wall,l) = t_wall(nzb_wall:nzt_wall,l) &
+ dt_3d * ( tsc(2) &
* wtend(nzb_wall:nzt_wall) + tsc(3) &
* tt_wall_m(nzb_wall:nzt_wall,l) )
!
!-- calculate t_wall tendencies for the next Runge-Kutta step
IF ( timestep_scheme(1:5) == 'runge' ) THEN
IF ( intermediate_timestep_count == 1 ) THEN
DO kw = nzb_wall, nzt_wall
tt_wall_m(kw,l) = wtend(kw)
ENDDO
ELSEIF ( intermediate_timestep_count < &
intermediate_timestep_count_max ) THEN
DO kw = nzb_wall, nzt_wall
tt_wall_m(kw,l) = -9.5625_wp * wtend(kw) + 5.3125_wp &
* tt_wall_m(kw,l)
ENDDO
ENDIF
ENDIF
ENDDO
END SUBROUTINE usm_material_heat_model
!------------------------------------------------------------------------------!
! Description:
! ------------
!> This subroutine calculates interaction of the solar radiation
!> with urban surface and updates surface, roofs and walls heatfluxes.
!> It also updates rad_sw_out and rad_lw_out.
!------------------------------------------------------------------------------!
SUBROUTINE usm_radiation
IMPLICIT NONE
INTEGER(iwp) :: i, j, k, kk, is, js, d, ku, refstep
INTEGER(iwp) :: nzubl, nzutl, isurf, isurfsrc, isurf1, isvf, ipcgb
INTEGER(iwp), DIMENSION(4) :: bdycross
REAL(wp), DIMENSION(3,3) :: mrot !< grid rotation matrix (xyz)
REAL(wp), DIMENSION(3,0:9) :: vnorm !< face direction normal vectors (xyz)
REAL(wp), DIMENSION(3) :: sunorig !< grid rotated solar direction unit vector (xyz)
REAL(wp), DIMENSION(3) :: sunorig_grid !< grid squashed solar direction unit vector (zyx)
REAL(wp), DIMENSION(0:9) :: costheta !< direct irradiance factor of solar angle
REAL(wp), DIMENSION(nzub:nzut) :: pchf_prep !< precalculated factor for canopy temp tendency
REAL(wp), PARAMETER :: alpha = 0._wp !< grid rotation (TODO: add to namelist or remove)
REAL(wp) :: rx, ry, rz
REAL(wp) :: pc_box_area, pc_abs_frac, pc_abs_eff
INTEGER(iwp) :: pc_box_dimshift !< transform for best accuracy
IF ( plant_canopy ) THEN
pchf_prep(:) = r_d * (hyp(nzub:nzut) / 100000.0_wp)**0.286_wp &
/ (cp * hyp(nzub:nzut) * dx*dy*dz) !< equals to 1 / (rho * c_p * Vbox * T)
ENDIF
sun_direction = .TRUE.
CALL calc_zenith !< required also for diffusion radiation
!-- prepare rotated normal vectors and irradiance factor
vnorm(1,:) = idir(:)
vnorm(2,:) = jdir(:)
vnorm(3,:) = kdir(:)
mrot(1, :) = (/ cos(alpha), -sin(alpha), 0._wp /)
mrot(2, :) = (/ sin(alpha), cos(alpha), 0._wp /)
mrot(3, :) = (/ 0._wp, 0._wp, 1._wp /)
sunorig = (/ sun_dir_lon, sun_dir_lat, zenith(0) /)
sunorig = matmul(mrot, sunorig)
DO d = 0, 9
costheta(d) = dot_product(sunorig, vnorm(:,d))
ENDDO
IF ( zenith(0) > 0 ) THEN
!-- now we will "squash" the sunorig vector by grid box size in
!-- each dimension, so that this new direction vector will allow us
!-- to traverse the ray path within grid coordinates directly
sunorig_grid = (/ sunorig(3)/dz, sunorig(2)/dy, sunorig(1)/dx /)
!-- sunorig_grid = sunorig_grid / norm2(sunorig_grid)
sunorig_grid = sunorig_grid / SQRT(SUM(sunorig_grid**2))
IF ( plant_canopy ) THEN
!-- precompute effective box depth with prototype Leaf Area Density
pc_box_dimshift = maxloc(sunorig, 1) - 1
CALL usm_box_absorb(cshift((/dx,dy,dz/), pc_box_dimshift), &
60, prototype_lad, &
cshift(sunorig, pc_box_dimshift), &
pc_box_area, pc_abs_frac)
pc_box_area = pc_box_area * sunorig(pc_box_dimshift+1) / sunorig(3)
pc_abs_eff = log(1._wp - pc_abs_frac) / prototype_lad
ENDIF
ENDIF
!-- split diffusion and direct part of the solar downward radiation
!-- comming from radiation model and store it in 2D arrays
!-- rad_sw_in_diff, rad_sw_in_dir and rad_lw_in_diff
IF ( split_diffusion_radiation ) THEN
CALL usm_calc_diffusion_radiation
ELSE
rad_sw_in_diff = 0.0_wp
rad_sw_in_dir(:,:) = rad_sw_in(0,:,:)
rad_lw_in_diff(:,:) = rad_lw_in(0,:,:)
ENDIF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- First pass: direct + diffuse irradiance
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
surfinswdir = 0._wp
surfinswdif = 0._wp
surfinlwdif = 0._wp
surfins = 0._wp
surfinl = 0._wp
surfoutsl = 0._wp
surfoutll = 0._wp
!-- Set up thermal radiation from surfaces
!-- emiss_surf is defined only for surfaces for which energy balance is calculated
surfoutll(startenergy:endenergy) = emiss_surf(startenergy:endenergy) * sigma_sb &
* t_surf(startenergy:endenergy)**4
#if defined( __parallel )
!-- might be optimized and gather only values relevant for current processor
CALL MPI_AllGatherv(surfoutll, nenergy, MPI_REAL, &
surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr)
#else
surfoutl(:) = surfoutll(:)
#endif
isurf1 = -1 !< previous processed surface
DO isvf = 1, nsvfl
isurf = svfsurf(1, isvf)
k = surfl(iz, isurf)
j = surfl(iy, isurf)
i = surfl(ix, isurf)
isurfsrc = svfsurf(2, isvf)
IF ( zenith(0) > 0 .AND. isurf /= isurf1 ) THEN
!-- locate the virtual surface where the direct solar ray crosses domain boundary
!-- (once per target surface)
d = surfl(id, isurf)
rz = REAL(k, wp) - 0.5_wp * kdir(d)
ry = REAL(j, wp) - 0.5_wp * jdir(d)
rx = REAL(i, wp) - 0.5_wp * idir(d)
CALL usm_find_boundary_face( (/ rz, ry, rx /), sunorig_grid, bdycross)
isurf1 = isurf
ENDIF
IF ( surf(id, isurfsrc) >= isky ) THEN
!-- diffuse rad from boundary surfaces. Since it is a simply
!-- calculated value, it is not assigned to surfref(s/l),
!-- instead it is used directly here
!-- we consider the radiation from the radiation model falling on surface
!-- as the radiation falling on the top of urban layer into the place of the source surface
!-- we consider it as a very reasonable simplification which allow as avoid
!-- necessity of other global range arrays and some all to all mpi communication
surfinswdif(isurf) = surfinswdif(isurf) + rad_sw_in_diff(j,i) * svf(1,isvf) * svf(2,isvf)
!< canopy shading is applied only to shortwave
surfinlwdif(isurf) = surfinlwdif(isurf) + rad_lw_in_diff(j,i) * svf(1,isvf)
ELSE
!-- for surface-to-surface factors we calculate thermal radiation in 1st pass
surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc)
ENDIF
IF ( zenith(0) > 0 .AND. all( surf(:, isurfsrc) == bdycross ) ) THEN
!-- found svf between model boundary and the face => face isn't shaded
surfinswdir(isurf) = rad_sw_in_dir(j, i) &
* costheta(surfl(id, isurf)) * svf(2,isvf) / zenith(0)
ENDIF
ENDDO
IF ( plant_canopy ) THEN
pcbinsw(:) = 0._wp
pcbinlw(:) = 0._wp !< will stay always 0 since we don't absorb lw anymore
!
