!> @file time_integration_spinup.f90 !------------------------------------------------------------------------------! ! This file is part of the PALM model system. ! ! PALM is free software: you can redistribute it and/or modify it under the ! terms of the GNU General Public License as published by the Free Software ! Foundation, either version 3 of the License, or (at your option) any later ! version. ! ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License along with ! PALM. If not, see . ! ! Copyright 1997-2018 Leibniz Universitaet Hannover !------------------------------------------------------------------------------! ! ! Current revisions: ! ------------------ ! ! ! Former revisions: ! ----------------- ! $Id: time_integration_spinup.f90 2782 2018-02-02 11:51:10Z thiele $ ! Bugfix and re-activation of homogeneous setting of velocity components ! during spinup ! ! 2758 2018-01-17 12:55:21Z suehring ! Comment out homogeneous setting of wind velocity as this will lead to zero ! friction velocity and cause problems in MOST relationships. ! ! 2728 2018-01-09 07:03:53Z maronga ! Set velocity componenets to homogeneous values during spinup ! ! 2724 2018-01-05 12:12:38Z maronga ! Use dt_spinup for all active components during spinup ! ! 2723 2018-01-05 09:27:03Z maronga ! Bugfix: array rad_sw_in no longer exists and is thus removed from RUN_CONTROL ! output. ! Added output of XY and 3D data during spinup. ! Bugfix: time step in LSM and USM was set to dt_3d instead of dt_spinup ! ! 2718 2018-01-02 08:49:38Z maronga ! Corrected "Former revisions" section ! ! 2696 2017-12-14 17:12:51Z kanani ! Change in file header (GPL part) ! Added radiation interactions (moved from USM) (MS) ! ! 2544 2017-10-13 18:09:32Z maronga ! Date and time quantities are now read from date_and_time_mod ! ! 2299 2017-06-29 10:14:38Z maronga ! Call of soil model adjusted to avoid prognostic equation for soil moisture ! during spinup. ! Better representation of diurnal cycle of near-surface temperature. ! Excluded prognostic equation for soil moisture during spinup. ! Added output of run control data for spinup. ! ! 2297 2017-06-28 14:35:57Z scharf ! bugfixes ! ! 2296 2017-06-28 07:53:56Z maronga ! Initial revision ! ! ! Description: ! ------------ !> Integration in time of the non-atmospheric model components such as land !> surface model and urban surface model !------------------------------------------------------------------------------! SUBROUTINE time_integration_spinup USE arrays_3d, & ONLY: pt, pt_p, u, v USE control_parameters, & ONLY: averaging_interval_pr, constant_diffusion, constant_flux_layer, & coupling_start_time, current_timestep_number, & data_output_during_spinup, disturbance_created, dopr_n, do_sum, & dt_averaging_input_pr, dt_dopr, dt_dots, dt_do2d_xy, dt_do3d, & dt_run_control, dt_spinup, dt_3d, humidity, & intermediate_timestep_count, & intermediate_timestep_count_max, land_surface, & simulated_time, simulated_time_chr, & skip_time_dopr, skip_time_do2d_xy, skip_time_do3d, spinup, & spinup_pt_amplitude, spinup_pt_mean, spinup_time, & timestep_count, timestep_scheme, time_dopr, time_dopr_av, & time_dots, time_do2d_xy, time_do3d, time_run_control, & time_since_reference_point, ug_surface, vg_surface, urban_surface USE constants, & ONLY: pi USE cpulog, & ONLY: cpu_log, log_point, log_point_s USE date_and_time_mod, & ONLY: day_of_year_init, time_utc_init USE indices, & ONLY: nbgp, nzb, nzt, nysg, nyng, nxlg, nxrg USE land_surface_model_mod, & ONLY: lsm_energy_balance, lsm_soil_model, lsm_swap_timelevel USE pegrid, & ONLY: myid USE kinds USE radiation_model_mod, & ONLY: force_radiation_call, radiation, & radiation_control, rad_sw_in, time_radiation, & radiation_interaction, radiation_interactions USE statistics, & ONLY: flow_statistics_called USE surface_layer_fluxes_mod, & ONLY: surface_layer_fluxes USE surface_mod, & ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & surf_usm_v USE urban_surface_mod, & ONLY: usm_material_heat_model, usm_material_model, & usm_surface_energy_balance, usm_swap_timelevel, & usm_green_heat_model, usm_temperature_near_surface IMPLICIT NONE CHARACTER (LEN=9) :: time_to_string !