1 | !> @file turbulence_closure_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 2017-2018 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ----------------- |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: turbulence_closure_mod.f90 3120 2018-07-11 18:30:57Z gronemeier $ |
---|
27 | ! - changed tcm_diffusivities to tcm_diffusivities_default |
---|
28 | ! - created subroutine tcm_diffusivities that calls tcm_diffusivities_default |
---|
29 | ! and tcm_diffusivities_dynamic |
---|
30 | ! |
---|
31 | ! 3086 2018-06-25 09:08:04Z gronemeier |
---|
32 | ! bugfix: set rans_const_sigma(1) = 1.3 |
---|
33 | ! |
---|
34 | ! 3083 2018-06-19 14:03:12Z gronemeier |
---|
35 | ! - set limits of diss at the end of prognostic equations |
---|
36 | ! - call production_e to calculate production term of diss |
---|
37 | ! - limit change of diss to -90% to +100% |
---|
38 | ! - remove factor 0.5 from diffusion_diss_ij |
---|
39 | ! - rename c_m into c_0, and c_h into c_4 |
---|
40 | ! - add rans_const_c and rans_const_sigma as namelist parameters |
---|
41 | ! - add calculation of mixing length for profile output in case of rans_tke_e |
---|
42 | ! - changed format of annotations to comply with doxygen standards |
---|
43 | ! - calculate and save dissipation rate during rans_tke_l mode |
---|
44 | ! - set bc at vertical walls for e, diss, km, kh |
---|
45 | ! - bugfix: set l_wall = 0.0 within buildings |
---|
46 | ! - set l_wall at bottom and top boundary (rans-mode) |
---|
47 | ! - bugfix in production term for dissipation rate |
---|
48 | ! - bugfix in diffusion of dissipation rate |
---|
49 | ! - disable check for 1D model if rans_tke_e is used |
---|
50 | ! - bugfixes for initialization (rans-mode): |
---|
51 | ! - correction of dissipation-rate formula |
---|
52 | ! - calculate km based on l_wall |
---|
53 | ! - initialize diss if 1D model is not used |
---|
54 | ! |
---|
55 | ! 3045 2018-05-28 07:55:41Z Giersch |
---|
56 | ! Error message revised |
---|
57 | ! |
---|
58 | ! 3014 2018-05-09 08:42:38Z maronga |
---|
59 | ! Bugfix: nzb_do and nzt_do were not used for 3d data output |
---|
60 | ! |
---|
61 | ! 3004 2018-04-27 12:33:25Z Giersch |
---|
62 | ! Further allocation checks implemented |
---|
63 | ! |
---|
64 | ! 2938 2018-03-27 15:52:42Z suehring |
---|
65 | ! Further todo's |
---|
66 | ! |
---|
67 | ! 2936 2018-03-27 14:49:27Z gronemeier |
---|
68 | ! - defined l_grid only within this module |
---|
69 | ! - Moved l_wall definition from modules.f90 |
---|
70 | ! - Get level of highest topography, used to limit upward distance calculation |
---|
71 | ! - Consider cyclic boundary conditions for mixing length calculation |
---|
72 | ! - Moved copy of wall_flags into subarray to subroutine |
---|
73 | ! - Implemented l_wall calculation in case of RANS simulation |
---|
74 | ! - Moved init of l_black to tcm_init_mixing_length |
---|
75 | ! - Moved init_mixing_length from init_grid.f90 and |
---|
76 | ! renamed it to tcm_init_mixing_length |
---|
77 | ! |
---|
78 | ! 2764 2018-01-22 09:25:36Z gronemeier |
---|
79 | ! Bugfix: remove duplicate SAVE statements |
---|
80 | ! |
---|
81 | ! 2746 2018-01-15 12:06:04Z suehring |
---|
82 | ! Move flag plant canopy to modules |
---|
83 | ! |
---|
84 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
85 | ! Corrected "Former revisions" section |
---|
86 | ! |
---|
87 | ! 2701 2017-12-15 15:40:50Z suehring |
---|
88 | ! Changes from last commit documented |
---|
89 | ! |
---|
90 | ! 2698 2017-12-14 18:46:24Z suehring |
---|
91 | ! Bugfix in get_topography_top_index |
---|
92 | ! |
---|
93 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
94 | ! Initial revision |
---|
95 | ! |
---|
96 | ! |
---|
97 | ! |
---|
98 | ! |
---|
99 | ! Authors: |
---|
100 | ! -------- |
---|
101 | ! @author Tobias Gronemeier |
---|
102 | ! @author Hauke Wurps |
---|
103 | ! |
---|
104 | ! Description: |
---|
105 | ! ------------ |
---|
106 | !> This module contains the available turbulence closures for PALM. |
---|
107 | !> |
---|
108 | !> |
---|
109 | !> @todo test initialization for all possibilities |
---|
110 | !> add OpenMP directives whereever possible |
---|
111 | !> remove debug output variables (dummy1, dummy2, dummy3) |
---|
112 | !> @todo Check for random disturbances |
---|
113 | !> @note <Enter notes on the module> |
---|
114 | !> @bug TKE-e closure still crashes due to too small dt |
---|
115 | !------------------------------------------------------------------------------! |
---|
116 | MODULE turbulence_closure_mod |
---|
117 | |
---|
118 | |
---|
119 | #if defined( __nopointer ) |
---|
120 | USE arrays_3d, & |
---|
121 | ONLY: diss, diss_p, dzu, e, e_p, kh, km, & |
---|
122 | mean_inflow_profiles, prho, pt, tdiss_m, te_m, tend, u, v, vpt, w |
---|
123 | #else |
---|
124 | USE arrays_3d, & |
---|
125 | ONLY: diss, diss_1, diss_2, diss_3, diss_p, dzu, e, e_1, e_2, e_3, & |
---|
126 | e_p, kh, km, mean_inflow_profiles, prho, pt, tdiss_m, & |
---|
127 | te_m, tend, u, v, vpt, w |
---|
128 | #endif |
---|
129 | |
---|
130 | USE control_parameters, & |
---|
131 | ONLY: constant_diffusion, dt_3d, e_init, humidity, inflow_l, & |
---|
132 | initializing_actions, intermediate_timestep_count, & |
---|
133 | intermediate_timestep_count_max, kappa, km_constant, & |
---|
134 | les_dynamic, les_mw, ocean, plant_canopy, prandtl_number, & |
---|
135 | prho_reference, pt_reference, rans_mode, rans_tke_e, rans_tke_l,& |
---|
136 | simulated_time,timestep_scheme, turbulence_closure, & |
---|
137 | turbulent_inflow, use_upstream_for_tke, vpt_reference, & |
---|
138 | ws_scheme_sca |
---|
139 | |
---|
140 | USE advec_ws, & |
---|
141 | ONLY: advec_s_ws |
---|
142 | |
---|
143 | USE advec_s_bc_mod, & |
---|
144 | ONLY: advec_s_bc |
---|
145 | |
---|
146 | USE advec_s_pw_mod, & |
---|
147 | ONLY: advec_s_pw |
---|
148 | |
---|
149 | USE advec_s_up_mod, & |
---|
150 | ONLY: advec_s_up |
---|
151 | |
---|
152 | USE cpulog, & |
---|
153 | ONLY: cpu_log, log_point, log_point_s |
---|
154 | |
---|
155 | USE indices, & |
---|
156 | ONLY: nbgp, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt, & |
---|
157 | wall_flags_0 |
---|
158 | |
---|
159 | USE kinds |
---|
160 | |
---|
161 | USE pegrid |
---|
162 | |
---|
163 | USE plant_canopy_model_mod, & |
---|
164 | ONLY: pcm_tendency |
---|
165 | |
---|
166 | USE statistics, & |
---|
167 | ONLY: hom, hom_sum, statistic_regions |
---|
168 | |
---|
169 | USE user_actions_mod, & |
---|
170 | ONLY: user_actions |
---|
171 | |
---|
172 | |
---|
173 | IMPLICIT NONE |
---|
174 | |
---|
175 | |
---|
176 | REAL(wp) :: c_0 !< constant used for diffusion coefficient and dissipation (dependent on mode RANS/LES) |
---|
177 | REAL(wp) :: c_1 !< model constant for RANS mode |
---|
178 | REAL(wp) :: c_2 !< model constant for RANS mode |
---|
179 | REAL(wp) :: c_3 !< model constant for RANS mode |
---|
180 | REAL(wp) :: c_4 !< model constant for RANS mode |
---|
181 | REAL(wp) :: l_max !< maximum length scale for Blackadar mixing length |
---|
182 | REAL(wp) :: dsig_e = 1.0_wp !< factor to calculate Ke from Km (1/sigma_e) |
---|
183 | REAL(wp) :: dsig_diss = 1.0_wp !< factor to calculate K_diss from Km (1/sigma_diss) |
---|
184 | INTEGER(iwp) :: surf_e !< end index of surface elements at given i-j position |
---|
185 | INTEGER(iwp) :: surf_s !< start index of surface elements at given i-j position |
---|
186 | |
---|
187 | REAL(wp), DIMENSION(0:4) :: rans_const_c = & !< model constants for RANS mode (namelist param) |
---|
188 | (/ 0.55_wp, 1.44_wp, 1.92_wp, 0.0_wp, 0.0_wp /) !> default values fit for standard-tke-e closure |
---|
189 | |
---|
190 | REAL(wp), DIMENSION(2) :: rans_const_sigma = & !< model constants for RANS mode, sigma values (sigma_e, sigma_diss) (namelist param) |
---|
191 | (/ 1.0_wp, 1.30_wp /) |
---|
192 | |
---|
193 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l_black !< mixing length according to Blackadar |
---|
194 | REAL(wp), DIMENSION(:), ALLOCATABLE :: l_grid !< geometric mean of grid sizes dx, dy, dz |
---|
195 | |
---|
196 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: l_wall !< near-wall mixing length |
---|
197 | |
---|
198 | !> @todo remove debug variables |
---|
199 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: diss_prod1, diss_adve1, diss_diff1, & |
---|
200 | diss_prod2, diss_adve2, diss_diff2, & |
---|
201 | diss_prod3, diss_adve3, diss_diff3, & |
---|
202 | dummy1, dummy2, dummy3 |
---|
203 | |
---|
204 | |
---|
205 | PUBLIC c_0, rans_const_c, rans_const_sigma |
---|
206 | |
---|
207 | ! |
---|
208 | !-- PALM interfaces: |
---|
209 | !-- Input parameter checks to be done in check_parameters |
---|
210 | INTERFACE tcm_check_parameters |
---|
211 | MODULE PROCEDURE tcm_check_parameters |
---|
212 | END INTERFACE tcm_check_parameters |
---|
213 | |
---|
214 | ! |
---|
215 | !-- Data output checks for 2D/3D data to be done in check_parameters |
---|
216 | INTERFACE tcm_check_data_output |
---|
217 | MODULE PROCEDURE tcm_check_data_output |
---|
218 | END INTERFACE tcm_check_data_output |
---|
219 | |
---|
220 | ! |
---|
221 | !-- Definition of data output quantities |
---|
222 | INTERFACE tcm_define_netcdf_grid |
---|
223 | MODULE PROCEDURE tcm_define_netcdf_grid |
---|
224 | END INTERFACE tcm_define_netcdf_grid |
---|
225 | |
---|
226 | ! |
---|
227 | !-- Averaging of 3D data for output |
---|
228 | INTERFACE tcm_3d_data_averaging |
---|
229 | MODULE PROCEDURE tcm_3d_data_averaging |
---|
230 | END INTERFACE tcm_3d_data_averaging |
---|
231 | |
---|
232 | ! |
---|
233 | !-- Data output of 2D quantities |
---|
234 | INTERFACE tcm_data_output_2d |
---|
235 | MODULE PROCEDURE tcm_data_output_2d |
---|
236 | END INTERFACE tcm_data_output_2d |
---|
237 | |
---|
238 | ! |
---|
239 | !-- Data output of 3D data |
---|
240 | INTERFACE tcm_data_output_3d |
---|
241 | MODULE PROCEDURE tcm_data_output_3d |
---|
242 | END INTERFACE tcm_data_output_3d |
---|
243 | |
---|
244 | ! |
---|
245 | !-- Initialization actions |
---|
246 | INTERFACE tcm_init |
---|
247 | MODULE PROCEDURE tcm_init |
---|
248 | END INTERFACE tcm_init |
---|
249 | |
---|
250 | ! |
---|
251 | !-- Initialization of arrays |
---|
252 | INTERFACE tcm_init_arrays |
---|
253 | MODULE PROCEDURE tcm_init_arrays |
---|
254 | END INTERFACE tcm_init_arrays |
---|
255 | |
---|
256 | ! |
---|
257 | !-- Initialization of TKE production term |
---|
258 | INTERFACE production_e_init |
---|
259 | MODULE PROCEDURE production_e_init |
---|
260 | END INTERFACE production_e_init |
---|
261 | |
---|
262 | ! |
---|
263 | !-- Prognostic equations for TKE and TKE dissipation rate |
---|
264 | INTERFACE tcm_prognostic |
---|
265 | MODULE PROCEDURE tcm_prognostic |
---|
266 | MODULE PROCEDURE tcm_prognostic_ij |
---|
267 | END INTERFACE tcm_prognostic |
---|
268 | |
---|
269 | ! |
---|
270 | !-- Production term for TKE |
---|
271 | INTERFACE production_e |
---|
272 | MODULE PROCEDURE production_e |
---|
273 | MODULE PROCEDURE production_e_ij |
---|
274 | END INTERFACE production_e |
---|
275 | |
---|
276 | ! |
---|
277 | !-- Diffusion term for TKE |
---|
278 | INTERFACE diffusion_e |
---|
279 | MODULE PROCEDURE diffusion_e |
---|
280 | MODULE PROCEDURE diffusion_e_ij |
---|
281 | END INTERFACE diffusion_e |
---|
282 | |
---|
283 | ! |
---|
284 | !-- Diffusion term for TKE dissipation rate |
---|
285 | INTERFACE diffusion_diss |
---|
286 | MODULE PROCEDURE diffusion_diss |
---|
287 | MODULE PROCEDURE diffusion_diss_ij |
---|
288 | END INTERFACE diffusion_diss |
---|
289 | |
---|
290 | ! |
---|
291 | !-- Mixing length for LES case |
---|
292 | INTERFACE mixing_length_les |
---|
293 | MODULE PROCEDURE mixing_length_les |
---|
294 | END INTERFACE mixing_length_les |
---|
295 | |
---|
296 | ! |
---|
297 | !-- Mixing length for RANS case |
---|
298 | INTERFACE mixing_length_rans |
---|
299 | MODULE PROCEDURE mixing_length_rans |
---|
300 | END INTERFACE mixing_length_rans |
---|
301 | |
---|
302 | ! |
---|
303 | !-- Call tcm_diffusivities_default and tcm_diffusivities_dynamic |
---|
304 | INTERFACE tcm_diffusivities |
---|
305 | MODULE PROCEDURE tcm_diffusivities |
---|
306 | END INTERFACE tcm_diffusivities |
---|
307 | |
---|
308 | ! |
---|
309 | !-- Calculate diffusivities |
---|
310 | INTERFACE tcm_diffusivities_default |
---|
311 | MODULE PROCEDURE tcm_diffusivities_default |
---|
312 | END INTERFACE tcm_diffusivities_default |
---|
313 | |
---|
314 | ! |
---|
315 | !-- Calculate diffusivities according to dynamic sgs model |
---|
316 | INTERFACE tcm_diffusivities_dynamic |
---|
317 | MODULE PROCEDURE tcm_diffusivities_dynamic |
---|
318 | END INTERFACE tcm_diffusivities_dynamic |
---|
319 | |
---|
320 | ! |
---|
321 | !-- Box-filter method for dynamic sgs model |
---|
322 | INTERFACE tcm_box_filter_2d |
---|
323 | MODULE PROCEDURE tcm_box_filter_2d_single |
---|
324 | MODULE PROCEDURE tcm_box_filter_2d_array |
---|
325 | END INTERFACE tcm_box_filter_2d |
---|
326 | |
---|
327 | ! |
---|
328 | !-- Swapping of time levels (required for prognostic variables) |
---|
329 | INTERFACE tcm_swap_timelevel |
---|
330 | MODULE PROCEDURE tcm_swap_timelevel |
---|
331 | END INTERFACE tcm_swap_timelevel |
---|
332 | |
---|
333 | SAVE |
---|
334 | |
---|
335 | PRIVATE |
---|
336 | ! |
---|
337 | !-- Add INTERFACES that must be available to other modules (alphabetical order) |
---|
338 | PUBLIC production_e_init, tcm_3d_data_averaging, tcm_check_data_output, & |
---|
339 | tcm_check_parameters, tcm_data_output_2d, tcm_data_output_3d, & |
---|
340 | tcm_define_netcdf_grid, tcm_diffusivities, tcm_init, & |
---|
341 | tcm_init_arrays, tcm_prognostic, tcm_swap_timelevel |
---|
342 | |
---|
343 | |
---|
344 | CONTAINS |
---|
345 | |
---|
346 | !------------------------------------------------------------------------------! |
---|
347 | ! Description: |
---|
348 | ! ------------ |
---|
349 | !> Check parameters routine for turbulence closure module. |
---|
350 | !> @todo remove rans_mode from initialization namelist and rework checks |
---|
351 | !> The way it is implemented at the moment, the user has to set two variables |
---|
352 | !> so that the RANS mode is working. It would be better if only one parameter |
---|
353 | !> has to be set. |
---|
354 | !> 2018-06-18, gronemeier |
---|
355 | !------------------------------------------------------------------------------! |
---|
356 | SUBROUTINE tcm_check_parameters |
---|
357 | |
---|
358 | USE control_parameters, & |
---|
359 | ONLY: message_string, nest_domain, neutral, turbulent_inflow, & |
---|
360 | turbulent_outflow |
---|
361 | |
---|
362 | IMPLICIT NONE |
---|
363 | |
---|
364 | ! |
---|
365 | !-- Define which turbulence closure is going to be used |
---|
366 | IF ( rans_mode ) THEN |
---|
367 | |
---|
368 | ! |
---|
369 | !-- Assign values to constants for RANS mode |
---|
370 | dsig_e = 1.0_wp / rans_const_sigma(1) |
---|
371 | dsig_diss = 1.0_wp / rans_const_sigma(2) |
---|
372 | |
---|
373 | c_0 = rans_const_c(0) |
---|
374 | c_1 = rans_const_c(1) |
---|
375 | c_2 = rans_const_c(2) |
---|
376 | !c_3 = rans_const_c(3) !> @todo clarify how to switch between different models |
---|
377 | c_4 = rans_const_c(4) |
---|
378 | |
---|
379 | SELECT CASE ( TRIM( turbulence_closure ) ) |
---|
380 | |
---|
381 | CASE ( 'TKE-l' ) |
---|
382 | rans_tke_l = .TRUE. |
---|
383 | |
---|
384 | CASE ( 'TKE-e' ) |
---|
385 | rans_tke_e = .TRUE. |
---|
386 | |
---|
387 | CASE DEFAULT |
---|
388 | message_string = 'Unknown turbulence closure: ' // & |
---|
389 | TRIM( turbulence_closure ) |
---|
390 | CALL message( 'tcm_check_parameters', 'PA0500', 1, 2, 0, 6, 0 ) |
---|
391 | |
---|
392 | END SELECT |
---|
393 | |
---|
394 | IF ( turbulent_inflow .OR. turbulent_outflow ) THEN |
---|
395 | message_string = 'turbulent inflow/outflow is not yet '// & |
---|
396 | 'implemented for RANS mode' |
---|
397 | CALL message( 'tcm_check_parameters', 'PA0501', 1, 2, 0, 6, 0 ) |
---|
398 | ENDIF |
---|
399 | |
---|
400 | message_string = 'RANS mode is still in development! ' // & |
---|
401 | '&Not all features of PALM are yet compatible '// & |
---|
402 | 'with RANS mode. &Use at own risk!' |
---|
403 | CALL message( 'tcm_check_parameters', 'PA0502', 0, 1, 0, 6, 0 ) |
---|
404 | |
---|
405 | ELSE |
---|
406 | |
---|
407 | c_0 = 0.1_wp !according to Lilly (1967) and Deardorff (1980) |
---|
408 | |
---|
409 | dsig_e = 1.0_wp !assure to use K_m to calculate TKE instead |
---|
410 | !of K_e which is used in RANS mode |
---|
411 | |
---|
412 | SELECT CASE ( TRIM( turbulence_closure ) ) |
---|
413 | |
---|
414 | CASE ( 'Moeng_Wyngaard' ) |
---|
415 | les_mw = .TRUE. |
---|
416 | |
---|
417 | CASE ( 'dynamic' ) |
---|
418 | les_dynamic = .TRUE. |
---|
419 | |
---|
420 | CASE DEFAULT |
---|
421 | !> @todo rework this part so that only one call of this error exists |
---|
422 | message_string = 'Unknown turbulence closure: ' // & |
---|
423 | TRIM( turbulence_closure ) |
---|
424 | CALL message( 'tcm_check_parameters', 'PA0500', 1, 2, 0, 6, 0 ) |
---|
425 | |
---|
426 | END SELECT |
---|
427 | |
---|
428 | ENDIF |
---|
429 | |
---|
430 | END SUBROUTINE tcm_check_parameters |
---|
431 | |
---|
432 | !------------------------------------------------------------------------------! |
---|
433 | ! Description: |
---|
434 | ! ------------ |
---|
435 | !> Check data output. |
---|
436 | !------------------------------------------------------------------------------! |
---|
437 | SUBROUTINE tcm_check_data_output( var, unit, i, ilen, k ) |
---|
438 | |
---|
439 | USE control_parameters, & |
---|
440 | ONLY: data_output, message_string |
---|
441 | |
---|
442 | IMPLICIT NONE |
---|
443 | |
---|
444 | CHARACTER (LEN=*) :: unit !< unit of output variable |
---|
445 | CHARACTER (LEN=*) :: var !< name of output variable |
---|
446 | |
---|
447 | INTEGER(iwp) :: i !< index of var in data_output |
---|
448 | INTEGER(iwp) :: ilen !< length of var string |
---|
449 | INTEGER(iwp) :: k !< flag if var contains one of '_xy', '_xz' or '_yz' |
---|
450 | |
---|
451 | SELECT CASE ( TRIM( var ) ) |
---|
452 | |
---|
453 | CASE ( 'diss' ) |
---|
454 | unit = 'm2/s3' |
---|
455 | |
---|
456 | CASE ( 'diss1', 'diss2', & !> @todo remove later |
---|
457 | 'diss_prod1', 'diss_adve1', 'diss_diff1', & |
---|
458 | 'diss_prod2', 'diss_adve2', 'diss_diff2', & |
---|
459 | 'diss_prod3', 'diss_adve3', 'diss_diff3', 'dummy3' ) |
---|
460 | unit = 'debug output' |
---|
461 | |
---|
462 | CASE ( 'kh', 'km' ) |
---|
463 | unit = 'm2/s' |
---|
464 | |
---|
465 | CASE DEFAULT |
---|
466 | unit = 'illegal' |
---|
467 | |
---|
468 | END SELECT |
---|
469 | |
---|
470 | END SUBROUTINE tcm_check_data_output |
---|
471 | |
---|
472 | |
---|
473 | !------------------------------------------------------------------------------! |
---|
474 | ! Description: |
---|
475 | ! ------------ |
---|
476 | !> Define appropriate grid for netcdf variables. |
---|
477 | !> It is called out from subroutine netcdf. |
---|
478 | !------------------------------------------------------------------------------! |
---|
479 | SUBROUTINE tcm_define_netcdf_grid( var, found, grid_x, grid_y, grid_z ) |
---|
480 | |
---|
481 | IMPLICIT NONE |
---|
482 | |
---|
483 | CHARACTER (LEN=*), INTENT(OUT) :: grid_x !< x grid of output variable |
---|
484 | CHARACTER (LEN=*), INTENT(OUT) :: grid_y !< y grid of output variable |
---|
485 | CHARACTER (LEN=*), INTENT(OUT) :: grid_z !< z grid of output variable |
---|
486 | CHARACTER (LEN=*), INTENT(IN) :: var !< name of output variable |
---|
487 | |
---|
488 | LOGICAL, INTENT(OUT) :: found !< flag if output variable is found |
---|
489 | |
---|
490 | found = .TRUE. |
---|
491 | |
---|
492 | ! |
---|
493 | !-- Check for the grid |
---|
494 | SELECT CASE ( TRIM( var ) ) |
---|
495 | |
---|
496 | CASE ( 'diss', 'diss_xy', 'diss_xz', 'diss_yz' ) |
---|
497 | grid_x = 'x' |
---|
498 | grid_y = 'y' |
---|
499 | grid_z = 'zu' |
---|
500 | |
---|
501 | CASE ( 'diss1', 'diss2', & !> @todo remove later |
---|
502 | 'diss_prod1', 'diss_adve1', 'diss_diff1', & |
---|
503 | 'diss_prod2', 'diss_adve2', 'diss_diff2', & |
---|
