[1850] | 1 | !> @file tridia_solver_mod.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1212] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1212] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1818] | 17 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1212] | 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1851] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: tridia_solver_mod.f90 2001 2016-08-20 18:41:22Z suehring $ |
---|
| 27 | ! |
---|
[2001] | 28 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 29 | ! Forced header and separation lines into 80 columns |
---|
| 30 | ! |
---|
[1851] | 31 | ! 1850 2016-04-08 13:29:27Z maronga |
---|
| 32 | ! Module renamed |
---|
| 33 | ! |
---|
| 34 | ! |
---|
[1816] | 35 | ! 1815 2016-04-06 13:49:59Z raasch |
---|
| 36 | ! cpp-switch intel11 removed |
---|
| 37 | ! |
---|
[1809] | 38 | ! 1808 2016-04-05 19:44:00Z raasch |
---|
| 39 | ! test output removed |
---|
| 40 | ! |
---|
[1805] | 41 | ! 1804 2016-04-05 16:30:18Z maronga |
---|
| 42 | ! Removed code for parameter file check (__check) |
---|
| 43 | ! |
---|
[1683] | 44 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 45 | ! Code annotations made doxygen readable |
---|
| 46 | ! |
---|
[1407] | 47 | ! 1406 2014-05-16 13:47:01Z raasch |
---|
| 48 | ! bugfix for pgi 14.4: declare create moved after array declaration |
---|
| 49 | ! |
---|
[1343] | 50 | ! 1342 2014-03-26 17:04:47Z kanani |
---|
| 51 | ! REAL constants defined as wp-kind |
---|
| 52 | ! |
---|
[1323] | 53 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 54 | ! REAL functions provided with KIND-attribute |
---|
| 55 | ! |
---|
[1321] | 56 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 57 | ! ONLY-attribute added to USE-statements, |
---|
| 58 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 59 | ! kinds are defined in new module kinds, |
---|
| 60 | ! old module precision_kind is removed, |
---|
| 61 | ! revision history before 2012 removed, |
---|
| 62 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 63 | ! all variable declaration statements |
---|
[1213] | 64 | ! |
---|
[1258] | 65 | ! 1257 2013-11-08 15:18:40Z raasch |
---|
| 66 | ! openacc loop and loop vector clauses removed, declare create moved after |
---|
| 67 | ! the FORTRAN declaration statement |
---|
| 68 | ! |
---|
[1222] | 69 | ! 1221 2013-09-10 08:59:13Z raasch |
---|
| 70 | ! dummy argument tri in 1d-routines replaced by tri_for_1d because of name |
---|
| 71 | ! conflict with arry tri in module arrays_3d |
---|
| 72 | ! |
---|
[1217] | 73 | ! 1216 2013-08-26 09:31:42Z raasch |
---|
| 74 | ! +tridia_substi_overlap for handling overlapping fft / transposition |
---|
| 75 | ! |
---|
[1213] | 76 | ! 1212 2013-08-15 08:46:27Z raasch |
---|
[1212] | 77 | ! Initial revision. |
---|
| 78 | ! Routines have been moved to seperate module from former file poisfft to here. |
---|
| 79 | ! The tridiagonal matrix coefficients of array tri are calculated only once at |
---|
| 80 | ! the beginning, i.e. routine split is called within tridia_init. |
---|
| 81 | ! |
---|
| 82 | ! |
---|
| 83 | ! Description: |
---|
| 84 | ! ------------ |
---|
[1682] | 85 | !> solves the linear system of equations: |
---|
| 86 | !> |
---|
| 87 | !> -(4 pi^2(i^2/(dx^2*nnx^2)+j^2/(dy^2*nny^2))+ |
---|
| 88 | !> 1/(dzu(k)*dzw(k))+1/(dzu(k-1)*dzw(k)))*p(i,j,k)+ |
---|