!-- pcsf first pass
isurf1 = -1 !< previous processed pcgb
DO isvf = nsvfl+1, nsvfcsfl
ipcgb = svfsurf(1, isvf)
i = pcbl(ix,ipcgb)
j = pcbl(iy,ipcgb)
k = pcbl(iz,ipcgb)
isurfsrc = svfsurf(2, isvf)
IF ( zenith(0) > 0 .AND. ipcgb /= isurf1 ) THEN
!-- locate the virtual surface where the direct solar ray crosses domain boundary
!-- (once per target PC gridbox)
rz = REAL(k, wp)
ry = REAL(j, wp)
rx = REAL(i, wp)
CALL usm_find_boundary_face( (/ rz, ry, rx /), &
sunorig_grid, bdycross)
isurf1 = ipcgb
ENDIF
IF ( surf(id, isurfsrc) >= isky ) THEN
!-- Diffuse rad from boundary surfaces. See comments for svf above.
pcbinsw(ipcgb) = pcbinsw(ipcgb) + svf(1,isvf) * svf(2,isvf) * rad_sw_in_diff(j,i)
!-- canopy shading is applied only to shortwave, therefore no absorbtion for lw
!-- pcbinlw(ipcgb) = pcbinlw(ipcgb) + svf(1,isvf) * rad_lw_in_diff(j,i)
!ELSE
!-- Thermal radiation in 1st pass
!-- pcbinlw(ipcgb) = pcbinlw(ipcgb) + svf(1,isvf) * surfoutl(isurfsrc)
ENDIF
IF ( zenith(0) > 0 .AND. all( surf(:, isurfsrc) == bdycross ) ) THEN
!-- found svf between model boundary and the pcgb => pcgb isn't shaded
pc_abs_frac = 1._wp - exp(pc_abs_eff * lad_s(k,j,i))
pcbinsw(ipcgb) = pcbinsw(ipcgb) &
+ rad_sw_in_dir(j, i) * pc_box_area * svf(2,isvf) * pc_abs_frac
ENDIF
ENDDO
ENDIF
surfins(startenergy:endenergy) = surfinswdir(startenergy:endenergy) + surfinswdif(startenergy:endenergy)
surfinl(startenergy:endenergy) = surfinl(startenergy:endenergy) + surfinlwdif(startenergy:endenergy)
surfinsw(:) = surfins(:)
surfinlw(:) = surfinl(:)
surfoutsw(:) = 0.0_wp
surfoutlw(:) = surfoutll(:)
surfhf(startenergy:endenergy) = surfinsw(startenergy:endenergy) + surfinlw(startenergy:endenergy) &
- surfoutsw(startenergy:endenergy) - surfoutlw(startenergy:endenergy)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- Next passes - reflections
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
DO refstep = 1, nrefsteps
surfoutsl(startenergy:endenergy) = albedo_surf(startenergy:endenergy) * surfins(startenergy:endenergy)
!-- for non-transparent surfaces, longwave albedo is 1 - emissivity
surfoutll(startenergy:endenergy) = (1._wp - emiss_surf(startenergy:endenergy)) * surfinl(startenergy:endenergy)
#if defined( __parallel )
CALL MPI_AllGatherv(surfoutsl, nsurfl, MPI_REAL, &
surfouts, nsurfs, surfstart, MPI_REAL, comm2d, ierr)
CALL MPI_AllGatherv(surfoutll, nsurfl, MPI_REAL, &
surfoutl, nsurfs, surfstart, MPI_REAL, comm2d, ierr)
#else
surfouts(:) = surfoutsl(:)
surfoutl(:) = surfoutll(:)
#endif
!-- reset for next pass input
surfins(:) = 0._wp
surfinl(:) = 0._wp
!-- reflected radiation
DO isvf = 1, nsvfl
isurf = svfsurf(1, isvf)
isurfsrc = svfsurf(2, isvf)
!-- TODO: to remove if, use start+end for isvf
IF ( surf(id, isurfsrc) < isky ) THEN
surfins(isurf) = surfins(isurf) + svf(1,isvf) * svf(2,isvf) * surfouts(isurfsrc)
surfinl(isurf) = surfinl(isurf) + svf(1,isvf) * surfoutl(isurfsrc)
ENDIF
ENDDO
!-- radiation absorbed by plant canopy
DO isvf = nsvfl+1, nsvfcsfl
ipcgb = svfsurf(1, isvf)
isurfsrc = svfsurf(2, isvf)
IF ( surf(id, isurfsrc) < isky ) THEN
pcbinsw(ipcgb) = pcbinsw(ipcgb) + svf(1,isvf) * svf(2,isvf) * surfouts(isurfsrc)
!-- pcbinlw(ipcgb) = pcbinlw(ipcgb) + svf(1,isvf) * surfoutl(isurfsrc)
ENDIF
ENDDO
surfinsw(:) = surfinsw(:) + surfins(:)
surfinlw(:) = surfinlw(:) + surfinl(:)
surfoutsw(startenergy:endenergy) = surfoutsw(startenergy:endenergy) + surfoutsl(startenergy:endenergy)
surfoutlw(startenergy:endenergy) = surfoutlw(startenergy:endenergy) + surfoutll(startenergy:endenergy)
surfhf(startenergy:endenergy) = surfinsw(startenergy:endenergy) + surfinlw(startenergy:endenergy) &
- surfoutsw(startenergy:endenergy) - surfoutlw(startenergy:endenergy)
ENDDO
!-- push heat flux absorbed by plant canopy to respective 3D arrays
IF ( plant_canopy ) THEN
pc_heating_rate(:,:,:) = 0._wp
DO ipcgb = 1, npcbl
j = pcbl(iy, ipcgb)
i = pcbl(ix, ipcgb)
k = pcbl(iz, ipcgb)
kk = k - nzb_s_inner(j,i) !- lad arrays are defined flat
pc_heating_rate(kk, j, i) = (pcbinsw(ipcgb) + pcbinlw(ipcgb)) &
* pchf_prep(k) * pt(k, j, i) !-- = dT/dt
ENDDO
ENDIF
!-- return surface radiation to horizontal surfaces
!-- to rad_sw_in, rad_lw_in and rad_net for outputs
!!!!!!!!!!
!-- we need the original radiation on urban top layer
!-- for calculation of MRT so we can't do adjustment here for now
!!!!!!!!!!
!!!DO isurf = 1, nsurfl
!!! i = surfl(ix,isurf)
!!! j = surfl(iy,isurf)
!!! k = surfl(iz,isurf)
!!! d = surfl(id,isurf)
!!! IF ( d==iroof ) THEN
!!! rad_sw_in(:,j,i) = surfinsw(isurf)
!!! rad_lw_in(:,j,i) = surfinlw(isurf)
!!! rad_net(j,i) = rad_sw_in(k,j,i) - rad_sw_out(k,j,i) + rad_lw_in(k,j,i) - rad_lw_out(k,j,i)
!!! ENDIF
!!!ENDDO
END SUBROUTINE usm_radiation
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Raytracing for detecting obstacles and calculating compound canopy sink
!> factors. (A simple obstacle detection would only need to process faces in
!> 3 dimensions without any ordering.)
!> Assumtions:
!> -----------
!> 1. The ray always originates from a face midpoint (only one coordinate equals
!> *.5, i.e. wall) and doesn't travel parallel to the surface (that would mean
!> shape factor=0). Therefore, the ray may never travel exactly along a face
!> or an edge.
!> 2. From grid bottom to urban surface top the grid has to be *equidistant*
!> within each of the dimensions, including vertical (but the resolution
!> doesn't need to be the same in all three dimensions).
!------------------------------------------------------------------------------!
SUBROUTINE usm_raytrace(src, targ, isrc, rirrf, atarg, create_csf, visible, transparency, win_lad)
IMPLICIT NONE
REAL(wp), DIMENSION(3), INTENT(in) :: src, targ !< real coordinates z,y,x
INTEGER(iwp), INTENT(in) :: isrc !< index of source face for csf
REAL(wp), INTENT(in) :: rirrf !< irradiance factor for csf
REAL(wp), INTENT(in) :: atarg !< target surface area for csf
LOGICAL, INTENT(in) :: create_csf !< whether to generate new CSFs during raytracing
LOGICAL, INTENT(out) :: visible
REAL(wp), INTENT(out) :: transparency !< along whole path
INTEGER(iwp), INTENT(in) :: win_lad
INTEGER(iwp) :: k, d
INTEGER(iwp) :: seldim !< dimension to be incremented
INTEGER(iwp) :: ncsb !< no of written plant canopy sinkboxes
INTEGER(iwp) :: maxboxes !< max no of gridboxes visited
REAL(wp) :: distance !< euclidean along path
REAL(wp) :: crlen !< length of gridbox crossing
REAL(wp) :: lastdist !< beginning of current crossing
REAL(wp) :: nextdist !< end of current crossing
REAL(wp) :: realdist !< distance in meters per unit distance
REAL(wp) :: crmid !< midpoint of crossing
REAL(wp) :: cursink !< sink factor for current canopy box
REAL(wp), DIMENSION(3) :: delta !< path vector
REAL(wp), DIMENSION(3) :: uvect !< unit vector
REAL(wp), DIMENSION(3) :: dimnextdist !< distance for each dimension increments
INTEGER(iwp), DIMENSION(3) :: box !< gridbox being crossed
INTEGER(iwp), DIMENSION(3) :: dimnext !< next dimension increments along path
INTEGER(iwp), DIMENSION(3) :: dimdelta !< dimension direction = +- 1
INTEGER(iwp) :: px, py !< number of processors in x and y dir before
!< the processor in the question
INTEGER(iwp) :: ig, ip
REAL(wp) :: lad_s_target
INTEGER(kind=MPI_ADDRESS_KIND) :: lad_disp
REAL(wp), PARAMETER :: grow_factor = 1.5_wp
!-- Maximum number of gridboxes visited equals to maximum number of boundaries crossed in each dimension plus one. That's also
!-- the maximum number of plant canopy boxes written. We grow the acsf array accordingly using exponential factor.