504 | 'diss_prod3', 'diss_adve3', 'diss_diff3', 'dummy3' ) |
---|
505 | grid_x = 'x' |
---|
506 | grid_y = 'y' |
---|
507 | grid_z = 'zu' |
---|
508 | |
---|
509 | CASE ( 'kh', 'kh_xy', 'kh_xz', 'kh_yz' ) |
---|
510 | grid_x = 'x' |
---|
511 | grid_y = 'y' |
---|
512 | grid_z = 'zu' |
---|
513 | |
---|
514 | CASE ( 'km', 'km_xy', 'km_xz', 'km_yz' ) |
---|
515 | grid_x = 'x' |
---|
516 | grid_y = 'y' |
---|
517 | grid_z = 'zu' |
---|
518 | |
---|
519 | CASE DEFAULT |
---|
520 | found = .FALSE. |
---|
521 | grid_x = 'none' |
---|
522 | grid_y = 'none' |
---|
523 | grid_z = 'none' |
---|
524 | |
---|
525 | END SELECT |
---|
526 | |
---|
527 | END SUBROUTINE tcm_define_netcdf_grid |
---|
528 | |
---|
529 | |
---|
530 | !------------------------------------------------------------------------------! |
---|
531 | ! Description: |
---|
532 | ! ------------ |
---|
533 | !> Average 3D data. |
---|
534 | !------------------------------------------------------------------------------! |
---|
535 | SUBROUTINE tcm_3d_data_averaging( mode, variable ) |
---|
536 | |
---|
537 | |
---|
538 | USE averaging, & |
---|
539 | ONLY: diss_av, kh_av, km_av |
---|
540 | |
---|
541 | USE control_parameters, & |
---|
542 | ONLY: average_count_3d |
---|
543 | |
---|
544 | IMPLICIT NONE |
---|
545 | |
---|
546 | CHARACTER (LEN=*) :: mode !< flag defining mode 'allocate', 'sum' or 'average' |
---|
547 | CHARACTER (LEN=*) :: variable !< name of variable |
---|
548 | |
---|
549 | INTEGER(iwp) :: i !< loop index |
---|
550 | INTEGER(iwp) :: j !< loop index |
---|
551 | INTEGER(iwp) :: k !< loop index |
---|
552 | |
---|
553 | IF ( mode == 'allocate' ) THEN |
---|
554 | |
---|
555 | SELECT CASE ( TRIM( variable ) ) |
---|
556 | |
---|
557 | CASE ( 'diss' ) |
---|
558 | IF ( .NOT. ALLOCATED( diss_av ) ) THEN |
---|
559 | ALLOCATE( diss_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
560 | ENDIF |
---|
561 | diss_av = 0.0_wp |
---|
562 | |
---|
563 | CASE ( 'kh' ) |
---|
564 | IF ( .NOT. ALLOCATED( kh_av ) ) THEN |
---|
565 | ALLOCATE( kh_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
566 | ENDIF |
---|
567 | kh_av = 0.0_wp |
---|
568 | |
---|
569 | CASE ( 'km' ) |
---|
570 | IF ( .NOT. ALLOCATED( km_av ) ) THEN |
---|
571 | ALLOCATE( km_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
572 | ENDIF |
---|
573 | km_av = 0.0_wp |
---|
574 | |
---|
575 | CASE DEFAULT |
---|
576 | CONTINUE |
---|
577 | |
---|
578 | END SELECT |
---|
579 | |
---|
580 | ELSEIF ( mode == 'sum' ) THEN |
---|
581 | |
---|
582 | SELECT CASE ( TRIM( variable ) ) |
---|
583 | |
---|
584 | CASE ( 'diss' ) |
---|
585 | IF ( ALLOCATED( diss_av ) ) THEN |
---|
586 | DO i = nxlg, nxrg |
---|
587 | DO j = nysg, nyng |
---|
588 | DO k = nzb, nzt+1 |
---|
589 | diss_av(k,j,i) = diss_av(k,j,i) + diss(k,j,i) |
---|
590 | ENDDO |
---|
591 | ENDDO |
---|
592 | ENDDO |
---|
593 | ENDIF |
---|
594 | |
---|
595 | CASE ( 'kh' ) |
---|
596 | IF ( ALLOCATED( kh_av ) ) THEN |
---|
597 | DO i = nxlg, nxrg |
---|
598 | DO j = nysg, nyng |
---|
599 | DO k = nzb, nzt+1 |
---|
600 | kh_av(k,j,i) = kh_av(k,j,i) + kh(k,j,i) |
---|
601 | ENDDO |
---|
602 | ENDDO |
---|
603 | ENDDO |
---|
604 | ENDIF |
---|
605 | |
---|
606 | CASE ( 'km' ) |
---|
607 | IF ( ALLOCATED( km_av ) ) THEN |
---|
608 | DO i = nxlg, nxrg |
---|
609 | DO j = nysg, nyng |
---|
610 | DO k = nzb, nzt+1 |
---|
611 | km_av(k,j,i) = km_av(k,j,i) + km(k,j,i) |
---|
612 | ENDDO |
---|
613 | ENDDO |
---|
614 | ENDDO |
---|
615 | ENDIF |
---|
616 | |
---|
617 | CASE DEFAULT |
---|
618 | CONTINUE |
---|
619 | |
---|
620 | END SELECT |
---|
621 | |
---|
622 | ELSEIF ( mode == 'average' ) THEN |
---|
623 | |
---|
624 | SELECT CASE ( TRIM( variable ) ) |
---|
625 | |
---|
626 | CASE ( 'diss' ) |
---|
627 | IF ( ALLOCATED( diss_av ) ) THEN |
---|
628 | DO i = nxlg, nxrg |
---|
629 | DO j = nysg, nyng |
---|
630 | DO k = nzb, nzt+1 |
---|
631 | diss_av(k,j,i) = diss_av(k,j,i) & |
---|
632 | / REAL( average_count_3d, KIND=wp ) |
---|
633 | ENDDO |
---|
634 | ENDDO |
---|
635 | ENDDO |
---|
636 | ENDIF |
---|
637 | |
---|
638 | CASE ( 'kh' ) |
---|
639 | IF ( ALLOCATED( kh_av ) ) THEN |
---|
640 | DO i = nxlg, nxrg |
---|
641 | DO j = nysg, nyng |
---|
642 | DO k = nzb, nzt+1 |
---|
643 | kh_av(k,j,i) = kh_av(k,j,i) & |
---|
644 | / REAL( average_count_3d, KIND=wp ) |
---|
645 | ENDDO |
---|
646 | ENDDO |
---|
647 | ENDDO |
---|
648 | ENDIF |
---|
649 | |
---|
650 | CASE ( 'km' ) |
---|
651 | IF ( ALLOCATED( km_av ) ) THEN |
---|
652 | DO i = nxlg, nxrg |
---|
653 | DO j = nysg, nyng |
---|
654 | DO k = nzb, nzt+1 |
---|
655 | km_av(k,j,i) = km_av(k,j,i) & |
---|
656 | / REAL( average_count_3d, KIND=wp ) |
---|
657 | ENDDO |
---|
658 | ENDDO |
---|
659 | ENDDO |
---|
660 | ENDIF |
---|
661 | |
---|
662 | END SELECT |
---|
663 | |
---|
664 | ENDIF |
---|
665 | |
---|
666 | END SUBROUTINE tcm_3d_data_averaging |
---|
667 | |
---|
668 | |
---|
669 | !------------------------------------------------------------------------------! |
---|
670 | ! Description: |
---|
671 | ! ------------ |
---|
672 | !> Define 2D output variables. |
---|
673 | !------------------------------------------------------------------------------! |
---|
674 | SUBROUTINE tcm_data_output_2d( av, variable, found, grid, mode, local_pf, & |
---|
675 | two_d, nzb_do, nzt_do ) |
---|
676 | |
---|
677 | USE averaging, & |
---|
678 | ONLY: diss_av, kh_av, km_av |
---|
679 | |
---|
680 | IMPLICIT NONE |
---|
681 | |
---|
682 | CHARACTER (LEN=*) :: grid !< name of vertical grid |
---|
683 | CHARACTER (LEN=*) :: mode !< either 'xy', 'xz' or 'yz' |
---|
684 | CHARACTER (LEN=*) :: variable !< name of variable |
---|
685 | |
---|
686 | INTEGER(iwp) :: av !< flag for (non-)average output |
---|
687 | INTEGER(iwp) :: i !< loop index |
---|
688 | INTEGER(iwp) :: j !< loop index |
---|
689 | INTEGER(iwp) :: k !< loop index |
---|
690 | INTEGER(iwp) :: nzb_do !< vertical output index (bottom) |
---|
691 | INTEGER(iwp) :: nzt_do !< vertical output index (top) |
---|
692 | |
---|
693 | LOGICAL :: found !< flag if output variable is found |
---|
694 | LOGICAL :: two_d !< flag parameter that indicates 2D variables (horizontal cross sections) |
---|
695 | |
---|
696 | REAL(wp) :: fill_value = -999.0_wp !< value for the _FillValue attribute |
---|
697 | |
---|
698 | REAL(wp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< local |
---|
699 | !< array to which output data is resorted to |
---|
700 | |
---|
701 | found = .TRUE. |
---|
702 | |
---|
703 | SELECT CASE ( TRIM( variable ) ) |
---|
704 | |
---|
705 | |
---|
706 | CASE ( 'diss_xy', 'diss_xz', 'diss_yz' ) |
---|
707 | IF ( av == 0 ) THEN |
---|
708 | DO i = nxl, nxr |
---|
709 | DO j = nys, nyn |
---|
710 | DO k = nzb_do, nzt_do |
---|
711 | local_pf(i,j,k) = diss(k,j,i) |
---|
712 | ENDDO |
---|
713 | ENDDO |
---|
714 | ENDDO |
---|
715 | ELSE |
---|
716 | IF ( .NOT. ALLOCATED( diss_av ) ) THEN |
---|
717 | ALLOCATE( diss_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
718 | diss_av = REAL( fill_value, KIND = wp ) |
---|
719 | ENDIF |
---|
720 | DO i = nxl, nxr |
---|
721 | DO j = nys, nyn |
---|
722 | DO k = nzb_do, nzt_do |
---|
723 | local_pf(i,j,k) = diss_av(k,j,i) |
---|
724 | ENDDO |
---|
725 | ENDDO |
---|
726 | ENDDO |
---|
727 | ENDIF |
---|
728 | |
---|
729 | IF ( mode == 'xy' ) grid = 'zu' |
---|
730 | |
---|
731 | CASE ( 'kh_xy', 'kh_xz', 'kh_yz' ) |
---|
732 | IF ( av == 0 ) THEN |
---|
733 | DO i = nxl, nxr |
---|
734 | DO j = nys, nyn |
---|
735 | DO k = nzb_do, nzt_do |
---|
736 | local_pf(i,j,k) = kh(k,j,i) |
---|
737 | ENDDO |
---|
738 | ENDDO |
---|
739 | ENDDO |
---|
740 | ELSE |
---|
741 | IF ( .NOT. ALLOCATED( diss_av ) ) THEN |
---|
742 | ALLOCATE( diss_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
743 | diss_av = REAL( fill_value, KIND = wp ) |
---|
744 | ENDIF |
---|
745 | DO i = nxl, nxr |
---|
746 | DO j = nys, nyn |
---|
747 | DO k = nzb_do, nzt_do |
---|
748 | local_pf(i,j,k) = kh_av(k,j,i) |
---|
749 | ENDDO |
---|
750 | ENDDO |
---|
751 | ENDDO |
---|
752 | ENDIF |
---|
753 | |
---|
754 | IF ( mode == 'xy' ) grid = 'zu' |
---|
755 | |
---|
756 | CASE ( 'km_xy', 'km_xz', 'km_yz' ) |
---|
757 | IF ( av == 0 ) THEN |
---|
758 | DO i = nxl, nxr |
---|
759 | DO j = nys, nyn |
---|
760 | DO k = nzb_do, nzt_do |
---|
761 | local_pf(i,j,k) = km(k,j,i) |
---|
762 | ENDDO |
---|
763 | ENDDO |
---|
764 | ENDDO |
---|
765 | ELSE |
---|
766 | IF ( .NOT. ALLOCATED( diss_av ) ) THEN |
---|
767 | ALLOCATE( diss_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
768 | diss_av = REAL( fill_value, KIND = wp ) |
---|
769 | ENDIF |
---|
770 | DO i = nxl, nxr |
---|
771 | DO j = nys, nyn |
---|
772 | DO k = nzb_do, nzt_do |
---|
773 | local_pf(i,j,k) = km_av(k,j,i) |
---|
774 | ENDDO |
---|
775 | ENDDO |
---|
776 | ENDDO |
---|
777 | ENDIF |
---|
778 | |
---|
779 | IF ( mode == 'xy' ) grid = 'zu' |
---|
780 | |
---|
781 | CASE DEFAULT |
---|
782 | found = .FALSE. |
---|
783 | grid = 'none' |
---|
784 | |
---|
785 | END SELECT |
---|
786 | |
---|
787 | END SUBROUTINE tcm_data_output_2d |
---|
788 | |
---|
789 | |
---|
790 | !------------------------------------------------------------------------------! |
---|
791 | ! Description: |
---|
792 | ! ------------ |
---|
793 | !> Define 3D output variables. |
---|
794 | !------------------------------------------------------------------------------! |
---|
795 | SUBROUTINE tcm_data_output_3d( av, variable, found, local_pf, nzb_do, nzt_do ) |
---|
796 | |
---|
797 | |
---|
798 | USE averaging, & |
---|
799 | ONLY: diss_av, kh_av, km_av |
---|
800 | |
---|
801 | IMPLICIT NONE |
---|
802 | |
---|
803 | CHARACTER (LEN=*) :: variable !< name of variable |
---|
804 | |
---|
805 | INTEGER(iwp) :: av !< flag for (non-)average output |
---|
806 | INTEGER(iwp) :: i !< loop index |
---|
807 | INTEGER(iwp) :: j !< loop index |
---|
808 | INTEGER(iwp) :: k !< loop index |
---|
809 | INTEGER(iwp) :: nzb_do !< lower limit of the data output (usually 0) |
---|
810 | INTEGER(iwp) :: nzt_do !< vertical upper limit of the data output (usually nz_do3d) |
---|
811 | |
---|
812 | LOGICAL :: found !< flag if output variable is found |
---|
813 | |
---|
814 | REAL(wp) :: fill_value = -999.0_wp !< value for the _FillValue attribute |
---|
815 | |
---|
816 | REAL(sp), DIMENSION(nxl:nxr,nys:nyn,nzb_do:nzt_do) :: local_pf !< local |
---|
817 | !< array to which output data is resorted to |
---|
818 | |
---|
819 | |
---|
820 | found = .TRUE. |
---|
821 | |
---|
822 | |
---|
823 | SELECT CASE ( TRIM( variable ) ) |
---|
824 | |
---|
825 | |
---|
826 | CASE ( 'diss' ) |
---|
827 | IF ( av == 0 ) THEN |
---|
828 | DO i = nxl, nxr |
---|
829 | DO j = nys, nyn |
---|
830 | DO k = nzb_do, nzt_do |
---|
831 | local_pf(i,j,k) = diss(k,j,i) |
---|
832 | ENDDO |
---|
833 | ENDDO |
---|
834 | ENDDO |
---|
835 | ELSE |
---|
836 | IF ( .NOT. ALLOCATED( diss_av ) ) THEN |
---|
837 | ALLOCATE( diss_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
838 | diss_av = REAL( fill_value, KIND = wp ) |
---|
839 | ENDIF |
---|
840 | DO i = nxl, nxr |
---|
841 | DO j = nys, nyn |
---|
842 | DO k = nzb_do, nzt_do |
---|
843 | local_pf(i,j,k) = diss_av(k,j,i) |
---|
844 | ENDDO |
---|
845 | ENDDO |
---|
846 | ENDDO |
---|
847 | ENDIF |
---|
848 | |
---|
849 | CASE ( 'kh' ) |
---|
850 | IF ( av == 0 ) THEN |
---|
851 | DO i = nxl, nxr |
---|
852 | DO j = nys, nyn |
---|
853 | DO k = nzb_do, nzt_do |
---|
854 | local_pf(i,j,k) = kh(k,j,i) |
---|
855 | ENDDO |
---|
856 | ENDDO |
---|
857 | ENDDO |
---|
858 | ELSE |
---|
859 | IF ( .NOT. ALLOCATED( kh_av ) ) THEN |
---|
860 | ALLOCATE( kh_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
861 | kh_av = REAL( fill_value, KIND = wp ) |
---|
862 | ENDIF |
---|
863 | DO i = nxl, nxr |
---|
864 | DO j = nys, nyn |
---|
865 | DO k = nzb_do, nzt_do |
---|
866 | local_pf(i,j,k) = kh_av(k,j,i) |
---|
867 | ENDDO |
---|
868 | ENDDO |
---|
869 | ENDDO |
---|
870 | ENDIF |
---|
871 | |
---|
872 | CASE ( 'km' ) |
---|
873 | IF ( av == 0 ) THEN |
---|
874 | DO i = nxl, nxr |
---|
875 | DO j = nys, nyn |
---|
876 | DO k = nzb_do, nzt_do |
---|
877 | local_pf(i,j,k) = km(k,j,i) |
---|
878 | ENDDO |
---|
879 | ENDDO |
---|
880 | ENDDO |
---|
881 | ELSE |
---|
882 | IF ( .NOT. ALLOCATED( km_av ) ) THEN |
---|
883 | ALLOCATE( km_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
884 | km_av = REAL( fill_value, KIND = wp ) |
---|
885 | ENDIF |
---|
886 | DO i = nxl, nxr |
---|
887 | DO j = nys, nyn |
---|
888 | DO k = nzb_do, nzt_do |
---|
889 | local_pf(i,j,k) = km_av(k,j,i) |
---|
890 | ENDDO |
---|
891 | ENDDO |
---|
892 | ENDDO |
---|
893 | ENDIF |
---|
894 | |
---|
895 | CASE ( 'dummy3' ) !> @todo remove later |
---|
896 | IF ( av == 0 ) THEN |
---|
897 | DO i = nxl, nxr |
---|
898 | DO j = nys, nyn |
---|
899 | DO k = nzb_do, nzt_do |
---|
900 | local_pf(i,j,k) = dummy3(k,j,i) |
---|
901 | ENDDO |
---|
902 | ENDDO |
---|
903 | ENDDO |
---|
904 | ENDIF |
---|
905 | |
---|
906 | CASE ( 'diss1' ) !> @todo remove later |
---|
907 | IF ( av == 0 ) THEN |
---|
908 | DO i = nxl, nxr |
---|
909 | DO j = nys, nyn |
---|
910 | DO k = nzb_do, nzt_do |
---|
911 | local_pf(i,j,k) = dummy1(k,j,i) |
---|
912 | ENDDO |
---|
913 | ENDDO |
---|
914 | ENDDO |
---|
915 | ENDIF |
---|
916 | |
---|
917 | CASE ( 'diss2' ) !> @todo remove later |
---|
918 | IF ( av == 0 ) THEN |
---|
919 | DO i = nxl, nxr |
---|
920 | DO j = nys, nyn |
---|
921 | DO k = nzb_do, nzt_do |
---|
922 | local_pf(i,j,k) = dummy2(k,j,i) |
---|
923 | ENDDO |
---|
924 | ENDDO |
---|
925 | ENDDO |
---|
926 | ENDIF |
---|
927 | |
---|
928 | CASE ( 'diss_prod1' ) !> @todo remove later |
---|
929 | IF ( av == 0 ) THEN |
---|
930 | DO i = nxl, nxr |
---|
931 | DO j = nys, nyn |
---|
932 | DO k = nzb_do, nzt_do |
---|
933 | local_pf(i,j,k) = diss_prod1(k,j,i) |
---|
934 | ENDDO |
---|
935 | ENDDO |
---|
936 | ENDDO |
---|
937 | ENDIF |
---|
938 | |
---|
939 | CASE ( 'diss_adve1' ) !> @todo remove later |
---|
940 | IF ( av == 0 ) THEN |
---|
941 | DO i = nxl, nxr |
---|
942 | DO j = nys, nyn |
---|
943 | DO k = nzb_do, nzt_do |
---|
944 | local_pf(i,j,k) = diss_adve1(k,j,i) |
---|
945 | ENDDO |
---|
946 | ENDDO |
---|
947 | ENDDO |
---|
948 | ENDIF |
---|
949 | |
---|
950 | CASE ( 'diss_diff1' ) !> @todo remove later |
---|
951 | IF ( av == 0 ) THEN |
---|
952 | DO i = nxl, nxr |
---|
953 | DO j = nys, nyn |
---|
954 | DO k = nzb_do, nzt_do |
---|
955 | local_pf(i,j,k) = diss_diff1(k,j,i) |
---|
956 | ENDDO |
---|
957 | ENDDO |
---|
958 | ENDDO |
---|
959 | ENDIF |
---|
960 | |
---|
961 | CASE ( 'diss_prod2' ) !> @todo remove later |
---|
962 | IF ( av == 0 ) THEN |
---|
963 | DO i = nxl, nxr |
---|
964 | DO j = nys, nyn |
---|
965 | DO k = nzb_do, nzt_do |
---|
966 | local_pf(i,j,k) = diss_prod2(k,j,i) |
---|
967 | ENDDO |
---|
968 | ENDDO |
---|
969 | ENDDO |
---|
970 | ENDIF |
---|
971 | |
---|
972 | CASE ( 'diss_adve2' ) !> @todo remove later |
---|
973 | IF ( av == 0 ) THEN |
---|
974 | DO i = nxl, nxr |
---|
975 | DO j = nys, nyn |
---|
976 | DO k = nzb_do, nzt_do |
---|
977 | local_pf(i,j,k) = diss_adve2(k,j,i) |
---|
978 | ENDDO |
---|
979 | ENDDO |
---|
980 | ENDDO |
---|
981 | ENDIF |
---|
982 | |
---|
983 | CASE ( 'diss_diff2' ) !> @todo remove later |
---|
984 | IF ( av == 0 ) THEN |
---|
985 | DO i = nxl, nxr |
---|
986 | DO j = nys, nyn |
---|
987 | DO k = nzb_do, nzt_do |
---|
988 | local_pf(i,j,k) = diss_diff2(k,j,i) |
---|
989 | ENDDO |
---|
990 | ENDDO |
---|
991 | ENDDO |
---|
992 | ENDIF |
---|
993 | |
---|
994 | CASE ( 'diss_prod3' ) !> @todo remove later |
---|
995 | IF ( av == 0 ) THEN |
---|
996 | DO i = nxl, nxr |
---|
997 | DO j = nys, nyn |
---|
998 | DO k = nzb_do, nzt_do |
---|
999 | local_pf(i,j,k) = diss_prod3(k,j,i) |
---|
1000 | ENDDO |
---|
1001 | ENDDO |
---|
1002 | ENDDO |
---|
1003 | ENDIF |
---|
1004 | |
---|
1005 | CASE ( 'diss_adve3' ) !> @todo remove later |
---|
1006 | IF ( av == 0 ) THEN |
---|
1007 | DO i = nxl, nxr |
---|
1008 | DO j = nys, nyn |
---|
1009 | DO k = nzb_do, nzt_do |
---|
1010 | local_pf(i,j,k) = diss_adve3(k,j,i) |
---|
1011 | ENDDO |
---|
1012 | ENDDO |
---|
1013 | ENDDO |
---|
1014 | ENDIF |
---|
1015 | |
---|
1016 | CASE ( 'diss_diff3' ) !> @todo remove later |
---|
1017 | IF ( av == 0 ) THEN |
---|
1018 | DO i = nxl, nxr |
---|
1019 | DO j = nys, nyn |
---|
1020 | DO k = nzb_do, nzt_do |
---|
1021 | local_pf(i,j,k) = diss_diff3(k,j,i) |
---|
1022 | ENDDO |
---|
1023 | ENDDO |
---|
1024 | ENDDO |
---|
1025 | ENDIF |
---|
1026 | |
---|
1027 | CASE DEFAULT |
---|
1028 | found = .FALSE. |
---|
1029 | |
---|
1030 | END SELECT |
---|
1031 | |
---|
1032 | END SUBROUTINE tcm_data_output_3d |
---|
1033 | |
---|
1034 | |
---|
1035 | !------------------------------------------------------------------------------! |
---|
1036 | ! Description: |
---|
1037 | ! ------------ |
---|
1038 | !> Allocate arrays and assign pointers. |
---|
1039 | !------------------------------------------------------------------------------! |
---|
1040 | SUBROUTINE tcm_init_arrays |
---|
1041 | |
---|
1042 | USE microphysics_mod, & |
---|
1043 | ONLY: collision_turbulence |
---|
1044 | |
---|
1045 | USE particle_attributes, & |
---|
1046 | ONLY: use_sgs_for_particles, wang_kernel |
---|
1047 | |
---|
1048 | USE pmc_interface, & |
---|
1049 | ONLY: nested_run |
---|
1050 | |
---|
1051 | IMPLICIT NONE |
---|
1052 | |
---|
1053 | ALLOCATE( kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1054 | ALLOCATE( km(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1055 | |
---|
1056 | ALLOCATE( dummy1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) !> @todo remove later |
---|
1057 | ALLOCATE( dummy2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1058 | ALLOCATE( dummy3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1059 | ALLOCATE( diss_adve1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1060 | ALLOCATE( diss_adve2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1061 | ALLOCATE( diss_adve3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1062 | ALLOCATE( diss_prod1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1063 | ALLOCATE( diss_prod2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1064 | ALLOCATE( diss_prod3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1065 | ALLOCATE( diss_diff1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1066 | ALLOCATE( diss_diff2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1067 | ALLOCATE( diss_diff3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1068 | dummy1 = 0.0_wp |
---|
1069 | dummy2 = 0.0_wp |
---|
1070 | dummy3 = 0.0_wp |
---|
1071 | diss_adve1 = 0.0_wp |
---|
1072 | diss_adve2 = 0.0_wp |
---|
1073 | diss_adve3 = 0.0_wp |
---|
1074 | diss_prod1 = 0.0_wp |
---|
1075 | diss_prod2 = 0.0_wp |
---|
1076 | diss_prod3 = 0.0_wp |
---|
1077 | diss_diff1 = 0.0_wp |
---|
1078 | diss_diff2 = 0.0_wp |
---|
1079 | diss_diff3 = 0.0_wp |
---|
1080 | |
---|
1081 | #if defined( __nopointer ) |
---|
1082 | ALLOCATE( e(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1083 | ALLOCATE( e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1084 | ALLOCATE( te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1085 | |
---|
1086 | #else |
---|
1087 | ALLOCATE( e_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1088 | ALLOCATE( e_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1089 | ALLOCATE( e_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1090 | #endif |
---|
1091 | ! |
---|
1092 | !-- Allocate arrays required for dissipation. |
---|
1093 | !-- Please note, if it is a nested run, arrays need to be allocated even if |
---|
1094 | !-- they do not necessarily need to be transferred, which is attributed to |
---|
1095 | !-- the design of the model coupler which allocates memory for each variable. |
---|
1096 | IF ( rans_mode .OR. use_sgs_for_particles .OR. wang_kernel .OR. & |
---|
1097 | collision_turbulence .OR. nested_run ) THEN |
---|
1098 | #if defined( __nopointer ) |
---|
1099 | ALLOCATE( diss(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1100 | IF ( rans_tke_e ) THEN |
---|