< INTEGER(iwp) :: i !< running index INTEGER(iwp) :: j !< running index INTEGER(iwp) :: k !< running index INTEGER(iwp) :: l !< running index INTEGER(iwp) :: m !< running index INTEGER(iwp) :: current_timestep_number_spinup = 0 !< number if timestep during spinup LOGICAL :: run_control_header_spinup = .FALSE. !< flag parameter for steering whether the header information must be output REAL(wp) :: pt_spinup !< temporary storage of temperature REAL(wp) :: dt_save !< temporary storage for time step REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_save !< temporary storage of temperature REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_save !< temporary storage of u wind component REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_save !< temporary storage of v wind component ! !-- Save 3D arrays because they are to be changed for spinup purpose ALLOCATE( pt_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ALLOCATE( u_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) ALLOCATE( v_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) CALL exchange_horiz( pt, nbgp ) CALL exchange_horiz( u, nbgp ) CALL exchange_horiz( v, nbgp ) pt_save = pt u_save = u v_save = v ! !-- Set the same wall-adjacent velocity to all grid points. The sign of the !-- original velocity field must be preserved because the surface schemes crash !-- otherwise. The precise reason is still unknown. A minimum velocity of 0.1 !-- m/s is used to maintain turbulent transfer at the surface. IF ( land_surface ) THEN DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) k = surf_lsm_h%k(m) u(k,j,i) = SIGN(1.0_wp,u(k,j,i)) * MAX(ug_surface,0.1_wp) v(k,j,i) = SIGN(1.0_wp,v(k,j,i)) * MAX(vg_surface,0.1_wp) ENDDO DO l = 0, 3 DO m = 1, surf_lsm_v(l)%ns i = surf_lsm_v(l)%i(m) j = surf_lsm_v(l)%j(m) k = surf_lsm_v(l)%k(m) u(k,j,i) = SIGN(1.0_wp,u(k,j,i)) * MAX(ug_surface,0.1_wp) v(k,j,i) = SIGN(1.0_wp,v(k,j,i)) * MAX(vg_surface,0.1_wp) ENDDO ENDDO ENDIF IF ( urban_surface ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) u(k,j,i) = SIGN(1.0_wp,u(k,j,i)) * MAX(ug_surface,0.1_wp) v(k,j,i) = SIGN(1.0_wp,v(k,j,i)) * MAX(vg_surface,0.1_wp) ENDDO DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) u(k,j,i) = SIGN(1.0_wp,u(k,j,i)) * MAX(ug_surface,0.1_wp) v(k,j,i) = SIGN(1.0_wp,v(k,j,i)) * MAX(vg_surface,0.1_wp) ENDDO ENDDO ENDIF dt_save = dt_3d dt_3d = dt_spinup CALL location_message( 'starting spinup-sequence', .TRUE. ) ! !-- Start of the time loop DO WHILE ( simulated_time < spinup_time ) CALL cpu_log( log_point_s(15), 'timesteps spinup', 'start' ) ! !-- Start of intermediate step loop intermediate_timestep_count = 0 DO WHILE ( intermediate_timestep_count < & intermediate_timestep_count_max ) intermediate_timestep_count = intermediate_timestep_count + 1 ! !-- Set the steering factors for the prognostic equations which depend !-- on the timestep scheme CALL timestep_scheme_steering ! !-- Estimate a near-surface air temperature based on the position of the !-- sun and user input about mean temperature and amplitude. The time is !-- shifted by one hour to simulate a lag between air temperature and !-- incoming radiation pt_spinup = spinup_pt_mean + spinup_pt_amplitude & * solar_angle (time_utc_init + time_since_reference_point - 3600.0) ! !-- Map air temperature to all grid points in the vicinity of a surface !-- element IF ( land_surface ) THEN DO m = 1, surf_lsm_h%ns i = surf_lsm_h%i(m) j = surf_lsm_h%j(m) k = surf_lsm_h%k(m) pt(k,j,i) = pt_spinup ENDDO DO l = 0, 3 DO m = 1, surf_lsm_v(l)%ns i = surf_lsm_v(l)%i(m) j = surf_lsm_v(l)%j(m) k = surf_lsm_v(l)%k(m) pt(k,j,i) = pt_spinup ENDDO ENDDO ENDIF IF ( urban_surface ) THEN DO m = 1, surf_usm_h%ns i = surf_usm_h%i(m) j = surf_usm_h%j(m) k = surf_usm_h%k(m) pt(k,j,i) = pt_spinup ENDDO DO l = 0, 3 DO m = 1, surf_usm_v(l)%ns i = surf_usm_v(l)%i(m) j = surf_usm_v(l)%j(m) k = surf_usm_v(l)%k(m) pt(k,j,i) = pt_spinup ENDDO ENDDO ENDIF ! !