[2296] | 1 | !> @file time_integration_spinup.f90 |
---|
| 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[2296] | 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2296] | 18 | !------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
| 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
| 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: time_integration_spinup.f90 2728 2018-01-09 07:03:53Z knoop $ |
---|
[2728] | 27 | ! Set velocity componenets to homogeneous values during spinup |
---|
| 28 | ! |
---|
| 29 | ! 2724 2018-01-05 12:12:38Z maronga |
---|
[2724] | 30 | ! Use dt_spinup for all active components during spinup |
---|
| 31 | ! |
---|
| 32 | ! 2723 2018-01-05 09:27:03Z maronga |
---|
[2723] | 33 | ! Bugfix: array rad_sw_in no longer exists and is thus removed from RUN_CONTROL |
---|
| 34 | ! output. |
---|
| 35 | ! Added output of XY and 3D data during spinup. |
---|
| 36 | ! Bugfix: time step in LSM and USM was set to dt_3d instead of dt_spinup |
---|
| 37 | ! |
---|
| 38 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 39 | ! Corrected "Former revisions" section |
---|
| 40 | ! |
---|
| 41 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 42 | ! Change in file header (GPL part) |
---|
[2696] | 43 | ! Added radiation interactions (moved from USM) (MS) |
---|
| 44 | ! |
---|
| 45 | ! 2544 2017-10-13 18:09:32Z maronga |
---|
[2544] | 46 | ! Date and time quantities are now read from date_and_time_mod |
---|
| 47 | ! |
---|
| 48 | ! 2299 2017-06-29 10:14:38Z maronga |
---|
[2299] | 49 | ! Call of soil model adjusted to avoid prognostic equation for soil moisture |
---|
| 50 | ! during spinup. |
---|
| 51 | ! Better representation of diurnal cycle of near-surface temperature. |
---|
| 52 | ! Excluded prognostic equation for soil moisture during spinup. |
---|
| 53 | ! Added output of run control data for spinup. |
---|
| 54 | ! |
---|
| 55 | ! 2297 2017-06-28 14:35:57Z scharf |
---|
[2297] | 56 | ! bugfixes |
---|
| 57 | ! |
---|
| 58 | ! 2296 2017-06-28 07:53:56Z maronga |
---|
[2296] | 59 | ! Initial revision |
---|
| 60 | ! |
---|
| 61 | ! |
---|
| 62 | ! Description: |
---|
| 63 | ! ------------ |
---|
| 64 | !> Integration in time of the non-atmospheric model components such as land |
---|
| 65 | !> surface model and urban surface model |
---|
| 66 | !------------------------------------------------------------------------------! |
---|
| 67 | SUBROUTINE time_integration_spinup |
---|
| 68 | |
---|
| 69 | USE arrays_3d, & |
---|
[2728] | 70 | ONLY: pt, pt_p, u, v |
---|
[2296] | 71 | |
---|
| 72 | USE control_parameters, & |
---|
[2297] | 73 | ONLY: averaging_interval_pr, constant_diffusion, constant_flux_layer, & |
---|
| 74 | coupling_start_time, current_timestep_number, & |
---|
| 75 | data_output_during_spinup, disturbance_created, dopr_n, do_sum, & |
---|
[2728] | 76 | dt_averaging_input_pr, dt_dopr, dt_dots, dt_do2d_xy, dt_do3d, & |
---|
| 77 | dt_run_control, dt_spinup, dt_3d, humidity, & |
---|
| 78 | intermediate_timestep_count, & |
---|
[2297] | 79 | intermediate_timestep_count_max, land_surface, & |
---|
[2723] | 80 | simulated_time, simulated_time_chr, & |
---|
[2728] | 81 | skip_time_dopr, skip_time_do2d_xy, skip_time_do3d, spinup, & |
---|