1101 | ALLOCATE( diss_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1102 | ALLOCATE( tdiss_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1103 | ENDIF |
---|
1104 | #else |
---|
1105 | ALLOCATE( diss_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1106 | IF ( rans_tke_e .OR. nested_run ) THEN |
---|
1107 | ALLOCATE( diss_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1108 | ALLOCATE( diss_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1109 | ENDIF |
---|
1110 | #endif |
---|
1111 | ENDIF |
---|
1112 | |
---|
1113 | #if ! defined( __nopointer ) |
---|
1114 | ! |
---|
1115 | !-- Initial assignment of pointers |
---|
1116 | e => e_1; e_p => e_2; te_m => e_3 |
---|
1117 | |
---|
1118 | IF ( rans_mode .OR. use_sgs_for_particles .OR. & |
---|
1119 | wang_kernel .OR. collision_turbulence .OR. nested_run ) THEN |
---|
1120 | diss => diss_1 |
---|
1121 | IF ( rans_tke_e .OR. nested_run ) THEN |
---|
1122 | diss_p => diss_2; tdiss_m => diss_3 |
---|
1123 | ENDIF |
---|
1124 | ENDIF |
---|
1125 | #endif |
---|
1126 | |
---|
1127 | END SUBROUTINE tcm_init_arrays |
---|
1128 | |
---|
1129 | |
---|
1130 | !------------------------------------------------------------------------------! |
---|
1131 | ! Description: |
---|
1132 | ! ------------ |
---|
1133 | !> Initialization of turbulence closure module. |
---|
1134 | !------------------------------------------------------------------------------! |
---|
1135 | SUBROUTINE tcm_init |
---|
1136 | |
---|
1137 | USE control_parameters, & |
---|
1138 | ONLY: complex_terrain, dissipation_1d, topography |
---|
1139 | |
---|
1140 | USE model_1d_mod, & |
---|
1141 | ONLY: diss1d, e1d, kh1d, km1d, l1d |
---|
1142 | |
---|
1143 | USE surface_mod, & |
---|
1144 | ONLY: get_topography_top_index_ji |
---|
1145 | |
---|
1146 | IMPLICIT NONE |
---|
1147 | |
---|
1148 | INTEGER(iwp) :: i !< loop index |
---|
1149 | INTEGER(iwp) :: j !< loop index |
---|
1150 | INTEGER(iwp) :: k !< loop index |
---|
1151 | INTEGER(iwp) :: nz_s_shift !< lower shift index for scalars |
---|
1152 | INTEGER(iwp) :: nz_s_shift_l !< local lower shift index in case of turbulent inflow |
---|
1153 | |
---|
1154 | ! |
---|
1155 | !-- Initialize mixing length |
---|
1156 | CALL tcm_init_mixing_length |
---|
1157 | dummy3 = l_wall !> @todo remove later |
---|
1158 | |
---|
1159 | ! |
---|
1160 | !-- Actions for initial runs |
---|
1161 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
1162 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
1163 | |
---|
1164 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
1165 | ! |
---|
1166 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
1167 | DO i = nxlg, nxrg |
---|
1168 | DO j = nysg, nyng |
---|
1169 | e(:,j,i) = e1d |
---|
1170 | kh(:,j,i) = kh1d |
---|
1171 | km(:,j,i) = km1d |
---|
1172 | ENDDO |
---|
1173 | ENDDO |
---|
1174 | |
---|
1175 | IF ( constant_diffusion ) THEN |
---|
1176 | e = 0.0_wp |
---|
1177 | ENDIF |
---|
1178 | |
---|
1179 | IF ( rans_tke_e ) THEN |
---|
1180 | IF ( dissipation_1d == 'prognostic' ) THEN !> @query Why must this be checked? |
---|
1181 | DO i = nxlg, nxrg !> Should 'diss' not always |
---|
1182 | DO j = nysg, nyng !> be prognostic in case rans_tke_e? |
---|
1183 | diss(:,j,i) = diss1d |
---|
1184 | ENDDO |
---|
1185 | ENDDO |
---|
1186 | ELSE |
---|
1187 | DO i = nxlg, nxrg |
---|
1188 | DO j = nysg, nyng |
---|
1189 | DO k = nzb+1, nzt |
---|
1190 | diss(k,j,i) = c_0**4 * e(k,j,i)**2 / km1d(k) |
---|
1191 | ENDDO |
---|
1192 | ENDDO |
---|
1193 | ENDDO |
---|
1194 | ENDIF |
---|
1195 | ENDIF |
---|
1196 | |
---|
1197 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 .OR. & |
---|
1198 | INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN |
---|
1199 | |
---|
1200 | IF ( constant_diffusion ) THEN |
---|
1201 | km = km_constant |
---|
1202 | kh = km / prandtl_number |
---|
1203 | e = 0.0_wp |
---|
1204 | ELSEIF ( e_init > 0.0_wp ) THEN |
---|
1205 | DO i = nxlg, nxrg |
---|
1206 | DO j = nysg, nyng |
---|
1207 | DO k = nzb+1, nzt |
---|
1208 | km(k,j,i) = c_0 * l_wall(k,j,i) * SQRT( e_init ) |
---|
1209 | ENDDO |
---|
1210 | ENDDO |
---|
1211 | ENDDO |
---|
1212 | km(nzb,:,:) = km(nzb+1,:,:) |
---|
1213 | km(nzt+1,:,:) = km(nzt,:,:) |
---|
1214 | kh = km / prandtl_number |
---|
1215 | e = e_init |
---|
1216 | ELSE |
---|
1217 | IF ( .NOT. ocean ) THEN |
---|
1218 | kh = 0.01_wp ! there must exist an initial diffusion, because |
---|
1219 | km = 0.01_wp ! otherwise no TKE would be produced by the |
---|
1220 | ! production terms, as long as not yet |
---|
1221 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
1222 | ELSE |
---|
1223 | kh = 0.00001_wp |
---|
1224 | km = 0.00001_wp |
---|
1225 | ENDIF |
---|
1226 | e = 0.0_wp |
---|
1227 | ENDIF |
---|
1228 | |
---|
1229 | IF ( rans_tke_e ) THEN |
---|
1230 | DO i = nxlg, nxrg |
---|
1231 | DO j = nysg, nyng |
---|
1232 | DO k = nzb+1, nzt |
---|
1233 | diss(k,j,i) = c_0**4 * e(k,j,i)**2 / km(k,j,i) |
---|
1234 | ENDDO |
---|
1235 | ENDDO |
---|
1236 | ENDDO |
---|
1237 | diss(nzb,:,:) = diss(nzb+1,:,:) |
---|
1238 | diss(nzt+1,:,:) = diss(nzt,:,:) |
---|
1239 | ENDIF |
---|
1240 | |
---|
1241 | ENDIF |
---|
1242 | ! |
---|
1243 | !-- Store initial profiles for output purposes etc. |
---|
1244 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
1245 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
1246 | ! |
---|
1247 | !-- Initialize old and new time levels. |
---|
1248 | te_m = 0.0_wp |
---|
1249 | e_p = e |
---|
1250 | IF ( rans_tke_e ) THEN |
---|
1251 | tdiss_m = 0.0_wp |
---|
1252 | diss_p = diss |
---|
1253 | ENDIF |
---|
1254 | |
---|
1255 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & |
---|
1256 | TRIM( initializing_actions ) == 'cyclic_fill' ) & |
---|
1257 | THEN |
---|
1258 | |
---|
1259 | ! |
---|
1260 | !-- In case of complex terrain and cyclic fill method as initialization, |
---|
1261 | !-- shift initial data in the vertical direction for each point in the |
---|
1262 | !-- x-y-plane depending on local surface height |
---|
1263 | IF ( complex_terrain .AND. & |
---|
1264 | TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
1265 | DO i = nxlg, nxrg |
---|
1266 | DO j = nysg, nyng |
---|
1267 | nz_s_shift = get_topography_top_index_ji( j, i, 's' ) |
---|
1268 | |
---|
1269 | e(nz_s_shift:nzt+1,j,i) = e(0:nzt+1-nz_s_shift,j,i) |
---|
1270 | km(nz_s_shift:nzt+1,j,i) = km(0:nzt+1-nz_s_shift,j,i) |
---|
1271 | kh(nz_s_shift:nzt+1,j,i) = kh(0:nzt+1-nz_s_shift,j,i) |
---|
1272 | ENDDO |
---|
1273 | ENDDO |
---|
1274 | IF ( rans_tke_e ) THEN |
---|
1275 | DO i = nxlg, nxrg |
---|
1276 | DO j = nysg, nyng |
---|
1277 | nz_s_shift = get_topography_top_index_ji( j, i, 's' ) |
---|
1278 | |
---|
1279 | diss(nz_s_shift:nzt+1,j,i) = diss(0:nzt+1-nz_s_shift,j,i) |
---|
1280 | ENDDO |
---|
1281 | ENDDO |
---|
1282 | ENDIF |
---|
1283 | ENDIF |
---|
1284 | |
---|
1285 | ! |
---|
1286 | !-- Initialization of the turbulence recycling method |
---|
1287 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
1288 | turbulent_inflow ) THEN |
---|
1289 | mean_inflow_profiles(:,5) = hom_sum(:,8,0) ! e |
---|
1290 | ! |
---|
1291 | !-- In case of complex terrain, determine vertical displacement at inflow |
---|
1292 | !-- boundary and adjust mean inflow profiles |
---|
1293 | IF ( complex_terrain ) THEN |
---|
1294 | IF ( nxlg <= 0 .AND. nxrg >= 0 .AND. & |
---|
1295 | nysg <= 0 .AND. nyng >= 0 ) THEN |
---|
1296 | nz_s_shift_l = get_topography_top_index_ji( 0, 0, 's' ) |
---|
1297 | ELSE |
---|
1298 | nz_s_shift_l = 0 |
---|
1299 | ENDIF |
---|
1300 | #if defined( __parallel ) |
---|
1301 | CALL MPI_ALLREDUCE(nz_s_shift_l, nz_s_shift, 1, MPI_INTEGER, & |
---|
1302 | MPI_MAX, comm2d, ierr) |
---|
1303 | #else |
---|
1304 | nz_s_shift = nz_s_shift_l |
---|
1305 | #endif |
---|
1306 | mean_inflow_profiles(nz_s_shift:nzt+1,5) = & |
---|
1307 | hom_sum(0:nzt+1-nz_s_shift,8,0) ! e |
---|
1308 | ENDIF |
---|
1309 | ! |
---|
1310 | !-- Use these mean profiles at the inflow (provided that Dirichlet |
---|
1311 | !-- conditions are used) |
---|
1312 | IF ( inflow_l ) THEN |
---|
1313 | DO j = nysg, nyng |
---|
1314 | DO k = nzb, nzt+1 |
---|
1315 | e(k,j,nxlg:-1) = mean_inflow_profiles(k,5) |
---|
1316 | ENDDO |
---|
1317 | ENDDO |
---|
1318 | ENDIF |
---|
1319 | ENDIF |
---|
1320 | ! |
---|
1321 | !-- Inside buildings set TKE back to zero |
---|
1322 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
1323 | topography /= 'flat' ) THEN |
---|
1324 | ! |
---|
1325 | !-- Inside buildings set TKE back to zero. |
---|
1326 | !-- Other scalars (km, kh,...) are ignored at present, |
---|
1327 | !-- maybe revise later. |
---|
1328 | DO i = nxlg, nxrg |
---|
1329 | DO j = nysg, nyng |
---|
1330 | DO k = nzb, nzt |
---|
1331 | e(k,j,i) = MERGE( e(k,j,i), 0.0_wp, & |
---|
1332 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1333 | ENDDO |
---|
1334 | ENDDO |
---|
1335 | ENDDO |
---|
1336 | |
---|
1337 | IF ( rans_tke_e ) THEN |
---|
1338 | DO i = nxlg, nxrg |
---|
1339 | DO j = nysg, nyng |
---|
1340 | DO k = nzb, nzt |
---|
1341 | diss(k,j,i) = MERGE( diss(k,j,i), 0.0_wp, & |
---|
1342 | BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1343 | ENDDO |
---|
1344 | ENDDO |
---|
1345 | ENDDO |
---|
1346 | ENDIF |
---|
1347 | ENDIF |
---|
1348 | ! |
---|
1349 | !-- Initialize new time levels (only done in order to set boundary values |
---|
1350 | !-- including ghost points) |
---|
1351 | e_p = e |
---|
1352 | ! |
---|
1353 | !-- Allthough tendency arrays are set in prognostic_equations, they have |
---|
1354 | !-- to be predefined here because there they are used (but multiplied with 0) |
---|
1355 | !-- before they are set. |
---|
1356 | te_m = 0.0_wp |
---|
1357 | |
---|
1358 | IF ( rans_tke_e ) THEN |
---|
1359 | diss_p = diss |
---|
1360 | tdiss_m = 0.0_wp |
---|
1361 | ENDIF |
---|
1362 | |
---|
1363 | ENDIF |
---|
1364 | |
---|
1365 | END SUBROUTINE tcm_init |
---|
1366 | |
---|
1367 | |
---|
1368 | ! Description: |
---|
1369 | ! -----------------------------------------------------------------------------! |
---|
1370 | !> Pre-computation of grid-dependent and near-wall mixing length. |
---|
1371 | !------------------------------------------------------------------------------! |
---|
1372 | SUBROUTINE tcm_init_mixing_length |
---|
1373 | |
---|
1374 | USE arrays_3d, & |
---|
1375 | ONLY: dzw, ug, vg, zu, zw |
---|
1376 | |
---|
1377 | USE control_parameters, & |
---|
1378 | ONLY: bc_lr_cyc, bc_ns_cyc, f, kappa, message_string, & |
---|
1379 | wall_adjustment_factor |
---|
1380 | |
---|
1381 | USE grid_variables, & |
---|
1382 | ONLY: dx, dy |
---|
1383 | |
---|
1384 | USE indices, & |
---|
1385 | ONLY: nbgp, nx, nxl, nxlg, nxr, nxrg, ny, nyn, nyng, nys, nysg, nzb, & |
---|
1386 | nzt, wall_flags_0 |
---|
1387 | |
---|
1388 | USE kinds |
---|
1389 | |
---|
1390 | |
---|
1391 | IMPLICIT NONE |
---|
1392 | |
---|
1393 | INTEGER(iwp) :: dist_dx !< found distance devided by dx |
---|
1394 | INTEGER(iwp) :: i !< index variable along x |
---|
1395 | INTEGER(iwp) :: ii !< index variable along x |
---|
1396 | INTEGER(iwp) :: j !< index variable along y |
---|
1397 | INTEGER(iwp) :: jj !< index variable along y |
---|
1398 | INTEGER(iwp) :: k !< index variable along z |
---|
1399 | INTEGER(iwp) :: k_max_topo = 0 !< index of maximum topography height |
---|
1400 | INTEGER(iwp) :: kk !< index variable along z |
---|
1401 | INTEGER(iwp) :: rad_i !< search radius in grid points along x |
---|
1402 | INTEGER(iwp) :: rad_i_l !< possible search radius to the left |
---|
1403 | INTEGER(iwp) :: rad_i_r !< possible search radius to the right |
---|
1404 | INTEGER(iwp) :: rad_j !< search radius in grid points along y |
---|
1405 | INTEGER(iwp) :: rad_j_n !< possible search radius to north |
---|
1406 | INTEGER(iwp) :: rad_j_s !< possible search radius to south |
---|
1407 | INTEGER(iwp) :: rad_k !< search radius in grid points along z |
---|
1408 | INTEGER(iwp) :: rad_k_b !< search radius in grid points along negative z |
---|
1409 | INTEGER(iwp) :: rad_k_t !< search radius in grid points along positive z |
---|
1410 | |
---|
1411 | INTEGER(KIND=1), DIMENSION(:,:), ALLOCATABLE :: vic_yz !< contains a quarter of a single yz-slice of vicinity |
---|
1412 | |
---|
1413 | INTEGER(KIND=1), DIMENSION(:,:,:), ALLOCATABLE :: vicinity !< contains topography information of the vicinity of (i/j/k) |
---|
1414 | |
---|
1415 | INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: wall_flags_0_global !< wall_flags_0 of whole domain |
---|
1416 | INTEGER(iwp), DIMENSION(:,:,:), ALLOCATABLE :: wall_flags_dummy !< dummy array required for MPI_ALLREDUCE command |
---|
1417 | |
---|
1418 | REAL(wp) :: radius !< search radius in meter |
---|
1419 | |
---|
1420 | ALLOCATE( l_grid(1:nzt) ) |
---|
1421 | ALLOCATE( l_wall(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
1422 | ! |
---|
1423 | !-- Initialize the mixing length in case of an LES-simulation |
---|
1424 | IF ( .NOT. rans_mode ) THEN |
---|
1425 | ! |
---|
1426 | !-- Compute the grid-dependent mixing length. |
---|
1427 | DO k = 1, nzt |
---|
1428 | l_grid(k) = ( dx * dy * dzw(k) )**0.33333333333333_wp |
---|
1429 | ENDDO |
---|
1430 | ! |
---|
1431 | !-- Initialize near-wall mixing length l_wall only in the vertical direction |
---|
1432 | !-- for the moment, multiplication with wall_adjustment_factor further below |
---|
1433 | l_wall(nzb,:,:) = l_grid(1) |
---|
1434 | DO k = nzb+1, nzt |
---|
1435 | l_wall(k,:,:) = l_grid(k) |
---|
1436 | ENDDO |
---|
1437 | l_wall(nzt+1,:,:) = l_grid(nzt) |
---|
1438 | |
---|
1439 | DO k = 1, nzt |
---|
1440 | IF ( l_grid(k) > 1.5_wp * dx * wall_adjustment_factor .OR. & |
---|
1441 | l_grid(k) > 1.5_wp * dy * wall_adjustment_factor ) THEN |
---|
1442 | WRITE( message_string, * ) 'grid anisotropy exceeds ', & |
---|
1443 | 'threshold given by only local', & |
---|
1444 | ' &horizontal reduction of near_wall ', & |
---|
1445 | 'mixing length l_wall', & |
---|
1446 | ' &starting from height level k = ', k, & |
---|
1447 | '.' |
---|
1448 | CALL message( 'init_grid', 'PA0202', 0, 1, 0, 6, 0 ) |
---|
1449 | EXIT |
---|
1450 | ENDIF |
---|
1451 | ENDDO |
---|
1452 | ! |
---|
1453 | !-- In case of topography: limit near-wall mixing length l_wall further: |
---|
1454 | !-- Go through all points of the subdomain one by one and look for the closest |
---|
1455 | !-- surface. |
---|
1456 | !-- Is this correct in the ocean case? |
---|
1457 | DO i = nxl, nxr |
---|
1458 | DO j = nys, nyn |
---|
1459 | DO k = nzb+1, nzt |
---|
1460 | ! |
---|
1461 | !-- Check if current gridpoint belongs to the atmosphere |
---|
1462 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) ) THEN |
---|
1463 | ! |
---|
1464 | !-- Check for neighbouring grid-points. |
---|
1465 | !-- Vertical distance, down |
---|
1466 | IF ( .NOT. BTEST( wall_flags_0(k-1,j,i), 0 ) ) & |
---|
1467 | l_wall(k,j,i) = MIN( l_grid(k), zu(k) - zw(k-1) ) |
---|
1468 | ! |
---|
1469 | !-- Vertical distance, up |
---|
1470 | IF ( .NOT. BTEST( wall_flags_0(k+1,j,i), 0 ) ) & |
---|
1471 | l_wall(k,j,i) = MIN( l_grid(k), zw(k) - zu(k) ) |
---|
1472 | ! |
---|
1473 | !-- y-distance |
---|
1474 | IF ( .NOT. BTEST( wall_flags_0(k,j-1,i), 0 ) .OR. & |
---|
1475 | .NOT. BTEST( wall_flags_0(k,j+1,i), 0 ) ) & |
---|
1476 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), 0.5_wp * dy ) |
---|
1477 | ! |
---|
1478 | !-- x-distance |
---|
1479 | IF ( .NOT. BTEST( wall_flags_0(k,j,i-1), 0 ) .OR. & |
---|
1480 | .NOT. BTEST( wall_flags_0(k,j,i+1), 0 ) ) & |
---|
1481 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), 0.5_wp * dx ) |
---|
1482 | ! |
---|
1483 | !-- yz-distance (vertical edges, down) |
---|
1484 | IF ( .NOT. BTEST( wall_flags_0(k-1,j-1,i), 0 ) .OR. & |
---|
1485 | .NOT. BTEST( wall_flags_0(k-1,j+1,i), 0 ) ) & |
---|
1486 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1487 | SQRT( 0.25_wp * dy**2 + & |
---|
1488 | ( zu(k) - zw(k-1) )**2 ) ) |
---|
1489 | ! |
---|
1490 | !-- yz-distance (vertical edges, up) |
---|
1491 | IF ( .NOT. BTEST( wall_flags_0(k+1,j-1,i), 0 ) .OR. & |
---|
1492 | .NOT. BTEST( wall_flags_0(k+1,j+1,i), 0 ) ) & |
---|
1493 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1494 | SQRT( 0.25_wp * dy**2 + & |
---|
1495 | ( zw(k) - zu(k) )**2 ) ) |
---|
1496 | ! |
---|
1497 | !-- xz-distance (vertical edges, down) |
---|
1498 | IF ( .NOT. BTEST( wall_flags_0(k-1,j,i-1), 0 ) .OR. & |
---|
1499 | .NOT. BTEST( wall_flags_0(k-1,j,i+1), 0 ) ) & |
---|
1500 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1501 | SQRT( 0.25_wp * dx**2 + & |
---|
1502 | ( zu(k) - zw(k-1) )**2 ) ) |
---|
1503 | ! |
---|
1504 | !-- xz-distance (vertical edges, up) |
---|
1505 | IF ( .NOT. BTEST( wall_flags_0(k+1,j,i-1), 0 ) .OR. & |
---|
1506 | .NOT. BTEST( wall_flags_0(k+1,j,i+1), 0 ) ) & |
---|
1507 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1508 | SQRT( 0.25_wp * dx**2 + & |
---|
1509 | ( zw(k) - zu(k) )**2 ) ) |
---|
1510 | ! |
---|
1511 | !-- xy-distance (horizontal edges) |
---|
1512 | IF ( .NOT. BTEST( wall_flags_0(k,j-1,i-1), 0 ) .OR. & |
---|
1513 | .NOT. BTEST( wall_flags_0(k,j+1,i-1), 0 ) .OR. & |
---|
1514 | .NOT. BTEST( wall_flags_0(k,j-1,i+1), 0 ) .OR. & |
---|
1515 | .NOT. BTEST( wall_flags_0(k,j+1,i+1), 0 ) ) & |
---|
1516 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1517 | SQRT( 0.25_wp * ( dx**2 + dy**2 ) ) ) |
---|
1518 | ! |
---|
1519 | !-- xyz distance (vertical and horizontal edges, down) |
---|
1520 | IF ( .NOT. BTEST( wall_flags_0(k-1,j-1,i-1), 0 ) .OR. & |
---|
1521 | .NOT. BTEST( wall_flags_0(k-1,j+1,i-1), 0 ) .OR. & |
---|
1522 | .NOT. BTEST( wall_flags_0(k-1,j-1,i+1), 0 ) .OR. & |
---|
1523 | .NOT. BTEST( wall_flags_0(k-1,j+1,i+1), 0 ) ) & |
---|
1524 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1525 | SQRT( 0.25_wp * ( dx**2 + dy**2 ) & |
---|
1526 | + ( zu(k) - zw(k-1) )**2 ) ) |
---|
1527 | ! |
---|
1528 | !-- xyz distance (vertical and horizontal edges, up) |
---|
1529 | IF ( .NOT. BTEST( wall_flags_0(k+1,j-1,i-1), 0 ) .OR. & |
---|
1530 | .NOT. BTEST( wall_flags_0(k+1,j+1,i-1), 0 ) .OR. & |
---|
1531 | .NOT. BTEST( wall_flags_0(k+1,j-1,i+1), 0 ) .OR. & |
---|
1532 | .NOT. BTEST( wall_flags_0(k+1,j+1,i+1), 0 ) ) & |
---|
1533 | l_wall(k,j,i) = MIN( l_wall(k,j,i), l_grid(k), & |
---|
1534 | SQRT( 0.25_wp * ( dx**2 + dy**2 ) & |
---|
1535 | + ( zw(k) - zu(k) )**2 ) ) |
---|
1536 | |
---|
1537 | ENDIF |
---|
1538 | ENDDO |
---|
1539 | ENDDO |
---|
1540 | ENDDO |
---|
1541 | |
---|
1542 | ELSE |
---|
1543 | ! |
---|
1544 | !-- Initialize the mixing length in case of a RANS simulation |
---|
1545 | ALLOCATE( l_black(nzb:nzt+1) ) |
---|
1546 | |
---|
1547 | ! |
---|
1548 | !-- Calculate mixing length according to Blackadar (1962) |
---|
1549 | IF ( f /= 0.0_wp ) THEN |
---|
1550 | l_max = 2.7E-4_wp * SQRT( ug(nzt+1)**2 + vg(nzt+1)**2 ) / & |
---|
1551 | ABS( f ) + 1.0E-10_wp |
---|
1552 | ELSE |
---|
1553 | l_max = 30.0_wp |
---|
1554 | ENDIF |
---|
1555 | |
---|
1556 | DO k = nzb, nzt |
---|
1557 | l_black(k) = kappa * zu(k) / ( 1.0_wp + kappa * zu(k) / l_max ) |
---|
1558 | ENDDO |
---|
1559 | |
---|
1560 | l_black(nzt+1) = l_black(nzt) |
---|
1561 | |
---|
1562 | ! |
---|
1563 | !-- Gather topography information of whole domain |
---|
1564 | !> @todo reduce amount of data sent by MPI call |
---|
1565 | !> By now, a whole global 3D-array is sent and received with |
---|
1566 | !> MPI_ALLREDUCE although most of the array is 0. This can be |
---|
1567 | !> drastically reduced if only the local subarray is sent and stored |
---|
1568 | !> in a global array. For that, an MPI data type or subarray must be |
---|
1569 | !> defined. |
---|
1570 | !> 2018-03-19, gronemeier |
---|
1571 | ALLOCATE( wall_flags_0_global(nzb:nzt+1,0:ny,0:nx) ) |
---|
1572 | |
---|
1573 | #if defined ( __parallel ) |
---|
1574 | ALLOCATE( wall_flags_dummy(nzb:nzt+1,0:ny,0:nx) ) |
---|
1575 | wall_flags_dummy = 0 |
---|
1576 | wall_flags_dummy(nzb:nzt+1,nys:nyn,nxl:nxr) = & |
---|
1577 | wall_flags_0(nzb:nzt+1,nys:nyn,nxl:nxr) |
---|
1578 | |
---|
1579 | CALL MPI_ALLREDUCE( wall_flags_dummy, & |
---|
1580 | wall_flags_0_global, & |