-- Swap the time levels in preparation for the next time step. timestep_count = timestep_count + 1 IF ( land_surface ) THEN CALL lsm_swap_timelevel ( 0 ) ENDIF IF ( urban_surface ) THEN CALL usm_swap_timelevel ( 0 ) ENDIF IF ( land_surface ) THEN CALL lsm_swap_timelevel ( MOD( timestep_count, 2) ) ENDIF IF ( urban_surface ) THEN CALL usm_swap_timelevel ( MOD( timestep_count, 2) ) ENDIF ! !-- If required, compute virtual potential temperature IF ( humidity ) THEN CALL compute_vpt ENDIF ! !-- Compute the diffusion quantities IF ( .NOT. constant_diffusion ) THEN ! !-- First the vertical (and horizontal) fluxes in the surface !-- (constant flux) layer are computed IF ( constant_flux_layer ) THEN CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' ) CALL surface_layer_fluxes CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' ) ENDIF ! !-- If required, solve the energy balance for the surface and run soil !-- model. Call for horizontal as well as vertical surfaces. !-- The prognostic equation for soil moisure is switched off IF ( land_surface ) THEN CALL cpu_log( log_point(54), 'land_surface', 'start' ) ! !-- Call for horizontal upward-facing surfaces CALL lsm_energy_balance( .TRUE., -1 ) CALL lsm_soil_model( .TRUE., -1, .FALSE. ) ! !-- Call for northward-facing surfaces CALL lsm_energy_balance( .FALSE., 0 ) CALL lsm_soil_model( .FALSE., 0, .FALSE. ) ! !-- Call for southward-facing surfaces CALL lsm_energy_balance( .FALSE., 1 ) CALL lsm_soil_model( .FALSE., 1, .FALSE. ) ! !-- Call for eastward-facing surfaces CALL lsm_energy_balance( .FALSE., 2 ) CALL lsm_soil_model( .FALSE., 2, .FALSE. ) ! !-- Call for westward-facing surfaces CALL lsm_energy_balance( .FALSE., 3 ) CALL lsm_soil_model( .FALSE., 3, .FALSE. ) CALL cpu_log( log_point(54), 'land_surface', 'stop' ) ENDIF ! !-- If required, solve the energy balance for urban surfaces and run !-- the material heat model IF (urban_surface) THEN CALL cpu_log( log_point(74), 'urban_surface', 'start' ) CALL usm_surface_energy_balance IF ( usm_material_model ) THEN CALL usm_green_heat_model CALL usm_material_heat_model ENDIF IF ( urban_surface ) THEN CALL usm_temperature_near_surface ENDIF CALL cpu_log( log_point(74), 'urban_surface', 'stop' ) ENDIF ENDIF ! !-- If required, calculate radiative fluxes and heating rates IF ( radiation .AND. intermediate_timestep_count & == intermediate_timestep_count_max ) THEN time_radiation = time_radiation + dt_3d IF ( time_radiation >= dt_3d .OR. force_radiation_call ) & THEN CALL cpu_log( log_point(50), 'radiation', 'start' ) IF ( .NOT. force_radiation_call ) THEN time_radiation = time_radiation - dt_3d ENDIF CALL radiation_control CALL cpu_log( log_point(50), 'radiation', 'stop' ) IF ( radiation_interactions ) THEN CALL cpu_log( log_point(75), 'radiation_interaction', 'start' ) CALL radiation_interaction CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' ) ENDIF ENDIF ENDIF ENDDO ! Intermediate step loop ! !-- Increase simulation time and output times current_timestep_number_spinup = current_timestep_number_spinup + 1 simulated_time = simulated_time + dt_3d simulated_time_chr = time_to_string( simulated_time ) time_since_reference_point = simulated_time - coupling_start_time IF ( data_output_during_spinup ) THEN IF ( simulated_time >= skip_time_do2d_xy ) THEN time_do2d_xy = time_do2d_xy + dt_3d ENDIF IF ( simulated_time >= skip_time_do3d ) THEN time_do3d = time_do3d + dt_3d ENDIF time_dots = time_dots + dt_3d IF ( simulated_time >= skip_time_dopr ) THEN time_dopr = time_dopr + dt_3d ENDIF time_run_control = time_run_control + dt_3d ! !-- Carry out statistical analysis and output at the requested output times. !-- The MOD function is used for calculating the output time counters (like !