maxboxes = SUM(ABS(NINT(targ) - NINT(src))) + 1
IF ( plant_canopy .AND. ncsfl + maxboxes > ncsfla ) THEN
!-- use this code for growing by fixed exponential increments (equivalent to case where ncsfl always increases by 1)
!-- k = CEILING(grow_factor ** real(CEILING(log(real(ncsfl + maxboxes, kind=wp)) &
!-- / log(grow_factor)), kind=wp))
!-- or use this code to simply always keep some extra space after growing
k = CEILING(REAL(ncsfl + maxboxes, kind=wp) * grow_factor)
CALL usm_merge_and_grow_csf(k)
ENDIF
transparency = 1._wp
ncsb = 0
delta(:) = targ(:) - src(:)
distance = SQRT(SUM(delta(:)**2))
IF ( distance == 0._wp ) THEN
visible = .TRUE.
RETURN
ENDIF
uvect(:) = delta(:) / distance
realdist = SQRT(SUM( (uvect(:)*(/dz,dy,dx/))**2 ))
lastdist = 0._wp
!-- Since all face coordinates have values *.5 and we'd like to use
!-- integers, all these have .5 added
DO d = 1, 3
IF ( uvect(d) == 0._wp ) THEN
dimnext(d) = 999999999
dimdelta(d) = 999999999
dimnextdist(d) = 1.0E20_wp
ELSE IF ( uvect(d) > 0._wp ) THEN
dimnext(d) = CEILING(src(d) + .5_wp)
dimdelta(d) = 1
dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d)
ELSE
dimnext(d) = FLOOR(src(d) + .5_wp)
dimdelta(d) = -1
dimnextdist(d) = (dimnext(d) - .5_wp - src(d)) / uvect(d)
ENDIF
ENDDO
DO
!-- along what dimension will the next wall crossing be?
seldim = minloc(dimnextdist, 1)
nextdist = dimnextdist(seldim)
IF ( nextdist > distance ) nextdist = distance
crlen = nextdist - lastdist
IF ( crlen > .001_wp ) THEN
crmid = (lastdist + nextdist) * .5_wp
box = NINT(src(:) + uvect(:) * crmid)
!-- calculate index of the grid with global indices (box(2),box(3))
!-- in the array nzterr and plantt and id of the coresponding processor
px = box(3)/nnx
py = box(2)/nny
ip = px*pdims(2)+py
ig = ip*nnx*nny + (box(3)-px*nnx)*nny + box(2)-py*nny
IF ( box(1) <= nzterr(ig) ) THEN
visible = .FALSE.
IF ( ncsb > 0 ) THEN
!-- rewind written plant canopy sink factors - they are invalid
ncsfl = ncsfl - ncsb
ENDIF
RETURN
ENDIF
IF ( plant_canopy ) THEN
IF ( box(1) <= plantt(ig) ) THEN
#if defined( __parallel )
lad_disp = (box(3)-px*nnx)*(nny*nzu) + (box(2)-py*nny)*nzu + box(1)-nzub
IF ( usm_lad_rma ) THEN
!-- Read LAD using MPI RMA
CALL cpu_log( log_point_s(77), 'usm_init_rma', 'start' )
CALL MPI_Get(lad_s_target, 1, MPI_REAL, ip, lad_disp, 1, MPI_REAL, &
win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(message_string, *) 'MPI error ', ierr, ' at MPI_Get'
CALL message( 'usm_raytrace', 'PA0519', 1, 2, 0, 6, 0 )
ENDIF
CALL MPI_Win_flush_local(ip, win_lad, ierr)
IF ( ierr /= 0 ) THEN
WRITE(message_string, *) 'MPI error ', ierr, ' at MPI_Win_flush_local'
CALL message( 'usm_raytrace', 'PA0519', 1, 2, 0, 6, 0 )
ENDIF
CALL cpu_log( log_point_s(77), 'usm_init_rma', 'stop' )
ELSE
lad_s_target = usm_lad_g(ip*nnx*nny*nzu + lad_disp)
ENDIF
#else
lad_s_target = usm_lad(box(1),box(2),box(3))
#endif
cursink = 1._wp - exp(-ext_coef * lad_s_target &
* crlen*realdist)
IF ( create_csf ) THEN
!-- write svf values into the array
ncsb = ncsb + 1
ncsfl = ncsfl + 1
acsf(ncsfl)%ip = ip
acsf(ncsfl)%itx = box(3)
acsf(ncsfl)%ity = box(2)
acsf(ncsfl)%itz = box(1)
acsf(ncsfl)%isurfs = isrc
acsf(ncsfl)%rsvf = REAL(cursink*rirrf*atarg, wp) !-- we postpone multiplication by transparency
acsf(ncsfl)%rtransp = REAL(transparency, wp)
ENDIF !< create_csf
transparency = transparency * (1._wp - cursink)
ENDIF
ENDIF
ENDIF
IF ( nextdist >= distance ) EXIT
lastdist = nextdist
dimnext(seldim) = dimnext(seldim) + dimdelta(seldim)
dimnextdist(seldim) = (dimnext(seldim) - .5_wp - src(seldim)) / uvect(seldim)
ENDDO
visible = .TRUE.
END SUBROUTINE usm_raytrace
!------------------------------------------------------------------------------!
! Description:
! ------------
!
!> This subroutine is part of the urban surface model.
!> It reads daily heat produced by anthropogenic sources
!> and the diurnal cycle of the heat.
!------------------------------------------------------------------------------!
SUBROUTINE usm_read_anthropogenic_heat
INTEGER(iwp) :: i,j,ii
REAL(wp) :: heat
!-- allocation of array of sources of anthropogenic heat and their diural profile
ALLOCATE( aheat(nys:nyn,nxl:nxr) )
ALLOCATE( aheatprof(0:24) )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- read daily amount of heat and its daily cycle
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
aheat = 0.0_wp
DO ii = 0, io_blocks-1
IF ( ii == io_group ) THEN
!-- open anthropogenic heat file
OPEN( 151, file='ANTHROPOGENIC_HEAT'//TRIM(coupling_char), action='read', &
status='old', form='formatted', err=11 )
i = 0
j = 0
DO
READ( 151, *, err=12, end=13 ) i, j, heat
IF ( i >= nxl .AND. i <= nxr .AND. j >= nys .AND. j <= nyn ) THEN
!-- write heat into the array
aheat(j,i) = heat
ENDIF
CYCLE
12 WRITE(message_string,'(a,2i4)') 'error in file ANTHROPOGENIC_HEAT'//TRIM(coupling_char)//' after line ',i,j
CALL message( 'usm_read_anthropogenic_heat', 'PA0515', 0, 1, 0, 6, 0 )
ENDDO
13 CLOSE(151)
CYCLE
11 message_string = 'file ANTHROPOGENIC_HEAT'//TRIM(coupling_char)//' does not exist'
CALL message( 'usm_read_anthropogenic_heat', 'PA0516', 1, 2, 0, 6, 0 )
ENDIF
#if defined( __parallel ) && ! defined ( __check )
CALL mpi_barrier( comm2d, ierr )
#endif
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- read diurnal profiles of heat sources
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
aheatprof = 0.0_wp
DO ii = 0, io_blocks-1
IF ( ii == io_group ) THEN
!-- open anthropogenic heat profile file
OPEN( 151, file='ANTHROPOGENIC_HEAT_PROFILE'//TRIM(coupling_char), action='read', &
status='old', form='formatted', err=21 )
i = 0
DO
READ( 151, *, err=22, end=23 ) i, heat
IF ( i >= 0 .AND. i <= 24 ) THEN
!-- write heat into the array
aheatprof(i) = heat
ENDIF
CYCLE
22 WRITE(message_string,'(a,i4)') 'error in file ANTHROPOGENIC_HEAT_PROFILE'// &
TRIM(coupling_char)//' after line ',i
CALL message( 'usm_read_anthropogenic_heat', 'PA0517', 0, 1, 0, 6, 0 )
ENDDO
aheatprof(24) = aheatprof(0)
23 CLOSE(151)
CYCLE
21 message_string = 'file ANTHROPOGENIC_HEAT_PROFILE'//TRIM(coupling_char)//' does not exist'
CALL message( 'usm_read_anthropogenic_heat', 'PA0518', 1, 2, 0, 6, 0 )
ENDIF
#if defined( __parallel ) && ! defined ( __check )
CALL mpi_barrier( comm2d, ierr )
#endif
ENDDO
END SUBROUTINE usm_read_anthropogenic_heat
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Soubroutine reads t_surf and t_wall data from restart files
!kanani: Renamed this routine according to corresponging routines in PALM
!kanani: Modified the routine to match read_var_list, from where usm_read_restart_data
! shall be called in the future. This part has not been tested yet. (see virtual_flight_mod)
! Also, I had some trouble with the allocation of t_surf, since this is a pointer.