| 89 | !> 1/(dzu(k)*dzw(k))*p(i,j,k+1)+1/(dzu(k-1)*dzw(k))*p(i,j,k-1)=d(i,j,k) |
---|
| 90 | !> |
---|
| 91 | !> by using the Thomas algorithm |
---|
[1212] | 92 | !------------------------------------------------------------------------------! |
---|
[1682] | 93 | MODULE tridia_solver |
---|
| 94 | |
---|
[1212] | 95 | |
---|
[1320] | 96 | USE indices, & |
---|
| 97 | ONLY: nx, ny, nz |
---|
[1212] | 98 | |
---|
[1320] | 99 | USE kinds |
---|
| 100 | |
---|
| 101 | USE transpose_indices, & |
---|
| 102 | ONLY: nxl_z, nyn_z, nxr_z, nys_z |
---|
| 103 | |
---|
[1212] | 104 | IMPLICIT NONE |
---|
| 105 | |
---|
[1682] | 106 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ddzuw !< |
---|
[1212] | 107 | |
---|
| 108 | PRIVATE |
---|
| 109 | |
---|
| 110 | INTERFACE tridia_substi |
---|
| 111 | MODULE PROCEDURE tridia_substi |
---|
| 112 | END INTERFACE tridia_substi |
---|
| 113 | |
---|
[1216] | 114 | INTERFACE tridia_substi_overlap |
---|
| 115 | MODULE PROCEDURE tridia_substi_overlap |
---|
| 116 | END INTERFACE tridia_substi_overlap |
---|
[1212] | 117 | |
---|
[1216] | 118 | PUBLIC tridia_substi, tridia_substi_overlap, tridia_init, tridia_1dd |
---|
| 119 | |
---|
[1212] | 120 | CONTAINS |
---|
| 121 | |
---|
| 122 | |
---|
[1682] | 123 | !------------------------------------------------------------------------------! |
---|
| 124 | ! Description: |
---|
| 125 | ! ------------ |
---|
| 126 | !> @todo Missing subroutine description. |
---|
| 127 | !------------------------------------------------------------------------------! |
---|
[1212] | 128 | SUBROUTINE tridia_init |
---|
| 129 | |
---|
[1320] | 130 | USE arrays_3d, & |
---|
| 131 | ONLY: ddzu_pres, ddzw |
---|
[1212] | 132 | |
---|
[1320] | 133 | USE kinds |
---|
| 134 | |
---|
[1212] | 135 | IMPLICIT NONE |
---|
| 136 | |
---|
[1682] | 137 | INTEGER(iwp) :: k !< |
---|
[1212] | 138 | |
---|
| 139 | ALLOCATE( ddzuw(0:nz-1,3) ) |
---|
| 140 | |
---|
| 141 | DO k = 0, nz-1 |
---|
| 142 | ddzuw(k,1) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 143 | ddzuw(k,2) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1342] | 144 | ddzuw(k,3) = -1.0_wp * & |
---|
[1212] | 145 | ( ddzu_pres(k+2) * ddzw(k+1) + ddzu_pres(k+1) * ddzw(k+1) ) |
---|
| 146 | ENDDO |
---|
| 147 | ! |
---|
| 148 | !-- Calculate constant coefficients of the tridiagonal matrix |
---|
| 149 | CALL maketri |
---|
| 150 | CALL split |
---|
| 151 | |
---|
| 152 | END SUBROUTINE tridia_init |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | !------------------------------------------------------------------------------! |
---|
[1682] | 156 | ! Description: |
---|
| 157 | ! ------------ |
---|
| 158 | !> Computes the i- and j-dependent component of the matrix |
---|
| 159 | !> Provide the constant coefficients of the tridiagonal matrix for solution |
---|
| 160 | !> of the Poisson equation in Fourier space. |
---|
| 161 | !> The coefficients are computed following the method of |
---|
| 162 | !> Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 163 | !> Siano's original version by discretizing the Poisson equation, |
---|
| 164 | !> before it is Fourier-transformed. |
---|
[1212] | 165 | !------------------------------------------------------------------------------! |
---|
[1682] | 166 | SUBROUTINE maketri |
---|
[1212] | 167 | |
---|
[1682] | 168 | |
---|
[1320] | 169 | USE arrays_3d, & |
---|
| 170 | ONLY: tric |
