[1682] | 1 | !> @file transpose.f90 |
---|
[4540] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4540] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4540] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4540] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4540] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1036] | 18 | ! |
---|
[4540] | 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[1] | 21 | ! ----------------- |
---|
[1321] | 22 | ! |
---|
[2119] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: transpose.f90 4540 2020-05-18 15:23:29Z oliver.maas $ |
---|
[4540] | 27 | ! File re-formatted to follow the PALM coding standard |
---|
| 28 | ! |
---|
| 29 | ! |
---|
| 30 | ! 4429 2020-02-27 15:24:30Z raasch |
---|
| 31 | ! Bugfix: cpp-directives added for serial mode |
---|
| 32 | ! |
---|
[4429] | 33 | ! 4415 2020-02-20 10:30:33Z raasch |
---|
[4540] | 34 | ! Bugfix for misplaced preprocessor directive |
---|
| 35 | ! |
---|
[4415] | 36 | ! 4370 2020-01-10 14:00:44Z raasch |
---|
[4540] | 37 | ! Vector array renamed |
---|
| 38 | ! |
---|
[4370] | 39 | ! 4366 2020-01-09 08:12:43Z raasch |
---|
[4540] | 40 | ! Modifications for NEC vectorization |
---|
| 41 | ! |
---|
[4366] | 42 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4236] | 43 | ! Added missing OpenMP directives |
---|
[4540] | 44 | ! |
---|
[4236] | 45 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 46 | ! Corrected "Former revisions" section |
---|
[4540] | 47 | ! |
---|
[4182] | 48 | ! 4171 2019-08-19 17:44:09Z gronemeier |
---|
[4540] | 49 | ! Loop reordering for performance optimization |
---|
[4171] | 50 | ! |
---|
| 51 | ! 3832 2019-03-28 13:16:58Z raasch |
---|
[4540] | 52 | ! Loop reordering for performance optimization |
---|
[4171] | 53 | ! |
---|
[3832] | 54 | ! 3694 2019-01-23 17:01:49Z knoop |
---|
[3634] | 55 | ! OpenACC port for SPEC |
---|
[4171] | 56 | ! |
---|
[4182] | 57 | ! Revision 1.1 1997/07/24 11:25:18 raasch |
---|
| 58 | ! Initial revision |
---|
| 59 | ! |
---|
| 60 | ! |
---|
[1216] | 61 | ! Description: |
---|
| 62 | ! ------------ |
---|
[4540] | 63 | !> Resorting data for the transposition from x to y. The transposition itself is carried out in |
---|
| 64 | !> transpose_xy. |
---|
| 65 | !--------------------------------------------------------------------------------------------------! |
---|
[4181] | 66 | |
---|
| 67 | #define __acc_fft_device ( defined( _OPENACC ) && ( defined ( __cuda_fft ) ) ) |
---|
| 68 | |
---|
[1682] | 69 | SUBROUTINE resort_for_xy( f_in, f_inv ) |
---|
[1216] | 70 | |
---|
[4171] | 71 | |
---|
[4540] | 72 | USE indices, & |
---|
| 73 | ONLY: nx |
---|
[1216] | 74 | |
---|
[4540] | 75 | USE kinds |
---|
[1320] | 76 | |
---|
[4540] | 77 | USE transpose_indices, & |
---|
| 78 | ONLY: nyn_x, & |
---|
| 79 | nys_x, & |
---|
| 80 | nzb_x, & |
---|
| 81 | nzt_x |
---|
[1320] | 82 | |
---|
[4540] | 83 | IMPLICIT NONE |
---|
[1216] | 84 | |
---|
[4540] | 85 | INTEGER(iwp) :: i !< |
---|
| 86 | INTEGER(iwp) :: j !< |
---|
| 87 | INTEGER(iwp) :: k !< |
---|
[1216] | 88 | |
---|
[4540] | 89 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 90 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1216] | 91 | |
---|
[1] | 92 | ! |
---|
[4540] | 93 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous |
---|
[1216] | 94 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 95 | !$OMP DO |
---|
[3690] | 96 | #if __acc_fft_device |
---|
[4540] | 97 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 98 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 99 | #endif |
---|
[4540] | 100 | DO k = nzb_x, nzt_x |
---|
| 101 | DO j = nys_x, nyn_x |
---|
| 102 | DO i = 0, nx |
---|
| 103 | f_inv(j,k,i) = f_in(i,j,k) |
---|
| 104 | ENDDO |
---|
| 105 | ENDDO |
---|
| 106 | ENDDO |
---|
| 107 | !$OMP END PARALLEL |
---|
[1216] | 108 | |
---|
| 109 | END SUBROUTINE resort_for_xy |
---|
| 110 | |
---|
| 111 | |
---|
[4540] | 112 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 113 | ! Description: |
---|
| 114 | ! ------------ |
---|
[4540] | 115 | !> Transposition of input array (f_in) from x to y. For the input array, all elements along x reside |
---|
| 116 | !> on the same PE, while after transposition, all elements along y reside on the same PE. |
---|
| 117 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 118 | SUBROUTINE transpose_xy( f_inv, f_out ) |
---|
[1] | 119 | |
---|
[1682] | 120 | |
---|
[4429] | 121 | #if defined( __parallel ) |
---|
[4540] | 122 | USE cpulog, & |
---|
| 123 | ONLY: cpu_log, & |
---|
| 124 | cpu_log_nowait, & |
---|
| 125 | log_point_s |
---|
[4429] | 126 | #endif |
---|
[1320] | 127 | |
---|
[4540] | 128 | USE indices, & |
---|
| 129 | ONLY: nx, & |
---|
| 130 | ny |
---|
[4171] | 131 | |
---|
[1320] | 132 | USE kinds |
---|
| 133 | |
---|
[1] | 134 | USE pegrid |
---|
| 135 | |
---|
[4540] | 136 | USE transpose_indices, & |
---|
| 137 | ONLY: nxl_y, & |
---|
| 138 | nxr_y, & |
---|
| 139 | nyn_x, & |
---|
| 140 | nys_x, & |
---|
| 141 | nzb_x, & |
---|
| 142 | nzb_y, & |
---|
| 143 | nzt_x, & |
---|
| 144 | nzt_y |
---|
[1320] | 145 | |
---|
[1] | 146 | IMPLICIT NONE |
---|
| 147 | |
---|
[4171] | 148 | INTEGER(iwp) :: i !< |
---|
| 149 | INTEGER(iwp) :: j !< |
---|
| 150 | INTEGER(iwp) :: k !< |
---|
[4429] | 151 | |
---|
| 152 | #if defined( __parallel ) |
---|
[4540] | 153 | INTEGER(iwp) :: l !< |
---|
| 154 | INTEGER(iwp) :: ys !< |
---|
[4429] | 155 | #endif |
---|
[1] | 156 | |
---|
[4540] | 157 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 158 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[4171] | 159 | |
---|
[4429] | 160 | #if defined( __parallel ) |
---|
[4540] | 161 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[3690] | 162 | #if __acc_fft_device |
---|
[3634] | 163 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 164 | #endif |
---|
[4429] | 165 | #endif |
---|
[1111] | 166 | |
---|
| 167 | |
---|
[1106] | 168 | IF ( numprocs /= 1 ) THEN |
---|
| 169 | |
---|
| 170 | #if defined( __parallel ) |
---|
[1] | 171 | ! |
---|
[1106] | 172 | !-- Transpose array |
---|
[1318] | 173 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 174 | |
---|
| 175 | #if __acc_fft_device |
---|
[3657] | 176 | #ifndef __cuda_aware_mpi |
---|
[3634] | 177 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 178 | #else |
---|
| 179 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 180 | #endif |
---|
[3690] | 181 | #endif |
---|
| 182 | |
---|