! So, I added some directives here.
!------------------------------------------------------------------------------!
SUBROUTINE usm_read_restart_data
IMPLICIT NONE
CHARACTER (LEN=30) :: variable_chr !< dummy variable to read string
INTEGER :: i !< running index
DO i = 0, io_blocks-1
IF ( i == io_group ) THEN
READ ( 13 ) variable_chr
DO WHILE ( TRIM( variable_chr ) /= '*** end usm ***' )
SELECT CASE ( TRIM( variable_chr ) )
CASE ( 't_surf' )
#if defined( __nopointer )
IF ( .NOT. ALLOCATED( t_surf ) ) &
ALLOCATE( t_surf(startenergy:endenergy) )
READ ( 13 ) t_surf
#else
IF ( .NOT. ALLOCATED( t_surf_1 ) ) &
ALLOCATE( t_surf_1(startenergy:endenergy) )
READ ( 13 ) t_surf_1
#endif
CASE ( 't_wall' )
#if defined( __nopointer )
IF ( .NOT. ALLOCATED( t_wall ) ) &
ALLOCATE( t_wall(nzb_wall:nzt_wall+1,startenergy:endenergy) )
READ ( 13 ) t_wall
#else
IF ( .NOT. ALLOCATED( t_wall_1 ) ) &
ALLOCATE( t_wall_1(nzb_wall:nzt_wall+1,startenergy:endenergy) )
READ ( 13 ) t_wall_1
#endif
CASE DEFAULT
WRITE ( message_string, * ) 'unknown variable named "', &
TRIM( variable_chr ), '" found in', &
'&data from prior run on PE ', myid
CALL message( 'user_read_restart_data', 'UI0012', 1, 2, 0, 6, 0 )
END SELECT
READ ( 13 ) variable_chr
ENDDO
ENDIF
#if defined( __parallel )
CALL MPI_BARRIER( comm2d, ierr )
#endif
ENDDO
END SUBROUTINE usm_read_restart_data
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Soubroutine reads svf and svfsurf data from saved file
!------------------------------------------------------------------------------!
SUBROUTINE usm_read_svf_from_file
IMPLICIT NONE
INTEGER :: fsvf = 89
INTEGER :: i
CHARACTER(usm_version_len) :: usm_version_field
CHARACTER(svf_code_len) :: svf_code_field
DO i = 0, io_blocks-1
IF ( i == io_group ) THEN
OPEN ( fsvf, file=TRIM(svf_file_name)//TRIM(coupling_char)//myid_char, &
form='unformatted', status='old' )
!-- read and check version
READ ( fsvf ) usm_version_field
IF ( TRIM(usm_version_field) /= TRIM(usm_version) ) THEN
WRITE( message_string, * ) 'Version of binary SVF file "', &
TRIM(usm_version_field), '" does not match ', &
'the version of model "', TRIM(usm_version), '"'
CALL message( 'usm_read_svf_from_file', 'UI0012', 1, 2, 0, 6, 0 )
ENDIF
!-- read nsvfcsfl, nsvfl
READ ( fsvf ) nsvfcsfl, nsvfl
IF ( nsvfcsfl <= 0 ) THEN
WRITE( message_string, * ) 'Wrong number of SVF or CSF'
CALL message( 'usm_read_svf_from_file', 'UI0012', 1, 2, 0, 6, 0 )
ELSE
WRITE(message_string,*) ' Number of SVF and CSF to read', nsvfcsfl, nsvfl
CALL location_message( message_string, .TRUE. )
ENDIF
ALLOCATE(svf(ndsvf,nsvfcsfl))
ALLOCATE(svfsurf(ndsvf,nsvfcsfl))
READ(fsvf) svf
READ(fsvf) svfsurf
READ ( fsvf ) svf_code_field
IF ( TRIM(svf_code_field) /= TRIM(svf_code) ) THEN
WRITE( message_string, * ) 'Wrong structure of binary svf file'
CALL message( 'usm_read_svf_from_file', 'UI0012', 1, 2, 0, 6, 0 )
ENDIF
CLOSE (fsvf)
ENDIF
#if defined( __parallel )
CALL mpi_barrier( comm2d, ierr )
#endif
ENDDO
END SUBROUTINE usm_read_svf_from_file
!------------------------------------------------------------------------------!
! Description:
! ------------
!
!> This subroutine reads walls, roofs and land categories and it parameters
!> from input files.
!------------------------------------------------------------------------------!
SUBROUTINE usm_read_urban_surface_types
CHARACTER(12) :: wtn
INTEGER :: wtc
REAL(wp), DIMENSION(n_surface_params) :: wtp
INTEGER(iwp), DIMENSION(0:17, nysg:nyng, nxlg:nxrg) :: usm_par
REAL(wp), DIMENSION(1:14, nysg:nyng, nxlg:nxrg) :: usm_val
INTEGER(iwp) :: k, l, d, iw, jw, kw, it, ip, ii, ij
INTEGER(iwp) :: i, j
INTEGER(iwp) :: nz, roof, dirwe, dirsn
INTEGER(iwp) :: category
INTEGER(iwp) :: weheight1, wecat1, snheight1, sncat1
INTEGER(iwp) :: weheight2, wecat2, snheight2, sncat2
INTEGER(iwp) :: weheight3, wecat3, snheight3, sncat3
REAL(wp) :: height, albedo, thick
REAL(wp) :: wealbedo1, wethick1, snalbedo1, snthick1
REAL(wp) :: wealbedo2, wethick2, snalbedo2, snthick2
REAL(wp) :: wealbedo3, wethick3, snalbedo3, snthick3
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- read categories of walls and their parameters
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
DO ii = 0, io_blocks-1
IF ( ii == io_group ) THEN
!-- open urban surface file
OPEN( 151, file='SURFACE_PARAMETERS'//coupling_char, action='read', &
status='old', form='formatted', err=15 )
!-- first test and get n_surface_types
k = 0
l = 0
DO
l = l+1
READ( 151, *, err=11, end=12 ) wtc, wtp, wtn
k = k+1
CYCLE
11 CONTINUE
ENDDO
12 n_surface_types = k
ALLOCATE( surface_type_names(n_surface_types) )
ALLOCATE( surface_type_codes(n_surface_types) )
ALLOCATE( surface_params(n_surface_params, n_surface_types) )
!-- real reading
rewind( 151 )
k = 0
DO
READ( 151, *, err=13, end=14 ) wtc, wtp, wtn
k = k+1
surface_type_codes(k) = wtc
surface_params(:,k) = wtp
surface_type_names(k) = wtn
CYCLE
13 WRITE(6,'(i3,a,2i5)') myid, 'readparams2 error k=', k
FLUSH(6)
CONTINUE
ENDDO
14 CLOSE(151)
CYCLE
15 message_string = 'file SURFACE_PARAMETERS'//TRIM(coupling_char)//' does not exist'
CALL message( 'usm_read_urban_surface_types', 'PA0513', 1, 2, 0, 6, 0 )
ENDIF
ENDDO
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!-- read types of surfaces
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
usm_par = 0
DO ii = 0, io_blocks-1
IF ( ii == io_group ) THEN
!