---|
1581 | (nzt-nzb+2)*(ny+1)*(nx+1), & |
---|
1582 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
1583 | DEALLOCATE( wall_flags_dummy ) |
---|
1584 | #else |
---|
1585 | wall_flags_0_global(nzb:nzt+1,nys:nyn,nxl:nxr) = & |
---|
1586 | wall_flags_0(nzb:nzt+1,nys:nyn,nxl:nxr) |
---|
1587 | #endif |
---|
1588 | ! |
---|
1589 | !-- Get height level of highest topography |
---|
1590 | DO i = 0, nx |
---|
1591 | DO j = 0, ny |
---|
1592 | DO k = nzb+1, nzt-1 |
---|
1593 | IF ( .NOT. BTEST( wall_flags_0_global(k,j,i), 0 ) .AND. & |
---|
1594 | k > k_max_topo ) & |
---|
1595 | k_max_topo = k |
---|
1596 | ENDDO |
---|
1597 | ENDDO |
---|
1598 | ENDDO |
---|
1599 | |
---|
1600 | l_wall(nzb,:,:) = l_black(nzb) |
---|
1601 | l_wall(nzt+1,:,:) = l_black(nzt+1) |
---|
1602 | ! |
---|
1603 | !-- Limit mixing length to either nearest wall or Blackadar mixing length. |
---|
1604 | !-- For that, analyze each grid point (i/j/k) ("analysed grid point") and |
---|
1605 | !-- search within its vicinity for the shortest distance to a wall by cal- |
---|
1606 | !-- culating the distance between the analysed grid point and the "viewed |
---|
1607 | !-- grid point" if it contains a wall (belongs to topography). |
---|
1608 | DO k = nzb+1, nzt |
---|
1609 | |
---|
1610 | radius = l_black(k) ! radius within walls are searched |
---|
1611 | ! |
---|
1612 | !-- Set l_wall to its default maximum value (l_back) |
---|
1613 | l_wall(k,:,:) = radius |
---|
1614 | |
---|
1615 | ! |
---|
1616 | !-- Compute search radius as number of grid points in all directions |
---|
1617 | rad_i = CEILING( radius / dx ) |
---|
1618 | rad_j = CEILING( radius / dy ) |
---|
1619 | |
---|
1620 | DO kk = 0, nzt-k |
---|
1621 | rad_k_t = kk |
---|
1622 | ! |
---|
1623 | !-- Limit upward search radius to height of maximum topography |
---|
1624 | IF ( zu(k+kk)-zu(k) >= radius .OR. k+kk >= k_max_topo ) EXIT |
---|
1625 | ENDDO |
---|
1626 | |
---|
1627 | DO kk = 0, k |
---|
1628 | rad_k_b = kk |
---|
1629 | IF ( zu(k)-zu(k-kk) >= radius ) EXIT |
---|
1630 | ENDDO |
---|
1631 | |
---|
1632 | ! |
---|
1633 | !-- Get maximum vertical radius; necessary for defining arrays |
---|
1634 | rad_k = MAX( rad_k_b, rad_k_t ) |
---|
1635 | ! |
---|
1636 | !-- When analysed grid point lies above maximum topography, set search |
---|
1637 | !-- radius to 0 if the distance between the analysed grid point and max |
---|
1638 | !-- topography height is larger than the maximum search radius |
---|
1639 | IF ( zu(k-rad_k_b) > zu(k_max_topo) ) rad_k_b = 0 |
---|
1640 | ! |
---|
1641 | !-- Search within vicinity only if the vertical search radius is >0 |
---|
1642 | IF ( rad_k_b /= 0 .OR. rad_k_t /= 0 ) THEN |
---|
1643 | |
---|
1644 | !> @note shape of vicinity is larger in z direction |
---|
1645 | !> Shape of vicinity is two grid points larger than actual search |
---|
1646 | !> radius in vertical direction. The first and last grid point is |
---|
1647 | !> always set to 1 to asure correct detection of topography. See |
---|
1648 | !> function "shortest_distance" for details. |
---|
1649 | !> 2018-03-16, gronemeier |
---|
1650 | ALLOCATE( vicinity(-rad_k-1:rad_k+1,-rad_j:rad_j,-rad_i:rad_i) ) |
---|
1651 | ALLOCATE( vic_yz(0:rad_k+1,0:rad_j) ) |
---|
1652 | |
---|
1653 | vicinity = 1 |
---|
1654 | |
---|
1655 | DO i = nxl, nxr |
---|
1656 | DO j = nys, nyn |
---|
1657 | ! |
---|
1658 | !-- Start search only if (i/j/k) belongs to atmosphere |
---|
1659 | IF ( BTEST( wall_flags_0(k,j,i), 0 ) ) THEN |
---|
1660 | ! |
---|
1661 | !-- Reset topography within vicinity |
---|
1662 | vicinity(-rad_k:rad_k,:,:) = 0 |
---|
1663 | ! |
---|
1664 | !-- Copy area surrounding analysed grid point into vicinity. |
---|
1665 | !-- First, limit size of data copied to vicinity by the domain |
---|
1666 | !-- border |
---|
1667 | rad_i_l = MIN( rad_i, i ) |
---|
1668 | rad_i_r = MIN( rad_i, nx-i ) |
---|
1669 | |
---|
1670 | rad_j_s = MIN( rad_j, j ) |
---|
1671 | rad_j_n = MIN( rad_j, ny-j ) |
---|
1672 | |
---|
1673 | CALL copy_into_vicinity( k, j, i, & |
---|
1674 | -rad_k_b, rad_k_t, & |
---|
1675 | -rad_j_s, rad_j_n, & |
---|
1676 | -rad_i_l, rad_i_r ) |
---|
1677 | ! |
---|
1678 | !-- In case of cyclic boundaries, copy parts into vicinity |
---|
1679 | !-- where vicinity reaches over the domain borders. |
---|
1680 | IF ( bc_lr_cyc ) THEN |
---|
1681 | ! |
---|
1682 | !-- Vicinity reaches over left domain boundary |
---|
1683 | IF ( rad_i > rad_i_l ) THEN |
---|
1684 | CALL copy_into_vicinity( k, j, nx+rad_i_l+1, & |
---|
1685 | -rad_k_b, rad_k_t, & |
---|
1686 | -rad_j_s, rad_j_n, & |
---|
1687 | -rad_i, -rad_i_l-1 ) |
---|
1688 | ! |
---|
1689 | !-- ...and over southern domain boundary |
---|
1690 | IF ( bc_ns_cyc .AND. rad_j > rad_j_s ) & |
---|
1691 | CALL copy_into_vicinity( k, ny+rad_j_s+1, & |
---|
1692 | nx+rad_i_l+1, & |
---|
1693 | -rad_k_b, rad_k_t, & |
---|
1694 | -rad_j, -rad_j_s-1, & |
---|
1695 | -rad_i, -rad_i_l-1 ) |
---|
1696 | ! |
---|
1697 | !-- ...and over northern domain boundary |
---|
1698 | IF ( bc_ns_cyc .AND. rad_j > rad_j_n ) & |
---|
1699 | CALL copy_into_vicinity( k, 0-rad_j_n-1, & |
---|
1700 | nx+rad_i_l+1, & |
---|
1701 | -rad_k_b, rad_k_t, & |
---|
1702 | rad_j_n+1, rad_j, & |
---|
1703 | -rad_i, -rad_i_l-1 ) |
---|
1704 | ENDIF |
---|
1705 | ! |
---|
1706 | !-- Vicinity reaches over right domain boundary |
---|
1707 | IF ( rad_i > rad_i_r ) THEN |
---|
1708 | CALL copy_into_vicinity( k, j, 0-rad_i_r-1, & |
---|
1709 | -rad_k_b, rad_k_t, & |
---|
1710 | -rad_j_s, rad_j_n, & |
---|
1711 | rad_i_r+1, rad_i ) |
---|
1712 | ! |
---|
1713 | !-- ...and over southern domain boundary |
---|
1714 | IF ( bc_ns_cyc .AND. rad_j > rad_j_s ) & |
---|
1715 | CALL copy_into_vicinity( k, ny+rad_j_s+1, & |
---|
1716 | 0-rad_i_r-1, & |
---|
1717 | -rad_k_b, rad_k_t, & |
---|
1718 | -rad_j, -rad_j_s-1, & |
---|
1719 | rad_i_r+1, rad_i ) |
---|
1720 | ! |
---|
1721 | !-- ...and over northern domain boundary |
---|
1722 | IF ( bc_ns_cyc .AND. rad_j > rad_j_n ) & |
---|
1723 | CALL copy_into_vicinity( k, 0-rad_j_n-1, & |
---|
1724 | 0-rad_i_r-1, & |
---|
1725 | -rad_k_b, rad_k_t, & |
---|
1726 | rad_j_n+1, rad_j, & |
---|
1727 | rad_i_r+1, rad_i ) |
---|
1728 | ENDIF |
---|
1729 | ENDIF |
---|
1730 | |
---|
1731 | IF ( bc_ns_cyc ) THEN |
---|
1732 | ! |
---|
1733 | !-- Vicinity reaches over southern domain boundary |
---|
1734 | IF ( rad_j > rad_j_s ) & |
---|
1735 | CALL copy_into_vicinity( k, ny+rad_j_s+1, i, & |
---|
1736 | -rad_k_b, rad_k_t, & |
---|
1737 | -rad_j, -rad_j_s-1, & |
---|
1738 | -rad_i_l, rad_i_r ) |
---|
1739 | ! |
---|
1740 | !-- Vicinity reaches over northern domain boundary |
---|
1741 | IF ( rad_j > rad_j_n ) & |
---|
1742 | CALL copy_into_vicinity( k, 0-rad_j_n-1, i, & |
---|
1743 | -rad_k_b, rad_k_t, & |
---|
1744 | rad_j_n+1, rad_j, & |
---|
1745 | rad_i_l, rad_i_r ) |
---|
1746 | ENDIF |
---|
1747 | ! |
---|
1748 | !-- Search for walls only if there is any within vicinity |
---|
1749 | IF ( MAXVAL( vicinity(-rad_k:rad_k,:,:) ) /= 0 ) THEN |
---|
1750 | ! |
---|
1751 | !-- Search within first half (positive x) |
---|
1752 | dist_dx = rad_i |
---|
1753 | DO ii = 0, dist_dx |
---|
1754 | ! |
---|
1755 | !-- Search along vertical direction only if below |
---|
1756 | !-- maximum topography |
---|
1757 | IF ( rad_k_t > 0 ) THEN |
---|
1758 | ! |
---|
1759 | !-- Search for walls within octant (+++) |
---|
1760 | vic_yz = vicinity(0:rad_k+1,0:rad_j,ii) |
---|
1761 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1762 | shortest_distance( vic_yz, .TRUE., ii ) ) |
---|
1763 | ! |
---|
1764 | !-- Search for walls within octant (+-+) |
---|
1765 | !-- Switch order of array so that the analysed grid |
---|
1766 | !-- point is always located at (0/0) (required by |
---|
1767 | !-- shortest_distance"). |
---|
1768 | vic_yz = vicinity(0:rad_k+1,0:-rad_j:-1,ii) |
---|
1769 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1770 | shortest_distance( vic_yz, .TRUE., ii ) ) |
---|
1771 | |
---|
1772 | ENDIF |
---|
1773 | ! |
---|
1774 | !-- Search for walls within octant (+--) |
---|
1775 | vic_yz = vicinity(0:-rad_k-1:-1,0:-rad_j:-1,ii) |
---|
1776 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1777 | shortest_distance( vic_yz, .FALSE., ii ) ) |
---|
1778 | ! |
---|
1779 | !-- Search for walls within octant (++-) |
---|
1780 | vic_yz = vicinity(0:-rad_k-1:-1,0:rad_j,ii) |
---|
1781 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1782 | shortest_distance( vic_yz, .FALSE., ii ) ) |
---|
1783 | ! |
---|
1784 | !-- Reduce search along x by already found distance |
---|
1785 | dist_dx = CEILING( l_wall(k,j,i) / dx ) |
---|
1786 | |
---|
1787 | ENDDO |
---|
1788 | ! |
---|
1789 | !- Search within second half (negative x) |
---|
1790 | DO ii = 0, -dist_dx, -1 |
---|
1791 | ! |
---|
1792 | !-- Search along vertical direction only if below |
---|
1793 | !-- maximum topography |
---|
1794 | IF ( rad_k_t > 0 ) THEN |
---|
1795 | ! |
---|
1796 | !-- Search for walls within octant (-++) |
---|
1797 | vic_yz = vicinity(0:rad_k+1,0:rad_j,ii) |
---|
1798 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1799 | shortest_distance( vic_yz, .TRUE., -ii ) ) |
---|
1800 | ! |
---|
1801 | !-- Search for walls within octant (--+) |
---|
1802 | !-- Switch order of array so that the analysed grid |
---|
1803 | !-- point is always located at (0/0) (required by |
---|
1804 | !-- shortest_distance"). |
---|
1805 | vic_yz = vicinity(0:rad_k+1,0:-rad_j:-1,ii) |
---|
1806 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1807 | shortest_distance( vic_yz, .TRUE., -ii ) ) |
---|
1808 | |
---|
1809 | ENDIF |
---|
1810 | ! |
---|
1811 | !-- Search for walls within octant (---) |
---|
1812 | vic_yz = vicinity(0:-rad_k-1:-1,0:-rad_j:-1,ii) |
---|
1813 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1814 | shortest_distance( vic_yz, .FALSE., -ii ) ) |
---|
1815 | ! |
---|
1816 | !-- Search for walls within octant (-+-) |
---|
1817 | vic_yz = vicinity(0:-rad_k-1:-1,0:rad_j,ii) |
---|
1818 | l_wall(k,j,i) = MIN( l_wall(k,j,i), & |
---|
1819 | shortest_distance( vic_yz, .FALSE., -ii ) ) |
---|
1820 | ! |
---|
1821 | !-- Reduce search along x by already found distance |
---|
1822 | dist_dx = CEILING( l_wall(k,j,i) / dx ) |
---|
1823 | |
---|
1824 | ENDDO |
---|
1825 | |
---|
1826 | ENDIF !Check for any walls within vicinity |
---|
1827 | |
---|
1828 | ELSE !Check if (i,j,k) belongs to atmosphere |
---|
1829 | |
---|
1830 | l_wall(k,j,i) = l_black(k) |
---|
1831 | |
---|
1832 | ENDIF |
---|
1833 | |
---|
1834 | ENDDO !j loop |
---|
1835 | ENDDO !i loop |
---|
1836 | |
---|
1837 | DEALLOCATE( vicinity ) |
---|
1838 | DEALLOCATE( vic_yz ) |
---|
1839 | |
---|
1840 | ENDIF !check vertical size of vicinity |
---|
1841 | |
---|
1842 | ENDDO !k loop |
---|
1843 | |
---|
1844 | DEALLOCATE( wall_flags_0_global ) |
---|
1845 | |
---|
1846 | ENDIF !LES or RANS mode |
---|
1847 | |
---|
1848 | ! |
---|
1849 | !-- Set lateral boundary conditions for l_wall |
---|
1850 | CALL exchange_horiz( l_wall, nbgp ) |
---|
1851 | |
---|
1852 | CONTAINS |
---|
1853 | !------------------------------------------------------------------------------! |
---|
1854 | ! Description: |
---|
1855 | ! ------------ |
---|
1856 | !> Calculate the shortest distance between position (i/j/k)=(0/0/0) and |
---|
1857 | !> (pos_i/jj/kk), where (jj/kk) is the position of the maximum of 'array' |
---|
1858 | !> closest to the origin (0/0) of 'array'. |
---|
1859 | !> @todo this part of PALM does not reproduce the same results for optimized |
---|
1860 | !> and debug options for the compiler. This should be fixed |
---|
1861 | !------------------------------------------------------------------------------! |
---|
1862 | REAL FUNCTION shortest_distance( array, orientation, pos_i ) |
---|
1863 | |
---|
1864 | IMPLICIT NONE |
---|
1865 | |
---|
1866 | LOGICAL, INTENT(IN) :: orientation !< flag if array represents an array oriented upwards (true) or downwards (false) |
---|
1867 | |
---|
1868 | INTEGER(iwp), INTENT(IN) :: pos_i !< x position of the yz-plane 'array' |
---|
1869 | |
---|
1870 | INTEGER(iwp) :: jj !< loop index |
---|
1871 | |
---|
1872 | INTEGER(iwp), DIMENSION(0:rad_j) :: loc_k !< location of closest wall along vertical dimension |
---|
1873 | |
---|
1874 | INTEGER(KIND=1), DIMENSION(0:rad_k+1,0:rad_j), INTENT(IN) :: array !< array containing a yz-plane at position pos_i |
---|
1875 | |
---|
1876 | ! |
---|
1877 | !-- Get coordinate of first maximum along vertical dimension |
---|
1878 | !-- at each y position of array. |
---|
1879 | !-- Substract 1 because indices count from 1 instead of 0 by MAXLOC |
---|
1880 | loc_k = MAXLOC( array, DIM = 1) - 1 |
---|
1881 | |
---|
1882 | ! |
---|
1883 | !-- Set distance to the default maximum value (=search radius) |
---|
1884 | shortest_distance = radius |
---|
1885 | ! |
---|
1886 | !-- Calculate distance between position (0/0/0) and |
---|
1887 | !-- position (pos_i/jj/loc(jj)) and only save the shortest distance. |
---|
1888 | IF ( orientation ) THEN !if array is oriented upwards |
---|
1889 | DO jj = 0, rad_j |
---|
1890 | shortest_distance = & |
---|
1891 | MIN( shortest_distance, & |
---|
1892 | SQRT( MAX(REAL(pos_i, KIND=wp)*dx-0.5_wp*dx, 0.0_wp)**2 & |
---|
1893 | + MAX(REAL(jj, KIND=wp)*dy-0.5_wp*dy, 0.0_wp)**2 & |
---|
1894 | + MAX(zw(loc_k(jj)+k-1)-zu(k), 0.0_wp)**2 & |
---|
1895 | ) & |
---|
1896 | ) |
---|
1897 | ENDDO |
---|
1898 | ELSE !if array is oriented downwards |
---|
1899 | !> @note MAX within zw required to circumvent error at domain border |
---|
1900 | !> At the domain border, if non-cyclic boundary is present, the |
---|
1901 | !> index for zw could be -1, which will be errorneous (zw(-1) does |
---|
1902 | !> not exist). The MAX function limits the index to be at least 0. |
---|
1903 | DO jj = 0, rad_j |
---|
1904 | shortest_distance = & |
---|
1905 | MIN( shortest_distance, & |
---|
1906 | SQRT( MAX(REAL(pos_i, KIND=wp)*dx-0.5_wp*dx, 0.0_wp)**2 & |
---|
1907 | + MAX(REAL(jj, KIND=wp)*dy-0.5_wp*dy, 0.0_wp)**2 & |
---|
1908 | + MAX(zu(k)-zw(MAX(k-loc_k(jj),0_iwp)), 0.0_wp)**2 & |
---|
1909 | ) & |
---|
1910 | ) |
---|
1911 | ENDDO |
---|
1912 | ENDIF |
---|
1913 | |
---|
1914 | END FUNCTION |
---|
1915 | |
---|
1916 | !------------------------------------------------------------------------------! |
---|
1917 | ! Description: |
---|
1918 | ! ------------ |
---|
1919 | !> Copy a subarray of size (kb:kt,js:jn,il:ir) centered around grid point |
---|
1920 | !> (kp,jp,ip) containing the first bit of wall_flags_0 into the array |
---|
1921 | !> 'vicinity'. Only copy first bit as this indicates the presence of topography. |
---|
1922 | !------------------------------------------------------------------------------! |
---|
1923 | SUBROUTINE copy_into_vicinity( kp, jp, ip, kb, kt, js, jn, il, ir ) |
---|
1924 | |
---|
1925 | IMPLICIT NONE |
---|
1926 | |
---|
1927 | INTEGER(iwp), INTENT(IN) :: il !< left loop boundary |
---|
1928 | INTEGER(iwp), INTENT(IN) :: ip !< center position in x-direction |
---|
1929 | INTEGER(iwp), INTENT(IN) :: ir !< right loop boundary |
---|
1930 | INTEGER(iwp), INTENT(IN) :: jn !< northern loop boundary |
---|
1931 | INTEGER(iwp), INTENT(IN) :: jp !< center position in y-direction |
---|
1932 | INTEGER(iwp), INTENT(IN) :: js !< southern loop boundary |
---|
1933 | INTEGER(iwp), INTENT(IN) :: kb !< bottom loop boundary |
---|
1934 | INTEGER(iwp), INTENT(IN) :: kp !< center position in z-direction |
---|
1935 | INTEGER(iwp), INTENT(IN) :: kt !< top loop boundary |
---|
1936 | |
---|
1937 | INTEGER(iwp) :: i !< loop index |
---|
1938 | INTEGER(iwp) :: j !< loop index |
---|
1939 | INTEGER(iwp) :: k !< loop index |
---|
1940 | |
---|
1941 | |
---|
1942 | DO i = il, ir |
---|
1943 | DO j = js, jn |
---|
1944 | DO k = kb, kt |
---|
1945 | vicinity(k,j,i) = MERGE( 0, 1, & |
---|
1946 | BTEST( wall_flags_0_global(kp+k,jp+j,ip+i), 0 ) ) |
---|
1947 | ENDDO |
---|
1948 | ENDDO |
---|
1949 | ENDDO |
---|
1950 | |
---|
1951 | END SUBROUTINE copy_into_vicinity |
---|
1952 | |
---|
1953 | END SUBROUTINE tcm_init_mixing_length |
---|
1954 | |
---|
1955 | |
---|
1956 | !------------------------------------------------------------------------------! |
---|
1957 | ! Description: |
---|
1958 | ! ------------ |
---|
1959 | !> Initialize virtual velocities used later in production_e. |
---|
1960 | !------------------------------------------------------------------------------! |
---|
1961 | SUBROUTINE production_e_init |
---|
1962 | |
---|
1963 | USE arrays_3d, & |
---|
1964 | ONLY: drho_air_zw, zu |
---|
1965 | |
---|
1966 | USE control_parameters, & |
---|
1967 | ONLY: constant_flux_layer |
---|
1968 | |
---|
1969 | USE surface_mod, & |
---|
1970 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_usm_h |
---|
1971 | |
---|
1972 | IMPLICIT NONE |
---|
1973 | |
---|
1974 | INTEGER(iwp) :: i !< grid index x-direction |
---|
1975 | INTEGER(iwp) :: j !< grid index y-direction |
---|
1976 | INTEGER(iwp) :: k !< grid index z-direction |
---|
1977 | INTEGER(iwp) :: m !< running index surface elements |
---|
1978 | |
---|
1979 | IF ( constant_flux_layer ) THEN |
---|
1980 | ! |
---|
1981 | !-- Calculate a virtual velocity at the surface in a way that the |
---|
1982 | !-- vertical velocity gradient at k = 1 (u(k+1)-u_0) matches the |
---|
1983 | !-- Prandtl law (-w'u'/km). This gradient is used in the TKE shear |
---|
1984 | !-- production term at k=1 (see production_e_ij). |
---|
1985 | !-- The velocity gradient has to be limited in case of too small km |
---|
1986 | !-- (otherwise the timestep may be significantly reduced by large |
---|
1987 | !-- surface winds). |
---|
1988 | !-- not available in case of non-cyclic boundary conditions. |
---|
1989 | !-- WARNING: the exact analytical solution would require the determination |
---|
1990 | !-- of the eddy diffusivity by km = u* * kappa * zp / phi_m. |
---|
1991 | !-- Default surfaces, upward-facing |
---|
1992 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
1993 | DO m = 1, surf_def_h(0)%ns |
---|
1994 | |
---|
1995 | i = surf_def_h(0)%i(m) |
---|
1996 | j = surf_def_h(0)%j(m) |
---|
1997 | k = surf_def_h(0)%k(m) |
---|
1998 | ! |
---|
1999 | !-- Note, calculatione of u_0 and v_0 is not fully accurate, as u/v |
---|
2000 | !-- and km are not on the same grid. Actually, a further |
---|
2001 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
2002 | !-- effect of this error is negligible. |
---|
2003 | surf_def_h(0)%u_0(m) = u(k+1,j,i) + surf_def_h(0)%usws(m) * & |
---|
2004 | drho_air_zw(k-1) * & |
---|
2005 | ( zu(k+1) - zu(k-1) ) / & |
---|
2006 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
2007 | surf_def_h(0)%v_0(m) = v(k+1,j,i) + surf_def_h(0)%vsws(m) * & |
---|
2008 | drho_air_zw(k-1) * & |
---|
2009 | ( zu(k+1) - zu(k-1) ) / & |
---|
2010 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
2011 | |
---|
2012 | IF ( ABS( u(k+1,j,i) - surf_def_h(0)%u_0(m) ) > & |
---|
2013 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
2014 | ) surf_def_h(0)%u_0(m) = u(k-1,j,i) |
---|
2015 | |
---|
2016 | IF ( ABS( v(k+1,j,i) - surf_def_h(0)%v_0(m) ) > & |
---|
2017 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
2018 | ) surf_def_h(0)%v_0(m) = v(k-1,j,i) |
---|
2019 | |
---|
2020 | ENDDO |
---|
2021 | ! |
---|
2022 | !-- Default surfaces, downward-facing surfaces |
---|
2023 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
2024 | DO m = 1, surf_def_h(1)%ns |
---|
2025 | |
---|
2026 | i = surf_def_h(1)%i(m) |
---|
2027 | j = surf_def_h(1)%j(m) |
---|
2028 | k = surf_def_h(1)%k(m) |
---|
2029 | |
---|
2030 | surf_def_h(1)%u_0(m) = u(k-1,j,i) - surf_def_h(1)%usws(m) * & |
---|
2031 | drho_air_zw(k-1) * & |
---|
2032 | ( zu(k+1) - zu(k-1) ) / & |
---|
2033 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
2034 | surf_def_h(1)%v_0(m) = v(k-1,j,i) - surf_def_h(1)%vsws(m) * & |
---|
2035 | drho_air_zw(k-1) * & |
---|
2036 | ( zu(k+1) - zu(k-1) ) / & |
---|
2037 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
2038 | |
---|
2039 | IF ( ABS( surf_def_h(1)%u_0(m) - u(k-1,j,i) ) > & |
---|