-- time_dopr) in order to regard a possible decrease of the output time !-- interval in case of restart runs ! !-- Set a flag indicating that so far no statistics have been created !-- for this time step flow_statistics_called = .FALSE. ! !-- If required, call flow_statistics for averaging in time IF ( averaging_interval_pr /= 0.0_wp .AND. & ( dt_dopr - time_dopr ) <= averaging_interval_pr .AND. & simulated_time >= skip_time_dopr ) THEN time_dopr_av = time_dopr_av + dt_3d IF ( time_dopr_av >= dt_averaging_input_pr ) THEN do_sum = .TRUE. time_dopr_av = MOD( time_dopr_av, & MAX( dt_averaging_input_pr, dt_3d ) ) ENDIF ENDIF IF ( do_sum ) CALL flow_statistics ! !-- Output of profiles IF ( time_dopr >= dt_dopr ) THEN IF ( dopr_n /= 0 ) CALL data_output_profiles time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) ) time_dopr_av = 0.0_wp ! due to averaging (see above) ENDIF ! !-- Output of time series IF ( time_dots >= dt_dots ) THEN CALL data_output_tseries time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) ) ENDIF ! !-- 2d-data output (cross-sections) IF ( time_do2d_xy >= dt_do2d_xy ) THEN CALL data_output_2d( 'xy', 0 ) time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) ) ENDIF ! !-- 3d-data output (volume data) IF ( time_do3d >= dt_do3d ) THEN CALL data_output_3d( 0 ) time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) ) ENDIF ENDIF ! !-- Computation and output of run control parameters. !-- This is also done whenever perturbations have been imposed ! IF ( time_run_control >= dt_run_control .OR. & ! timestep_scheme(1:5) /= 'runge' .OR. disturbance_created ) & ! THEN ! CALL run_control ! IF ( time_run_control >= dt_run_control ) THEN ! time_run_control = MOD( time_run_control, & ! MAX( dt_run_control, dt_3d ) ) ! ENDIF ! ENDIF CALL cpu_log( log_point_s(15), 'timesteps spinup', 'stop' ) ! !-- Run control output IF ( myid == 0 ) THEN ! !-- If necessary, write header IF ( .NOT. run_control_header_spinup ) THEN CALL check_open( 15 ) WRITE ( 15, 100 ) run_control_header_spinup = .TRUE. ENDIF ! !-- Write some general information about the spinup in run control file WRITE ( 15, 101 ) current_timestep_number_spinup, simulated_time_chr, dt_3d, pt_spinup ! !-- Write buffer contents to disc immediately FLUSH( 15 ) ENDIF ENDDO ! time loop ! !-- Write back saved arrays to the 3D arrays pt = pt_save pt_p = pt_save u = u_save v = v_save ! !-- Reset time step dt_3d = dt_save DEALLOCATE(pt_save) DEALLOCATE(u_save) DEALLOCATE(v_save) CALL location_message( 'finished spinup-sequence', .TRUE. ) ! !-- Formats 100 FORMAT (///'Spinup control output:'/ & '--------------------------------'// & 'ITER. HH:MM:SS DT PT(z_MO)'/ & '--------------------------------') 101 FORMAT (I5,2X,A9,1X,F6.2,3X,F6.2,2X,F6.2) CONTAINS ! !-- Returns the cosine of the solar zenith angle at a given time. This routine !-- is similar to that for calculation zenith (see radiation_model_mod.f90) FUNCTION solar_angle( local_time ) USE constants, & ONLY: pi USE kinds USE radiation_model_mod, & ONLY: decl_1, decl_2, decl_3, lat, lon IMPLICIT NONE REAL(wp) :: solar_angle !< cosine of the solar zenith angle REAL(wp) :: day !< day of the year REAL(wp) :: declination !< solar declination angle REAL(wp) :: hour_angle !< solar hour angle REAL(wp) :: time_utc !< current time in UTC REAL(wp), INTENT(IN) :: local_time ! !-- Calculate current day and time based on the initial values and simulation !-- time day = day_of_year_init + INT(FLOOR( local_time / 86400.0_wp ), KIND=iwp) time_utc = MOD(local_time, 86400.0_wp) ! !-- Calculate solar declination and hour angle declination = ASIN( decl_1 * SIN(decl_2 * REAL(day, KIND=wp) - decl_3) ) hour_angle = 2.0_wp * pi * (time_utc / 86400.0_wp) + lon - pi ! !-- Calculate cosine of solar zenith angle solar_angle = SIN(lat) * SIN(declination) + COS(lat) * COS(declination) & * COS(hour_angle) END FUNCTION solar_angle END SUBROUTINE time_integration_spinup