!-- open csv urban surface file
OPEN( 151, file='URBAN_SURFACE'//TRIM(coupling_char), action='read', &
status='old', form='formatted', err=23 )
l = 0
DO
l = l+1
!-- i, j, height, nz, roof, dirwe, dirsn, category, soilcat,
!-- weheight1, wecat1, snheight1, sncat1, weheight2, wecat2, snheight2, sncat2,
!-- weheight3, wecat3, snheight3, sncat3
READ( 151, *, err=21, end=25 ) i, j, height, nz, roof, dirwe, dirsn, &
category, albedo, thick, &
weheight1, wecat1, wealbedo1, wethick1, &
weheight2, wecat2, wealbedo2, wethick2, &
weheight3, wecat3, wealbedo3, wethick3, &
snheight1, sncat1, snalbedo1, snthick1, &
snheight2, sncat2, snalbedo2, snthick2, &
snheight3, sncat3, snalbedo3, snthick3
IF ( i >= nxlg .AND. i <= nxrg .AND. j >= nysg .AND. j <= nyng ) THEN
!-- write integer variables into array
usm_par(:,j,i) = (/1, nz, roof, dirwe, dirsn, category, &
weheight1, wecat1, weheight2, wecat2, weheight3, wecat3, &
snheight1, sncat1, snheight2, sncat2, snheight3, sncat3 /)
!-- write real values into array
usm_val(:,j,i) = (/ albedo, thick, &
wealbedo1, wethick1, wealbedo2, wethick2, &
wealbedo3, wethick3, snalbedo1, snthick1, &
snalbedo2, snthick2, snalbedo3, snthick3 /)
ENDIF
CYCLE
21 WRITE (message_string, "(A,I5)") 'errors in file URBAN_SURFACE'//TRIM(coupling_char)//' on line ', l
CALL message( 'usm_read_urban_surface_types', 'PA0512', 0, 1, 0, 6, 0 )
ENDDO
23 message_string = 'file URBAN_SURFACE'//TRIM(coupling_char)//' does not exist'
CALL message( 'usm_read_urban_surface_types', 'PA0514', 1, 2, 0, 6, 0 )
25 CLOSE( 90 )
ENDIF
#if defined( __parallel ) && ! defined ( __check )
CALL mpi_barrier( comm2d, ierr )
#endif
ENDDO
!
!-- check completeness and formal correctness of the data
DO i = nxlg, nxrg
DO j = nysg, nyng
IF ( usm_par(0,j,i) /= 0 .AND. ( & !< incomplete data,supply default values later
usm_par(1,j,i) < nzb .OR. &
usm_par(1,j,i) > nzt .OR. & !< incorrect height (nz < nzb .OR. nz > nzt)
usm_par(2,j,i) < 0 .OR. &
usm_par(2,j,i) > 1 .OR. & !< incorrect roof sign
usm_par(3,j,i) < nzb-nzt .OR. &
usm_par(3,j,i) > nzt-nzb .OR. & !< incorrect west-east wall direction sign
usm_par(4,j,i) < nzb-nzt .OR. &
usm_par(4,j,i) > nzt-nzb .OR. & !< incorrect south-north wall direction sign
usm_par(6,j,i) < nzb .OR. &
usm_par(6,j,i) > nzt .OR. & !< incorrect pedestrian level height for west-east wall
usm_par(8,j,i) > nzt .OR. &
usm_par(10,j,i) > nzt .OR. & !< incorrect wall or roof level height for west-east wall
usm_par(12,j,i) < nzb .OR. &
usm_par(12,j,i) > nzt .OR. & !< incorrect pedestrian level height for south-north wall
usm_par(14,j,i) > nzt .OR. &
usm_par(16,j,i) > nzt & !< incorrect wall or roof level height for south-north wall
) ) THEN
!-- incorrect input data
WRITE (message_string, "(A,2I5)") 'missing or incorrect data in file URBAN_SURFACE'// &
TRIM(coupling_char)//' for i,j=', i,j
CALL message( 'usm_read_urban_surface', 'PA0504', 1, 2, 0, 6, 0 )
ENDIF
ENDDO
ENDDO
!-- assign the surface types to local surface array
DO l = startenergy, endenergy
d = surfl(id,l)
kw = surfl(iz,l)
j = surfl(iy,l)
i = surfl(ix,l)
IF ( d == iroof ) THEN
!-- horizontal surface - land or roof
iw = i
jw = j
IF ( usm_par(5,jw,iw) == 0 ) THEN
IF ( zu(kw) >= roof_height_limit ) THEN
isroof_surf(l) = .TRUE.
surface_types(l) = roof_category !< default category for root surface
ELSE
isroof_surf(l) = .FALSE.
surface_types(l) = land_category !< default category for land surface
ENDIF
albedo_surf(l) = -1.0_wp
thickness_wall(l) = -1.0_wp
ELSE
IF ( usm_par(2,jw,iw)==0 ) THEN
isroof_surf(l) = .FALSE.
thickness_wall(l) = -1.0_wp
ELSE
isroof_surf(l) = .TRUE.
thickness_wall(l) = usm_val(2,jw,iw)
ENDIF
surface_types(l) = usm_par(5,jw,iw)
albedo_surf(l) = usm_val(1,jw,iw)
ENDIF
ELSE
SELECT CASE (d)
CASE (iwest)
iw = i
jw = j
ii = 6
ij = 3
CASE (ieast)
iw = i-1
jw = j
ii = 6
ij = 3
CASE (isouth)
iw = i
jw = j
ii = 12
ij = 9
CASE (inorth)
iw = i
jw = j-1
ii = 12
ij = 9
END SELECT
IF ( kw <= usm_par(ii,jw,iw) ) THEN
!-- pedestrant zone
isroof_surf(l) = .FALSE.
IF ( usm_par(ii+1,jw,iw) == 0 ) THEN
surface_types(l) = pedestrant_category !< default category for wall surface in pedestrant zone
albedo_surf(l) = -1.0_wp
thickness_wall(l) = -1.0_wp
ELSE
surface_types(l) = usm_par(ii+1,jw,iw)
albedo_surf(l) = usm_val(ij,jw,iw)
thickness_wall(l) = usm_val(ij+1,jw,iw)
ENDIF
ELSE IF ( kw <= usm_par(ii+2,jw,iw) ) THEN
!-- wall zone
isroof_surf(l) = .FALSE.
IF ( usm_par(ii+3,jw,iw) == 0 ) THEN
surface_types(l) = wall_category !< default category for wall surface
albedo_surf(l) = -1.0_wp
thickness_wall(l) = -1.0_wp
ELSE
surface_types(l) = usm_par(ii+3,jw,iw)
albedo_surf(l) = usm_val(ij+2,jw,iw)
thickness_wall(l) = usm_val(ij+3,jw,iw)
ENDIF
ELSE IF ( kw <= usm_par(ii+4,jw,iw) ) THEN
!-- roof zone
isroof_surf(l) = .TRUE.
IF ( usm_par(ii+5,jw,iw) == 0 ) THEN
surface_types(l) = roof_category !< default category for roof surface
albedo_surf(l) = -1.0_wp
thickness_wall(l) = -1.0_wp
ELSE
surface_types(l) = usm_par(ii+5,jw,iw)
albedo_surf(l) = usm_val(ij+4,jw,iw)
thickness_wall(l) = usm_val(ij+5,jw,iw)
ENDIF
ELSE
!-- something wrong
CALL message( 'usm_read_urban_surface', 'PA0505', 1, 2, 0, 6, 0 )
ENDIF
ENDIF
!-- find the type position
it = surface_types(l)
ip = -99999
DO k = 1, n_surface_types
IF ( surface_type_codes(k) == it ) THEN
ip = k
EXIT
ENDIF
ENDDO
IF ( ip == -99999 ) THEN
!-- wall category not found
WRITE (message_string, "(A,I5,A,3I5)") 'wall category ', it, ' not found for i,j,k=', iw,jw,kw
CALL message( 'usm_read_urban_surface', 'PA0506', 1, 2, 0, 6, 0 )
ENDIF
!-- Fill out the parameters of the wall
!-- wall surface:
!-- albedo
IF ( albedo_surf(l) < 0.0_wp ) THEN
albedo_surf(l) = surface_params(ialbedo, ip)
ENDIF
!-- emissivity of the wall
emiss_surf(l) = surface_params(iemiss, ip)
!-- heat conductivity λS between air and wall ( W m−2 K−1 )
lambda_surf(l) = surface_params(ilambdas, ip)
!-- roughness relative to concrete
roughness_wall(l) = surface_params(irough, ip)
!-- Surface skin layer heat capacity (J m−2 K−1 )
c_surface(l) = surface_params(icsurf, ip)
!-- wall material parameters:
!-- thickness of the wall (m)
!-- missing values are replaced by default value for category
IF ( thickness_wall(l) <= 0.001_wp ) THEN
thickness_wall(l) = surface_params(ithick, ip)
ENDIF
!-- volumetric heat capacity rho*C of the wall ( J m−3 K−1 )
rho_c_wall(:,l) = surface_params(irhoC, ip)
!-- thermal conductivity λH of the wall (W m−1 K−1 )
lambda_h(:,l) = surface_params(ilambdah, ip)
ENDDO
CALL location_message( ' types and parameters of urban surfaces read', .TRUE. )
END SUBROUTINE usm_read_urban_surface_types
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Solver for the energy balance at the ground/roof/wall surface.