[1106] | 183 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4540] | 184 | CALL MPI_ALLTOALL( f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 185 | work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, comm1dy, ierr ) |
---|
[3690] | 186 | |
---|
| 187 | #if __acc_fft_device |
---|
[3657] | 188 | #ifndef __cuda_aware_mpi |
---|
[3634] | 189 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 190 | #else |
---|
| 191 | !$ACC END HOST_DATA |
---|
| 192 | #endif |
---|
[3690] | 193 | #endif |
---|
| 194 | |
---|
[1106] | 195 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 196 | |
---|
| 197 | ! |
---|
[1106] | 198 | !-- Reorder transposed array |
---|
[1111] | 199 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[1106] | 200 | DO l = 0, pdims(2) - 1 |
---|
| 201 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[3690] | 202 | #if __acc_fft_device |
---|
[3634] | 203 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 204 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 205 | #endif |
---|
[4236] | 206 | !$OMP DO |
---|
[1106] | 207 | DO i = nxl_y, nxr_y |
---|
| 208 | DO k = nzb_y, nzt_y |
---|
| 209 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 210 | f_out(j,i,k) = work(j-ys+1,k,i,l) |
---|
[1106] | 211 | ENDDO |
---|
[1] | 212 | ENDDO |
---|
| 213 | ENDDO |
---|
[4236] | 214 | !$OMP END DO NOWAIT |
---|
[1] | 215 | ENDDO |
---|
[683] | 216 | !$OMP END PARALLEL |
---|
[1] | 217 | #endif |
---|
| 218 | |
---|
[1106] | 219 | ELSE |
---|
| 220 | |
---|
| 221 | ! |
---|
| 222 | !-- Reorder transposed array |
---|
| 223 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 224 | !$OMP DO |
---|
[3690] | 225 | #if __acc_fft_device |
---|
[3634] | 226 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 227 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 228 | #endif |
---|
[1106] | 229 | DO k = nzb_y, nzt_y |
---|
| 230 | DO i = nxl_y, nxr_y |
---|
| 231 | DO j = 0, ny |
---|
| 232 | f_out(j,i,k) = f_inv(j,k,i) |
---|
| 233 | ENDDO |
---|
| 234 | ENDDO |
---|
| 235 | ENDDO |
---|
| 236 | !$OMP END PARALLEL |
---|
| 237 | |
---|
| 238 | ENDIF |
---|
| 239 | |
---|
[1] | 240 | END SUBROUTINE transpose_xy |
---|
| 241 | |
---|
| 242 | |
---|
[4540] | 243 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 244 | ! Description: |
---|
| 245 | ! ------------ |
---|
[4540] | 246 | !> Resorting data after the transposition from x to z. The transposition itself is carried out in |
---|
| 247 | !> transpose_xz. |
---|
| 248 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 249 | SUBROUTINE resort_for_xz( f_inv, f_out ) |
---|
[1216] | 250 | |
---|
[1682] | 251 | |
---|
[4540] | 252 | USE indices, & |
---|
| 253 | ONLY: nxl, & |
---|
| 254 | nxr, & |
---|
| 255 | nyn, & |
---|
| 256 | nys, & |
---|
| 257 | nz |
---|
[1216] | 258 | |
---|
[4540] | 259 | USE kinds |
---|
[1320] | 260 | |
---|
[4540] | 261 | IMPLICIT NONE |
---|
[1216] | 262 | |
---|
[4540] | 263 | INTEGER(iwp) :: i !< |
---|
| 264 | INTEGER(iwp) :: j !< |
---|
| 265 | INTEGER(iwp) :: k !< |
---|
[1216] | 266 | |
---|
[4540] | 267 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 268 | REAL(wp) :: f_out(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 269 | |
---|
[1216] | 270 | ! |
---|
[4540] | 271 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
| 272 | !-- In case of parallel fft/transposition, scattered store is faster in backward direction!!! |
---|
| 273 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 274 | !$OMP DO |
---|
[3690] | 275 | #if __acc_fft_device |
---|
[4540] | 276 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 277 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 278 | #endif |
---|
[4540] | 279 | DO i = nxl, nxr |
---|
| 280 | DO j = nys, nyn |
---|
| 281 | DO k = 1, nz |
---|
| 282 | f_out(k,j,i) = f_inv(j,i,k) |
---|
| 283 | ENDDO |
---|
| 284 | ENDDO |
---|
| 285 | ENDDO |
---|
| 286 | !$OMP END PARALLEL |
---|
[1216] | 287 | |
---|
| 288 | END SUBROUTINE resort_for_xz |
---|
| 289 | |
---|
| 290 | |
---|
[4540] | 291 | !--------------------------------------------------------------------------------------------------! |
---|
[1216] | 292 | ! Description: |
---|
| 293 | ! ------------ |
---|
[4540] | 294 | !> Transposition of input array (f_in) from x to z. For the input array, all elements along x reside |
---|
| 295 | !> on the same PE, while after transposition, all elements along z reside on the same PE. |
---|
| 296 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 297 | SUBROUTINE transpose_xz( f_in, f_inv ) |
---|
[1] | 298 | |
---|
[4429] | 299 | #if defined( __parallel ) |
---|
[4540] | 300 | USE cpulog, & |
---|
| 301 | ONLY: cpu_log, & |
---|
| 302 | cpu_log_nowait, & |
---|
| 303 | log_point_s |
---|
[1] | 304 | |
---|
[4540] | 305 | USE fft_xy, & |
---|
| 306 | ONLY: f_vec_x, & |
---|
| 307 | temperton_fft_vec |
---|
[4429] | 308 | #endif |
---|
[4366] | 309 | |
---|
[4540] | 310 | USE indices, & |
---|
| 311 | ONLY: nx, & |
---|
| 312 | nxl, & |
---|
| 313 | nxr, & |
---|
| 314 | nyn, & |
---|
| 315 | nys, & |
---|
| 316 | nz |
---|
| 317 | |
---|
[4429] | 318 | #if defined( __parallel ) |
---|
[4540] | 319 | USE indices, & |
---|
[4429] | 320 | ONLY: nnx |
---|
| 321 | #endif |
---|
[1320] | 322 | |
---|
| 323 | USE kinds |
---|
| 324 | |
---|
[1324] | 325 | USE pegrid |
---|
[1320] | 326 | |
---|
[4540] | 327 | USE transpose_indices, & |
---|
| 328 | ONLY: nyn_x, & |
---|
| 329 | nys_x, & |
---|
| 330 | nzb_x, & |
---|
| 331 | nzt_x |
---|
[1320] | 332 | |
---|
[1] | 333 | IMPLICIT NONE |
---|
| 334 | |
---|
[4171] | 335 | INTEGER(iwp) :: i !< |
---|
| 336 | INTEGER(iwp) :: j !< |
---|
| 337 | INTEGER(iwp) :: k !< |
---|
[4540] | 338 | |
---|
[4429] | 339 | #if defined( __parallel ) |
---|
[4540] | 340 | INTEGER(iwp) :: l !< |
---|
| 341 | INTEGER(iwp) :: mm !< |
---|
| 342 | INTEGER(iwp) :: xs !< |
---|
[4429] | 343 | #endif |
---|
[1] | 344 | |
---|
[4540] | 345 | REAL(wp) :: f_in(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 346 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1] | 347 | |
---|
[4429] | 348 | #if defined( __parallel ) |
---|
[4540] | 349 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[3690] | 350 | #if __acc_fft_device |
---|
[3634] | 351 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 352 | #endif |
---|
[4429] | 353 | #endif |
---|
[1111] | 354 | |
---|
[4366] | 355 | ! |
---|
[4540] | 356 | !-- If the PE grid is one-dimensional along y, the array has only to be reordered locally and |
---|