2040 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
2041 | ) surf_def_h(1)%u_0(m) = u(k+1,j,i) |
---|
2042 | |
---|
2043 | IF ( ABS( surf_def_h(1)%v_0(m) - v(k-1,j,i) ) > & |
---|
2044 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
2045 | ) surf_def_h(1)%v_0(m) = v(k+1,j,i) |
---|
2046 | |
---|
2047 | ENDDO |
---|
2048 | ! |
---|
2049 | !-- Natural surfaces, upward-facing |
---|
2050 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
2051 | DO m = 1, surf_lsm_h%ns |
---|
2052 | |
---|
2053 | i = surf_lsm_h%i(m) |
---|
2054 | j = surf_lsm_h%j(m) |
---|
2055 | k = surf_lsm_h%k(m) |
---|
2056 | ! |
---|
2057 | !-- Note, calculatione of u_0 and v_0 is not fully accurate, as u/v |
---|
2058 | !-- and km are not on the same grid. Actually, a further |
---|
2059 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
2060 | !-- effect of this error is negligible. |
---|
2061 | !-- effect of this error is negligible. |
---|
2062 | surf_lsm_h%u_0(m) = u(k+1,j,i) + surf_lsm_h%usws(m) * & |
---|
2063 | drho_air_zw(k-1) * & |
---|
2064 | ( zu(k+1) - zu(k-1) ) / & |
---|
2065 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
2066 | surf_lsm_h%v_0(m) = v(k+1,j,i) + surf_lsm_h%vsws(m) * & |
---|
2067 | drho_air_zw(k-1) * & |
---|
2068 | ( zu(k+1) - zu(k-1) ) / & |
---|
2069 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
2070 | |
---|
2071 | IF ( ABS( u(k+1,j,i) - surf_lsm_h%u_0(m) ) > & |
---|
2072 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
2073 | ) surf_lsm_h%u_0(m) = u(k-1,j,i) |
---|
2074 | |
---|
2075 | IF ( ABS( v(k+1,j,i) - surf_lsm_h%v_0(m) ) > & |
---|
2076 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
2077 | ) surf_lsm_h%v_0(m) = v(k-1,j,i) |
---|
2078 | |
---|
2079 | ENDDO |
---|
2080 | ! |
---|
2081 | !-- Urban surfaces, upward-facing |
---|
2082 | !$OMP PARALLEL DO PRIVATE(i,j,k,m) |
---|
2083 | DO m = 1, surf_usm_h%ns |
---|
2084 | |
---|
2085 | i = surf_usm_h%i(m) |
---|
2086 | j = surf_usm_h%j(m) |
---|
2087 | k = surf_usm_h%k(m) |
---|
2088 | ! |
---|
2089 | !-- Note, calculatione of u_0 and v_0 is not fully accurate, as u/v |
---|
2090 | !-- and km are not on the same grid. Actually, a further |
---|
2091 | !-- interpolation of km onto the u/v-grid is necessary. However, the |
---|
2092 | !-- effect of this error is negligible. |
---|
2093 | surf_usm_h%u_0(m) = u(k+1,j,i) + surf_usm_h%usws(m) * & |
---|
2094 | drho_air_zw(k-1) * & |
---|
2095 | ( zu(k+1) - zu(k-1) ) / & |
---|
2096 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
2097 | surf_usm_h%v_0(m) = v(k+1,j,i) + surf_usm_h%vsws(m) * & |
---|
2098 | drho_air_zw(k-1) * & |
---|
2099 | ( zu(k+1) - zu(k-1) ) / & |
---|
2100 | ( km(k,j,i) + 1.0E-20_wp ) |
---|
2101 | |
---|
2102 | IF ( ABS( u(k+1,j,i) - surf_usm_h%u_0(m) ) > & |
---|
2103 | ABS( u(k+1,j,i) - u(k-1,j,i) ) & |
---|
2104 | ) surf_usm_h%u_0(m) = u(k-1,j,i) |
---|
2105 | |
---|
2106 | IF ( ABS( v(k+1,j,i) - surf_usm_h%v_0(m) ) > & |
---|
2107 | ABS( v(k+1,j,i) - v(k-1,j,i) ) & |
---|
2108 | ) surf_usm_h%v_0(m) = v(k-1,j,i) |
---|
2109 | |
---|
2110 | ENDDO |
---|
2111 | |
---|
2112 | ENDIF |
---|
2113 | |
---|
2114 | END SUBROUTINE production_e_init |
---|
2115 | |
---|
2116 | |
---|
2117 | !------------------------------------------------------------------------------! |
---|
2118 | ! Description: |
---|
2119 | ! ------------ |
---|
2120 | !> Prognostic equation for subgrid-scale TKE and TKE dissipation rate. |
---|
2121 | !> Vector-optimized version |
---|
2122 | !------------------------------------------------------------------------------! |
---|
2123 | SUBROUTINE tcm_prognostic |
---|
2124 | |
---|
2125 | USE arrays_3d, & |
---|
2126 | ONLY: ddzu |
---|
2127 | |
---|
2128 | USE control_parameters, & |
---|
2129 | ONLY: f, scalar_advec, tsc |
---|
2130 | |
---|
2131 | USE surface_mod, & |
---|
2132 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
2133 | surf_usm_v |
---|
2134 | |
---|
2135 | IMPLICIT NONE |
---|
2136 | |
---|
2137 | INTEGER(iwp) :: i !< loop index |
---|
2138 | INTEGER(iwp) :: j !< loop index |
---|
2139 | INTEGER(iwp) :: k !< loop index |
---|
2140 | INTEGER(iwp) :: m !< loop index |
---|
2141 | INTEGER(iwp) :: surf_e !< end index of surface elements at given i-j position |
---|
2142 | INTEGER(iwp) :: surf_s !< start index of surface elements at given i-j position |
---|
2143 | |
---|
2144 | REAL(wp) :: sbt !< wheighting factor for sub-time step |
---|
2145 | |
---|
2146 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: advec !< advection term of TKE tendency |
---|
2147 | REAL(wp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: produc !< production term of TKE tendency |
---|
2148 | |
---|
2149 | ! |
---|
2150 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
2151 | !-- energy (TKE) |
---|
2152 | IF ( .NOT. constant_diffusion ) THEN |
---|
2153 | |
---|
2154 | CALL cpu_log( log_point(16), 'tke-equation', 'start' ) |
---|
2155 | |
---|
2156 | sbt = tsc(2) |
---|
2157 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
2158 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2159 | |
---|
2160 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2161 | ! |
---|
2162 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2163 | sbt = 1.0_wp |
---|
2164 | ENDIF |
---|
2165 | tend = 0.0_wp |
---|
2166 | CALL advec_s_bc( e, 'e' ) |
---|
2167 | |
---|
2168 | ENDIF |
---|
2169 | ENDIF |
---|
2170 | |
---|
2171 | ! |
---|
2172 | !-- TKE-tendency terms with no communication |
---|
2173 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
2174 | IF ( use_upstream_for_tke ) THEN |
---|
2175 | tend = 0.0_wp |
---|
2176 | CALL advec_s_up( e ) |
---|
2177 | ELSE |
---|
2178 | tend = 0.0_wp |
---|
2179 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2180 | IF ( ws_scheme_sca ) THEN |
---|
2181 | CALL advec_s_ws( e, 'e' ) |
---|
2182 | ELSE |
---|
2183 | CALL advec_s_pw( e ) |
---|
2184 | ENDIF |
---|
2185 | ELSE |
---|
2186 | CALL advec_s_up( e ) |
---|
2187 | ENDIF |
---|
2188 | ENDIF |
---|
2189 | ENDIF |
---|
2190 | |
---|
2191 | IF ( rans_tke_e ) advec = tend |
---|
2192 | |
---|
2193 | CALL production_e |
---|
2194 | |
---|
2195 | ! |
---|
2196 | !-- Save production term for prognostic equation of TKE dissipation rate |
---|
2197 | IF ( rans_tke_e ) produc = tend - advec |
---|
2198 | |
---|
2199 | IF ( .NOT. humidity ) THEN |
---|
2200 | IF ( ocean ) THEN |
---|
2201 | CALL diffusion_e( prho, prho_reference ) |
---|
2202 | ELSE |
---|
2203 | CALL diffusion_e( pt, pt_reference ) |
---|
2204 | ENDIF |
---|
2205 | ELSE |
---|
2206 | CALL diffusion_e( vpt, pt_reference ) |
---|
2207 | ENDIF |
---|
2208 | |
---|
2209 | ! |
---|
2210 | !-- Additional sink term for flows through plant canopies |
---|
2211 | IF ( plant_canopy ) CALL pcm_tendency( 6 ) |
---|
2212 | |
---|
2213 | CALL user_actions( 'e-tendency' ) |
---|
2214 | |
---|
2215 | ! |
---|
2216 | !-- Prognostic equation for TKE. |
---|
2217 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2218 | !-- reasons in the course of the integration. In such cases the old TKE |
---|
2219 | !-- value is reduced by 90%. |
---|
2220 | DO i = nxl, nxr |
---|
2221 | DO j = nys, nyn |
---|
2222 | DO k = nzb+1, nzt |
---|
2223 | e_p(k,j,i) = e(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
2224 | tsc(3) * te_m(k,j,i) ) & |
---|
2225 | ) & |
---|
2226 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2227 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2228 | ) |
---|
2229 | IF ( e_p(k,j,i) < 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
2230 | ENDDO |
---|
2231 | ENDDO |
---|
2232 | ENDDO |
---|
2233 | |
---|
2234 | ! |
---|
2235 | !-- Use special boundary condition in case of TKE-e closure |
---|
2236 | !> @todo do the same for usm and lsm surfaces |
---|
2237 | !> 2018-06-05, gronemeier |
---|
2238 | IF ( rans_tke_e ) THEN |
---|
2239 | DO i = nxl, nxr |
---|
2240 | DO j = nys, nyn |
---|
2241 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
2242 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
2243 | DO m = surf_s, surf_e |
---|
2244 | k = surf_def_h(0)%k(m) |
---|
2245 | e_p(k,j,i) = surf_def_h(0)%us(m)**2 / c_0**2 |
---|
2246 | ENDDO |
---|
2247 | ENDDO |
---|
2248 | ENDDO |
---|
2249 | ENDIF |
---|
2250 | |
---|
2251 | ! |
---|
2252 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2253 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2254 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2255 | DO i = nxl, nxr |
---|
2256 | DO j = nys, nyn |
---|
2257 | DO k = nzb+1, nzt |
---|
2258 | te_m(k,j,i) = tend(k,j,i) |
---|
2259 | ENDDO |
---|
2260 | ENDDO |
---|
2261 | ENDDO |
---|
2262 | ELSEIF ( intermediate_timestep_count < & |
---|
2263 | intermediate_timestep_count_max ) THEN |
---|
2264 | DO i = nxl, nxr |
---|
2265 | DO j = nys, nyn |
---|
2266 | DO k = nzb+1, nzt |
---|
2267 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
2268 | + 5.3125_wp * te_m(k,j,i) |
---|
2269 | ENDDO |
---|
2270 | ENDDO |
---|
2271 | ENDDO |
---|
2272 | ENDIF |
---|
2273 | ENDIF |
---|
2274 | |
---|
2275 | CALL cpu_log( log_point(16), 'tke-equation', 'stop' ) |
---|
2276 | |
---|
2277 | ENDIF ! TKE equation |
---|
2278 | |
---|
2279 | ! |
---|
2280 | !-- If required, compute prognostic equation for TKE dissipation rate |
---|
2281 | IF ( rans_tke_e ) THEN |
---|
2282 | |
---|
2283 | CALL cpu_log( log_point(33), 'diss-equation', 'start' ) |
---|
2284 | |
---|
2285 | sbt = tsc(2) |
---|
2286 | IF ( .NOT. use_upstream_for_tke ) THEN |
---|
2287 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
2288 | |
---|
2289 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
2290 | ! |
---|
2291 | !-- Bott-Chlond scheme always uses Euler time step. Thus: |
---|
2292 | sbt = 1.0_wp |
---|
2293 | ENDIF |
---|
2294 | tend = 0.0_wp |
---|
2295 | CALL advec_s_bc( diss, 'diss' ) |
---|
2296 | |
---|
2297 | ENDIF |
---|
2298 | ENDIF |
---|
2299 | |
---|
2300 | ! |
---|
2301 | !-- dissipation-tendency terms with no communication |
---|
2302 | IF ( scalar_advec /= 'bc-scheme' .OR. use_upstream_for_tke ) THEN |
---|
2303 | IF ( use_upstream_for_tke ) THEN |
---|
2304 | tend = 0.0_wp |
---|
2305 | CALL advec_s_up( diss ) |
---|
2306 | ELSE |
---|
2307 | tend = 0.0_wp |
---|
2308 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2309 | IF ( ws_scheme_sca ) THEN |
---|
2310 | CALL advec_s_ws( diss, 'diss' ) |
---|
2311 | ELSE |
---|
2312 | CALL advec_s_pw( diss ) |
---|
2313 | ENDIF |
---|
2314 | ELSE |
---|
2315 | CALL advec_s_up( diss ) |
---|
2316 | ENDIF |
---|
2317 | ENDIF |
---|
2318 | ENDIF |
---|
2319 | |
---|
2320 | ! |
---|
2321 | !-- Production of TKE dissipation rate |
---|
2322 | DO i = nxl, nxr |
---|
2323 | DO j = nys, nyn |
---|
2324 | DO k = nzb+1, nzt |
---|
2325 | ! tend(k,j,i) = tend(k,j,i) + c_1 * diss(k,j,i) / ( e(k,j,i) + 1.0E-20_wp ) * produc(k) |
---|
2326 | tend(k,j,i) = tend(k,j,i) + c_1 * c_0**4 * f / c_4 & !> @todo needs revision |
---|
2327 | / surf_def_h(0)%us(surf_def_h(0)%start_index(j,i)) & |
---|
2328 | * SQRT(e(k,j,i)) * produc(k,j,i) |
---|
2329 | ENDDO |
---|
2330 | ENDDO |
---|
2331 | ENDDO |
---|
2332 | |
---|
2333 | CALL diffusion_diss |
---|
2334 | |
---|
2335 | ! |
---|
2336 | !-- Additional sink term for flows through plant canopies |
---|
2337 | ! IF ( plant_canopy ) CALL pcm_tendency( ? ) !> @query what to do with this? |
---|
2338 | |
---|
2339 | ! CALL user_actions( 'diss-tendency' ) !> @todo not yet implemented |
---|
2340 | |
---|
2341 | ! |
---|
2342 | !-- Prognostic equation for TKE dissipation. |
---|
2343 | !-- Eliminate negative dissipation values, which can occur due to numerical |
---|
2344 | !-- reasons in the course of the integration. In such cases the old |
---|
2345 | !-- dissipation value is reduced by 90%. |
---|
2346 | DO i = nxl, nxr |
---|
2347 | DO j = nys, nyn |
---|
2348 | DO k = nzb+1, nzt |
---|
2349 | diss_p(k,j,i) = diss(k,j,i) + ( dt_3d * ( sbt * tend(k,j,i) + & |
---|
2350 | tsc(3) * tdiss_m(k,j,i) ) & |
---|
2351 | ) & |
---|
2352 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2353 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2354 | ) |
---|
2355 | IF ( diss_p(k,j,i) < 0.0_wp ) & |
---|
2356 | diss_p(k,j,i) = 0.1_wp * diss(k,j,i) |
---|
2357 | ENDDO |
---|
2358 | ENDDO |
---|
2359 | ENDDO |
---|
2360 | |
---|
2361 | ! |
---|
2362 | !-- Use special boundary condition in case of TKE-e closure |
---|
2363 | DO i = nxl, nxr |
---|
2364 | DO j = nys, nyn |
---|
2365 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
2366 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
2367 | DO m = surf_s, surf_e |
---|
2368 | k = surf_def_h(0)%k(m) |
---|
2369 | diss_p(k,j,i) = surf_def_h(0)%us(m)**3 / kappa * ddzu(k) |
---|
2370 | ENDDO |
---|
2371 | ENDDO |
---|
2372 | ENDDO |
---|
2373 | |
---|
2374 | ! |
---|
2375 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2376 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2377 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2378 | DO i = nxl, nxr |
---|
2379 | DO j = nys, nyn |
---|
2380 | DO k = nzb+1, nzt |
---|
2381 | tdiss_m(k,j,i) = tend(k,j,i) |
---|
2382 | ENDDO |
---|
2383 | ENDDO |
---|
2384 | ENDDO |
---|
2385 | ELSEIF ( intermediate_timestep_count < & |
---|
2386 | intermediate_timestep_count_max ) THEN |
---|
2387 | DO i = nxl, nxr |
---|
2388 | DO j = nys, nyn |
---|
2389 | DO k = nzb+1, nzt |
---|
2390 | tdiss_m(k,j,i) = -9.5625_wp * tend(k,j,i) & |
---|
2391 | + 5.3125_wp * tdiss_m(k,j,i) |
---|
2392 | ENDDO |
---|
2393 | ENDDO |
---|
2394 | ENDDO |
---|
2395 | ENDIF |
---|
2396 | ENDIF |
---|
2397 | |
---|
2398 | CALL cpu_log( log_point(33), 'diss-equation', 'stop' ) |
---|
2399 | |
---|
2400 | ENDIF |
---|
2401 | |
---|
2402 | END SUBROUTINE tcm_prognostic |
---|
2403 | |
---|
2404 | |
---|
2405 | !------------------------------------------------------------------------------! |
---|
2406 | ! Description: |
---|
2407 | ! ------------ |
---|
2408 | !> Prognostic equation for subgrid-scale TKE and TKE dissipation rate. |
---|
2409 | !> Cache-optimized version |
---|
2410 | !------------------------------------------------------------------------------! |
---|
2411 | SUBROUTINE tcm_prognostic_ij( i, j, i_omp, tn ) |
---|
2412 | |
---|
2413 | USE arrays_3d, & |
---|
2414 | ONLY: ddzu, diss_l_diss, diss_l_e, diss_s_diss, diss_s_e, & |
---|
2415 | flux_l_diss, flux_l_e, flux_s_diss, flux_s_e,& |
---|
2416 | u_p,v_p,w_p |
---|
2417 | |
---|
2418 | USE control_parameters, & |
---|
2419 | ONLY: f, tsc |
---|
2420 | |
---|
2421 | USE grid_variables, & |
---|
2422 | ONLY: dx, dy |
---|
2423 | |
---|
2424 | USE surface_mod, & |
---|
2425 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
2426 | surf_usm_v |
---|
2427 | |
---|
2428 | use indices, only: nx, ny |
---|
2429 | |
---|
2430 | IMPLICIT NONE |
---|
2431 | |
---|
2432 | INTEGER(iwp) :: i !< loop index x direction |
---|
2433 | INTEGER(iwp) :: i_omp !< first loop index of i-loop in prognostic_equations |
---|
2434 | INTEGER(iwp) :: j !< loop index y direction |
---|
2435 | INTEGER(iwp) :: k !< loop index z direction |
---|
2436 | INTEGER(iwp) :: l !< loop index |
---|
2437 | INTEGER(iwp) :: m !< loop index |
---|
2438 | INTEGER(iwp) :: surf_e !< end index of surface elements at given i-j position |
---|
2439 | INTEGER(iwp) :: surf_s !< start index of surface elements at given i-j position |
---|
2440 | INTEGER(iwp) :: tn !< task number of openmp task |
---|
2441 | |
---|
2442 | INTEGER(iwp) :: pis = 32 !< debug variable, print from i=pis !> @todo remove later |
---|
2443 | INTEGER(iwp) :: pie = 32 !< debug variable, print until i=pie !> @todo remove later |
---|
2444 | INTEGER(iwp) :: pjs = 26 !< debug variable, print from j=pjs !> @todo remove later |
---|
2445 | INTEGER(iwp) :: pje = 26 !< debug variable, print until j=pje !> @todo remove later |
---|
2446 | INTEGER(iwp) :: pkb = 1 !< debug variable, print from k=pkb !> @todo remove later |
---|
2447 | INTEGER(iwp) :: pkt = 7 !< debug variable, print until k=pkt !> @todo remove later |
---|
2448 | |
---|
2449 | REAL(wp), DIMENSION(nzb:nzt+1) :: dum_adv !< debug variable !> @todo remove later |
---|
2450 | REAL(wp), DIMENSION(nzb:nzt+1) :: dum_pro !< debug variable !> @todo remove later |
---|
2451 | REAL(wp), DIMENSION(nzb:nzt+1) :: dum_dif !< debug variable !> @todo remove later |
---|
2452 | |
---|
2453 | 5555 FORMAT(A,7(1X,E12.5)) !> @todo remove later |
---|
2454 | |
---|
2455 | ! |
---|
2456 | !-- If required, compute prognostic equation for turbulent kinetic |
---|
2457 | !-- energy (TKE) |
---|
2458 | IF ( .NOT. constant_diffusion ) THEN |
---|
2459 | |
---|
2460 | ! |
---|
2461 | !-- Tendency-terms for TKE |
---|
2462 | tend(:,j,i) = 0.0_wp |
---|
2463 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
2464 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
2465 | IF ( ws_scheme_sca ) THEN |
---|
2466 | CALL advec_s_ws( i, j, e, 'e', flux_s_e, diss_s_e, & |
---|
2467 | flux_l_e, diss_l_e , i_omp, tn ) |
---|
2468 | ELSE |
---|
2469 | CALL advec_s_pw( i, j, e ) |
---|
2470 | ENDIF |
---|
2471 | ELSE |
---|
2472 | CALL advec_s_up( i, j, e ) |
---|
2473 | ENDIF |
---|
2474 | |
---|
2475 | dum_adv = tend(:,j,i) !> @todo remove later |
---|
2476 | |
---|
2477 | CALL production_e( i, j, .FALSE. ) |
---|
2478 | |
---|
2479 | dum_pro = tend(:,j,i) - dum_adv !> @todo remove later |
---|
2480 | |
---|
2481 | IF ( .NOT. humidity ) THEN |
---|
2482 | IF ( ocean ) THEN |
---|
2483 | CALL diffusion_e( i, j, prho, prho_reference ) |
---|
2484 | ELSE |
---|
2485 | CALL diffusion_e( i, j, pt, pt_reference ) |
---|
2486 | ENDIF |
---|
2487 | ELSE |
---|
2488 | CALL diffusion_e( i, j, vpt, pt_reference ) |
---|
2489 | ENDIF |
---|
2490 | |
---|
2491 | dum_dif = tend(:,j,i) - dum_adv - dum_pro !> @todo remove later |
---|
2492 | |
---|
2493 | ! |
---|
2494 | !-- Additional sink term for flows through plant canopies |
---|
2495 | IF ( plant_canopy ) CALL pcm_tendency( i, j, 6 ) |
---|
2496 | |
---|
2497 | CALL user_actions( i, j, 'e-tendency' ) |
---|
2498 | |
---|
2499 | ! |
---|
2500 | !-- Prognostic equation for TKE. |
---|
2501 | !-- Eliminate negative TKE values, which can occur due to numerical |
---|
2502 | !-- reasons in the course of the integration. In such cases the old |
---|
2503 | !-- TKE value is reduced by 90%. |
---|
2504 | DO k = nzb+1, nzt |
---|
2505 | e_p(k,j,i) = e(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
2506 | tsc(3) * te_m(k,j,i) ) & |
---|
2507 | ) & |
---|
2508 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2509 | BTEST( wall_flags_0(k,j,i), 0 ) & |
---|
2510 | ) |
---|
2511 | IF ( e_p(k,j,i) <= 0.0_wp ) e_p(k,j,i) = 0.1_wp * e(k,j,i) |
---|
2512 | ENDDO |
---|
2513 | |
---|
2514 | ! |
---|
2515 | !-- Use special boundary condition in case of TKE-e closure |
---|
2516 | IF ( rans_tke_e ) THEN |
---|
2517 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
2518 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
2519 | DO m = surf_s, surf_e |
---|
2520 | k = surf_def_h(0)%k(m) |
---|
2521 | e_p(k,j,i) = ( surf_def_h(0)%us(m) / c_0 )**2 |
---|
2522 | ENDDO |
---|
2523 | |
---|
2524 | DO l = 0, 3 |
---|
2525 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
2526 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
2527 | DO m = surf_s, surf_e |
---|
2528 | k = surf_def_v(l)%k(m) |
---|
2529 | e_p(k,j,i) = ( surf_def_v(l)%us(m) / c_0 )**2 |
---|
2530 | ENDDO |
---|
2531 | ENDDO |
---|
2532 | ENDIF |
---|
2533 | |
---|
2534 | ! |
---|
2535 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2536 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2537 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2538 | DO k = nzb+1, nzt |
---|
2539 | te_m(k,j,i) = tend(k,j,i) |
---|
2540 | ENDDO |
---|
2541 | ELSEIF ( intermediate_timestep_count < & |
---|
2542 | intermediate_timestep_count_max ) THEN |
---|
2543 | DO k = nzb+1, nzt |
---|
2544 | te_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
2545 | 5.3125_wp * te_m(k,j,i) |
---|
2546 | ENDDO |
---|
2547 | ENDIF |
---|
2548 | ENDIF |
---|
2549 | |
---|
2550 | ! if ( i >= pis .and. i <= pie .and. j >= pjs .and. j <= pje ) then !> @todo remove later |