!> It follows basic ideas and structure of lsm_energy_balance
!> with many simplifications and adjustments.
!> TODO better description
!------------------------------------------------------------------------------!
SUBROUTINE usm_surface_energy_balance
IMPLICIT NONE
INTEGER(iwp) :: i, j, k, l, d !< running indices
REAL(wp) :: pt1 !< temperature at first grid box adjacent to surface
REAL(wp) :: u1,v1,w1 !< near wall u,v,w
REAL(wp) :: stend !< surface tendency
REAL(wp) :: coef_1 !< first coeficient for prognostic equation
REAL(wp) :: coef_2 !< second coeficient for prognostic equation
REAL(wp) :: rho_cp !< rho_wall_surface * cp
REAL(wp) :: r_a !< aerodynamic resistance for horizontal and vertical surfaces
REAL(wp) :: f_shf !< factor for shf_eb
REAL(wp) :: lambda_surface !< current value of lambda_surface (heat conductivity between air and wall)
REAL(wp) :: Ueff !< effective wind speed for calculation of heat transfer coefficients
REAL(wp) :: httc !< heat transfer coefficient
REAL(wp), DIMENSION(nzub:nzut) :: exn !< value of the Exner function in layers
REAL(wp), DIMENSION(0:4) :: dxdir !< surface normal direction gridbox length
REAL(wp) :: dtime !< simulated time of day (in UTC)
INTEGER(iwp) :: dhour !< simulated hour of day (in UTC)
REAL(wp) :: acoef !< actual coefficient of diurnal profile of anthropogenic heat
dxdir = (/dz,dy,dy,dx,dx/)
exn(:) = (hyp(nzub:nzut) / 100000.0_wp )**0.286_wp !< Exner function
!--
DO l = startenergy, endenergy
!-- Calculate frequently used parameters
d = surfl(id,l)
k = surfl(iz,l)
j = surfl(iy,l)
i = surfl(ix,l)
!-- TODO - how to calculate lambda_surface for horizontal surfaces
!-- (lambda_surface is set according to stratification in land surface model)
IF ( ol(j,i) >= 0.0_wp ) THEN
lambda_surface = lambda_surf(l)
ELSE
lambda_surface = lambda_surf(l)
ENDIF
pt1 = pt(k,j,i)
!-- calculate rho * cp coefficient at surface layer
rho_cp = cp * hyp(k) / ( r_d * pt1 * exn(k) )
!-- calculate aerodyamic resistance.
IF ( d == iroof ) THEN
!-- calculation for horizontal surfaces follows LSM formulation
!-- pt, us, ts are not available for the prognostic time step,
!-- data from the last time step is used here.
r_a = (pt1 - t_surf(l)/exn(k)) / (ts(j,i) * us(j,i) + 1.0E-10_wp)
!-- make sure that the resistance does not drop to zero
IF ( ABS(r_a) < 1.0E-10_wp ) r_a = 1.0E-10_wp
!-- the parameterization is developed originally for larger scales
!-- (compare with remark in TUF-3D)
!-- our first experiences show that the parameterization underestimates
!-- r_a in meter resolution.
!-- temporary solution - multiplication by magic constant :-(.
r_a = r_a * ra_horiz_coef
!-- factor for shf_eb
f_shf = rho_cp / r_a
ELSE
!-- calculation of r_a for vertical surfaces
!--
!-- heat transfer coefficient for forced convection along vertical walls
!-- follows formulation in TUF3d model (Krayenhoff & Voogt, 2006)
!--
!-- H = httc (Tsfc - Tair)
!-- httc = rw * (11.8 + 4.2 * Ueff) - 4.0
!--
!-- rw: wall patch roughness relative to 1.0 for concrete
!-- Ueff: effective wind speed
!-- - 4.0 is a reduction of Rowley et al (1930) formulation based on
!-- Cole and Sturrock (1977)
!--
!-- Ucan: Canyon wind speed
!-- wstar: convective velocity
!-- Qs: surface heat flux
!-- zH: height of the convective layer
!-- wstar = (g/Tcan*Qs*zH)**(1./3.)
!-- staggered grid needs to be taken into consideration
IF ( d == inorth ) THEN
u1 = (u(k,j,i)+u(k,j,i+1))*0.5_wp
v1 = v(k,j+1,i)
ELSE IF ( d == isouth ) THEN
u1 = (u(k,j,i)+u(k,j,i+1))*0.5_wp
v1 = v(k,j,i)
ELSE IF ( d == ieast ) THEN
u1 = u(k,j,i+1)
v1 = (v(k,j,i)+v(k,j+1,i))*0.5_wp
ELSE IF ( d == iwest ) THEN
u1 = u(k,j,i)
v1 = (v(k,j,i)+v(k,j+1,i))*0.5_wp
ELSE
STOP
ENDIF
w1 = (w(k,j,i)+w(k-1,j,i))*0.5_wp
Ueff = SQRT(u1**2 + v1**2 + w1**2)
httc = roughness_wall(l) * (11.8 + 4.2 * Ueff) - 4.0
f_shf = httc
ENDIF
!-- add LW up so that it can be removed in prognostic equation
rad_net_l(l) = surfinsw(l) - surfoutsw(l) + surfinlw(l) - surfoutlw(l)
!-- numerator of the prognostic equation
coef_1 = rad_net_l(l) + & ! coef +1 corresponds to -lwout included in calculation of radnet_l
(3.0_wp+1.0_wp) * emiss_surf(l) * sigma_sb * t_surf(l) ** 4 + &
f_shf * pt1 + &
lambda_surface * t_wall(nzb_wall,l)
!-- denominator of the prognostic equation
coef_2 = 4.0_wp * emiss_surf(l) * sigma_sb * t_surf(l) ** 3 &
+ lambda_surface + f_shf / exn(k)
!-- implicit solution when the surface layer has no heat capacity,
!-- otherwise use RK3 scheme.
t_surf_p(l) = ( coef_1 * dt_3d * tsc(2) + c_surface(l) * t_surf(l) ) / &
( c_surface(l) + coef_2 * dt_3d * tsc(2) )
!-- add RK3 term
t_surf_p(l) = t_surf_p(l) + dt_3d * tsc(3) * tt_surface_m(l)
!-- calculate true tendency
stend = (t_surf_p(l) - t_surf(l) - dt_3d * tsc(3) * tt_surface_m(l)) / (dt_3d * tsc(2))
!-- calculate t_surf tendencies for the next Runge-Kutta step
IF ( timestep_scheme(1:5) == 'runge' ) THEN
IF ( intermediate_timestep_count == 1 ) THEN
tt_surface_m(l) = stend
ELSEIF ( intermediate_timestep_count < &
intermediate_timestep_count_max ) THEN
tt_surface_m(l) = -9.5625_wp * stend + 5.3125_wp &
* tt_surface_m(l)
ENDIF
ENDIF
!-- in case of fast changes in the skin temperature, it is required to
!-- update the radiative fluxes in order to keep the solution stable
IF ( ABS( t_surf_p(l) - t_surf(l) ) > 1.0_wp ) THEN
force_radiation_call_l = .TRUE.
ENDIF
!-- for horizontal surfaces is pt(nzb_s_inner(j,i),j,i) = pt_surf.
!-- there is no equivalent surface gridpoint for vertical surfaces.
!-- pt(k,j,i) is calculated for all directions in diffusion_s
!-- using surface and wall heat fluxes
IF ( d == iroof ) THEN
pt(nzb_s_inner(j,i),j,i) = t_surf_p(l) / exn(k)
ENDIF
!-- calculate fluxes
!-- rad_net_l is never used!
rad_net_l(l) = rad_net_l(l) + 3.0_wp * sigma_sb &
* t_surf(l)**4 - 4.0_wp * sigma_sb &
* t_surf(l)**3 * t_surf_p(l)
wghf_eb(l) = lambda_surface * (t_surf_p(l) - t_wall(nzb_wall,l))
!-- ground/wall/roof surface heat flux
wshf_eb(l) = - f_shf * ( pt1 - t_surf_p(l) )
!-- store kinematic surface heat fluxes for utilization in other processes
!-- diffusion_s, surface_layer_fluxes,...