| 357 | !-- therefore no transposition has to be done. |
---|
[1] | 358 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 359 | |
---|
| 360 | #if defined( __parallel ) |
---|
[1] | 361 | ! |
---|
[4366] | 362 | !-- Reorder input array for transposition. Data from the vectorized Temperton-fft is stored in |
---|
[4370] | 363 | !-- different array format (f_vec_x). |
---|
[4366] | 364 | IF ( temperton_fft_vec ) THEN |
---|
| 365 | |
---|
| 366 | DO l = 0, pdims(1) - 1 |
---|
| 367 | xs = 0 + l * nnx |
---|
| 368 | DO k = nzb_x, nzt_x |
---|
| 369 | DO i = xs, xs + nnx - 1 |
---|
| 370 | DO j = nys_x, nyn_x |
---|
| 371 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
[4370] | 372 | work(j,i-xs+1,k,l) = f_vec_x(mm,i) |
---|
[4366] | 373 | ENDDO |
---|
| 374 | ENDDO |
---|
| 375 | ENDDO |
---|
| 376 | ENDDO |
---|
| 377 | |
---|
| 378 | ELSE |
---|
| 379 | |
---|
| 380 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
| 381 | DO l = 0, pdims(1) - 1 |
---|
| 382 | xs = 0 + l * nnx |
---|
[3690] | 383 | #if __acc_fft_device |
---|
[4366] | 384 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 385 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 386 | #endif |
---|
[4366] | 387 | !$OMP DO |
---|
| 388 | DO k = nzb_x, nzt_x |
---|
| 389 | DO i = xs, xs + nnx - 1 |
---|
| 390 | DO j = nys_x, nyn_x |
---|
| 391 | work(j,i-xs+1,k,l) = f_in(i,j,k) |
---|
| 392 | ENDDO |
---|
[1] | 393 | ENDDO |
---|
| 394 | ENDDO |
---|
[4366] | 395 | !$OMP END DO NOWAIT |
---|
[1] | 396 | ENDDO |
---|
[4366] | 397 | !$OMP END PARALLEL |
---|
[1] | 398 | |
---|
[4366] | 399 | ENDIF |
---|
| 400 | |
---|
[1] | 401 | ! |
---|
| 402 | !-- Transpose array |
---|
[1318] | 403 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 404 | |
---|
| 405 | #if __acc_fft_device |
---|
[3657] | 406 | #ifndef __cuda_aware_mpi |
---|
[3634] | 407 | !$ACC UPDATE HOST(work) |
---|
[3657] | 408 | #else |
---|
| 409 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 410 | #endif |
---|
[3690] | 411 | #endif |
---|
| 412 | |
---|
[622] | 413 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4540] | 414 | CALL MPI_ALLTOALL( work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, & |
---|
| 415 | f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, comm1dx, ierr ) |
---|
[3690] | 416 | |
---|
| 417 | #if __acc_fft_device |
---|
[3657] | 418 | #ifndef __cuda_aware_mpi |
---|
[3634] | 419 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 420 | #else |
---|
| 421 | !$ACC END HOST_DATA |
---|
| 422 | #endif |
---|
[3694] | 423 | #endif |
---|
| 424 | |
---|
[1] | 425 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 426 | #endif |
---|
| 427 | |
---|
[1] | 428 | ELSE |
---|
[1106] | 429 | |
---|
[1] | 430 | ! |
---|
| 431 | !-- Reorder the array in a way that the z index is in first position |
---|
[683] | 432 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 433 | !$OMP DO |
---|
[3690] | 434 | #if __acc_fft_device |
---|
[3634] | 435 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 436 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 437 | #endif |
---|
[1003] | 438 | DO i = nxl, nxr |
---|
| 439 | DO j = nys, nyn |
---|
| 440 | DO k = 1, nz |
---|
[164] | 441 | f_inv(j,i,k) = f_in(i,j,k) |
---|
[1] | 442 | ENDDO |
---|
| 443 | ENDDO |
---|
| 444 | ENDDO |
---|
[683] | 445 | !$OMP END PARALLEL |
---|
[1] | 446 | |
---|
[164] | 447 | ENDIF |
---|
| 448 | |
---|
[1] | 449 | END SUBROUTINE transpose_xz |
---|
| 450 | |
---|
| 451 | |
---|
[4540] | 452 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 453 | ! Description: |
---|
| 454 | ! ------------ |
---|
[4540] | 455 | !> Resorting data after the transposition from y to x. The transposition itself is carried out in |
---|
| 456 | !> transpose_yx. |
---|
| 457 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 458 | SUBROUTINE resort_for_yx( f_inv, f_out ) |
---|
[1216] | 459 | |
---|
[1682] | 460 | |
---|
[4540] | 461 | USE indices, & |
---|
| 462 | ONLY: nx |
---|
[1216] | 463 | |
---|
[4540] | 464 | USE kinds |
---|
[1320] | 465 | |
---|
[4540] | 466 | USE transpose_indices, & |
---|
| 467 | ONLY: nyn_x, & |
---|
| 468 | nys_x, & |
---|
| 469 | nzb_x, & |
---|
| 470 | nzt_x |
---|
[1320] | 471 | |
---|
[4540] | 472 | IMPLICIT NONE |
---|
[1216] | 473 | |
---|
[4540] | 474 | INTEGER(iwp) :: i !< |
---|
| 475 | INTEGER(iwp) :: j !< |
---|
| 476 | INTEGER(iwp) :: k !< |
---|
[1216] | 477 | |
---|
[4540] | 478 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
| 479 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1216] | 480 | |
---|
| 481 | ! |
---|
[4540] | 482 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
| 483 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 484 | !$OMP DO |
---|
[3690] | 485 | #if __acc_fft_device |
---|
[4540] | 486 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 487 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 488 | #endif |
---|
[4540] | 489 | DO k = nzb_x, nzt_x |
---|
| 490 | DO j = nys_x, nyn_x |
---|
| 491 | DO i = 0, nx |
---|
| 492 | f_out(i,j,k) = f_inv(j,k,i) |
---|
| 493 | ENDDO |
---|
| 494 | ENDDO |
---|
| 495 | ENDDO |
---|
| 496 | !$OMP END PARALLEL |
---|
[1216] | 497 | |
---|
| 498 | END SUBROUTINE resort_for_yx |
---|
| 499 | |
---|
| 500 | |
---|
[4540] | 501 | !--------------------------------------------------------------------------------------------------! |
---|
[1216] | 502 | ! Description: |
---|
| 503 | ! ------------ |
---|
[4540] | 504 | !> Transposition of input array (f_in) from y to x. For the input array, all elements along y |
---|
| 505 | !> reside on the same PE, while after transposition, all elements along x reside on the same PE. |
---|
| 506 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 507 | SUBROUTINE transpose_yx( f_in, f_inv ) |
---|
[1] | 508 | |
---|
[1682] | 509 | |
---|
[4429] | 510 | #if defined( __parallel ) |
---|
[4540] | 511 | USE cpulog, & |
---|
| 512 | ONLY: cpu_log, & |
---|
| 513 | cpu_log_nowait, & |
---|
| 514 | log_point_s |
---|
[4429] | 515 | #endif |
---|
[1] | 516 | |
---|
[4540] | 517 | USE indices, & |
---|
| 518 | ONLY: nx, & |
---|
| 519 | ny |
---|
[1320] | 520 | |
---|
| 521 | USE kinds |
---|
| 522 | |
---|
[1324] | 523 | USE pegrid |
---|
[1320] | 524 | |
---|
[4540] | 525 | USE transpose_indices, & |
---|
| 526 | ONLY: nxl_y, & |
---|
| 527 | nxr_y, & |
---|
| 528 | nyn_x, & |
---|
| 529 | nys_x, & |
---|
| 530 | nzb_x, & |
---|
| 531 | nzb_y, & |
---|
| 532 | nzt_x, & |
---|
| 533 | nzt_y |
---|
[1320] | 534 | |
---|