| 82 | spinup_pt_amplitude, spinup_pt_mean, spinup_time, & |
---|
| 83 | timestep_count, timestep_scheme, time_dopr, time_dopr_av, & |
---|
| 84 | time_dots, time_do2d_xy, time_do3d, time_run_control, & |
---|
| 85 | time_since_reference_point, ug_surface, vg_surface, urban_surface |
---|
[2296] | 86 | |
---|
| 87 | USE constants, & |
---|
| 88 | ONLY: pi |
---|
| 89 | |
---|
| 90 | USE cpulog, & |
---|
| 91 | ONLY: cpu_log, log_point, log_point_s |
---|
| 92 | |
---|
[2544] | 93 | USE date_and_time_mod, & |
---|
| 94 | ONLY: day_of_year_init, time_utc_init |
---|
| 95 | |
---|
[2296] | 96 | USE indices, & |
---|
| 97 | ONLY: nbgp, nzb, nzt, nysg, nyng, nxlg, nxrg |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | USE land_surface_model_mod, & |
---|
[2299] | 101 | ONLY: lsm_energy_balance, lsm_soil_model, lsm_swap_timelevel |
---|
[2296] | 102 | |
---|
[2299] | 103 | USE pegrid, & |
---|
| 104 | ONLY: myid |
---|
[2296] | 105 | |
---|
| 106 | USE kinds |
---|
| 107 | |
---|
| 108 | USE radiation_model_mod, & |
---|
[2724] | 109 | ONLY: force_radiation_call, radiation, & |
---|
[2696] | 110 | radiation_control, rad_sw_in, time_radiation, & |
---|
| 111 | radiation_interaction, radiation_interactions |
---|
[2296] | 112 | |
---|
| 113 | USE statistics, & |
---|
| 114 | ONLY: flow_statistics_called |
---|
| 115 | |
---|
| 116 | USE surface_layer_fluxes_mod, & |
---|
| 117 | ONLY: surface_layer_fluxes |
---|
| 118 | |
---|
[2297] | 119 | USE surface_mod, & |
---|
| 120 | ONLY : surf_def_h, surf_def_v, surf_lsm_h, surf_lsm_v, surf_usm_h, & |
---|
[2296] | 121 | surf_usm_v |
---|
| 122 | |
---|
| 123 | USE urban_surface_mod, & |
---|
| 124 | ONLY: usm_material_heat_model, usm_material_model, & |
---|
[2696] | 125 | usm_surface_energy_balance, usm_swap_timelevel, & |
---|
| 126 | usm_green_heat_model, usm_temperature_near_surface |
---|
[2296] | 127 | |
---|
| 128 | |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | IMPLICIT NONE |
---|
| 132 | |
---|
| 133 | CHARACTER (LEN=9) :: time_to_string !< |
---|
| 134 | |
---|
[2299] | 135 | INTEGER(iwp) :: i !< running index |
---|
| 136 | INTEGER(iwp) :: j !< running index |
---|
| 137 | INTEGER(iwp) :: k !< running index |
---|
| 138 | INTEGER(iwp) :: l !< running index |
---|
| 139 | INTEGER(iwp) :: m !< running index |
---|
| 140 | |
---|
| 141 | INTEGER(iwp) :: current_timestep_number_spinup = 0 !< number if timestep during spinup |
---|
[2296] | 142 | |
---|
[2299] | 143 | LOGICAL :: run_control_header_spinup = .FALSE. !< flag parameter for steering whether the header information must be output |
---|
| 144 | |
---|
[2296] | 145 | REAL(wp) :: pt_spinup !< temporary storage of temperature |
---|
[2723] | 146 | REAL(wp) :: dt_save !< temporary storage for time step |
---|
[2296] | 147 | |
---|
[2728] | 148 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: pt_save !< temporary storage of temperature |
---|
| 149 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: u_save !< temporary storage of u wind component |
---|
| 150 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: v_save !< temporary storage of v wind component |
---|
[2296] | 151 | |
---|
[2728] | 152 | |
---|
| 153 | ! |
---|
| 154 | !-- Save 3D arrays because they are to be changed for spinup purpose |