---|
2551 | ! WRITE(9, *) '------' |
---|
2552 | ! WRITE(9, '(A,F8.3,1X,F8.3,1X,I2)') 't, dt, int_ts:', simulated_time, dt_3d, intermediate_timestep_count |
---|
2553 | ! WRITE(9, *) 'i:', i |
---|
2554 | ! WRITE(9, *) 'j:', j |
---|
2555 | ! WRITE(9, *) 'k:', pkb, ' - ', pkt |
---|
2556 | ! WRITE(9, *) '---' |
---|
2557 | ! WRITE(9, *) 'e:' |
---|
2558 | ! WRITE(9, 5555) 'adv :', dum_adv(pkb:pkt) |
---|
2559 | ! WRITE(9, 5555) 'pro :', dum_pro(pkb:pkt) |
---|
2560 | ! WRITE(9, 5555) 'dif :', dum_dif(pkb:pkt) |
---|
2561 | ! WRITE(9, 5555) 'tend:', tend(pkb:pkt,j,i) |
---|
2562 | ! WRITE(9, 5555) 'e_p :', e_p(pkb:pkt,j,i) |
---|
2563 | ! WRITE(9, 5555) 'e :', e(pkb:pkt,j,i) |
---|
2564 | ! FLUSH(9) |
---|
2565 | ! endif |
---|
2566 | |
---|
2567 | ENDIF ! TKE equation |
---|
2568 | |
---|
2569 | ! |
---|
2570 | !-- If required, compute prognostic equation for TKE dissipation rate |
---|
2571 | IF ( rans_tke_e ) THEN |
---|
2572 | |
---|
2573 | ! |
---|
2574 | !-- Tendency-terms for dissipation |
---|
2575 | tend(:,j,i) = 0.0_wp |
---|
2576 | IF ( timestep_scheme(1:5) == 'runge' & |
---|
2577 | .AND. .NOT. use_upstream_for_tke ) THEN |
---|
2578 | IF ( ws_scheme_sca ) THEN |
---|
2579 | CALL advec_s_ws( i, j, diss, 'diss', flux_s_diss, diss_s_diss, & |
---|
2580 | flux_l_diss, diss_l_diss, i_omp, tn ) |
---|
2581 | ELSE |
---|
2582 | CALL advec_s_pw( i, j, diss ) |
---|
2583 | ENDIF |
---|
2584 | ELSE |
---|
2585 | CALL advec_s_up( i, j, diss ) |
---|
2586 | ENDIF |
---|
2587 | |
---|
2588 | IF ( intermediate_timestep_count == 1 ) diss_adve1(:,j,i) = tend(:,j,i) !> @todo remove later |
---|
2589 | IF ( intermediate_timestep_count == 2 ) diss_adve2(:,j,i) = tend(:,j,i) |
---|
2590 | IF ( intermediate_timestep_count == 3 ) diss_adve3(:,j,i) = tend(:,j,i) |
---|
2591 | |
---|
2592 | ! |
---|
2593 | !-- Production of TKE dissipation rate |
---|
2594 | CALL production_e( i, j, .TRUE. ) |
---|
2595 | |
---|
2596 | IF ( intermediate_timestep_count == 1 ) diss_prod1(:,j,i) = tend(:,j,i) - diss_adve1(:,j,i) !> @todo remove later |
---|
2597 | IF ( intermediate_timestep_count == 2 ) diss_prod2(:,j,i) = tend(:,j,i) - diss_adve2(:,j,i) |
---|
2598 | IF ( intermediate_timestep_count == 3 ) diss_prod3(:,j,i) = tend(:,j,i) - diss_adve3(:,j,i) |
---|
2599 | |
---|
2600 | dum_pro = tend(:,j,i) - dum_adv !> @todo remove later |
---|
2601 | |
---|
2602 | ! |
---|
2603 | !-- Diffusion term of TKE dissipation rate |
---|
2604 | CALL diffusion_diss( i, j ) |
---|
2605 | |
---|
2606 | IF ( intermediate_timestep_count == 1 ) diss_diff1(:,j,i) = tend(:,j,i) - diss_adve1(:,j,i) - diss_prod1(:,j,i) !> @todo remove later |
---|
2607 | IF ( intermediate_timestep_count == 2 ) diss_diff2(:,j,i) = tend(:,j,i) - diss_adve2(:,j,i) - diss_prod2(:,j,i) |
---|
2608 | IF ( intermediate_timestep_count == 3 ) diss_diff3(:,j,i) = tend(:,j,i) - diss_adve3(:,j,i) - diss_prod3(:,j,i) |
---|
2609 | IF ( intermediate_timestep_count == 3 ) dummy3(:,j,i) = km(:,j,i) |
---|
2610 | |
---|
2611 | dum_dif = tend(:,j,i) - dum_adv - dum_pro !> @todo remove later |
---|
2612 | |
---|
2613 | ! |
---|
2614 | !-- Additional sink term for flows through plant canopies |
---|
2615 | ! IF ( plant_canopy ) CALL pcm_tendency( i, j, ? ) !> @todo not yet implemented |
---|
2616 | |
---|
2617 | ! CALL user_actions( i, j, 'diss-tendency' ) !> @todo not yet implemented |
---|
2618 | |
---|
2619 | ! |
---|
2620 | !-- Prognostic equation for TKE dissipation |
---|
2621 | !-- Eliminate negative dissipation values, which can occur due to |
---|
2622 | !-- numerical reasons in the course of the integration. In such cases |
---|
2623 | !-- the old dissipation value is reduced by 90%. |
---|
2624 | DO k = nzb+1, nzt |
---|
2625 | diss_p(k,j,i) = diss(k,j,i) + ( dt_3d * ( tsc(2) * tend(k,j,i) + & |
---|
2626 | tsc(3) * tdiss_m(k,j,i) ) & |
---|
2627 | ) & |
---|
2628 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
2629 | BTEST( wall_flags_0(k,j,i), 0 )& |
---|
2630 | ) |
---|
2631 | ENDDO |
---|
2632 | |
---|
2633 | ! |
---|
2634 | !-- Use special boundary condition in case of TKE-e closure |
---|
2635 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
2636 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
2637 | DO m = surf_s, surf_e |
---|
2638 | k = surf_def_h(0)%k(m) |
---|
2639 | diss_p(k,j,i) = surf_def_h(0)%us(m)**3 / kappa * ddzu(k) |
---|
2640 | ENDDO |
---|
2641 | |
---|
2642 | DO l = 0, 1 |
---|
2643 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
2644 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
2645 | DO m = surf_s, surf_e |
---|
2646 | k = surf_def_v(l)%k(m) |
---|
2647 | diss_p(k,j,i) = surf_def_v(l)%us(m)**3 / ( kappa * 0.5_wp * dy ) |
---|
2648 | ENDDO |
---|
2649 | ENDDO |
---|
2650 | |
---|
2651 | DO l = 2, 3 |
---|
2652 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
2653 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
2654 | DO m = surf_s, surf_e |
---|
2655 | k = surf_def_v(l)%k(m) |
---|
2656 | diss_p(k,j,i) = surf_def_v(l)%us(m)**3 / ( kappa * 0.5_wp * dx ) |
---|
2657 | ENDDO |
---|
2658 | ENDDO |
---|
2659 | ! |
---|
2660 | !-- Calculate tendencies for the next Runge-Kutta step |
---|
2661 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
2662 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
2663 | DO k = nzb+1, nzt |
---|
2664 | tdiss_m(k,j,i) = tend(k,j,i) |
---|
2665 | ENDDO |
---|
2666 | ELSEIF ( intermediate_timestep_count < & |
---|
2667 | intermediate_timestep_count_max ) THEN |
---|
2668 | DO k = nzb+1, nzt |
---|
2669 | tdiss_m(k,j,i) = -9.5625_wp * tend(k,j,i) + & |
---|
2670 | 5.3125_wp * tdiss_m(k,j,i) |
---|
2671 | ENDDO |
---|
2672 | ENDIF |
---|
2673 | ENDIF |
---|
2674 | ! |
---|
2675 | !-- Limit change of diss to be between -90% and +100%. Also, set an absolute |
---|
2676 | !-- minimum value |
---|
2677 | DO k = nzb, nzt+1 |
---|
2678 | diss_p(k,j,i) = MIN( MAX( diss_p(k,j,i), & |
---|
2679 | 0.1_wp * diss(k,j,i), & |
---|
2680 | 0.0001_wp ), & |
---|
2681 | 2.0_wp * diss(k,j,i) ) |
---|
2682 | ENDDO |
---|
2683 | |
---|
2684 | IF ( intermediate_timestep_count == 1 ) dummy1(:,j,i) = diss_p(:,j,i) !> @todo remove later |
---|
2685 | IF ( intermediate_timestep_count == 2 ) dummy2(:,j,i) = diss_p(:,j,i) |
---|
2686 | |
---|
2687 | ! if ( i >= pis .and. i <= pie .and. j >= pjs .and. j <= pje ) then !> @todo remove later |
---|
2688 | ! WRITE(9, *) '---' |
---|
2689 | ! WRITE(9, *) 'diss:' |
---|
2690 | ! WRITE(9, 5555) 'adv :', dum_adv(pkb:pkt) |
---|
2691 | ! WRITE(9, 5555) 'pro :', dum_pro(pkb:pkt) |
---|
2692 | ! WRITE(9, 5555) 'dif :', dum_dif(pkb:pkt) |
---|
2693 | ! WRITE(9, 5555) 'tend :', tend(pkb:pkt,j,i) |
---|
2694 | ! WRITE(9, 5555) 'diss_p:', diss_p(pkb:pkt,j,i) |
---|
2695 | ! WRITE(9, 5555) 'diss :', diss(pkb:pkt,j,i) |
---|
2696 | ! WRITE(9, *) '---' |
---|
2697 | ! WRITE(9, 5555) 'km :', km(pkb:pkt,j,i) |
---|
2698 | ! flush(9) |
---|
2699 | ! endif |
---|
2700 | |
---|
2701 | ENDIF ! dissipation equation |
---|
2702 | |
---|
2703 | END SUBROUTINE tcm_prognostic_ij |
---|
2704 | |
---|
2705 | |
---|
2706 | !------------------------------------------------------------------------------! |
---|
2707 | ! Description: |
---|
2708 | ! ------------ |
---|
2709 | !> Production terms (shear + buoyancy) of the TKE. |
---|
2710 | !> Vector-optimized version |
---|
2711 | !> @warning The case with constant_flux_layer = F and use_surface_fluxes = T is |
---|
2712 | !> not considered well! |
---|
2713 | !> @todo Adjust production term in case of rans_tke_e simulation |
---|
2714 | !------------------------------------------------------------------------------! |
---|
2715 | SUBROUTINE production_e |
---|
2716 | |
---|
2717 | USE arrays_3d, & |
---|
2718 | ONLY: ddzw, dd2zu, drho_air_zw, q, ql |
---|
2719 | |
---|
2720 | USE cloud_parameters, & |
---|
2721 | ONLY: l_d_cp, l_d_r, pt_d_t, t_d_pt |
---|
2722 | |
---|
2723 | USE control_parameters, & |
---|
2724 | ONLY: cloud_droplets, cloud_physics, constant_flux_layer, g, neutral, & |
---|
2725 | rho_reference, use_single_reference_value, use_surface_fluxes, & |
---|
2726 | use_top_fluxes |
---|
2727 | |
---|
2728 | USE grid_variables, & |
---|
2729 | ONLY: ddx, dx, ddy, dy |
---|
2730 | |
---|
2731 | USE surface_mod, & |
---|
2732 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
2733 | surf_usm_v |
---|
2734 | |
---|
2735 | IMPLICIT NONE |
---|
2736 | |
---|
2737 | INTEGER(iwp) :: i !< running index x-direction |
---|
2738 | INTEGER(iwp) :: j !< running index y-direction |
---|
2739 | INTEGER(iwp) :: k !< running index z-direction |
---|
2740 | INTEGER(iwp) :: l !< running index for different surface type orientation |
---|
2741 | INTEGER(iwp) :: m !< running index surface elements |
---|
2742 | INTEGER(iwp) :: surf_e !< end index of surface elements at given i-j position |
---|
2743 | INTEGER(iwp) :: surf_s !< start index of surface elements at given i-j position |
---|
2744 | |
---|
2745 | REAL(wp) :: def !< |
---|
2746 | REAL(wp) :: flag !< flag to mask topography |
---|
2747 | REAL(wp) :: k1 !< |
---|
2748 | REAL(wp) :: k2 !< |
---|
2749 | REAL(wp) :: km_neutral !< diffusion coefficient assuming neutral conditions - used to compute shear production at surfaces |
---|
2750 | REAL(wp) :: theta !< |
---|
2751 | REAL(wp) :: temp !< |
---|
2752 | REAL(wp) :: sign_dir !< sign of wall-tke flux, depending on wall orientation |
---|
2753 | REAL(wp) :: usvs !< momentum flux u"v" |
---|
2754 | REAL(wp) :: vsus !< momentum flux v"u" |
---|
2755 | REAL(wp) :: wsus !< momentum flux w"u" |
---|
2756 | REAL(wp) :: wsvs !< momentum flux w"v" |
---|
2757 | |
---|
2758 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dudx !< Gradient of u-component in x-direction |
---|
2759 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dudy !< Gradient of u-component in y-direction |
---|
2760 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dudz !< Gradient of u-component in z-direction |
---|
2761 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dvdx !< Gradient of v-component in x-direction |
---|
2762 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dvdy !< Gradient of v-component in y-direction |
---|
2763 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dvdz !< Gradient of v-component in z-direction |
---|
2764 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dwdx !< Gradient of w-component in x-direction |
---|
2765 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dwdy !< Gradient of w-component in y-direction |
---|
2766 | REAL(wp), DIMENSION(nzb+1:nzt,nys:nyn) :: dwdz !< Gradient of w-component in z-direction |
---|
2767 | |
---|
2768 | DO i = nxl, nxr |
---|
2769 | |
---|
2770 | IF ( constant_flux_layer ) THEN |
---|
2771 | |
---|
2772 | ! |
---|
2773 | !-- Calculate TKE production by shear. Calculate gradients at all grid |
---|
2774 | !-- points first, gradients at surface-bounded grid points will be |
---|
2775 | !-- overwritten further below. |
---|
2776 | DO j = nys, nyn |
---|
2777 | DO k = nzb+1, nzt |
---|
2778 | |
---|
2779 | dudx(k,j) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
2780 | dudy(k,j) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
2781 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
2782 | dudz(k,j) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
2783 | u(k-1,j,i) - u(k-1,j,i+1) ) * & |
---|
2784 | dd2zu(k) |
---|
2785 | |
---|
2786 | dvdx(k,j) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
2787 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
2788 | dvdy(k,j) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
2789 | dvdz(k,j) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
2790 | v(k-1,j,i) - v(k-1,j+1,i) ) * & |
---|
2791 | dd2zu(k) |
---|
2792 | |
---|
2793 | dwdx(k,j) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
2794 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
2795 | dwdy(k,j) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
2796 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
2797 | dwdz(k,j) = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
2798 | |
---|
2799 | ENDDO |
---|
2800 | ENDDO |
---|
2801 | |
---|
2802 | ! |
---|
2803 | !-- Position beneath wall |
---|
2804 | !-- (2) - Will allways be executed. |
---|
2805 | !-- 'bottom and wall: use u_0,v_0 and wall functions' |
---|
2806 | DO j = nys, nyn |
---|
2807 | ! |
---|
2808 | !-- Compute gradients at north- and south-facing surfaces. |
---|
2809 | !-- First, for default surfaces, then for urban surfaces. |
---|
2810 | !-- Note, so far no natural vertical surfaces implemented |
---|
2811 | DO l = 0, 1 |
---|
2812 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
2813 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
2814 | DO m = surf_s, surf_e |
---|
2815 | k = surf_def_v(l)%k(m) |
---|
2816 | usvs = surf_def_v(l)%mom_flux_tke(0,m) |
---|
2817 | wsvs = surf_def_v(l)%mom_flux_tke(1,m) |
---|
2818 | |
---|
2819 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
2820 | * 0.5_wp * dy |
---|
2821 | ! |
---|
2822 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2823 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2824 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
2825 | dudy(k,j) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
2826 | dwdy(k,j) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
2827 | ENDDO |
---|
2828 | ! |
---|
2829 | !-- Natural surfaces |
---|
2830 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
2831 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
2832 | DO m = surf_s, surf_e |
---|
2833 | k = surf_lsm_v(l)%k(m) |
---|
2834 | usvs = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
2835 | wsvs = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
2836 | |
---|
2837 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
2838 | * 0.5_wp * dy |
---|
2839 | ! |
---|
2840 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2841 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2842 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
2843 | dudy(k,j) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
2844 | dwdy(k,j) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
2845 | ENDDO |
---|
2846 | ! |
---|
2847 | !-- Urban surfaces |
---|
2848 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
2849 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
2850 | DO m = surf_s, surf_e |
---|
2851 | k = surf_usm_v(l)%k(m) |
---|
2852 | usvs = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
2853 | wsvs = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
2854 | |
---|
2855 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
2856 | * 0.5_wp * dy |
---|
2857 | ! |
---|
2858 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2859 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2860 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
2861 | dudy(k,j) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
2862 | dwdy(k,j) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
2863 | ENDDO |
---|
2864 | ENDDO |
---|
2865 | ! |
---|
2866 | !-- Compute gradients at east- and west-facing walls |
---|
2867 | DO l = 2, 3 |
---|
2868 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
2869 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
2870 | DO m = surf_s, surf_e |
---|
2871 | k = surf_def_v(l)%k(m) |
---|
2872 | vsus = surf_def_v(l)%mom_flux_tke(0,m) |
---|
2873 | wsus = surf_def_v(l)%mom_flux_tke(1,m) |
---|
2874 | |
---|
2875 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
2876 | * 0.5_wp * dx |
---|
2877 | ! |
---|
2878 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2879 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2880 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
2881 | dvdx(k,j) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
2882 | dwdx(k,j) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
2883 | ENDDO |
---|
2884 | ! |
---|
2885 | !-- Natural surfaces |
---|
2886 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
2887 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
2888 | DO m = surf_s, surf_e |
---|
2889 | k = surf_lsm_v(l)%k(m) |
---|
2890 | vsus = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
2891 | wsus = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
2892 | |
---|
2893 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
2894 | * 0.5_wp * dx |
---|
2895 | ! |
---|
2896 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2897 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2898 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
2899 | dvdx(k,j) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
2900 | dwdx(k,j) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
2901 | ENDDO |
---|
2902 | ! |
---|
2903 | !-- Urban surfaces |
---|
2904 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
2905 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
2906 | DO m = surf_s, surf_e |
---|
2907 | k = surf_usm_v(l)%k(m) |
---|
2908 | vsus = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
2909 | wsus = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
2910 | |
---|
2911 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
2912 | * 0.5_wp * dx |
---|
2913 | ! |
---|
2914 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
2915 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
2916 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
2917 | dvdx(k,j) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
2918 | dwdx(k,j) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
2919 | ENDDO |
---|
2920 | ENDDO |
---|
2921 | ! |
---|
2922 | !-- Compute gradients at upward-facing surfaces |
---|
2923 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
2924 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
2925 | DO m = surf_s, surf_e |
---|
2926 | k = surf_def_h(0)%k(m) |
---|
2927 | ! |
---|
2928 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
2929 | !-- onto the grid center would be required. However, this |
---|
2930 | !-- would require several data transfers between 2D-grid and |
---|
2931 | !-- wall type. The effect of this missing interpolation is |
---|
2932 | !-- negligible. (See also production_e_init). |
---|
2933 | dudz(k,j) = ( u(k+1,j,i) - surf_def_h(0)%u_0(m) ) * dd2zu(k) |
---|
2934 | dvdz(k,j) = ( v(k+1,j,i) - surf_def_h(0)%v_0(m) ) * dd2zu(k) |
---|
2935 | |
---|
2936 | ENDDO |
---|
2937 | ! |
---|
2938 | !-- Natural surfaces |
---|
2939 | surf_s = surf_lsm_h%start_index(j,i) |
---|
2940 | surf_e = surf_lsm_h%end_index(j,i) |
---|
2941 | DO m = surf_s, surf_e |
---|
2942 | k = surf_lsm_h%k(m) |
---|
2943 | |
---|
2944 | dudz(k,j) = ( u(k+1,j,i) - surf_lsm_h%u_0(m) ) * dd2zu(k) |
---|
2945 | dvdz(k,j) = ( v(k+1,j,i) - surf_lsm_h%v_0(m) ) * dd2zu(k) |
---|
2946 | |
---|
2947 | ENDDO |
---|
2948 | ! |
---|
2949 | !-- Urban surfaces |
---|
2950 | surf_s = surf_usm_h%start_index(j,i) |
---|
2951 | surf_e = surf_usm_h%end_index(j,i) |
---|
2952 | DO m = surf_s, surf_e |
---|
2953 | k = surf_usm_h%k(m) |
---|
2954 | |
---|
2955 | dudz(k,j) = ( u(k+1,j,i) - surf_usm_h%u_0(m) ) * dd2zu(k) |
---|
2956 | dvdz(k,j) = ( v(k+1,j,i) - surf_usm_h%v_0(m) ) * dd2zu(k) |
---|
2957 | |
---|
2958 | ENDDO |
---|
2959 | ! |
---|
2960 | !-- Compute gradients at downward-facing walls, only for |
---|
2961 | !-- non-natural default surfaces |
---|
2962 | surf_s = surf_def_h(1)%start_index(j,i) |
---|
2963 | surf_e = surf_def_h(1)%end_index(j,i) |
---|
2964 | DO m = surf_s, surf_e |
---|
2965 | k = surf_def_h(1)%k(m) |
---|
2966 | |
---|
2967 | dudz(k,j) = ( surf_def_h(1)%u_0(m) - u(k-1,j,i) ) * dd2zu(k) |
---|
2968 | dvdz(k,j) = ( surf_def_h(1)%v_0(m) - v(k-1,j,i) ) * dd2zu(k) |
---|
2969 | |
---|
2970 | ENDDO |
---|
2971 | ENDDO |
---|
2972 | |
---|
2973 | DO j = nys, nyn |
---|
2974 | DO k = nzb+1, nzt |
---|
2975 | |
---|
2976 | def = 2.0_wp * ( dudx(k,j)**2 + dvdy(k,j)**2 + dwdz(k,j)**2 ) + & |
---|
2977 | dudy(k,j)**2 + dvdx(k,j)**2 + dwdx(k,j)**2 + & |
---|
2978 | dwdy(k,j)**2 + dudz(k,j)**2 + dvdz(k,j)**2 + & |
---|
2979 | 2.0_wp * ( dvdx(k,j)*dudy(k,j) + dwdx(k,j)*dudz(k,j) + & |
---|