[1] | 535 | IMPLICIT NONE |
---|
| 536 | |
---|
[4171] | 537 | INTEGER(iwp) :: i !< |
---|
| 538 | INTEGER(iwp) :: j !< |
---|
| 539 | INTEGER(iwp) :: k !< |
---|
[4540] | 540 | |
---|
[4429] | 541 | #if defined( __parallel ) |
---|
[4540] | 542 | INTEGER(iwp) :: l !< |
---|
| 543 | INTEGER(iwp) :: ys !< |
---|
[4429] | 544 | #endif |
---|
[1] | 545 | |
---|
[4540] | 546 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 547 | REAL(wp) :: f_inv(nys_x:nyn_x,nzb_x:nzt_x,0:nx) !< |
---|
[1111] | 548 | |
---|
[4429] | 549 | #if defined( __parallel ) |
---|
[4540] | 550 | REAL(wp), DIMENSION(nyn_x-nys_x+1,nzb_y:nzt_y,nxl_y:nxr_y,0:pdims(2)-1) :: work !< |
---|
[3690] | 551 | #if __acc_fft_device |
---|
[3634] | 552 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 553 | #endif |
---|
[4429] | 554 | #endif |
---|
[1111] | 555 | |
---|
[1320] | 556 | |
---|
[1106] | 557 | IF ( numprocs /= 1 ) THEN |
---|
| 558 | |
---|
[1] | 559 | #if defined( __parallel ) |
---|
| 560 | ! |
---|
[1106] | 561 | !-- Reorder input array for transposition |
---|
[1111] | 562 | !$OMP PARALLEL PRIVATE ( i, j, k, l, ys ) |
---|
[1106] | 563 | DO l = 0, pdims(2) - 1 |
---|
| 564 | ys = 0 + l * ( nyn_x - nys_x + 1 ) |
---|
[3690] | 565 | #if __acc_fft_device |
---|
[3634] | 566 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 567 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 568 | #endif |
---|
[4236] | 569 | !$OMP DO |
---|
[1106] | 570 | DO i = nxl_y, nxr_y |
---|
| 571 | DO k = nzb_y, nzt_y |
---|
| 572 | DO j = ys, ys + nyn_x - nys_x |
---|
[1111] | 573 | work(j-ys+1,k,i,l) = f_in(j,i,k) |
---|
[1106] | 574 | ENDDO |
---|
| 575 | ENDDO |
---|
| 576 | ENDDO |
---|
[4236] | 577 | !$OMP END DO NOWAIT |
---|
[1106] | 578 | ENDDO |
---|
| 579 | !$OMP END PARALLEL |
---|
| 580 | |
---|
| 581 | ! |
---|
| 582 | !-- Transpose array |
---|
[1318] | 583 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 584 | |
---|
| 585 | #if __acc_fft_device |
---|
[3657] | 586 | #ifndef __cuda_aware_mpi |
---|
[3634] | 587 | !$ACC UPDATE HOST(work) |
---|
[3657] | 588 | #else |
---|
| 589 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 590 | #endif |
---|
[3690] | 591 | #endif |
---|
| 592 | |
---|
[1106] | 593 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4540] | 594 | CALL MPI_ALLTOALL( work(1,nzb_y,nxl_y,0), sendrecvcount_xy, MPI_REAL, & |
---|
| 595 | f_inv(nys_x,nzb_x,0), sendrecvcount_xy, MPI_REAL, comm1dy, ierr ) |
---|
[3690] | 596 | |
---|
| 597 | #if __acc_fft_device |
---|
[3657] | 598 | #ifndef __cuda_aware_mpi |
---|
[3634] | 599 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 600 | #else |
---|
| 601 | !$ACC END HOST_DATA |
---|
| 602 | #endif |
---|
[3690] | 603 | #endif |
---|
| 604 | |
---|
[1106] | 605 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 606 | #endif |
---|
| 607 | |
---|
| 608 | ELSE |
---|
| 609 | |
---|
| 610 | ! |
---|
[4540] | 611 | !-- Reorder array f_in the same way as ALLTOALL did it. |
---|
[1106] | 612 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 613 | !$OMP DO |
---|
[3690] | 614 | #if __acc_fft_device |
---|
[3634] | 615 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 616 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 617 | #endif |
---|
[1003] | 618 | DO i = nxl_y, nxr_y |
---|
| 619 | DO k = nzb_y, nzt_y |
---|
[1106] | 620 | DO j = 0, ny |
---|
| 621 | f_inv(j,k,i) = f_in(j,i,k) |
---|
[1] | 622 | ENDDO |
---|
| 623 | ENDDO |
---|
| 624 | ENDDO |
---|
[683] | 625 | !$OMP END PARALLEL |
---|
[1] | 626 | |
---|
[1106] | 627 | ENDIF |
---|
[1] | 628 | |
---|
| 629 | END SUBROUTINE transpose_yx |
---|
| 630 | |
---|
| 631 | |
---|
[4540] | 632 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 633 | ! Description: |
---|
| 634 | ! ------------ |
---|
[4540] | 635 | !> Transposition of input array (f_in) from y to x. For the input array, all elements along y reside |
---|
| 636 | !> on the same PE, while after transposition, all elements along x reside on the same PE. This is a |
---|
| 637 | !> direct transposition for arrays with indices in regular order (k,j,i) (cf. transpose_yx). |
---|
| 638 | !--------------------------------------------------------------------------------------------------! |
---|
[4429] | 639 | #if defined( __parallel ) |
---|
[1682] | 640 | SUBROUTINE transpose_yxd( f_in, f_out ) |
---|
[1] | 641 | |
---|
[1682] | 642 | |
---|
[4540] | 643 | USE cpulog, & |
---|
| 644 | ONLY: cpu_log, & |
---|
| 645 | log_point_s |
---|
[1] | 646 | |
---|
[4540] | 647 | USE indices, & |
---|
| 648 | ONLY: nnx, & |
---|
| 649 | nny, & |
---|
| 650 | nnz, & |
---|
| 651 | nx, & |
---|
| 652 | nxl, & |
---|
| 653 | nxr, & |
---|
| 654 | nyn, & |
---|
| 655 | nys, & |
---|
| 656 | nz |
---|
[1320] | 657 | |
---|
| 658 | USE kinds |
---|
| 659 | |
---|
[1324] | 660 | USE pegrid |
---|
[1320] | 661 | |
---|
[4540] | 662 | USE transpose_indices, & |
---|
| 663 | ONLY: nyn_x, & |
---|
| 664 | nys_x, & |
---|
| 665 | nzb_x, & |
---|
| 666 | nzt_x |
---|
[1320] | 667 | |
---|
[1] | 668 | IMPLICIT NONE |
---|
| 669 | |
---|
[4540] | 670 | INTEGER(iwp) :: i !< |
---|
| 671 | INTEGER(iwp) :: j !< |
---|
| 672 | INTEGER(iwp) :: k !< |
---|
| 673 | INTEGER(iwp) :: l !< |
---|
| 674 | INTEGER(iwp) :: m !< |
---|
| 675 | INTEGER(iwp) :: xs !< |
---|
[1] | 676 | |
---|
[4540] | 677 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 678 | REAL(wp) :: f_inv(nxl:nxr,1:nz,nys:nyn) !< |
---|
| 679 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
| 680 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1] | 681 | |
---|
| 682 | ! |
---|
[4540] | 683 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
[1003] | 684 | DO k = 1, nz |
---|
| 685 | DO j = nys, nyn |
---|
| 686 | DO i = nxl, nxr |
---|
[164] | 687 | f_inv(i,k,j) = f_in(k,j,i) |
---|
[1] | 688 | ENDDO |
---|
| 689 | ENDDO |
---|
| 690 | ENDDO |
---|
| 691 | |
---|
| 692 | ! |
---|
| 693 | !-- Transpose array |
---|
| 694 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 695 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4540] | 696 | CALL MPI_ALLTOALL( f_inv(nxl,1,nys), sendrecvcount_xy, MPI_REAL, & |
---|
| 697 | work(1), sendrecvcount_xy, MPI_REAL, comm1dx, ierr ) |
---|
[1] | 698 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 699 | |
---|
| 700 | ! |
---|
| 701 | !-- Reorder transposed array |
---|
| 702 | m = 0 |
---|
| 703 | DO l = 0, pdims(1) - 1 |
---|
| 704 | xs = 0 + l * nnx |
---|
[1003] | 705 | DO j = nys_x, nyn_x |
---|
| 706 | DO k = 1, nz |
---|