---|
[2296] | 155 | ALLOCATE( pt_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[2728] | 156 | ALLOCATE( u_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 157 | ALLOCATE( v_save(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[2296] | 158 | |
---|
[2299] | 159 | CALL exchange_horiz( pt, nbgp ) |
---|
[2728] | 160 | CALL exchange_horiz( u, nbgp ) |
---|
| 161 | CALL exchange_horiz( v, nbgp ) |
---|
| 162 | |
---|
[2299] | 163 | pt_save = pt |
---|
[2728] | 164 | u_save = u |
---|
| 165 | v_save = v |
---|
[2296] | 166 | |
---|
[2728] | 167 | ! |
---|
| 168 | !-- Set the same wall-adjacent velocity to all grid points. The sign of the |
---|
| 169 | !-- original velocity field must be preserved because the surface schemes crash |
---|
| 170 | !-- otherwise. The precise reason is still unknown. A minimum velocity of 0.1 |
---|
| 171 | !-- m/s is used to maintain turbulent transfer at the surface. |
---|
| 172 | u = SIGN(1.0_wp,u) * MAX(ug_surface,0.1_wp) |
---|
| 173 | v = SIGN(1.0_wp,v) * MAX(vg_surface,0.1_wp) |
---|
| 174 | |
---|
[2723] | 175 | dt_save = dt_3d |
---|
| 176 | dt_3d = dt_spinup |
---|
| 177 | |
---|
[2296] | 178 | CALL location_message( 'starting spinup-sequence', .TRUE. ) |
---|
| 179 | ! |
---|
| 180 | !-- Start of the time loop |
---|
| 181 | DO WHILE ( simulated_time < spinup_time ) |
---|
| 182 | |
---|
| 183 | CALL cpu_log( log_point_s(15), 'timesteps spinup', 'start' ) |
---|
| 184 | |
---|
| 185 | ! |
---|
| 186 | !-- Start of intermediate step loop |
---|
| 187 | intermediate_timestep_count = 0 |
---|
| 188 | DO WHILE ( intermediate_timestep_count < & |
---|
| 189 | intermediate_timestep_count_max ) |
---|
| 190 | |
---|
| 191 | intermediate_timestep_count = intermediate_timestep_count + 1 |
---|
| 192 | |
---|
| 193 | ! |
---|
| 194 | !-- Set the steering factors for the prognostic equations which depend |
---|
| 195 | !-- on the timestep scheme |
---|
| 196 | CALL timestep_scheme_steering |
---|
| 197 | |
---|
| 198 | |
---|
[2299] | 199 | ! |
---|
| 200 | !-- Estimate a near-surface air temperature based on the position of the |
---|
| 201 | !-- sun and user input about mean temperature and amplitude. The time is |
---|
| 202 | !-- shifted by one hour to simulate a lag between air temperature and |
---|
| 203 | !-- incoming radiation |
---|
| 204 | pt_spinup = spinup_pt_mean + spinup_pt_amplitude & |
---|
| 205 | * solar_angle (time_utc_init + time_since_reference_point - 3600.0) |
---|
[2296] | 206 | |
---|
[2299] | 207 | ! |
---|
| 208 | !-- Map air temperature to all grid points in the vicinity of a surface |
---|
| 209 | !-- element |
---|
[2296] | 210 | IF ( land_surface ) THEN |
---|
| 211 | DO m = 1, surf_lsm_h%ns |
---|
| 212 | i = surf_lsm_h%i(m) |
---|
| 213 | j = surf_lsm_h%j(m) |
---|
| 214 | k = surf_lsm_h%k(m) |
---|
[2299] | 215 | pt(k,j,i) = pt_spinup |
---|
[2296] | 216 | ENDDO |
---|
| 217 | |
---|
| 218 | DO l = 0, 3 |
---|
| 219 | DO m = 1, surf_lsm_v(l)%ns |
---|
| 220 | i = surf_lsm_v(l)%i(m) |
---|
| 221 | j = surf_lsm_v(l)%j(m) |
---|
| 222 | k = surf_lsm_v(l)%k(m) |
---|
[2299] | 223 | pt(k,j,i) = pt_spinup |
---|
[2296] | 224 | ENDDO |
---|
| 225 | ENDDO |
---|
| 226 | ENDIF |
---|
| 227 | |
---|