IF ( d == iroof ) THEN
!-- shf is used in diffusion_s and also
!-- for calculation of surface layer fluxes
!-- update for horizontal surfaces
shf(j,i) = wshf_eb(l) / rho_cp
ELSE
!-- surface heat flux for vertical surfaces
!-- used in diffusion_s
wshf(l) = wshf_eb(l) / rho_cp
ENDIF
ENDDO
IF ( usm_anthropogenic_heat .AND. &
intermediate_timestep_count == intermediate_timestep_count_max ) THEN
!-- application of the additional anthropogenic heat sources
!-- we considere the traffic for now so all heat is absorbed
!-- to the first layer, generalization would be worth
!-- calculation of actual profile coefficient
!-- ??? check time_since_reference_point ???
dtime = mod(simulated_time + time_utc_init, 24.0_wp*3600.0_wp)
dhour = INT(dtime/3600.0_wp)
!-- linear interpolation of coeficient
acoef = (REAL(dhour+1,wp)-dtime/3600.0_wp)*aheatprof(dhour) + (dtime/3600.0_wp-REAL(dhour,wp))*aheatprof(dhour+1)
DO i = nxl, nxr
DO j = nys, nyn
IF ( aheat(j,i) > 0.0_wp ) THEN
!-- TODO the increase of pt in box i,j,nzb_s_inner(j,i)+1 in time dt_3d
!-- given to anthropogenic heat aheat*acoef (W*m-2)
!-- k = nzb_s_inner(j,i)+1
!-- pt(k,j,i) = pt(k,j,i) + aheat(j,i)*acoef*dt_3d/(exn(k)*rho_cp*dz)
!-- Instead of this, we can adjust shf in case AH only at surface
shf(j,i) = shf(j,i) + aheat(j,i)*acoef * ddx * ddy / rho_cp
ENDIF
ENDDO
ENDDO
ENDIF
!-- pt and shf are defined on nxlg:nxrg,nysg:nyng
!-- get the borders from neighbours
CALL exchange_horiz( pt, nbgp )
CALL exchange_horiz_2d( shf )
!-- calculation of force_radiation_call:
!-- Make logical OR for all processes.
!-- Force radiation call if at least one processor forces it.
IF ( intermediate_timestep_count == intermediate_timestep_count_max-1 ) &
THEN
#if defined( __parallel )
IF ( collective_wait ) CALL mpi_barrier( comm2d, ierr )
CALL mpi_allreduce( force_radiation_call_l, force_radiation_call, &
1, MPI_LOGICAL, MPI_LOR, comm2d, ierr )
#else
force_radiation_call = force_radiation_call_l
#endif
force_radiation_call_l = .FALSE.
ENDIF
END SUBROUTINE usm_surface_energy_balance
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Swapping of timelevels for t_surf and t_wall
!> called out from subroutine swap_timelevel
!------------------------------------------------------------------------------!
SUBROUTINE usm_swap_timelevel ( mod_count )
IMPLICIT NONE
INTEGER, INTENT(IN) :: mod_count
INTEGER :: i
#if defined( __nopointer )
t_surf = t_surf_p
t_wall = t_wall_p
#else
SELECT CASE ( mod_count )
CASE ( 0 )
t_surf => t_surf_1; t_surf_p => t_surf_2
t_wall => t_wall_1; t_wall_p => t_wall_2
CASE ( 1 )
t_surf => t_surf_2; t_surf_p => t_surf_1
t_wall => t_wall_2; t_wall_p => t_wall_1
END SELECT
#endif
END SUBROUTINE usm_swap_timelevel
!------------------------------------------------------------------------------!
! Description:
! ------------
!
!> This function applies the kinematic wall heat fluxes
!> for walls in four directions for all gridboxes in urban layer.
!> It is called out from subroutine prognostic_equations.
!> TODO Compare performance with cycle runnig l=startwall,endwall...
!------------------------------------------------------------------------------!
SUBROUTINE usm_wall_heat_flux
IMPLICIT NONE
INTEGER(iwp) :: i,j,k,d,l !< running indices
DO l = startenergy, endenergy
j = surfl(iy,l)
i = surfl(ix,l)
k = surfl(iz,l)
d = surfl(id,l)
tend(k,j,i) = tend(k,j,i) + wshf(l) * ddxy2(d)
ENDDO
END SUBROUTINE usm_wall_heat_flux
!------------------------------------------------------------------------------!
! Description:
! ------------
!
!> This function applies the kinematic wall heat fluxes
!> for walls in four directions around the gridbox i,j.
!> It is called out from subroutine prognostic_equations.
!------------------------------------------------------------------------------!
SUBROUTINE usm_wall_heat_flux_ij(i,j)
IMPLICIT NONE
INTEGER(iwp), INTENT(in) :: i,j !< indices of grid box
INTEGER(iwp) :: ii,jj,k,d,l
DO l = startenergy, endenergy
jj = surfl(iy,l)
ii = surfl(ix,l)
IF ( ii == i .AND. jj == j ) THEN
k = surfl(iz,l)
IF ( k >= nzb_s_inner(j,i)+1 .AND. k <= nzb_s_outer(j,i) ) THEN
d = surfl(id,l)
IF ( d >= 1 .and. d <= 4 ) THEN
tend(k,j,i) = tend(k,j,i) + wshf(l) * ddxy2(d)
ENDIF
ENDIF
ENDIF
ENDDO
END SUBROUTINE usm_wall_heat_flux_ij
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine writes t_surf and t_wall data into restart files
!kanani: Renamed this routine according to corresponging routines in PALM
!kanani: Modified the routine to match write_var_list, from where usm_write_restart_data
! shall be called in the future. This part has not been tested yet. (see virtual_flight_mod)
! Also, I had some trouble with the allocation of t_surf, since this is a pointer.
! So, I added some directives here.
!------------------------------------------------------------------------------!
SUBROUTINE usm_write_restart_data
IMPLICIT NONE
INTEGER :: i
DO i = 0, io_blocks-1
IF ( i == io_group ) THEN
WRITE ( 14 ) 't_surf '
#if defined( __nopointer )
WRITE ( 14 ) t_surf
#else
WRITE ( 14 ) t_surf_1
#endif
WRITE ( 14 ) 't_wall '
#if defined( __nopointer )
WRITE ( 14 ) t_wall
#else
WRITE ( 14 ) t_wall_1
#endif
WRITE ( 14 ) '*** end usm *** '
ENDIF
#if defined( __parallel )
CALL MPI_BARRIER( comm2d, ierr )
#endif
ENDDO
END SUBROUTINE usm_write_restart_data
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Subroutine stores svf and svfsurf data to files
!------------------------------------------------------------------------------!
SUBROUTINE usm_write_svf_to_file
IMPLICIT NONE
INTEGER :: fsvf = 89
INTEGER :: i
DO i = 0, io_blocks-1
IF ( i == io_group ) THEN
OPEN ( fsvf, file=TRIM(svf_file_name)//TRIM(coupling_char)//myid_char, &
form='unformatted', status='new' )
WRITE ( fsvf ) usm_version
WRITE ( fsvf ) nsvfcsfl, nsvfl
WRITE ( fsvf ) svf
WRITE ( fsvf ) svfsurf
WRITE ( fsvf ) TRIM(svf_code)
CLOSE (fsvf)
#if defined( __parallel )
CALL mpi_barrier( comm2d, ierr )
#endif
ENDIF
ENDDO
END SUBROUTINE usm_write_svf_to_file
!------------------------------------------------------------------------------!
! Description:
! ------------
!> Parin for &usm_par for urban surface model
!------------------------------------------------------------------------------!
SUBROUTINE usm_parin
IMPLICIT NONE
CHARACTER (LEN=80) :: line !< string containing current line of file PARIN
NAMELIST /urban_surface_par/ &
land_category, &
mrt_factors, &
nrefsteps, &
pedestrant_category, &
ra_horiz_coef, &
read_svf_on_init, &
roof_category, &
split_diffusion_radiation, &
urban_surface, &
usm_anthropogenic_heat, &
usm_energy_balance_land, &
usm_energy_balance_wall, &
usm_material_model, &
usm_lad_rma, &
wall_category, &
write_svf_on_init
line = ' '
!
!-- Try to find urban surface model package
REWIND ( 11 )
line = ' '
DO WHILE ( INDEX( line, '&urban_surface_par' ) == 0 )
READ ( 11, '(A)', END=10 ) line
ENDDO
BACKSPACE ( 11 )
!
!-- Read user-defined namelist
READ ( 11, urban_surface_par )
!
!-- Set flag that indicates that the land surface model is switched on
urban_surface = .TRUE.
10 CONTINUE
END SUBROUTINE usm_parin
!------------------------------------------------------------------------------!
!
! Description:
! ------------
!> Block of auxiliary subroutines:
!> 1. quicksort and corresponding comparison
!> 2. usm_merge_and_grow_csf for implementation of "dynamical growing" array
!> for svf and csf
!------------------------------------------------------------------------------!