[1] | 707 | DO i = xs, xs + nnx - 1 |
---|
| 708 | m = m + 1 |
---|
[164] | 709 | f_out(i,j,k) = work(m) |
---|
[1] | 710 | ENDDO |
---|
| 711 | ENDDO |
---|
| 712 | ENDDO |
---|
| 713 | ENDDO |
---|
| 714 | |
---|
[4429] | 715 | END SUBROUTINE transpose_yxd |
---|
[1] | 716 | #endif |
---|
| 717 | |
---|
| 718 | |
---|
[4540] | 719 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 720 | ! Description: |
---|
| 721 | ! ------------ |
---|
[4540] | 722 | !> Resorting data for the transposition from y to z. The transposition itself is carried out in |
---|
| 723 | !> transpose_yz. |
---|
| 724 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 725 | SUBROUTINE resort_for_yz( f_in, f_inv ) |
---|
[1216] | 726 | |
---|
[1682] | 727 | |
---|
[4540] | 728 | USE indices, & |
---|
| 729 | ONLY: ny |
---|
[1216] | 730 | |
---|
[4540] | 731 | USE kinds |
---|
[1320] | 732 | |
---|
[4540] | 733 | USE transpose_indices, & |
---|
| 734 | ONLY: nxl_y, & |
---|
| 735 | nxr_y, & |
---|
| 736 | nzb_y, & |
---|
| 737 | nzt_y |
---|
[1320] | 738 | |
---|
[4540] | 739 | IMPLICIT NONE |
---|
[1216] | 740 | |
---|
[4540] | 741 | INTEGER(iwp) :: i !< |
---|
| 742 | INTEGER(iwp) :: j !< |
---|
| 743 | INTEGER(iwp) :: k !< |
---|
[1216] | 744 | |
---|
[4540] | 745 | REAL(wp) :: f_in(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
| 746 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1216] | 747 | |
---|
| 748 | ! |
---|
[4540] | 749 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
| 750 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 751 | !$OMP DO |
---|
[3690] | 752 | #if __acc_fft_device |
---|
[4540] | 753 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 754 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 755 | #endif |
---|
[4540] | 756 | DO k = nzb_y, nzt_y |
---|
| 757 | DO i = nxl_y, nxr_y |
---|
| 758 | DO j = 0, ny |
---|
| 759 | f_inv(i,k,j) = f_in(j,i,k) |
---|
| 760 | ENDDO |
---|
| 761 | ENDDO |
---|
| 762 | ENDDO |
---|
| 763 | !$OMP END PARALLEL |
---|
[1216] | 764 | |
---|
| 765 | END SUBROUTINE resort_for_yz |
---|
| 766 | |
---|
| 767 | |
---|
[4540] | 768 | !--------------------------------------------------------------------------------------------------! |
---|
[1216] | 769 | ! Description: |
---|
| 770 | ! ------------ |
---|
[4540] | 771 | !> Transposition of input array (f_in) from y to z. For the input array, all elements along y reside |
---|
| 772 | !> on the same PE, while after transposition, all elements along z reside on the same PE. |
---|
| 773 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 774 | SUBROUTINE transpose_yz( f_inv, f_out ) |
---|
[1] | 775 | |
---|
[1682] | 776 | |
---|
[4429] | 777 | #if defined( __parallel ) |
---|
[4540] | 778 | USE cpulog, & |
---|
| 779 | ONLY: cpu_log, & |
---|
| 780 | cpu_log_nowait, & |
---|
| 781 | log_point_s |
---|
[4429] | 782 | #endif |
---|
[1] | 783 | |
---|
[4540] | 784 | USE indices, & |
---|
| 785 | ONLY: ny, & |
---|
| 786 | nz |
---|
[1320] | 787 | |
---|
| 788 | USE kinds |
---|
| 789 | |
---|
[1324] | 790 | USE pegrid |
---|
[1320] | 791 | |
---|
[4540] | 792 | USE transpose_indices, & |
---|
| 793 | ONLY: nxl_y, & |
---|
| 794 | nxl_z, & |
---|
| 795 | nxr_y, & |
---|
| 796 | nxr_z, & |
---|
| 797 | nyn_z, & |
---|
| 798 | nys_z, & |
---|
| 799 | nzb_y, & |
---|
| 800 | nzt_y |
---|
[1320] | 801 | |
---|
[1] | 802 | IMPLICIT NONE |
---|
| 803 | |
---|
[4171] | 804 | INTEGER(iwp) :: i !< |
---|
| 805 | INTEGER(iwp) :: j !< |
---|
| 806 | INTEGER(iwp) :: k !< |
---|
[4540] | 807 | |
---|
[4429] | 808 | #if defined( __parallel ) |
---|
[4540] | 809 | INTEGER(iwp) :: l !< |
---|
| 810 | INTEGER(iwp) :: zs !< |
---|
[4429] | 811 | #endif |
---|
[1] | 812 | |
---|
[4540] | 813 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 814 | REAL(wp) :: f_out(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
[1111] | 815 | |
---|
[4429] | 816 | #if defined( __parallel ) |
---|
[4540] | 817 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[3690] | 818 | #if __acc_fft_device |
---|
[3634] | 819 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 820 | #endif |
---|
[4429] | 821 | #endif |
---|
[1111] | 822 | |
---|
[1320] | 823 | |
---|
[1] | 824 | ! |
---|
[4540] | 825 | !-- If the PE grid is one-dimensional along y, only local reordering of the data is necessary and no |
---|
| 826 | !-- transposition has to be done. |
---|
[1] | 827 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 828 | |
---|
[683] | 829 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 830 | !$OMP DO |
---|
[3690] | 831 | #if __acc_fft_device |
---|
[3634] | 832 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 833 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 834 | #endif |
---|
[1003] | 835 | DO j = 0, ny |
---|
| 836 | DO k = nzb_y, nzt_y |
---|
| 837 | DO i = nxl_y, nxr_y |
---|
[164] | 838 | f_out(i,j,k) = f_inv(i,k,j) |
---|
[1] | 839 | ENDDO |
---|
| 840 | ENDDO |
---|
| 841 | ENDDO |
---|
[683] | 842 | !$OMP END PARALLEL |
---|
[1] | 843 | |
---|
[1106] | 844 | ELSE |
---|
| 845 | |
---|
| 846 | #if defined( __parallel ) |
---|
[1] | 847 | ! |
---|
[1106] | 848 | !-- Transpose array |
---|
[1318] | 849 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 850 | |
---|
| 851 | #if __acc_fft_device |
---|
[3657] | 852 | #ifndef __cuda_aware_mpi |
---|
[3634] | 853 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 854 | #else |
---|
| 855 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 856 | #endif |
---|
[3690] | 857 | #endif |
---|
| 858 | |
---|
[1106] | 859 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4540] | 860 | CALL MPI_ALLTOALL( f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 861 | work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, comm1dx, ierr ) |
---|
[3690] | 862 | |
---|
| 863 | #if __acc_fft_device |
---|
[3657] | 864 | #ifndef __cuda_aware_mpi |
---|
[3634] | 865 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 866 | #else |
---|
| 867 | !$ACC END HOST_DATA |
---|
| 868 | #endif |
---|
[3690] | 869 | #endif |
---|
| 870 | |
---|
[1106] | 871 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 872 | |
---|
| 873 | ! |
---|
[1106] | 874 | !-- Reorder transposed array |
---|
[1111] | 875 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[1106] | 876 | DO l = 0, pdims(1) - 1 |
---|
| 877 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[3690] | 878 | #if __acc_fft_device |
---|