---|
[1212] | 171 | |
---|
[1320] | 172 | USE constants, & |
---|
| 173 | ONLY: pi |
---|
| 174 | |
---|
| 175 | USE control_parameters, & |
---|
| 176 | ONLY: ibc_p_b, ibc_p_t |
---|
| 177 | |
---|
| 178 | USE grid_variables, & |
---|
| 179 | ONLY: dx, dy |
---|
| 180 | |
---|
| 181 | |
---|
| 182 | USE kinds |
---|
| 183 | |
---|
[1212] | 184 | IMPLICIT NONE |
---|
| 185 | |
---|
[1682] | 186 | INTEGER(iwp) :: i !< |
---|
| 187 | INTEGER(iwp) :: j !< |
---|
| 188 | INTEGER(iwp) :: k !< |
---|
| 189 | INTEGER(iwp) :: nnxh !< |
---|
| 190 | INTEGER(iwp) :: nnyh !< |
---|
[1212] | 191 | |
---|
[1682] | 192 | REAL(wp) :: ll(nxl_z:nxr_z,nys_z:nyn_z) !< |
---|
[1212] | 193 | !$acc declare create( ll ) |
---|
| 194 | |
---|
| 195 | |
---|
| 196 | nnxh = ( nx + 1 ) / 2 |
---|
| 197 | nnyh = ( ny + 1 ) / 2 |
---|
| 198 | |
---|
| 199 | !$acc kernels present( tric ) |
---|
| 200 | DO j = nys_z, nyn_z |
---|
| 201 | DO i = nxl_z, nxr_z |
---|
| 202 | IF ( j >= 0 .AND. j <= nnyh ) THEN |
---|
| 203 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 204 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 205 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 206 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 207 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 208 | ELSE |
---|
[1342] | 209 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 210 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 211 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 212 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 213 | ENDIF |
---|
| 214 | ELSE |
---|
| 215 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 216 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 217 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 218 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 219 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 220 | ELSE |
---|
[1342] | 221 | ll(i,j) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 222 | REAL( nx+1, KIND=wp ) ) ) / ( dx * dx ) + & |
---|
| 223 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( ny+1-j ) ) / & |
---|
| 224 | REAL( ny+1, KIND=wp ) ) ) / ( dy * dy ) |
---|
[1212] | 225 | ENDIF |
---|
| 226 | ENDIF |
---|
| 227 | ENDDO |
---|
| 228 | ENDDO |
---|
| 229 | |
---|
| 230 | DO k = 0, nz-1 |
---|
| 231 | DO j = nys_z, nyn_z |
---|
| 232 | DO i = nxl_z, nxr_z |
---|
| 233 | tric(i,j,k) = ddzuw(k,3) - ll(i,j) |
---|
| 234 | ENDDO |
---|
| 235 | ENDDO |
---|
| 236 | ENDDO |
---|
| 237 | !$acc end kernels |
---|
| 238 | |
---|
| 239 | IF ( ibc_p_b == 1 ) THEN |
---|
| 240 | !$acc kernels present( tric ) |
---|
| 241 | DO j = nys_z, nyn_z |
---|
| 242 | DO i = nxl_z, nxr_z |
---|
| 243 | tric(i,j,0) = tric(i,j,0) + ddzuw(0,1) |
---|
| 244 | ENDDO |
---|
| 245 | ENDDO |
---|
| 246 | !$acc end kernels |
---|
| 247 | ENDIF |
---|
| 248 | IF ( ibc_p_t == 1 ) THEN |
---|
| 249 | !$acc kernels present( tric ) |
---|
| 250 | DO j = nys_z, nyn_z |
---|
| 251 | DO i = nxl_z, nxr_z |
---|
| 252 | tric(i,j,nz-1) = tric(i,j,nz-1) + ddzuw(nz-1,2) |
---|
| 253 | ENDDO |
---|
| 254 | ENDDO |
---|
| 255 | !$acc end kernels |
---|
| 256 | ENDIF |
---|
| 257 | |
---|
| 258 | END SUBROUTINE maketri |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | !------------------------------------------------------------------------------! |
---|
[1682] | 262 | ! Description: |
---|