2980 | dwdy(k,j)*dvdz(k,j) ) |
---|
2981 | |
---|
2982 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
2983 | |
---|
2984 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
2985 | |
---|
2986 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def * flag |
---|
2987 | |
---|
2988 | ENDDO |
---|
2989 | ENDDO |
---|
2990 | |
---|
2991 | ELSE |
---|
2992 | |
---|
2993 | DO j = nys, nyn |
---|
2994 | ! |
---|
2995 | !-- Calculate TKE production by shear. Here, no additional |
---|
2996 | !-- wall-bounded code is considered. |
---|
2997 | !-- Why? |
---|
2998 | DO k = nzb+1, nzt |
---|
2999 | |
---|
3000 | dudx(k,j) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
3001 | dudy(k,j) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
3002 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
3003 | dudz(k,j) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
3004 | u(k-1,j,i) - u(k-1,j,i+1) ) * & |
---|
3005 | dd2zu(k) |
---|
3006 | |
---|
3007 | dvdx(k,j) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
3008 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
3009 | dvdy(k,j) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
3010 | dvdz(k,j) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
3011 | v(k-1,j,i) - v(k-1,j+1,i) ) * & |
---|
3012 | dd2zu(k) |
---|
3013 | |
---|
3014 | dwdx(k,j) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
3015 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
3016 | dwdy(k,j) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
3017 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
3018 | dwdz(k,j) = ( w(k,j,i) - w(k-1,j,i) ) * & |
---|
3019 | ddzw(k) |
---|
3020 | |
---|
3021 | def = 2.0_wp * ( & |
---|
3022 | dudx(k,j)**2 + dvdy(k,j)**2 + dwdz(k,j)**2 & |
---|
3023 | ) + & |
---|
3024 | dudy(k,j)**2 + dvdx(k,j)**2 + dwdx(k,j)**2 + & |
---|
3025 | dwdy(k,j)**2 + dudz(k,j)**2 + dvdz(k,j)**2 + & |
---|
3026 | 2.0_wp * ( & |
---|
3027 | dvdx(k,j)*dudy(k,j) + dwdx(k,j)*dudz(k,j) + & |
---|
3028 | dwdy(k,j)*dvdz(k,j) & |
---|
3029 | ) |
---|
3030 | |
---|
3031 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
3032 | |
---|
3033 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
3034 | BTEST( wall_flags_0(k,j,i), 29 ) ) |
---|
3035 | tend(k,j,i) = tend(k,j,i) + km(k,j,i) * def * flag |
---|
3036 | |
---|
3037 | ENDDO |
---|
3038 | ENDDO |
---|
3039 | |
---|
3040 | ENDIF |
---|
3041 | |
---|
3042 | ! |
---|
3043 | !-- If required, calculate TKE production by buoyancy |
---|
3044 | IF ( .NOT. neutral ) THEN |
---|
3045 | |
---|
3046 | IF ( .NOT. humidity ) THEN |
---|
3047 | |
---|
3048 | IF ( ocean ) THEN |
---|
3049 | ! |
---|
3050 | !-- So far in the ocean no special treatment of density flux |
---|
3051 | !-- in the bottom and top surface layer |
---|
3052 | DO j = nys, nyn |
---|
3053 | DO k = nzb+1, nzt |
---|
3054 | tend(k,j,i) = tend(k,j,i) + & |
---|
3055 | kh(k,j,i) * g / & |
---|
3056 | MERGE( rho_reference, prho(k,j,i), & |
---|
3057 | use_single_reference_value ) * & |
---|
3058 | ( prho(k+1,j,i) - prho(k-1,j,i) ) * & |
---|
3059 | dd2zu(k) * & |
---|
3060 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3061 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
3062 | ) * & |
---|
3063 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3064 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
3065 | ) |
---|
3066 | ENDDO |
---|
3067 | ! |
---|
3068 | !-- Treatment of near-surface grid points, at up- and down- |
---|
3069 | !-- ward facing surfaces |
---|
3070 | IF ( use_surface_fluxes ) THEN |
---|
3071 | DO l = 0, 1 |
---|
3072 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
3073 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
3074 | DO m = surf_s, surf_e |
---|
3075 | k = surf_def_h(l)%k(m) |
---|
3076 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3077 | MERGE( rho_reference, prho(k,j,i), & |
---|
3078 | use_single_reference_value ) * & |
---|
3079 | drho_air_zw(k-1) * & |
---|
3080 | surf_def_h(l)%shf(m) |
---|
3081 | ENDDO |
---|
3082 | ENDDO |
---|
3083 | |
---|
3084 | ENDIF |
---|
3085 | |
---|
3086 | IF ( use_top_fluxes ) THEN |
---|
3087 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
3088 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
3089 | DO m = surf_s, surf_e |
---|
3090 | k = surf_def_h(2)%k(m) |
---|
3091 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3092 | MERGE( rho_reference, prho(k,j,i), & |
---|
3093 | use_single_reference_value ) * & |
---|
3094 | drho_air_zw(k) * & |
---|
3095 | surf_def_h(2)%shf(m) |
---|
3096 | ENDDO |
---|
3097 | ENDIF |
---|
3098 | |
---|
3099 | ENDDO |
---|
3100 | |
---|
3101 | ELSE |
---|
3102 | |
---|
3103 | DO j = nys, nyn |
---|
3104 | DO k = nzb+1, nzt |
---|
3105 | ! |
---|
3106 | !-- Flag 9 is used to mask top fluxes, flag 30 to mask |
---|
3107 | !-- surface fluxes |
---|
3108 | tend(k,j,i) = tend(k,j,i) - & |
---|
3109 | kh(k,j,i) * g / & |
---|
3110 | MERGE( pt_reference, pt(k,j,i), & |
---|
3111 | use_single_reference_value ) * & |
---|
3112 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * & |
---|
3113 | dd2zu(k) * & |
---|
3114 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3115 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
3116 | ) * & |
---|
3117 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3118 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
3119 | ) |
---|
3120 | ENDDO |
---|
3121 | |
---|
3122 | IF ( use_surface_fluxes ) THEN |
---|
3123 | ! |
---|
3124 | !-- Default surfaces, up- and downward-facing |
---|
3125 | DO l = 0, 1 |
---|
3126 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
3127 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
3128 | DO m = surf_s, surf_e |
---|
3129 | k = surf_def_h(l)%k(m) |
---|
3130 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3131 | MERGE( pt_reference, pt(k,j,i), & |
---|
3132 | use_single_reference_value ) & |
---|
3133 | * drho_air_zw(k-1) & |
---|
3134 | * surf_def_h(l)%shf(m) |
---|
3135 | ENDDO |
---|
3136 | ENDDO |
---|
3137 | ! |
---|
3138 | !-- Natural surfaces |
---|
3139 | surf_s = surf_lsm_h%start_index(j,i) |
---|
3140 | surf_e = surf_lsm_h%end_index(j,i) |
---|
3141 | DO m = surf_s, surf_e |
---|
3142 | k = surf_lsm_h%k(m) |
---|
3143 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3144 | MERGE( pt_reference, pt(k,j,i), & |
---|
3145 | use_single_reference_value ) & |
---|
3146 | * drho_air_zw(k-1) & |
---|
3147 | * surf_lsm_h%shf(m) |
---|
3148 | ENDDO |
---|
3149 | ! |
---|
3150 | !-- Urban surfaces |
---|
3151 | surf_s = surf_usm_h%start_index(j,i) |
---|
3152 | surf_e = surf_usm_h%end_index(j,i) |
---|
3153 | DO m = surf_s, surf_e |
---|
3154 | k = surf_usm_h%k(m) |
---|
3155 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3156 | MERGE( pt_reference, pt(k,j,i), & |
---|
3157 | use_single_reference_value ) & |
---|
3158 | * drho_air_zw(k-1) & |
---|
3159 | * surf_usm_h%shf(m) |
---|
3160 | ENDDO |
---|
3161 | ENDIF |
---|
3162 | |
---|
3163 | IF ( use_top_fluxes ) THEN |
---|
3164 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
3165 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
3166 | DO m = surf_s, surf_e |
---|
3167 | k = surf_def_h(2)%k(m) |
---|
3168 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3169 | MERGE( pt_reference, pt(k,j,i), & |
---|
3170 | use_single_reference_value ) & |
---|
3171 | * drho_air_zw(k) & |
---|
3172 | * surf_def_h(2)%shf(m) |
---|
3173 | ENDDO |
---|
3174 | ENDIF |
---|
3175 | ENDDO |
---|
3176 | |
---|
3177 | ENDIF |
---|
3178 | |
---|
3179 | ELSE |
---|
3180 | |
---|
3181 | DO j = nys, nyn |
---|
3182 | |
---|
3183 | DO k = nzb+1, nzt |
---|
3184 | ! |
---|
3185 | !-- Flag 9 is used to mask top fluxes, flag 30 to mask |
---|
3186 | !-- surface fluxes |
---|
3187 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
3188 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3189 | k2 = 0.61_wp * pt(k,j,i) |
---|
3190 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
3191 | g / & |
---|
3192 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3193 | use_single_reference_value ) * & |
---|
3194 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
3195 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
3196 | ) * dd2zu(k) * & |
---|
3197 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3198 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
3199 | ) * & |
---|
3200 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3201 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
3202 | ) |
---|
3203 | ELSE IF ( cloud_physics ) THEN |
---|
3204 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3205 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3206 | k2 = 0.61_wp * pt(k,j,i) |
---|
3207 | ELSE |
---|
3208 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
3209 | temp = theta * t_d_pt(k) |
---|
3210 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3211 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3212 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
3213 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
3214 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3215 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
3216 | ENDIF |
---|
3217 | tend(k,j,i) = tend(k,j,i) - kh(k,j,i) * & |
---|
3218 | g / & |
---|
3219 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3220 | use_single_reference_value ) * & |
---|
3221 | ( k1 * ( pt(k+1,j,i)-pt(k-1,j,i) ) + & |
---|
3222 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) & |
---|
3223 | ) * dd2zu(k) * & |
---|
3224 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3225 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
3226 | ) * & |
---|
3227 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3228 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
3229 | ) |
---|
3230 | ELSE IF ( cloud_droplets ) THEN |
---|
3231 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3232 | k2 = 0.61_wp * pt(k,j,i) |
---|
3233 | tend(k,j,i) = tend(k,j,i) - & |
---|
3234 | kh(k,j,i) * g / & |
---|
3235 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3236 | use_single_reference_value ) * & |
---|
3237 | ( k1 * ( pt(k+1,j,i)- pt(k-1,j,i) ) + & |
---|
3238 | k2 * ( q(k+1,j,i) - q(k-1,j,i) ) - & |
---|
3239 | pt(k,j,i) * ( ql(k+1,j,i) - & |
---|
3240 | ql(k-1,j,i) ) ) * dd2zu(k) * & |
---|
3241 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3242 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
3243 | ) * & |
---|
3244 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3245 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
3246 | ) |
---|
3247 | ENDIF |
---|
3248 | |
---|
3249 | ENDDO |
---|
3250 | |
---|
3251 | ENDDO |
---|
3252 | |
---|
3253 | IF ( use_surface_fluxes ) THEN |
---|
3254 | |
---|
3255 | DO j = nys, nyn |
---|
3256 | ! |
---|
3257 | !-- Treat horizontal default surfaces |
---|
3258 | DO l = 0, 1 |
---|
3259 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
3260 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
3261 | DO m = surf_s, surf_e |
---|
3262 | k = surf_def_h(l)%k(m) |
---|
3263 | |
---|
3264 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
3265 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3266 | k2 = 0.61_wp * pt(k,j,i) |
---|
3267 | ELSE IF ( cloud_physics ) THEN |
---|
3268 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3269 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3270 | k2 = 0.61_wp * pt(k,j,i) |
---|
3271 | ELSE |
---|
3272 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
3273 | temp = theta * t_d_pt(k) |
---|
3274 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3275 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3276 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
3277 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
3278 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3279 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
3280 | ENDIF |
---|
3281 | ELSE IF ( cloud_droplets ) THEN |
---|
3282 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3283 | k2 = 0.61_wp * pt(k,j,i) |
---|
3284 | ENDIF |
---|
3285 | |
---|
3286 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3287 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3288 | use_single_reference_value ) * & |
---|
3289 | ( k1 * surf_def_h(l)%shf(m) + & |
---|
3290 | k2 * surf_def_h(l)%qsws(m) & |
---|
3291 | ) * drho_air_zw(k-1) |
---|
3292 | ENDDO |
---|
3293 | ENDDO |
---|
3294 | ! |
---|
3295 | !-- Treat horizontal natural surfaces |
---|
3296 | surf_s = surf_lsm_h%start_index(j,i) |
---|
3297 | surf_e = surf_lsm_h%end_index(j,i) |
---|
3298 | DO m = surf_s, surf_e |
---|
3299 | k = surf_lsm_h%k(m) |
---|
3300 | |
---|
3301 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
3302 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3303 | k2 = 0.61_wp * pt(k,j,i) |
---|
3304 | ELSE IF ( cloud_physics ) THEN |
---|
3305 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3306 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3307 | k2 = 0.61_wp * pt(k,j,i) |
---|
3308 | ELSE |
---|
3309 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
3310 | temp = theta * t_d_pt(k) |
---|
3311 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3312 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3313 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
3314 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
3315 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3316 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
3317 | ENDIF |
---|
3318 | ELSE IF ( cloud_droplets ) THEN |
---|
3319 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3320 | k2 = 0.61_wp * pt(k,j,i) |
---|
3321 | ENDIF |
---|
3322 | |
---|
3323 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3324 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3325 | use_single_reference_value ) * & |
---|
3326 | ( k1 * surf_lsm_h%shf(m) + & |
---|
3327 | k2 * surf_lsm_h%qsws(m) & |
---|
3328 | ) * drho_air_zw(k-1) |
---|
3329 | ENDDO |
---|
3330 | ! |
---|
3331 | !-- Treat horizontal urban surfaces |
---|
3332 | surf_s = surf_usm_h%start_index(j,i) |
---|
3333 | surf_e = surf_usm_h%end_index(j,i) |
---|
3334 | DO m = surf_s, surf_e |
---|
3335 | k = surf_lsm_h%k(m) |
---|
3336 | |
---|
3337 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
3338 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3339 | k2 = 0.61_wp * pt(k,j,i) |
---|
3340 | ELSE IF ( cloud_physics ) THEN |
---|
3341 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3342 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3343 | k2 = 0.61_wp * pt(k,j,i) |
---|
3344 | ELSE |
---|
3345 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
3346 | temp = theta * t_d_pt(k) |
---|
3347 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3348 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3349 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
3350 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
3351 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3352 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
3353 | ENDIF |
---|
3354 | ELSE IF ( cloud_droplets ) THEN |
---|
3355 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3356 | k2 = 0.61_wp * pt(k,j,i) |
---|
3357 | ENDIF |
---|
3358 | |
---|
3359 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3360 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3361 | use_single_reference_value ) * & |
---|
3362 | ( k1 * surf_usm_h%shf(m) + & |
---|
3363 | k2 * surf_usm_h%qsws(m) & |
---|
3364 | ) * drho_air_zw(k-1) |
---|
3365 | ENDDO |
---|
3366 | |
---|
3367 | ENDDO |
---|
3368 | |
---|
3369 | ENDIF |
---|
3370 | |
---|
3371 | IF ( use_top_fluxes ) THEN |
---|
3372 | |
---|
3373 | DO j = nys, nyn |
---|
3374 | |
---|
3375 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
3376 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
3377 | DO m = surf_s, surf_e |
---|
3378 | k = surf_def_h(2)%k(m) |
---|
3379 | |
---|
3380 | IF ( .NOT. cloud_physics .AND. .NOT. cloud_droplets ) THEN |
---|
3381 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3382 | k2 = 0.61_wp * pt(k,j,i) |
---|
3383 | ELSE IF ( cloud_physics ) THEN |
---|
3384 | IF ( ql(k,j,i) == 0.0_wp ) THEN |
---|
3385 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) |
---|
3386 | k2 = 0.61_wp * pt(k,j,i) |
---|
3387 | ELSE |
---|
3388 | theta = pt(k,j,i) + pt_d_t(k) * l_d_cp * ql(k,j,i) |
---|
3389 | temp = theta * t_d_pt(k) |
---|
3390 | k1 = ( 1.0_wp - q(k,j,i) + 1.61_wp * & |
---|
3391 | ( q(k,j,i) - ql(k,j,i) ) * & |
---|
3392 | ( 1.0_wp + 0.622_wp * l_d_r / temp ) ) / & |
---|
3393 | ( 1.0_wp + 0.622_wp * l_d_r * l_d_cp * & |
---|
3394 | ( q(k,j,i) - ql(k,j,i) ) / ( temp * temp ) ) |
---|
3395 | k2 = theta * ( l_d_cp / temp * k1 - 1.0_wp ) |
---|
3396 | ENDIF |
---|
3397 | ELSE IF ( cloud_droplets ) THEN |
---|
3398 | k1 = 1.0_wp + 0.61_wp * q(k,j,i) - ql(k,j,i) |
---|
3399 | k2 = 0.61_wp * pt(k,j,i) |
---|
3400 | ENDIF |
---|
3401 | |
---|
3402 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3403 | MERGE( vpt_reference, vpt(k,j,i), & |
---|
3404 | use_single_reference_value ) * & |
---|
3405 | ( k1 * surf_def_h(2)%shf(m) + & |
---|
3406 | k2 * surf_def_h(2)%qsws(m) & |
---|
3407 | ) * drho_air_zw(k) |
---|
3408 | |
---|
3409 | ENDDO |
---|
3410 | |
---|
3411 | ENDDO |
---|
3412 | |
---|
3413 | ENDIF |
---|
3414 | |
---|
3415 | ENDIF |
---|
3416 | |
---|
3417 | ENDIF |
---|
3418 | |
---|
3419 | ENDDO |
---|
3420 | |
---|
3421 | END SUBROUTINE production_e |
---|
3422 | |
---|
3423 | |
---|
3424 | !------------------------------------------------------------------------------! |
---|
3425 | ! Description: |
---|
3426 | ! ------------ |
---|
3427 | !> Production terms (shear + buoyancy) of the TKE. |
---|
3428 | !> Cache-optimized version |
---|
3429 | !> @warning The case with constant_flux_layer = F and use_surface_fluxes = T is |
---|
3430 | !> not considered well! |
---|
3431 | !> @todo non-neutral case is not yet considered for RANS mode |
---|
3432 | !------------------------------------------------------------------------------! |
---|
3433 | SUBROUTINE production_e_ij( i, j, diss_production ) |
---|
3434 | |
---|
3435 | USE arrays_3d, & |
---|
3436 | ONLY: ddzw, dd2zu, drho_air_zw, q, ql |
---|
3437 | |
---|
3438 | USE cloud_parameters, & |
---|
3439 | ONLY: l_d_cp, l_d_r, pt_d_t, t_d_pt |
---|
3440 | |
---|
3441 | USE control_parameters, & |
---|
3442 | ONLY: cloud_droplets, cloud_physics, constant_flux_layer, g, neutral, & |
---|
3443 | rho_reference, use_single_reference_value, use_surface_fluxes, & |
---|
3444 | use_top_fluxes |
---|
3445 | |
---|
3446 | USE grid_variables, & |
---|
3447 | ONLY: ddx, dx, ddy, dy |
---|
3448 | |
---|
3449 | USE surface_mod, & |
---|
3450 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
3451 | surf_usm_v |
---|
3452 | |
---|
3453 | IMPLICIT NONE |
---|
3454 | |
---|
3455 | LOGICAL :: diss_production |
---|
3456 | |
---|
3457 | INTEGER(iwp) :: i !< running index x-direction |
---|
3458 | INTEGER(iwp) :: j !< running index y-direction |
---|
3459 | INTEGER(iwp) :: k !< running index z-direction |
---|
3460 | INTEGER(iwp) :: l !< running index for different surface type orientation |
---|
3461 | INTEGER(iwp) :: m !< running index surface elements |
---|
3462 | INTEGER(iwp) :: surf_e !< end index of surface elements at given i-j position |
---|
3463 | INTEGER(iwp) :: surf_s !< start index of surface elements at given i-j position |
---|
3464 | |
---|
3465 | REAL(wp) :: def !< |
---|
3466 | REAL(wp) :: flag !< flag to mask topography |
---|
3467 | REAL(wp) :: k1 !< |
---|
3468 | REAL(wp) :: k2 !< |
---|
3469 | REAL(wp) :: km_neutral !< diffusion coefficient assuming neutral conditions - used to compute shear production at surfaces |
---|
3470 | REAL(wp) :: theta !< |
---|
3471 | REAL(wp) :: temp !< |
---|
3472 | REAL(wp) :: sign_dir !< sign of wall-tke flux, depending on wall orientation |
---|
3473 | REAL(wp) :: usvs !< momentum flux u"v" |
---|
3474 | REAL(wp) :: vsus !< momentum flux v"u" |
---|
3475 | REAL(wp) :: wsus !< momentum flux w"u" |
---|
3476 | REAL(wp) :: wsvs !< momentum flux w"v" |