| 228 | IF ( urban_surface ) THEN |
---|
| 229 | DO m = 1, surf_usm_h%ns |
---|
| 230 | i = surf_usm_h%i(m) |
---|
| 231 | j = surf_usm_h%j(m) |
---|
| 232 | k = surf_usm_h%k(m) |
---|
[2299] | 233 | pt(k,j,i) = pt_spinup |
---|
[2296] | 234 | ENDDO |
---|
| 235 | |
---|
| 236 | DO l = 0, 3 |
---|
| 237 | DO m = 1, surf_usm_v(l)%ns |
---|
| 238 | i = surf_usm_v(l)%i(m) |
---|
| 239 | j = surf_usm_v(l)%j(m) |
---|
| 240 | k = surf_usm_v(l)%k(m) |
---|
[2299] | 241 | pt(k,j,i) = pt_spinup |
---|
[2296] | 242 | ENDDO |
---|
| 243 | ENDDO |
---|
| 244 | ENDIF |
---|
| 245 | |
---|
| 246 | ! |
---|
| 247 | !-- Swap the time levels in preparation for the next time step. |
---|
| 248 | timestep_count = timestep_count + 1 |
---|
| 249 | |
---|
| 250 | IF ( land_surface ) THEN |
---|
| 251 | CALL lsm_swap_timelevel ( 0 ) |
---|
| 252 | ENDIF |
---|
| 253 | |
---|
| 254 | IF ( urban_surface ) THEN |
---|
| 255 | CALL usm_swap_timelevel ( 0 ) |
---|
| 256 | ENDIF |
---|
| 257 | |
---|
| 258 | IF ( land_surface ) THEN |
---|
| 259 | CALL lsm_swap_timelevel ( MOD( timestep_count, 2) ) |
---|
| 260 | ENDIF |
---|
| 261 | |
---|
| 262 | IF ( urban_surface ) THEN |
---|
| 263 | CALL usm_swap_timelevel ( MOD( timestep_count, 2) ) |
---|
| 264 | ENDIF |
---|
| 265 | |
---|
| 266 | ! |
---|
| 267 | !-- If required, compute virtual potential temperature |
---|
| 268 | IF ( humidity ) THEN |
---|
| 269 | CALL compute_vpt |
---|
| 270 | ENDIF |
---|
| 271 | |
---|
| 272 | ! |
---|
| 273 | !-- Compute the diffusion quantities |
---|
| 274 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 275 | |
---|
| 276 | ! |
---|
| 277 | !-- First the vertical (and horizontal) fluxes in the surface |
---|
| 278 | !-- (constant flux) layer are computed |
---|
| 279 | IF ( constant_flux_layer ) THEN |
---|
| 280 | CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' ) |
---|
| 281 | CALL surface_layer_fluxes |
---|
| 282 | CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' ) |
---|
| 283 | ENDIF |
---|
| 284 | |
---|
| 285 | ! |
---|
| 286 | !-- If required, solve the energy balance for the surface and run soil |
---|
[2299] | 287 | !-- model. Call for horizontal as well as vertical surfaces. |
---|
| 288 | !-- The prognostic equation for soil moisure is switched off |
---|
| 289 | IF ( land_surface ) THEN |
---|
[2296] | 290 | |
---|
| 291 | CALL cpu_log( log_point(54), 'land_surface', 'start' ) |
---|
| 292 | ! |
---|
| 293 | !-- Call for horizontal upward-facing surfaces |
---|
| 294 | CALL lsm_energy_balance( .TRUE., -1 ) |
---|
[2299] | 295 | CALL lsm_soil_model( .TRUE., -1, .FALSE. ) |
---|
[2296] | 296 | ! |
---|
| 297 | !-- Call for northward-facing surfaces |
---|
| 298 | CALL lsm_energy_balance( .FALSE., 0 ) |
---|
[2299] | 299 | CALL lsm_soil_model( .FALSE., 0, .FALSE. ) |
---|
[2296] | 300 | ! |
---|
| 301 | !-- Call for southward-facing surfaces |
---|
| 302 | CALL lsm_energy_balance( .FALSE., 1 ) |
---|
[2299] | 303 | CALL lsm_soil_model( .FALSE., 1, .FALSE. ) |
---|
[2296] | 304 | ! |
---|
| 305 | !-- Call for eastward-facing surfaces |
---|
| 306 | CALL lsm_energy_balance( .FALSE., 2 ) |
---|
[2299] | 307 | CALL lsm_soil_model( .FALSE., 2, .FALSE. ) |
---|
[2296] | 308 | ! |
---|
| 309 | !-- Call for westward-facing surfaces |