| 263 | ! ------------ |
---|
| 264 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1212] | 265 | !------------------------------------------------------------------------------! |
---|
[1682] | 266 | SUBROUTINE tridia_substi( ar ) |
---|
[1212] | 267 | |
---|
[1682] | 268 | |
---|
[1320] | 269 | USE arrays_3d, & |
---|
| 270 | ONLY: tri |
---|
[1212] | 271 | |
---|
[1320] | 272 | USE control_parameters, & |
---|
| 273 | ONLY: ibc_p_b, ibc_p_t |
---|
| 274 | |
---|
| 275 | USE kinds |
---|
| 276 | |
---|
[1212] | 277 | IMPLICIT NONE |
---|
| 278 | |
---|
[1682] | 279 | INTEGER(iwp) :: i !< |
---|
| 280 | INTEGER(iwp) :: j !< |
---|
| 281 | INTEGER(iwp) :: k !< |
---|
[1212] | 282 | |
---|
[1682] | 283 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1212] | 284 | |
---|
[1682] | 285 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
[1212] | 286 | !$acc declare create( ar1 ) |
---|
| 287 | |
---|
| 288 | ! |
---|
| 289 | !-- Forward substitution |
---|
| 290 | DO k = 0, nz - 1 |
---|
| 291 | !$acc kernels present( ar, tri ) |
---|
| 292 | DO j = nys_z, nyn_z |
---|
| 293 | DO i = nxl_z, nxr_z |
---|
| 294 | |
---|
| 295 | IF ( k == 0 ) THEN |
---|
| 296 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 297 | ELSE |
---|
| 298 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,j,k,2) * ar1(i,j,k-1) |
---|
| 299 | ENDIF |
---|
| 300 | |
---|
| 301 | ENDDO |
---|
| 302 | ENDDO |
---|
| 303 | !$acc end kernels |
---|
| 304 | ENDDO |
---|
| 305 | |
---|
| 306 | ! |
---|
| 307 | !-- Backward substitution |
---|
| 308 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 309 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 310 | !-- the model domain. |
---|
| 311 | DO k = nz-1, 0, -1 |
---|
| 312 | !$acc kernels present( ar, tri ) |
---|
| 313 | DO j = nys_z, nyn_z |
---|
| 314 | DO i = nxl_z, nxr_z |
---|
| 315 | |
---|
| 316 | IF ( k == nz-1 ) THEN |
---|
[1342] | 317 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,j,k,1) + 1.0E-20_wp ) |
---|
[1212] | 318 | ELSE |
---|
| 319 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 320 | / tri(i,j,k,1) |
---|
| 321 | ENDIF |
---|
| 322 | ENDDO |
---|
| 323 | ENDDO |
---|
| 324 | !$acc end kernels |
---|
| 325 | ENDDO |
---|
| 326 | |
---|
| 327 | ! |
---|
| 328 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 329 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 330 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 331 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 332 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 333 | !$acc kernels loop present( ar ) |
---|
| 334 | DO k = 1, nz |
---|
[1342] | 335 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1212] | 336 | ENDDO |
---|
[1257] | 337 | !$acc end kernels loop |
---|
[1212] | 338 | ENDIF |
---|
| 339 | ENDIF |
---|
| 340 | |
---|
| 341 | END SUBROUTINE tridia_substi |
---|
| 342 | |
---|
| 343 | |
---|
[1216] | 344 | !------------------------------------------------------------------------------! |
---|
[1682] | 345 | ! Description: |
---|
| 346 | ! ------------ |
---|
| 347 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1216] | 348 | !------------------------------------------------------------------------------! |
---|
[1682] | 349 | SUBROUTINE tridia_substi_overlap( ar, jj ) |
---|
[1216] | 350 | |
---|
[1682] | 351 | |
---|
[1320] | 352 | USE arrays_3d, & |
---|
| 353 | ONLY: tri |