---|
3477 | |
---|
3478 | |
---|
3479 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudx !< Gradient of u-component in x-direction |
---|
3480 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudy !< Gradient of u-component in y-direction |
---|
3481 | REAL(wp), DIMENSION(nzb+1:nzt) :: dudz !< Gradient of u-component in z-direction |
---|
3482 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdx !< Gradient of v-component in x-direction |
---|
3483 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdy !< Gradient of v-component in y-direction |
---|
3484 | REAL(wp), DIMENSION(nzb+1:nzt) :: dvdz !< Gradient of v-component in z-direction |
---|
3485 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdx !< Gradient of w-component in x-direction |
---|
3486 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdy !< Gradient of w-component in y-direction |
---|
3487 | REAL(wp), DIMENSION(nzb+1:nzt) :: dwdz !< Gradient of w-component in z-direction |
---|
3488 | REAL(wp), DIMENSION(nzb+1:nzt) :: tend_temp !< temporal tendency |
---|
3489 | |
---|
3490 | IF ( constant_flux_layer ) THEN |
---|
3491 | ! |
---|
3492 | !-- Calculate TKE production by shear. Calculate gradients at all grid |
---|
3493 | !-- points first, gradients at surface-bounded grid points will be |
---|
3494 | !-- overwritten further below. |
---|
3495 | DO k = nzb+1, nzt |
---|
3496 | |
---|
3497 | dudx(k) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
3498 | dudy(k) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
3499 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
3500 | dudz(k) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
3501 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
3502 | |
---|
3503 | dvdx(k) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
3504 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
3505 | dvdy(k) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
3506 | dvdz(k) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
3507 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
3508 | |
---|
3509 | dwdx(k) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
3510 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
3511 | dwdy(k) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
3512 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
3513 | dwdz(k) = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
3514 | |
---|
3515 | ENDDO |
---|
3516 | ! |
---|
3517 | !-- Compute gradients at north- and south-facing surfaces. |
---|
3518 | !-- Note, no vertical natural surfaces so far. |
---|
3519 | DO l = 0, 1 |
---|
3520 | ! |
---|
3521 | !-- Default surfaces |
---|
3522 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
3523 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
3524 | DO m = surf_s, surf_e |
---|
3525 | k = surf_def_v(l)%k(m) |
---|
3526 | usvs = surf_def_v(l)%mom_flux_tke(0,m) |
---|
3527 | wsvs = surf_def_v(l)%mom_flux_tke(1,m) |
---|
3528 | |
---|
3529 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
3530 | * 0.5_wp * dy |
---|
3531 | ! |
---|
3532 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3533 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3534 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
3535 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
3536 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
3537 | ENDDO |
---|
3538 | ! |
---|
3539 | !-- Natural surfaces |
---|
3540 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
3541 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
3542 | DO m = surf_s, surf_e |
---|
3543 | k = surf_lsm_v(l)%k(m) |
---|
3544 | usvs = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
3545 | wsvs = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
3546 | |
---|
3547 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
3548 | * 0.5_wp * dy |
---|
3549 | ! |
---|
3550 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3551 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3552 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
3553 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
3554 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
3555 | ENDDO |
---|
3556 | ! |
---|
3557 | !-- Urban surfaces |
---|
3558 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
3559 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
3560 | DO m = surf_s, surf_e |
---|
3561 | k = surf_usm_v(l)%k(m) |
---|
3562 | usvs = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
3563 | wsvs = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
3564 | |
---|
3565 | km_neutral = kappa * ( usvs**2 + wsvs**2 )**0.25_wp & |
---|
3566 | * 0.5_wp * dy |
---|
3567 | ! |
---|
3568 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3569 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3570 | BTEST( wall_flags_0(k,j-1,i), 0 ) ) |
---|
3571 | dudy(k) = sign_dir * usvs / ( km_neutral + 1E-10_wp ) |
---|
3572 | dwdy(k) = sign_dir * wsvs / ( km_neutral + 1E-10_wp ) |
---|
3573 | ENDDO |
---|
3574 | ENDDO |
---|
3575 | ! |
---|
3576 | !-- Compute gradients at east- and west-facing walls |
---|
3577 | DO l = 2, 3 |
---|
3578 | ! |
---|
3579 | !-- Default surfaces |
---|
3580 | surf_s = surf_def_v(l)%start_index(j,i) |
---|
3581 | surf_e = surf_def_v(l)%end_index(j,i) |
---|
3582 | DO m = surf_s, surf_e |
---|
3583 | k = surf_def_v(l)%k(m) |
---|
3584 | vsus = surf_def_v(l)%mom_flux_tke(0,m) |
---|
3585 | wsus = surf_def_v(l)%mom_flux_tke(1,m) |
---|
3586 | |
---|
3587 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
3588 | * 0.5_wp * dx |
---|
3589 | ! |
---|
3590 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3591 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3592 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
3593 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
3594 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
3595 | ENDDO |
---|
3596 | ! |
---|
3597 | !-- Natural surfaces |
---|
3598 | surf_s = surf_lsm_v(l)%start_index(j,i) |
---|
3599 | surf_e = surf_lsm_v(l)%end_index(j,i) |
---|
3600 | DO m = surf_s, surf_e |
---|
3601 | k = surf_lsm_v(l)%k(m) |
---|
3602 | vsus = surf_lsm_v(l)%mom_flux_tke(0,m) |
---|
3603 | wsus = surf_lsm_v(l)%mom_flux_tke(1,m) |
---|
3604 | |
---|
3605 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
3606 | * 0.5_wp * dx |
---|
3607 | ! |
---|
3608 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3609 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3610 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
3611 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
3612 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
3613 | ENDDO |
---|
3614 | ! |
---|
3615 | !-- Urban surfaces |
---|
3616 | surf_s = surf_usm_v(l)%start_index(j,i) |
---|
3617 | surf_e = surf_usm_v(l)%end_index(j,i) |
---|
3618 | DO m = surf_s, surf_e |
---|
3619 | k = surf_usm_v(l)%k(m) |
---|
3620 | vsus = surf_usm_v(l)%mom_flux_tke(0,m) |
---|
3621 | wsus = surf_usm_v(l)%mom_flux_tke(1,m) |
---|
3622 | |
---|
3623 | km_neutral = kappa * ( vsus**2 + wsus**2 )**0.25_wp & |
---|
3624 | * 0.5_wp * dx |
---|
3625 | ! |
---|
3626 | !-- -1.0 for right-facing wall, 1.0 for left-facing wall |
---|
3627 | sign_dir = MERGE( 1.0_wp, -1.0_wp, & |
---|
3628 | BTEST( wall_flags_0(k,j,i-1), 0 ) ) |
---|
3629 | dvdx(k) = sign_dir * vsus / ( km_neutral + 1E-10_wp ) |
---|
3630 | dwdx(k) = sign_dir * wsus / ( km_neutral + 1E-10_wp ) |
---|
3631 | ENDDO |
---|
3632 | ENDDO |
---|
3633 | ! |
---|
3634 | !-- Compute gradients at upward-facing walls, first for |
---|
3635 | !-- non-natural default surfaces |
---|
3636 | surf_s = surf_def_h(0)%start_index(j,i) |
---|
3637 | surf_e = surf_def_h(0)%end_index(j,i) |
---|
3638 | DO m = surf_s, surf_e |
---|
3639 | k = surf_def_h(0)%k(m) |
---|
3640 | ! |
---|
3641 | !-- Please note, actually, an interpolation of u_0 and v_0 |
---|
3642 | !-- onto the grid center would be required. However, this |
---|
3643 | !-- would require several data transfers between 2D-grid and |
---|
3644 | !-- wall type. The effect of this missing interpolation is |
---|
3645 | !-- negligible. (See also production_e_init). |
---|
3646 | dudz(k) = ( u(k+1,j,i) - surf_def_h(0)%u_0(m) ) * dd2zu(k) |
---|
3647 | dvdz(k) = ( v(k+1,j,i) - surf_def_h(0)%v_0(m) ) * dd2zu(k) |
---|
3648 | |
---|
3649 | ENDDO |
---|
3650 | ! |
---|
3651 | !-- Natural surfaces |
---|
3652 | surf_s = surf_lsm_h%start_index(j,i) |
---|
3653 | surf_e = surf_lsm_h%end_index(j,i) |
---|
3654 | DO m = surf_s, surf_e |
---|
3655 | k = surf_lsm_h%k(m) |
---|
3656 | |
---|
3657 | dudz(k) = ( u(k+1,j,i) - surf_lsm_h%u_0(m) ) * dd2zu(k) |
---|
3658 | dvdz(k) = ( v(k+1,j,i) - surf_lsm_h%v_0(m) ) * dd2zu(k) |
---|
3659 | ENDDO |
---|
3660 | ! |
---|
3661 | !-- Urban surfaces |
---|
3662 | surf_s = surf_usm_h%start_index(j,i) |
---|
3663 | surf_e = surf_usm_h%end_index(j,i) |
---|
3664 | DO m = surf_s, surf_e |
---|
3665 | k = surf_usm_h%k(m) |
---|
3666 | |
---|
3667 | dudz(k) = ( u(k+1,j,i) - surf_usm_h%u_0(m) ) * dd2zu(k) |
---|
3668 | dvdz(k) = ( v(k+1,j,i) - surf_usm_h%v_0(m) ) * dd2zu(k) |
---|
3669 | ENDDO |
---|
3670 | ! |
---|
3671 | !-- Compute gradients at downward-facing walls, only for |
---|
3672 | !-- non-natural default surfaces |
---|
3673 | surf_s = surf_def_h(1)%start_index(j,i) |
---|
3674 | surf_e = surf_def_h(1)%end_index(j,i) |
---|
3675 | DO m = surf_s, surf_e |
---|
3676 | k = surf_def_h(1)%k(m) |
---|
3677 | |
---|
3678 | dudz(k) = ( surf_def_h(1)%u_0(m) - u(k-1,j,i) ) * dd2zu(k) |
---|
3679 | dvdz(k) = ( surf_def_h(1)%v_0(m) - v(k-1,j,i) ) * dd2zu(k) |
---|
3680 | |
---|
3681 | ENDDO |
---|
3682 | |
---|
3683 | ! IF ( .NOT. rans_tke_e ) THEN |
---|
3684 | |
---|
3685 | DO k = nzb+1, nzt |
---|
3686 | |
---|
3687 | def = 2.0_wp * ( dudx(k)**2 + dvdy(k)**2 + dwdz(k)**2 ) + & |
---|
3688 | dudy(k)**2 + dvdx(k)**2 + dwdx(k)**2 + & |
---|
3689 | dwdy(k)**2 + dudz(k)**2 + dvdz(k)**2 + & |
---|
3690 | 2.0_wp * ( dvdx(k)*dudy(k) + & |
---|
3691 | dwdx(k)*dudz(k) + & |
---|
3692 | dwdy(k)*dvdz(k) ) |
---|
3693 | |
---|
3694 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
3695 | |
---|
3696 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
3697 | |
---|
3698 | tend_temp(k) = km(k,j,i) * def * flag |
---|
3699 | |
---|
3700 | ENDDO |
---|
3701 | |
---|
3702 | ! ELSE |
---|
3703 | ! |
---|
3704 | ! DO k = nzb+1, nzt |
---|
3705 | ! ! |
---|
3706 | ! !-- Production term according to Kato and Launder (1993) |
---|
3707 | ! def = SQRT( ( dudy(k)**2 + dvdz(k)**2 + dwdx(k)**2 + & |
---|
3708 | ! dudz(k)**2 + dvdx(k)**2 + dwdy(k)**2 + & |
---|
3709 | ! 2.0_wp * ( dudy(k) * dvdx(k) + & |
---|
3710 | ! dvdz(k) * dwdy(k) + & |
---|
3711 | ! dwdx(k) * dudz(k) ) ) & |
---|
3712 | ! * ( dudy(k)**2 + dvdz(k)**2 + dwdx(k)**2 + & |
---|
3713 | ! dudz(k)**2 + dvdx(k)**2 + dwdy(k)**2 - & |
---|
3714 | ! 2.0_wp * ( dudy(k) * dvdx(k) + & |
---|
3715 | ! dvdz(k) * dwdy(k) + & |
---|
3716 | ! dwdx(k) * dudz(k) ) ) & |
---|
3717 | ! ) |
---|
3718 | ! |
---|
3719 | ! IF ( def < 0.0_wp ) def = 0.0_wp |
---|
3720 | ! |
---|
3721 | ! flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
3722 | ! |
---|
3723 | ! tend_temp(k) = km(k,j,i) * def * flag |
---|
3724 | ! |
---|
3725 | ! ENDDO |
---|
3726 | ! |
---|
3727 | ! ENDIF |
---|
3728 | |
---|
3729 | ELSE ! not constant_flux_layer |
---|
3730 | |
---|
3731 | ! IF ( .NOT. rans_tke_e ) THEN |
---|
3732 | ! |
---|
3733 | !-- Calculate TKE production by shear. Here, no additional |
---|
3734 | !-- wall-bounded code is considered. |
---|
3735 | !-- Why? |
---|
3736 | DO k = nzb+1, nzt |
---|
3737 | |
---|
3738 | dudx(k) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
3739 | dudy(k) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
3740 | u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
3741 | dudz(k) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
3742 | u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
3743 | |
---|
3744 | dvdx(k) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
3745 | v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
3746 | dvdy(k) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
3747 | dvdz(k) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
3748 | v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
3749 | |
---|
3750 | dwdx(k) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
3751 | w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
3752 | dwdy(k) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
3753 | w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
3754 | dwdz(k) = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
3755 | |
---|
3756 | def = 2.0_wp * ( dudx(k)**2 + dvdy(k)**2 + dwdz(k)**2 ) + & |
---|
3757 | dudy(k)**2 + dvdx(k)**2 + dwdx(k)**2 + & |
---|
3758 | dwdy(k)**2 + dudz(k)**2 + dvdz(k)**2 + & |
---|
3759 | 2.0_wp * ( dvdx(k)*dudy(k) + & |
---|
3760 | dwdx(k)*dudz(k) + & |
---|
3761 | dwdy(k)*dvdz(k) ) |
---|
3762 | |
---|
3763 | IF ( def < 0.0_wp ) def = 0.0_wp |
---|
3764 | |
---|
3765 | flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
3766 | BTEST( wall_flags_0(k,j,i), 29 ) ) |
---|
3767 | tend_temp(k) = km(k,j,i) * def * flag |
---|
3768 | |
---|
3769 | ENDDO |
---|
3770 | |
---|
3771 | ! ELSE |
---|
3772 | ! |
---|
3773 | ! DO k = nzb+1, nzt |
---|
3774 | ! |
---|
3775 | ! dudx(k) = ( u(k,j,i+1) - u(k,j,i) ) * ddx |
---|
3776 | ! dudy(k) = 0.25_wp * ( u(k,j+1,i) + u(k,j+1,i+1) - & |
---|
3777 | ! u(k,j-1,i) - u(k,j-1,i+1) ) * ddy |
---|
3778 | ! dudz(k) = 0.5_wp * ( u(k+1,j,i) + u(k+1,j,i+1) - & |
---|
3779 | ! u(k-1,j,i) - u(k-1,j,i+1) ) * dd2zu(k) |
---|
3780 | ! |
---|
3781 | ! dvdx(k) = 0.25_wp * ( v(k,j,i+1) + v(k,j+1,i+1) - & |
---|
3782 | ! v(k,j,i-1) - v(k,j+1,i-1) ) * ddx |
---|
3783 | ! dvdy(k) = ( v(k,j+1,i) - v(k,j,i) ) * ddy |
---|
3784 | ! dvdz(k) = 0.5_wp * ( v(k+1,j,i) + v(k+1,j+1,i) - & |
---|
3785 | ! v(k-1,j,i) - v(k-1,j+1,i) ) * dd2zu(k) |
---|
3786 | ! |
---|
3787 | ! dwdx(k) = 0.25_wp * ( w(k,j,i+1) + w(k-1,j,i+1) - & |
---|
3788 | ! w(k,j,i-1) - w(k-1,j,i-1) ) * ddx |
---|
3789 | ! dwdy(k) = 0.25_wp * ( w(k,j+1,i) + w(k-1,j+1,i) - & |
---|
3790 | ! w(k,j-1,i) - w(k-1,j-1,i) ) * ddy |
---|
3791 | ! dwdz(k) = ( w(k,j,i) - w(k-1,j,i) ) * ddzw(k) |
---|
3792 | ! ! |
---|
3793 | ! !-- Production term according to Kato and Launder (1993) |
---|
3794 | ! def = SQRT( ( dudy(k)**2 + dvdz(k)**2 + dwdx(k)**2 + & |
---|
3795 | ! dudz(k)**2 + dvdx(k)**2 + dwdy(k)**2 + & |
---|
3796 | ! 2.0_wp * ( dudy(k) * dvdx(k) + & |
---|
3797 | ! dvdz(k) * dwdy(k) + & |
---|
3798 | ! dwdx(k) * dudz(k) ) ) & |
---|
3799 | ! * ( dudy(k)**2 + dvdz(k)**2 + dwdx(k)**2 + & |
---|
3800 | ! dudz(k)**2 + dvdx(k)**2 + dwdy(k)**2 - & |
---|
3801 | ! 2.0_wp * ( dudy(k) * dvdx(k) + & |
---|
3802 | ! dvdz(k) * dwdy(k) + & |
---|
3803 | ! dwdx(k) * dudz(k) ) ) & |
---|
3804 | ! ) |
---|
3805 | ! |
---|
3806 | ! IF ( def < 0.0_wp ) def = 0.0_wp |
---|
3807 | ! |
---|
3808 | ! flag = MERGE( 1.0_wp, 0.0_wp, & |
---|
3809 | ! BTEST( wall_flags_0(k,j,i), 29 ) ) |
---|
3810 | ! tend_temp(k) = km(k,j,i) * def * flag |
---|
3811 | ! |
---|
3812 | ! ENDDO |
---|
3813 | ! |
---|
3814 | ! ENDIF |
---|
3815 | |
---|
3816 | ENDIF |
---|
3817 | |
---|
3818 | IF ( .NOT. diss_production ) THEN |
---|
3819 | ! |
---|
3820 | !-- Production term in case of TKE production |
---|
3821 | DO k = nzb+1, nzt |
---|
3822 | tend(k,j,i) = tend(k,j,i) + tend_temp(k) |
---|
3823 | ENDDO |
---|
3824 | ELSE |
---|
3825 | ! |
---|
3826 | !-- Production term in case of dissipation-rate production (rans_tke_e) |
---|
3827 | DO k = nzb+1, nzt |
---|
3828 | |
---|
3829 | ! Standard TKE-e closure |
---|
3830 | tend(k,j,i) = tend(k,j,i) + tend_temp(k) * diss(k,j,i) & |
---|
3831 | /( e(k,j,i) + 1.0E-20_wp ) & |
---|
3832 | * c_1 |
---|
3833 | ! ! Production according to Koblitz (2013) |
---|
3834 | ! tend(k,j,i) = tend(k,j,i) + tend_temp(k) * diss(k,j,i) & |
---|
3835 | ! /( e(k,j,i) + 1.0E-20_wp ) & |
---|
3836 | ! * ( c_1 + ( c_2 - c_1 ) & |
---|
3837 | ! * l_wall(k,j,i) / l_max ) |
---|
3838 | ! ! Production according to Detering and Etling (1985) |
---|
3839 | ! !> @todo us is not correct if there are vertical walls |
---|
3840 | ! tend(k,j,i) = tend(k,j,i) + tend_temp(k) * SQRT(e(k,j,i)) & |
---|
3841 | ! * c_1 * c_0**3 / c_4 * f & |
---|
3842 | ! / surf_def_h(0)%us(surf_def_h(0)%start_index(j,i)) |
---|
3843 | ENDDO |
---|
3844 | ENDIF |
---|
3845 | |
---|
3846 | ! |
---|
3847 | !-- If required, calculate TKE production by buoyancy |
---|
3848 | IF ( .NOT. neutral ) THEN |
---|
3849 | |
---|
3850 | IF ( .NOT. humidity ) THEN |
---|
3851 | |
---|
3852 | IF ( ocean ) THEN |
---|
3853 | ! |
---|
3854 | !-- So far in the ocean no special treatment of density flux in |
---|
3855 | !-- the bottom and top surface layer |
---|
3856 | DO k = nzb+1, nzt |
---|
3857 | |
---|
3858 | tend(k,j,i) = tend(k,j,i) + & |
---|
3859 | kh(k,j,i) * g / & |
---|
3860 | MERGE( rho_reference, prho(k,j,i), & |
---|
3861 | use_single_reference_value ) * & |
---|
3862 | ( prho(k+1,j,i) - prho(k-1,j,i) ) * & |
---|
3863 | dd2zu(k) * & |
---|
3864 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3865 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
3866 | ) * & |
---|
3867 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3868 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
3869 | ) |
---|
3870 | ENDDO |
---|
3871 | |
---|
3872 | IF ( use_surface_fluxes ) THEN |
---|
3873 | ! |
---|
3874 | !-- Default surfaces, up- and downward-facing |
---|
3875 | DO l = 0, 1 |
---|
3876 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
3877 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
3878 | DO m = surf_s, surf_e |
---|
3879 | k = surf_def_h(l)%k(m) |
---|
3880 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3881 | MERGE( rho_reference, prho(k,j,i), & |
---|
3882 | use_single_reference_value ) * & |
---|
3883 | drho_air_zw(k-1) * & |
---|
3884 | surf_def_h(l)%shf(m) |
---|
3885 | ENDDO |
---|
3886 | ENDDO |
---|
3887 | |
---|
3888 | ENDIF |
---|
3889 | |
---|
3890 | IF ( use_top_fluxes ) THEN |
---|
3891 | surf_s = surf_def_h(2)%start_index(j,i) |
---|
3892 | surf_e = surf_def_h(2)%end_index(j,i) |
---|
3893 | DO m = surf_s, surf_e |
---|
3894 | k = surf_def_h(2)%k(m) |
---|
3895 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3896 | MERGE( rho_reference, prho(k,j,i), & |
---|
3897 | use_single_reference_value ) * & |
---|
3898 | drho_air_zw(k) * & |
---|
3899 | surf_def_h(2)%shf(m) |
---|
3900 | ENDDO |
---|
3901 | ENDIF |
---|
3902 | |
---|
3903 | ELSE |
---|
3904 | |
---|
3905 | DO k = nzb+1, nzt |
---|
3906 | ! |
---|
3907 | !-- Flag 9 is used to mask top fluxes, flag 30 to mask |
---|
3908 | !-- surface fluxes |
---|
3909 | tend(k,j,i) = tend(k,j,i) - & |
---|
3910 | kh(k,j,i) * g / & |
---|
3911 | MERGE( pt_reference, pt(k,j,i), & |
---|
3912 | use_single_reference_value ) * & |
---|
3913 | ( pt(k+1,j,i) - pt(k-1,j,i) ) * dd2zu(k) * & |
---|
3914 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3915 | BTEST( wall_flags_0(k,j,i), 30 ) & |
---|
3916 | ) * & |
---|
3917 | MERGE( 1.0_wp, 0.0_wp, & |
---|
3918 | BTEST( wall_flags_0(k,j,i), 9 ) & |
---|
3919 | ) |
---|
3920 | |
---|
3921 | ENDDO |
---|
3922 | |
---|
3923 | IF ( use_surface_fluxes ) THEN |
---|
3924 | ! |
---|
3925 | !-- Default surfaces, up- and downward-facing |
---|
3926 | DO l = 0, 1 |
---|
3927 | surf_s = surf_def_h(l)%start_index(j,i) |
---|
3928 | surf_e = surf_def_h(l)%end_index(j,i) |
---|
3929 | DO m = surf_s, surf_e |
---|
3930 | k = surf_def_h(l)%k(m) |
---|
3931 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
3932 | MERGE( pt_reference, pt(k,j,i), & |
---|
3933 | use_single_reference_value ) * & |
---|
3934 | drho_air_zw(k-1) * & |
---|
3935 | surf_def_h(l)%shf(m) |
---|
3936 | ENDDO |
---|
3937 | ENDDO |
---|
3938 | ! |
---|
3939 | !-- Natural surfaces |
---|
3940 | surf_s = surf_lsm_h%start_index(j,i) |
---|
3941 | surf_e = surf_lsm_h%end_index(j,i) |
---|
3942 | DO m = surf_s, surf_e |
---|
3943 | k = surf_lsm_h%k(m) |
---|
3944 | tend(k,j,i) = tend(k,j,i) + g / & |
---|
394 |
---|