[3634] | 879 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 880 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 881 | #endif |
---|
[4236] | 882 | !$OMP DO |
---|
[1106] | 883 | DO j = nys_z, nyn_z |
---|
| 884 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 885 | DO i = nxl_z, nxr_z |
---|
[1111] | 886 | f_out(i,j,k) = work(i,k-zs+1,j,l) |
---|
[1106] | 887 | ENDDO |
---|
[1] | 888 | ENDDO |
---|
| 889 | ENDDO |
---|
[4236] | 890 | !$OMP END DO NOWAIT |
---|
[1] | 891 | ENDDO |
---|
[683] | 892 | !$OMP END PARALLEL |
---|
[1] | 893 | #endif |
---|
| 894 | |
---|
[1106] | 895 | ENDIF |
---|
| 896 | |
---|
[1] | 897 | END SUBROUTINE transpose_yz |
---|
| 898 | |
---|
| 899 | |
---|
[4540] | 900 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 901 | ! Description: |
---|
| 902 | ! ------------ |
---|
[4540] | 903 | !> Resorting data for the transposition from z to x. The transposition itself is carried out in |
---|
| 904 | !> transpose_zx. |
---|
| 905 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 906 | SUBROUTINE resort_for_zx( f_in, f_inv ) |
---|
[1216] | 907 | |
---|
[1682] | 908 | |
---|
[4540] | 909 | USE indices, & |
---|
| 910 | ONLY: nxl, & |
---|
| 911 | nxr, & |
---|
| 912 | nyn, & |
---|
| 913 | nys, & |
---|
| 914 | nz |
---|
[1216] | 915 | |
---|
[4540] | 916 | USE kinds |
---|
[1320] | 917 | |
---|
[4540] | 918 | IMPLICIT NONE |
---|
[1216] | 919 | |
---|
[4540] | 920 | INTEGER(iwp) :: i !< |
---|
| 921 | INTEGER(iwp) :: j !< |
---|
| 922 | INTEGER(iwp) :: k !< |
---|
[1216] | 923 | |
---|
[4540] | 924 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 925 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
[1216] | 926 | |
---|
| 927 | ! |
---|
[4540] | 928 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
| 929 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 930 | !$OMP DO |
---|
[3690] | 931 | #if __acc_fft_device |
---|
[4540] | 932 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 933 | !$ACC PRESENT(f_in, f_inv) |
---|
[3690] | 934 | #endif |
---|
[4540] | 935 | DO i = nxl, nxr |
---|
| 936 | DO j = nys, nyn |
---|
| 937 | DO k = 1,nz |
---|
| 938 | f_inv(j,i,k) = f_in(k,j,i) |
---|
| 939 | ENDDO |
---|
| 940 | ENDDO |
---|
| 941 | ENDDO |
---|
| 942 | !$OMP END PARALLEL |
---|
[1216] | 943 | |
---|
| 944 | END SUBROUTINE resort_for_zx |
---|
| 945 | |
---|
| 946 | |
---|
[4540] | 947 | !--------------------------------------------------------------------------------------------------! |
---|
[1216] | 948 | ! Description: |
---|
| 949 | ! ------------ |
---|
[4540] | 950 | !> Transposition of input array (f_in) from z to x. For the input array, all elements along z reside |
---|
| 951 | !> on the same PE, while after transposition, all elements along x reside on the same PE. |
---|
| 952 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 953 | SUBROUTINE transpose_zx( f_inv, f_out ) |
---|
[1] | 954 | |
---|
[1682] | 955 | |
---|
[4429] | 956 | #if defined( __parallel ) |
---|
[4540] | 957 | USE cpulog, & |
---|
| 958 | ONLY: cpu_log, & |
---|
| 959 | cpu_log_nowait, & |
---|
| 960 | log_point_s |
---|
[1] | 961 | |
---|
[4540] | 962 | USE fft_xy, & |
---|
| 963 | ONLY: f_vec_x, & |
---|
| 964 | temperton_fft_vec |
---|
[4429] | 965 | #endif |
---|
[4366] | 966 | |
---|
[4540] | 967 | USE indices, & |
---|
| 968 | ONLY: nx, & |
---|
| 969 | nxl, & |
---|
| 970 | nxr, & |
---|
| 971 | nyn, & |
---|
| 972 | nys, & |
---|
| 973 | nz |
---|
| 974 | |
---|
[4429] | 975 | #if defined( __parallel ) |
---|
[4540] | 976 | USE indices, & |
---|
[4429] | 977 | ONLY: nnx |
---|
| 978 | #endif |
---|
[1320] | 979 | |
---|
| 980 | USE kinds |
---|
| 981 | |
---|
[1324] | 982 | USE pegrid |
---|
[1320] | 983 | |
---|
[4540] | 984 | USE transpose_indices, & |
---|
| 985 | ONLY: nyn_x, & |
---|
| 986 | nys_x, & |
---|
| 987 | nzb_x, & |
---|
| 988 | nzt_x |
---|
[1320] | 989 | |
---|
[1] | 990 | IMPLICIT NONE |
---|
| 991 | |
---|
[4171] | 992 | INTEGER(iwp) :: i !< |
---|
| 993 | INTEGER(iwp) :: j !< |
---|
| 994 | INTEGER(iwp) :: k !< |
---|
[4540] | 995 | |
---|
[4429] | 996 | #if defined( __parallel ) |
---|
[4540] | 997 | INTEGER(iwp) :: l !< |
---|
| 998 | INTEGER(iwp) :: mm !< |
---|
| 999 | INTEGER(iwp) :: xs !< |
---|
[4429] | 1000 | #endif |
---|
[1] | 1001 | |
---|
[4540] | 1002 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 1003 | REAL(wp) :: f_out(0:nx,nys_x:nyn_x,nzb_x:nzt_x) !< |
---|
[1111] | 1004 | |
---|
[4429] | 1005 | #if defined( __parallel ) |
---|
[4540] | 1006 | REAL(wp), DIMENSION(nys_x:nyn_x,nnx,nzb_x:nzt_x,0:pdims(1)-1) :: work !< |
---|
[3690] | 1007 | #if __acc_fft_device |
---|
[3634] | 1008 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 1009 | #endif |
---|
[4429] | 1010 | #endif |
---|
[1] | 1011 | |
---|
[1320] | 1012 | |
---|
[1] | 1013 | ! |
---|
[4540] | 1014 | !-- If the PE grid is one-dimensional along y, only local reordering of the data is necessary and no |
---|
| 1015 | !-- transposition has to be done. |
---|
[1] | 1016 | IF ( pdims(1) == 1 ) THEN |
---|
[1106] | 1017 | |
---|
[683] | 1018 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1019 | !$OMP DO |
---|
[3690] | 1020 | #if __acc_fft_device |
---|
[3634] | 1021 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1022 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 1023 | #endif |
---|
[1003] | 1024 | DO k = 1, nz |
---|
| 1025 | DO i = nxl, nxr |
---|
| 1026 | DO j = nys, nyn |
---|
[164] | 1027 | f_out(i,j,k) = f_inv(j,i,k) |
---|
[1] | 1028 | ENDDO |
---|
| 1029 | ENDDO |
---|
| 1030 | ENDDO |
---|
[683] | 1031 | !$OMP END PARALLEL |
---|
[1] | 1032 | |
---|
[1106] | 1033 | ELSE |
---|
| 1034 | |
---|
| 1035 | #if defined( __parallel ) |
---|
[1] | 1036 | ! |
---|
[1106] | 1037 | !-- Transpose array |
---|
[1318] | 1038 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 1039 | |
---|
| 1040 | #if __acc_fft_device |
---|
[3657] | 1041 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1042 | !$ACC UPDATE HOST(f_inv) |
---|
[3657] | 1043 | #else |
---|
| 1044 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 1045 | #endif |
---|
[3690] | 1046 | #endif |
---|
| 1047 | |
---|
[1106] | 1048 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4540] | 1049 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zx, MPI_REAL, & |
---|
| 1050 | work(nys_x,1,nzb_x,0), sendrecvcount_zx, MPI_REAL, comm1dx, ierr ) |
---|
[3690] | 1051 | |
---|
| 1052 | #if __acc_fft_device |
---|
[3657] | 1053 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1054 | !$ACC UPDATE DEVICE(work) |
---|