---|
[1216] | 354 | |
---|
[1320] | 355 | USE control_parameters, & |
---|
| 356 | ONLY: ibc_p_b, ibc_p_t |
---|
| 357 | |
---|
| 358 | USE kinds |
---|
| 359 | |
---|
[1216] | 360 | IMPLICIT NONE |
---|
| 361 | |
---|
[1682] | 362 | INTEGER(iwp) :: i !< |
---|
| 363 | INTEGER(iwp) :: j !< |
---|
| 364 | INTEGER(iwp) :: jj !< |
---|
| 365 | INTEGER(iwp) :: k !< |
---|
[1216] | 366 | |
---|
[1682] | 367 | REAL(wp) :: ar(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1216] | 368 | |
---|
[1682] | 369 | REAL(wp), DIMENSION(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) :: ar1 !< |
---|
[1216] | 370 | !$acc declare create( ar1 ) |
---|
| 371 | |
---|
| 372 | ! |
---|
| 373 | !-- Forward substitution |
---|
| 374 | DO k = 0, nz - 1 |
---|
| 375 | !$acc kernels present( ar, tri ) |
---|
| 376 | !$acc loop |
---|
| 377 | DO j = nys_z, nyn_z |
---|
| 378 | DO i = nxl_z, nxr_z |
---|
| 379 | |
---|
| 380 | IF ( k == 0 ) THEN |
---|
| 381 | ar1(i,j,k) = ar(i,j,k+1) |
---|
| 382 | ELSE |
---|
| 383 | ar1(i,j,k) = ar(i,j,k+1) - tri(i,jj,k,2) * ar1(i,j,k-1) |
---|
| 384 | ENDIF |
---|
| 385 | |
---|
| 386 | ENDDO |
---|
| 387 | ENDDO |
---|
| 388 | !$acc end kernels |
---|
| 389 | ENDDO |
---|
| 390 | |
---|
| 391 | ! |
---|
| 392 | !-- Backward substitution |
---|
| 393 | !-- Note, the 1.0E-20 in the denominator is due to avoid divisions |
---|
| 394 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 395 | !-- the model domain. |
---|
| 396 | DO k = nz-1, 0, -1 |
---|
| 397 | !$acc kernels present( ar, tri ) |
---|
| 398 | !$acc loop |
---|
| 399 | DO j = nys_z, nyn_z |
---|
| 400 | DO i = nxl_z, nxr_z |
---|
| 401 | |
---|
| 402 | IF ( k == nz-1 ) THEN |
---|
[1342] | 403 | ar(i,j,k+1) = ar1(i,j,k) / ( tri(i,jj,k,1) + 1.0E-20_wp ) |
---|
[1216] | 404 | ELSE |
---|
| 405 | ar(i,j,k+1) = ( ar1(i,j,k) - ddzuw(k,2) * ar(i,j,k+2) ) & |
---|
| 406 | / tri(i,jj,k,1) |
---|
| 407 | ENDIF |
---|
| 408 | ENDDO |
---|
| 409 | ENDDO |
---|
| 410 | !$acc end kernels |
---|
| 411 | ENDDO |
---|
| 412 | |
---|
| 413 | ! |
---|
| 414 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 415 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 416 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 417 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 418 | IF ( nys_z == 0 .AND. nxl_z == 0 ) THEN |
---|
| 419 | !$acc kernels loop present( ar ) |
---|
| 420 | DO k = 1, nz |
---|
[1342] | 421 | ar(nxl_z,nys_z,k) = 0.0_wp |
---|
[1216] | 422 | ENDDO |
---|
| 423 | ENDIF |
---|
| 424 | ENDIF |
---|
| 425 | |
---|
| 426 | END SUBROUTINE tridia_substi_overlap |
---|
| 427 | |
---|
| 428 | |
---|
[1212] | 429 | !------------------------------------------------------------------------------! |
---|
[1682] | 430 | ! Description: |
---|
| 431 | ! ------------ |
---|
| 432 | !> Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
[1212] | 433 | !------------------------------------------------------------------------------! |
---|
[1682] | 434 | SUBROUTINE split |
---|
[1212] | 435 | |
---|
[1682] | 436 | |
---|
[1320] | 437 | USE arrays_3d, & |
---|
| 438 | ONLY: tri, tric |
---|
[1212] | 439 | |
---|
[1320] | 440 | USE kinds |
---|
| 441 | |
---|
[1212] | 442 | IMPLICIT NONE |
---|
| 443 | |
---|
[1682] | 444 | INTEGER(iwp) :: i !< |
---|
| 445 | INTEGER(iwp) :: j !< |
---|
| 446 | INTEGER(iwp) :: k !< |
---|
[1212] | 447 | ! |
---|