PURE FUNCTION svf_lt(svf1,svf2) result (res)
TYPE (t_svf), INTENT(in) :: svf1,svf2
LOGICAL :: res
IF ( svf1%isurflt < svf2%isurflt .OR. &
(svf1%isurflt == svf2%isurflt .AND. svf1%isurfs < svf2%isurfs) ) THEN
res = .TRUE.
ELSE
res = .FALSE.
ENDIF
END FUNCTION svf_lt
!-- quicksort.f -*-f90-*-
!-- Author: t-nissie, adaptation J.Resler
!-- License: GPLv3
!-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea
RECURSIVE SUBROUTINE quicksort_svf(svfl, first, last)
IMPLICIT NONE
TYPE(t_svf), DIMENSION(:), INTENT(INOUT) :: svfl
INTEGER, INTENT(IN) :: first, last
TYPE(t_svf) :: x, t
INTEGER :: i, j
IF ( first>=last ) RETURN
x = svfl( (first+last) / 2 )
i = first
j = last
DO
DO while ( svf_lt(svfl(i),x) )
i=i+1
ENDDO
DO while ( svf_lt(x,svfl(j)) )
j=j-1
ENDDO
IF ( i >= j ) EXIT
t = svfl(i); svfl(i) = svfl(j); svfl(j) = t
i=i+1
j=j-1
ENDDO
IF ( first < i-1 ) CALL quicksort_svf(svfl, first, i-1)
IF ( j+1 < last ) CALL quicksort_svf(svfl, j+1, last)
END SUBROUTINE quicksort_svf
PURE FUNCTION csf_lt(csf1,csf2) result (res)
TYPE (t_csf), INTENT(in) :: csf1,csf2
LOGICAL :: res
IF ( csf1%ip < csf2%ip .OR. &
(csf1%ip == csf2%ip .AND. csf1%itx < csf2%itx) .OR. &
(csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity < csf2%ity) .OR. &
(csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. &
csf1%itz < csf2%itz) .OR. &
(csf1%ip == csf2%ip .AND. csf1%itx == csf2%itx .AND. csf1%ity == csf2%ity .AND. &
csf1%itz == csf2%itz .AND. csf1%isurfs < csf2%isurfs) ) THEN
res = .TRUE.
ELSE
res = .FALSE.
ENDIF
END FUNCTION csf_lt
!-- quicksort.f -*-f90-*-
!-- Author: t-nissie, adaptation J.Resler
!-- License: GPLv3
!-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea
RECURSIVE SUBROUTINE quicksort_csf(csfl, first, last)
IMPLICIT NONE
TYPE(t_csf), DIMENSION(:), INTENT(INOUT) :: csfl
INTEGER, INTENT(IN) :: first, last
TYPE(t_csf) :: x, t
INTEGER :: i, j
IF ( first>=last ) RETURN
x = csfl( (first+last)/2 )
i = first
j = last
DO
DO while ( csf_lt(csfl(i),x) )
i=i+1
ENDDO
DO while ( csf_lt(x,csfl(j)) )
j=j-1
ENDDO
IF ( i >= j ) EXIT
t = csfl(i); csfl(i) = csfl(j); csfl(j) = t
i=i+1
j=j-1
ENDDO
IF ( first < i-1 ) CALL quicksort_csf(csfl, first, i-1)
IF ( j+1 < last ) CALL quicksort_csf(csfl, j+1, last)
END SUBROUTINE quicksort_csf
SUBROUTINE usm_merge_and_grow_csf(newsize)
INTEGER(iwp), INTENT(in) :: newsize !< new array size after grow, must be >= ncsfl
!< or -1 to shrink to minimum
INTEGER(iwp) :: iread, iwrite
TYPE(t_csf), DIMENSION(:), POINTER :: acsfnew
IF ( newsize == -1 ) THEN
!-- merge in-place
acsfnew => acsf
ELSE
!-- allocate new array
IF ( mcsf == 0 ) THEN
ALLOCATE( acsf1(newsize) )
acsfnew => acsf1
ELSE
ALLOCATE( acsf2(newsize) )
acsfnew => acsf2
ENDIF
ENDIF
IF ( ncsfl >= 1 ) THEN
!-- sort csf in place (quicksort)
CALL quicksort_csf(acsf,1,ncsfl)
!-- while moving to a new array, aggregate canopy sink factor records with identical box & source
acsfnew(1) = acsf(1)
iwrite = 1
DO iread = 2, ncsfl
!-- here acsf(kcsf) already has values from acsf(icsf)
IF ( acsfnew(iwrite)%itx == acsf(iread)%itx &
.AND. acsfnew(iwrite)%ity == acsf(iread)%ity &
.AND. acsfnew(iwrite)%itz == acsf(iread)%itz &
.AND. acsfnew(iwrite)%isurfs == acsf(iread)%isurfs ) THEN
!-- We could simply take either first or second rtransp, both are valid. As a very simple heuristic about which ray
!-- probably passes nearer the center of the target box, we choose DIF from the entry with greater CSF, since that
!-- might mean that the traced beam passes longer through the canopy box.
IF ( acsfnew(iwrite)%rsvf < acsf(iread)%rsvf ) THEN
acsfnew(iwrite)%rtransp = acsf(iread)%rtransp
ENDIF
acsfnew(iwrite)%rsvf = acsfnew(iwrite)%rsvf + acsf(iread)%rsvf
!-- advance reading index, keep writing index
ELSE
!-- not identical, just advance and copy
iwrite = iwrite + 1
acsfnew(iwrite) = acsf(iread)
ENDIF
ENDDO
ncsfl = iwrite
ENDIF
IF ( newsize == -1 ) THEN
!-- allocate new array and copy shrinked data
IF ( mcsf == 0 ) THEN
ALLOCATE( acsf1(ncsfl) )
acsf1(1:ncsfl) = acsf2(1:ncsfl)
ELSE
ALLOCATE( acsf2(ncsfl) )
acsf2(1:ncsfl) = acsf1(1:ncsfl)
ENDIF
ENDIF
!-- deallocate old array
IF ( mcsf == 0 ) THEN
mcsf = 1
acsf => acsf1
DEALLOCATE( acsf2 )
ELSE
mcsf = 0
acsf => acsf2
DEALLOCATE( acsf1 )
ENDIF
ncsfla = newsize
END SUBROUTINE usm_merge_and_grow_csf
!-- quicksort.f -*-f90-*-
!-- Author: t-nissie, adaptation J.Resler
!-- License: GPLv3
!-- Gist: https://gist.github.com/t-nissie/479f0f16966925fa29ea
RECURSIVE SUBROUTINE quicksort_csf2(kpcsflt, pcsflt, first, last)
IMPLICIT NONE
INTEGER(iwp), DIMENSION(:,:), INTENT(INOUT) :: kpcsflt
REAL(wp), DIMENSION(:,:), INTENT(INOUT) :: pcsflt
INTEGER, INTENT(IN) :: first, last
REAL(wp), DIMENSION(ndcsf) :: t2
INTEGER(iwp), DIMENSION(kdcsf) :: x, t1
INTEGER :: i, j
IF ( first>=last ) RETURN
x = kpcsflt(:, (first+last)/2 )
i = first
j = last
DO
DO while ( csf_lt2(kpcsflt(:,i),x) )
i=i+1
ENDDO
DO while ( csf_lt2(x,kpcsflt(:,j)) )
j=j-1
ENDDO
IF ( i >= j ) EXIT
t1 = kpcsflt(:,i); kpcsflt(:,i) = kpcsflt(:,j); kpcsflt(:,j) = t1
t2 = pcsflt(:,i); pcsflt(:,i) = pcsflt(:,j); pcsflt(:,j) = t2
i=i+1
j=j-1
ENDDO
IF ( first < i-1 ) CALL quicksort_csf2(kpcsflt, pcsflt, first, i-1)
IF ( j+1 < last ) CALL quicksort_csf2(kpcsflt, pcsflt, j+1, last)
END SUBROUTINE quicksort_csf2
PURE FUNCTION csf_lt2(item1, item2) result(res)
INTEGER(iwp), DIMENSION(kdcsf), INTENT(in) :: item1, item2
LOGICAL :: res
res = ( (item1(3) < item2(3)) &
.OR. (item1(3) == item2(3) .AND. item1(2) < item2(2)) &
.OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) < item2(1)) &
.OR. (item1(3) == item2(3) .AND. item1(2) == item2(2) .AND. item1(1) == item2(1) &
.AND. item1(4) < item2(4)) )
END FUNCTION csf_lt2
END MODULE urban_surface_mod