[3657] | 1055 | #else |
---|
| 1056 | !$ACC END HOST_DATA |
---|
| 1057 | #endif |
---|
[3690] | 1058 | #endif |
---|
| 1059 | |
---|
[1106] | 1060 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1] | 1061 | |
---|
| 1062 | ! |
---|
[4366] | 1063 | !-- Reorder transposed array. |
---|
[4370] | 1064 | !-- Data for the vectorized Temperton-fft is stored in different array format (f_vec_x) which |
---|
| 1065 | !-- saves additional data copy in fft_x. |
---|
[4366] | 1066 | IF ( temperton_fft_vec ) THEN |
---|
| 1067 | |
---|
| 1068 | DO l = 0, pdims(1) - 1 |
---|
| 1069 | xs = 0 + l * nnx |
---|
| 1070 | DO k = nzb_x, nzt_x |
---|
| 1071 | DO i = xs, xs + nnx - 1 |
---|
| 1072 | DO j = nys_x, nyn_x |
---|
| 1073 | mm = j-nys_x+1+(k-nzb_x)*(nyn_x-nys_x+1) |
---|
[4370] | 1074 | f_vec_x(mm,i) = work(j,i-xs+1,k,l) |
---|
[4366] | 1075 | ENDDO |
---|
| 1076 | ENDDO |
---|
| 1077 | ENDDO |
---|
| 1078 | ENDDO |
---|
| 1079 | |
---|
| 1080 | ELSE |
---|
| 1081 | |
---|
| 1082 | !$OMP PARALLEL PRIVATE ( i, j, k, l, xs ) |
---|
| 1083 | DO l = 0, pdims(1) - 1 |
---|
| 1084 | xs = 0 + l * nnx |
---|
[3690] | 1085 | #if __acc_fft_device |
---|
[4366] | 1086 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1087 | !$ACC PRESENT(f_out, work) |
---|
[3690] | 1088 | #endif |
---|
[4366] | 1089 | !$OMP DO |
---|
| 1090 | DO k = nzb_x, nzt_x |
---|
| 1091 | DO i = xs, xs + nnx - 1 |
---|
| 1092 | DO j = nys_x, nyn_x |
---|
| 1093 | f_out(i,j,k) = work(j,i-xs+1,k,l) |
---|
| 1094 | ENDDO |
---|
[1106] | 1095 | ENDDO |
---|
[1] | 1096 | ENDDO |
---|
[4366] | 1097 | !$OMP END DO NOWAIT |
---|
[1] | 1098 | ENDDO |
---|
[4366] | 1099 | !$OMP END PARALLEL |
---|
[1] | 1100 | |
---|
[4366] | 1101 | ENDIF |
---|
| 1102 | |
---|
[4415] | 1103 | #endif |
---|
| 1104 | |
---|
[1106] | 1105 | ENDIF |
---|
| 1106 | |
---|
[1] | 1107 | END SUBROUTINE transpose_zx |
---|
| 1108 | |
---|
| 1109 | |
---|
[4540] | 1110 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 1111 | ! Description: |
---|
| 1112 | ! ------------ |
---|
[4540] | 1113 | !> Resorting data after the transposition from z to y. The transposition itself is carried out in |
---|
| 1114 | !> transpose_zy. |
---|
| 1115 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1116 | SUBROUTINE resort_for_zy( f_inv, f_out ) |
---|
[1216] | 1117 | |
---|
[1682] | 1118 | |
---|
[4540] | 1119 | USE indices, & |
---|
| 1120 | ONLY: ny |
---|
[1216] | 1121 | |
---|
[4540] | 1122 | USE kinds |
---|
[1320] | 1123 | |
---|
[4540] | 1124 | USE transpose_indices, & |
---|
| 1125 | ONLY: nxl_y, & |
---|
| 1126 | nxr_y, & |
---|
| 1127 | nzb_y, & |
---|
| 1128 | nzt_y |
---|
[1320] | 1129 | |
---|
[4540] | 1130 | IMPLICIT NONE |
---|
[1216] | 1131 | |
---|
[4540] | 1132 | INTEGER(iwp) :: i !< |
---|
| 1133 | INTEGER(iwp) :: j !< |
---|
| 1134 | INTEGER(iwp) :: k !< |
---|
[1216] | 1135 | |
---|
[4540] | 1136 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
| 1137 | REAL(wp) :: f_out(0:ny,nxl_y:nxr_y,nzb_y:nzt_y) !< |
---|
[1216] | 1138 | |
---|
| 1139 | ! |
---|
[4540] | 1140 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
[1216] | 1141 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1142 | !$OMP DO |
---|
[3690] | 1143 | #if __acc_fft_device |
---|
[3634] | 1144 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1145 | !$ACC PRESENT(f_out, f_inv) |
---|
[3690] | 1146 | #endif |
---|
[4540] | 1147 | DO k = nzb_y, nzt_y |
---|
| 1148 | DO i = nxl_y, nxr_y |
---|
| 1149 | DO j = 0, ny |
---|
| 1150 | f_out(j,i,k) = f_inv(i,k,j) |
---|
| 1151 | ENDDO |
---|
| 1152 | ENDDO |
---|
| 1153 | ENDDO |
---|
| 1154 | !$OMP END PARALLEL |
---|
[1216] | 1155 | |
---|
| 1156 | END SUBROUTINE resort_for_zy |
---|
| 1157 | |
---|
| 1158 | |
---|
[4540] | 1159 | !--------------------------------------------------------------------------------------------------! |
---|
[3241] | 1160 | ! Description:cpu_log_nowait |
---|
[1216] | 1161 | ! ------------ |
---|
[4540] | 1162 | !> Transposition of input array (f_in) from z to y. For the input array, all elements along z reside |
---|
| 1163 | !> on the same PE, while after transposition, all elements along y reside on the same PE. |
---|
| 1164 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 1165 | SUBROUTINE transpose_zy( f_in, f_inv ) |
---|
[1] | 1166 | |
---|
[1682] | 1167 | |
---|
[4429] | 1168 | #if defined( __parallel ) |
---|
[4540] | 1169 | USE cpulog, & |
---|
| 1170 | ONLY: cpu_log, & |
---|
| 1171 | cpu_log_nowait, & |
---|
| 1172 | log_point_s |
---|
[4429] | 1173 | #endif |
---|
[1] | 1174 | |
---|
[4540] | 1175 | USE indices, & |
---|
| 1176 | ONLY: ny, & |
---|
| 1177 | nz |
---|
[1320] | 1178 | |
---|
| 1179 | USE kinds |
---|
| 1180 | |
---|
[1324] | 1181 | USE pegrid |
---|
[1320] | 1182 | |
---|
[4540] | 1183 | USE transpose_indices, & |
---|
| 1184 | ONLY: nxl_y, & |
---|
| 1185 | nxl_z, & |
---|
| 1186 | nxr_y, & |
---|
| 1187 | nxr_z, & |
---|
| 1188 | nyn_z, & |
---|
| 1189 | nys_z, & |
---|
| 1190 | nzb_y, & |
---|
| 1191 | nzt_y |
---|
[1320] | 1192 | |
---|
[1] | 1193 | IMPLICIT NONE |
---|
| 1194 | |
---|
[4171] | 1195 | INTEGER(iwp) :: i !< |
---|
| 1196 | INTEGER(iwp) :: j !< |
---|
| 1197 | INTEGER(iwp) :: k !< |
---|
[4540] | 1198 | |
---|
[4429] | 1199 | #if defined( __parallel ) |
---|
[4540] | 1200 | INTEGER(iwp) :: l !< |
---|
| 1201 | INTEGER(iwp) :: zs !< |
---|
[4429] | 1202 | #endif |
---|
[1] | 1203 | |
---|
[4540] | 1204 | REAL(wp) :: f_in(nxl_z:nxr_z,nys_z:nyn_z,1:nz) !< |
---|
| 1205 | REAL(wp) :: f_inv(nxl_y:nxr_y,nzb_y:nzt_y,0:ny) !< |
---|
[1111] | 1206 | |
---|
[4429] | 1207 | #if defined( __parallel ) |
---|
[4540] | 1208 | REAL(wp), DIMENSION(nxl_z:nxr_z,nzt_y-nzb_y+1,nys_z:nyn_z,0:pdims(1)-1) :: work !< |
---|
[3690] | 1209 | #if __acc_fft_device |
---|
[3634] | 1210 | !$ACC DECLARE CREATE(work) |
---|
[3690] | 1211 | #endif |
---|
[4429] | 1212 | #endif |
---|
[1111] | 1213 | |
---|
[1] | 1214 | ! |
---|
[4540] | 1215 | !-- If the PE grid is one-dimensional along y, the array has only to be reordered locally and |
---|
| 1216 | !-- therefore no transposition has to be done. |
---|
[1] | 1217 | IF ( pdims(1) /= 1 ) THEN |
---|
[1106] | 1218 | |
---|
| 1219 | #if defined( __parallel ) |
---|
[1] | 1220 | ! |
---|
| 1221 | !-- Reorder input array for transposition |
---|
[1111] | 1222 | !$OMP PARALLEL PRIVATE ( i, j, k, l, zs ) |
---|
[1] | 1223 | DO l = 0, pdims(1) - 1 |
---|
[1003] | 1224 | zs = 1 + l * ( nzt_y - nzb_y + 1 ) |
---|
[3690] | 1225 | #if __acc_fft_device |