| 448 | !-- Splitting |
---|
| 449 | !$acc kernels present( tri, tric ) |
---|
| 450 | !$acc loop |
---|
| 451 | DO j = nys_z, nyn_z |
---|
| 452 | !$acc loop vector( 32 ) |
---|
| 453 | DO i = nxl_z, nxr_z |
---|
| 454 | tri(i,j,0,1) = tric(i,j,0) |
---|
| 455 | ENDDO |
---|
| 456 | ENDDO |
---|
| 457 | !$acc end kernels |
---|
| 458 | |
---|
| 459 | DO k = 1, nz-1 |
---|
| 460 | !$acc kernels present( tri, tric ) |
---|
| 461 | !$acc loop |
---|
| 462 | DO j = nys_z, nyn_z |
---|
| 463 | !$acc loop vector( 32 ) |
---|
| 464 | DO i = nxl_z, nxr_z |
---|
| 465 | tri(i,j,k,2) = ddzuw(k,1) / tri(i,j,k-1,1) |
---|
| 466 | tri(i,j,k,1) = tric(i,j,k) - ddzuw(k-1,2) * tri(i,j,k,2) |
---|
| 467 | ENDDO |
---|
| 468 | ENDDO |
---|
| 469 | !$acc end kernels |
---|
| 470 | ENDDO |
---|
| 471 | |
---|
| 472 | END SUBROUTINE split |
---|
| 473 | |
---|
| 474 | |
---|
| 475 | !------------------------------------------------------------------------------! |
---|
[1682] | 476 | ! Description: |
---|
| 477 | ! ------------ |
---|
| 478 | !> Solves the linear system of equations for a 1d-decomposition along x (see |
---|
| 479 | !> tridia) |
---|
| 480 | !> |
---|
| 481 | !> @attention when using the intel compilers older than 12.0, array tri must |
---|
| 482 | !> be passed as an argument to the contained subroutines. Otherwise |
---|
| 483 | !> addres faults will occur. This feature can be activated with |
---|
| 484 | !> cpp-switch __intel11 |
---|
| 485 | !> On NEC, tri should not be passed (except for routine substi_1dd) |
---|
| 486 | !> because this causes very bad performance. |
---|
[1212] | 487 | !------------------------------------------------------------------------------! |
---|
[1682] | 488 | |
---|
| 489 | SUBROUTINE tridia_1dd( ddx2, ddy2, nx, ny, j, ar, tri_for_1d ) |
---|
[1212] | 490 | |
---|
[1682] | 491 | |
---|
[1320] | 492 | USE arrays_3d, & |
---|
| 493 | ONLY: ddzu_pres, ddzw |
---|
[1212] | 494 | |
---|
[1320] | 495 | USE control_parameters, & |
---|
| 496 | ONLY: ibc_p_b, ibc_p_t |
---|
[1212] | 497 | |
---|
[1320] | 498 | USE kinds |
---|
| 499 | |
---|
[1212] | 500 | IMPLICIT NONE |
---|
| 501 | |
---|
[1682] | 502 | INTEGER(iwp) :: i !< |
---|
| 503 | INTEGER(iwp) :: j !< |
---|
| 504 | INTEGER(iwp) :: k !< |
---|
| 505 | INTEGER(iwp) :: nnyh !< |
---|
| 506 | INTEGER(iwp) :: nx !< |
---|
| 507 | INTEGER(iwp) :: ny !< |
---|
| 508 | INTEGER(iwp) :: omp_get_thread_num !< |
---|
| 509 | INTEGER(iwp) :: tn !< |
---|
[1212] | 510 | |
---|
[1682] | 511 | REAL(wp) :: ddx2 !< |
---|
| 512 | REAL(wp) :: ddy2 !< |
---|
[1212] | 513 | |
---|
[1682] | 514 | REAL(wp), DIMENSION(0:nx,1:nz) :: ar !< |
---|
| 515 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 516 | |
---|
| 517 | |
---|
| 518 | nnyh = ( ny + 1 ) / 2 |
---|
| 519 | |
---|
| 520 | ! |
---|
| 521 | !-- Define constant elements of the tridiagonal matrix. |
---|
| 522 | !-- The compiler on SX6 does loop exchange. If 0:nx is a high power of 2, |
---|
| 523 | !-- the exchanged loops create bank conflicts. The following directive |
---|
| 524 | !-- prohibits loop exchange and the loops perform much better. |
---|
| 525 | !CDIR NOLOOPCHG |
---|
| 526 | DO k = 0, nz-1 |
---|
| 527 | DO i = 0,nx |
---|
[1221] | 528 | tri_for_1d(2,i,k) = ddzu_pres(k+1) * ddzw(k+1) |
---|
| 529 | tri_for_1d(3,i,k) = ddzu_pres(k+2) * ddzw(k+1) |
---|
[1212] | 530 | ENDDO |
---|
| 531 | ENDDO |
---|
| 532 | |
---|
| 533 | IF ( j <= nnyh ) THEN |
---|
| 534 | CALL maketri_1dd( j ) |
---|
| 535 | ELSE |
---|
| 536 | CALL maketri_1dd( ny+1-j ) |
---|
| 537 | ENDIF |
---|
[1815] | 538 | |
---|
[1212] | 539 | CALL split_1dd |
---|
[1221] | 540 | CALL substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 541 | |
---|
| 542 | CONTAINS |
---|
| 543 | |
---|
[1682] | 544 | |
---|
| 545 | !------------------------------------------------------------------------------! |
---|
| 546 | ! Description: |
---|
| 547 | ! ------------ |
---|
| 548 | !> computes the i- and j-dependent component of the matrix |
---|
| 549 | !------------------------------------------------------------------------------! |
---|
[1212] | 550 | SUBROUTINE maketri_1dd( j ) |
---|
| 551 | |
---|
[1320] | 552 | USE constants, & |
---|
| 553 | ONLY: pi |
---|
[1212] | 554 | |
---|
[1320] | 555 | USE kinds |
---|
| 556 | |
---|
[1212] | 557 | IMPLICIT NONE |
---|
| 558 | |
---|
[1682] | 559 | INTEGER(iwp) :: i !< |
---|
| 560 | INTEGER(iwp) :: j !< |
---|
| 561 | INTEGER(iwp) :: k !< |
---|
| 562 | INTEGER(iwp) :: nnxh !< |
---|
[1212] | 563 | |
---|
[1682] | 564 | REAL(wp) :: a !< |
---|
| 565 | REAL(wp) :: c !< |
---|
[1212] | 566 | |
---|
[1682] | 567 | REAL(wp), DIMENSION(0:nx) :: l !< |
---|
[1320] | 568 | |
---|
[1212] | 569 | |
---|
| 570 | nnxh = ( nx + 1 ) / 2 |
---|
| 571 | ! |
---|
| 572 | !-- Provide the tridiagonal matrix for solution of the Poisson equation in |
---|
| 573 | !-- Fourier space. The coefficients are computed following the method of |
---|
| 574 | !-- Schmidt et al. (DFVLR-Mitteilung 84-15), which departs from Stephan |
---|
| 575 | !-- Siano's original version by discretizing the Poisson equation, |
---|
| 576 | !-- before it is Fourier-transformed |
---|
| 577 | DO i = 0, nx |
---|
| 578 | IF ( i >= 0 .AND. i <= nnxh ) THEN |
---|
[1342] | 579 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * i ) / & |
---|
| 580 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 581 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 582 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 583 | ELSE |
---|
[1342] | 584 | l(i) = 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * ( nx+1-i ) ) / & |
---|
| 585 | REAL( nx+1, KIND=wp ) ) ) * ddx2 + & |
---|
| 586 | 2.0_wp * ( 1.0_wp - COS( ( 2.0_wp * pi * j ) / & |
---|
| 587 | REAL( ny+1, KIND=wp ) ) ) * ddy2 |
---|
[1212] | 588 | ENDIF |
---|
| 589 | ENDDO |
---|
| 590 | |
---|
| 591 | DO k = 0, nz-1 |
---|
| 592 | DO i = 0, nx |
---|
[1342] | 593 | a = -1.0_wp * ddzu_pres(k+2) * ddzw(k+1) |
---|
| 594 | c = -1.0_wp * ddzu_pres(k+1) * ddzw(k+1) |
---|
[1221] | 595 | tri_for_1d(1,i,k) = a + c - l(i) |
---|
[1212] | 596 | ENDDO |
---|
| 597 | ENDDO |
---|
| 598 | IF ( ibc_p_b == 1 ) THEN |
---|
| 599 | DO i = 0, nx |
---|
[1221] | 600 | tri_for_1d(1,i,0) = tri_for_1d(1,i,0) + tri_for_1d(2,i,0) |
---|
[1212] | 601 | ENDDO |
---|
| 602 | ENDIF |
---|
| 603 | IF ( ibc_p_t == 1 ) THEN |
---|
| 604 | DO i = 0, nx |
---|
[1221] | 605 | tri_for_1d(1,i,nz-1) = tri_for_1d(1,i,nz-1) + tri_for_1d(3,i,nz-1) |
---|
[1212] | 606 | ENDDO |
---|
| 607 | ENDIF |
---|
| 608 | |
---|
| 609 | END SUBROUTINE maketri_1dd |
---|
| 610 | |
---|
| 611 | |
---|
[1682] | 612 | !------------------------------------------------------------------------------! |
---|
| 613 | ! Description: |
---|
| 614 | ! ------------ |