---|
[3634] | 1226 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1227 | !$ACC PRESENT(work, f_in) |
---|
[3690] | 1228 | #endif |
---|
[4236] | 1229 | !$OMP DO |
---|
[1003] | 1230 | DO j = nys_z, nyn_z |
---|
| 1231 | DO k = zs, zs + nzt_y - nzb_y |
---|
| 1232 | DO i = nxl_z, nxr_z |
---|
[1111] | 1233 | work(i,k-zs+1,j,l) = f_in(i,j,k) |
---|
[1] | 1234 | ENDDO |
---|
| 1235 | ENDDO |
---|
| 1236 | ENDDO |
---|
[4236] | 1237 | !$OMP END DO NOWAIT |
---|
[1] | 1238 | ENDDO |
---|
[683] | 1239 | !$OMP END PARALLEL |
---|
[1] | 1240 | |
---|
| 1241 | ! |
---|
| 1242 | !-- Transpose array |
---|
[1318] | 1243 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start', cpu_log_nowait ) |
---|
[3690] | 1244 | |
---|
| 1245 | #if __acc_fft_device |
---|
[3657] | 1246 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1247 | !$ACC UPDATE HOST(work) |
---|
[3657] | 1248 | #else |
---|
| 1249 | !$ACC HOST_DATA USE_DEVICE(work, f_inv) |
---|
| 1250 | #endif |
---|
[3690] | 1251 | #endif |
---|
| 1252 | |
---|
[622] | 1253 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4540] | 1254 | CALL MPI_ALLTOALL( work(nxl_z,1,nys_z,0), sendrecvcount_yz, MPI_REAL, & |
---|
| 1255 | f_inv(nxl_y,nzb_y,0), sendrecvcount_yz, MPI_REAL, comm1dx, ierr ) |
---|
[3690] | 1256 | |
---|
| 1257 | #if __acc_fft_device |
---|
[3657] | 1258 | #ifndef __cuda_aware_mpi |
---|
[3634] | 1259 | !$ACC UPDATE DEVICE(f_inv) |
---|
[3657] | 1260 | #else |
---|
| 1261 | !$ACC END HOST_DATA |
---|
| 1262 | #endif |
---|
[3690] | 1263 | #endif |
---|
| 1264 | |
---|
[1] | 1265 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
[1106] | 1266 | #endif |
---|
[1] | 1267 | |
---|
| 1268 | ELSE |
---|
| 1269 | ! |
---|
[1106] | 1270 | !-- Reorder the array in the same way like ALLTOALL did it |
---|
[683] | 1271 | !$OMP PARALLEL PRIVATE ( i, j, k ) |
---|
| 1272 | !$OMP DO |
---|
[3690] | 1273 | #if __acc_fft_device |
---|
[3634] | 1274 | !$ACC PARALLEL LOOP COLLAPSE(3) PRIVATE(i,j,k) & |
---|
| 1275 | !$ACC PRESENT(f_inv, f_in) |
---|
[3690] | 1276 | #endif |
---|
[1003] | 1277 | DO k = nzb_y, nzt_y |
---|
| 1278 | DO j = 0, ny |
---|
| 1279 | DO i = nxl_y, nxr_y |
---|
[164] | 1280 | f_inv(i,k,j) = f_in(i,j,k) |
---|
| 1281 | ENDDO |
---|
| 1282 | ENDDO |
---|
| 1283 | ENDDO |
---|
[683] | 1284 | !$OMP END PARALLEL |
---|
[1106] | 1285 | |
---|
| 1286 | ENDIF |
---|
| 1287 | |
---|
[1] | 1288 | END SUBROUTINE transpose_zy |
---|
| 1289 | |
---|
| 1290 | |
---|
[4540] | 1291 | !--------------------------------------------------------------------------------------------------! |
---|
[1] | 1292 | ! Description: |
---|
| 1293 | ! ------------ |
---|
[4540] | 1294 | !> Transposition of input array (f_in) from z to y. For the input array, all elements along z reside |
---|
| 1295 | !> on the same PE, while after transposition, all elements along y reside on the same PE. This is a |
---|
| 1296 | !> direct transposition for arrays with indices in regular order (k,j,i) (cf. transpose_zy). |
---|
| 1297 | !--------------------------------------------------------------------------------------------------! |
---|
[4429] | 1298 | #if defined( __parallel ) |
---|
[1682] | 1299 | SUBROUTINE transpose_zyd( f_in, f_out ) |
---|
[1] | 1300 | |
---|
[1682] | 1301 | |
---|
[4540] | 1302 | USE cpulog, & |
---|
| 1303 | ONLY: cpu_log, & |
---|
| 1304 | log_point_s |
---|
[1] | 1305 | |
---|
[4540] | 1306 | USE indices, & |
---|
| 1307 | ONLY: nnx, & |
---|
| 1308 | nny, & |
---|
| 1309 | nnz, & |
---|
| 1310 | nxl, & |
---|
| 1311 | nxr, & |
---|
| 1312 | nyn, & |
---|
| 1313 | nys, & |
---|
| 1314 | ny, & |
---|
| 1315 | nz |
---|
[1320] | 1316 | |
---|
| 1317 | USE kinds |
---|
| 1318 | |
---|
[1324] | 1319 | USE pegrid |
---|
[1320] | 1320 | |
---|
[4540] | 1321 | USE transpose_indices, & |
---|
| 1322 | ONLY: nxl_yd, & |
---|
| 1323 | nxr_yd, & |
---|
| 1324 | nzb_yd, & |
---|
| 1325 | nzt_yd |
---|
[1320] | 1326 | |
---|
[1] | 1327 | IMPLICIT NONE |
---|
| 1328 | |
---|
[4540] | 1329 | INTEGER(iwp) :: i !< |
---|
| 1330 | INTEGER(iwp) :: j !< |
---|
| 1331 | INTEGER(iwp) :: k !< |
---|
| 1332 | INTEGER(iwp) :: l !< |
---|
| 1333 | INTEGER(iwp) :: m !< |
---|
| 1334 | INTEGER(iwp) :: ys !< |
---|
[1] | 1335 | |
---|
[4540] | 1336 | REAL(wp) :: f_in(1:nz,nys:nyn,nxl:nxr) !< |
---|
| 1337 | REAL(wp) :: f_inv(nys:nyn,nxl:nxr,1:nz) !< |
---|
| 1338 | REAL(wp) :: f_out(0:ny,nxl_yd:nxr_yd,nzb_yd:nzt_yd) !< |
---|
| 1339 | REAL(wp) :: work(nnx*nny*nnz) !< |
---|
[1320] | 1340 | |
---|
[1] | 1341 | ! |
---|
[4540] | 1342 | !-- Rearrange indices of input array in order to make data to be send by MPI contiguous. |
---|
[1003] | 1343 | DO i = nxl, nxr |
---|
| 1344 | DO j = nys, nyn |
---|
| 1345 | DO k = 1, nz |
---|
[164] | 1346 | f_inv(j,i,k) = f_in(k,j,i) |
---|
[1] | 1347 | ENDDO |
---|
| 1348 | ENDDO |
---|
| 1349 | ENDDO |
---|
| 1350 | |
---|
| 1351 | ! |
---|
[4540] | 1352 | !-- Move data to different array, because memory location of work1 is needed further below |
---|
| 1353 | !-- (work1 = work2). If the PE grid is one-dimensional along x, only local reordering of the data is |
---|
| 1354 | !-- necessary and no transposition has to be done. |
---|
[1] | 1355 | IF ( pdims(2) == 1 ) THEN |
---|
[1003] | 1356 | DO k = 1, nz |
---|
| 1357 | DO i = nxl, nxr |
---|
| 1358 | DO j = nys, nyn |
---|
[164] | 1359 | f_out(j,i,k) = f_inv(j,i,k) |
---|
[1] | 1360 | ENDDO |
---|
| 1361 | ENDDO |
---|
| 1362 | ENDDO |
---|
| 1363 | RETURN |
---|
| 1364 | ENDIF |
---|
| 1365 | |
---|
| 1366 | ! |
---|
| 1367 | !-- Transpose array |
---|
| 1368 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'start' ) |
---|
[622] | 1369 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4540] | 1370 | CALL MPI_ALLTOALL( f_inv(nys,nxl,1), sendrecvcount_zyd, MPI_REAL, & |
---|
| 1371 | work(1), sendrecvcount_zyd, MPI_REAL, comm1dy, ierr ) |
---|
[1] | 1372 | CALL cpu_log( log_point_s(32), 'mpi_alltoall', 'stop' ) |
---|
| 1373 | |
---|
| 1374 | ! |
---|
| 1375 | !-- Reorder transposed array |
---|
| 1376 | m = 0 |
---|
| 1377 | DO l = 0, pdims(2) - 1 |
---|
| 1378 | ys = 0 + l * nny |
---|
[1003] | 1379 | DO k = nzb_yd, nzt_yd |
---|
| 1380 | DO i = nxl_yd, nxr_yd |
---|
[1] | 1381 | DO j = ys, ys + nny - 1 |
---|
| 1382 | m = m + 1 |
---|
[164] | 1383 | f_out(j,i,k) = work(m) |
---|
[1] | 1384 | ENDDO |
---|
| 1385 | ENDDO |
---|
| 1386 | ENDDO |
---|
| 1387 | ENDDO |
---|
| 1388 | |
---|
[4429] | 1389 | END SUBROUTINE transpose_zyd |
---|
[1] | 1390 | #endif |
---|