---|
| 615 | !> Splitting of the tridiagonal matrix (Thomas algorithm) |
---|
| 616 | !------------------------------------------------------------------------------! |
---|
[1212] | 617 | SUBROUTINE split_1dd |
---|
| 618 | |
---|
| 619 | IMPLICIT NONE |
---|
| 620 | |
---|
[1682] | 621 | INTEGER(iwp) :: i !< |
---|
| 622 | INTEGER(iwp) :: k !< |
---|
[1212] | 623 | |
---|
| 624 | |
---|
| 625 | ! |
---|
| 626 | !-- Splitting |
---|
| 627 | DO i = 0, nx |
---|
[1221] | 628 | tri_for_1d(4,i,0) = tri_for_1d(1,i,0) |
---|
[1212] | 629 | ENDDO |
---|
| 630 | DO k = 1, nz-1 |
---|
| 631 | DO i = 0, nx |
---|
[1221] | 632 | tri_for_1d(5,i,k) = tri_for_1d(2,i,k) / tri_for_1d(4,i,k-1) |
---|
| 633 | tri_for_1d(4,i,k) = tri_for_1d(1,i,k) - tri_for_1d(3,i,k-1) * tri_for_1d(5,i,k) |
---|
[1212] | 634 | ENDDO |
---|
| 635 | ENDDO |
---|
| 636 | |
---|
| 637 | END SUBROUTINE split_1dd |
---|
| 638 | |
---|
| 639 | |
---|
| 640 | !------------------------------------------------------------------------------! |
---|
[1682] | 641 | ! Description: |
---|
| 642 | ! ------------ |
---|
| 643 | !> Substitution (Forward and Backward) (Thomas algorithm) |
---|
[1212] | 644 | !------------------------------------------------------------------------------! |
---|
[1682] | 645 | SUBROUTINE substi_1dd( ar, tri_for_1d ) |
---|
[1212] | 646 | |
---|
[1682] | 647 | |
---|
[1212] | 648 | IMPLICIT NONE |
---|
| 649 | |
---|
[1682] | 650 | INTEGER(iwp) :: i !< |
---|
| 651 | INTEGER(iwp) :: k !< |
---|
[1212] | 652 | |
---|
[1682] | 653 | REAL(wp), DIMENSION(0:nx,nz) :: ar !< |
---|
| 654 | REAL(wp), DIMENSION(0:nx,0:nz-1) :: ar1 !< |
---|
| 655 | REAL(wp), DIMENSION(5,0:nx,0:nz-1) :: tri_for_1d !< |
---|
[1212] | 656 | |
---|
| 657 | ! |
---|
| 658 | !-- Forward substitution |
---|
| 659 | DO i = 0, nx |
---|
| 660 | ar1(i,0) = ar(i,1) |
---|
| 661 | ENDDO |
---|
| 662 | DO k = 1, nz-1 |
---|
| 663 | DO i = 0, nx |
---|
[1221] | 664 | ar1(i,k) = ar(i,k+1) - tri_for_1d(5,i,k) * ar1(i,k-1) |
---|
[1212] | 665 | ENDDO |
---|
| 666 | ENDDO |
---|
| 667 | |
---|
| 668 | ! |
---|
| 669 | !-- Backward substitution |
---|
| 670 | !-- Note, the add of 1.0E-20 in the denominator is due to avoid divisions |
---|
| 671 | !-- by zero appearing if the pressure bc is set to neumann at the top of |
---|
| 672 | !-- the model domain. |
---|
| 673 | DO i = 0, nx |
---|
[1342] | 674 | ar(i,nz) = ar1(i,nz-1) / ( tri_for_1d(4,i,nz-1) + 1.0E-20_wp ) |
---|
[1212] | 675 | ENDDO |
---|
| 676 | DO k = nz-2, 0, -1 |
---|
| 677 | DO i = 0, nx |
---|
[1221] | 678 | ar(i,k+1) = ( ar1(i,k) - tri_for_1d(3,i,k) * ar(i,k+2) ) & |
---|
| 679 | / tri_for_1d(4,i,k) |
---|
[1212] | 680 | ENDDO |
---|
| 681 | ENDDO |
---|
| 682 | |
---|
| 683 | ! |
---|
| 684 | !-- Indices i=0, j=0 correspond to horizontally averaged pressure. |
---|
| 685 | !-- The respective values of ar should be zero at all k-levels if |
---|
| 686 | !-- acceleration of horizontally averaged vertical velocity is zero. |
---|
| 687 | IF ( ibc_p_b == 1 .AND. ibc_p_t == 1 ) THEN |
---|
| 688 | IF ( j == 0 ) THEN |
---|
| 689 | DO k = 1, nz |
---|
[1342] | 690 | ar(0,k) = 0.0_wp |
---|
[1212] | 691 | ENDDO |
---|
| 692 | ENDIF |
---|
| 693 | ENDIF |
---|
| 694 | |
---|
| 695 | END SUBROUTINE substi_1dd |
---|
| 696 | |
---|
| 697 | END SUBROUTINE tridia_1dd |
---|
| 698 | |
---|
| 699 | |
---|
| 700 | END MODULE tridia_solver |
---|