---|
| 310 | CALL lsm_energy_balance( .FALSE., 3 ) |
---|
[2299] | 311 | CALL lsm_soil_model( .FALSE., 3, .FALSE. ) |
---|
[2296] | 312 | |
---|
| 313 | CALL cpu_log( log_point(54), 'land_surface', 'stop' ) |
---|
| 314 | ENDIF |
---|
| 315 | |
---|
| 316 | ! |
---|
| 317 | !-- If required, solve the energy balance for urban surfaces and run |
---|
| 318 | !-- the material heat model |
---|
| 319 | IF (urban_surface) THEN |
---|
| 320 | CALL cpu_log( log_point(74), 'urban_surface', 'start' ) |
---|
| 321 | CALL usm_surface_energy_balance |
---|
| 322 | IF ( usm_material_model ) THEN |
---|
[2696] | 323 | CALL usm_green_heat_model |
---|
[2296] | 324 | CALL usm_material_heat_model |
---|
| 325 | ENDIF |
---|
[2696] | 326 | IF ( urban_surface ) THEN |
---|
| 327 | CALL usm_temperature_near_surface |
---|
| 328 | ENDIF |
---|
[2296] | 329 | CALL cpu_log( log_point(74), 'urban_surface', 'stop' ) |
---|
| 330 | ENDIF |
---|
| 331 | |
---|
| 332 | ENDIF |
---|
| 333 | |
---|
| 334 | ! |
---|
| 335 | !-- If required, calculate radiative fluxes and heating rates |
---|
| 336 | IF ( radiation .AND. intermediate_timestep_count & |
---|
[2299] | 337 | == intermediate_timestep_count_max ) THEN |
---|
[2296] | 338 | |
---|
[2723] | 339 | time_radiation = time_radiation + dt_3d |
---|
[2296] | 340 | |
---|
[2724] | 341 | IF ( time_radiation >= dt_3d .OR. force_radiation_call ) & |
---|
[2296] | 342 | THEN |
---|
| 343 | |
---|
| 344 | CALL cpu_log( log_point(50), 'radiation', 'start' ) |
---|
| 345 | |
---|
| 346 | IF ( .NOT. force_radiation_call ) THEN |
---|
[2724] | 347 | time_radiation = time_radiation - dt_3d |
---|
[2296] | 348 | ENDIF |
---|
| 349 | |
---|
| 350 | CALL radiation_control |
---|
| 351 | |
---|
| 352 | CALL cpu_log( log_point(50), 'radiation', 'stop' ) |
---|
| 353 | |
---|
[2696] | 354 | IF ( radiation_interactions ) THEN |
---|
| 355 | CALL cpu_log( log_point(75), 'radiation_interaction', 'start' ) |
---|
| 356 | CALL radiation_interaction |
---|
| 357 | CALL cpu_log( log_point(75), 'radiation_interaction', 'stop' ) |
---|
[2296] | 358 | ENDIF |
---|
| 359 | ENDIF |
---|
| 360 | ENDIF |
---|
| 361 | |
---|
| 362 | ENDDO ! Intermediate step loop |
---|
| 363 | |
---|
| 364 | ! |
---|
| 365 | !-- Increase simulation time and output times |
---|
[2299] | 366 | current_timestep_number_spinup = current_timestep_number_spinup + 1 |
---|
[2723] | 367 | simulated_time = simulated_time + dt_3d |
---|
[2296] | 368 | simulated_time_chr = time_to_string( simulated_time ) |
---|
| 369 | time_since_reference_point = simulated_time - coupling_start_time |
---|
| 370 | |
---|
| 371 | IF ( data_output_during_spinup ) THEN |
---|
[2723] | 372 | IF ( simulated_time >= skip_time_do2d_xy ) THEN |
---|
| 373 | time_do2d_xy = time_do2d_xy + dt_3d |
---|
| 374 | ENDIF |
---|
| 375 | IF ( simulated_time >= skip_time_do3d ) THEN |
---|
| 376 | time_do3d = time_do3d + dt_3d |
---|
| 377 | ENDIF |
---|
| 378 | time_dots = time_dots + dt_3d |
---|
[2296] | 379 | IF ( simulated_time >= skip_time_dopr ) THEN |
---|
[2723] | 380 | time_dopr = time_dopr + dt_3d |
---|
[2296] | 381 | ENDIF |
---|
[2723] | 382 | time_run_control = time_run_control + dt_3d |
---|
[2296] | 383 | |
---|
| 384 | ! |
---|
| 385 | !-- Carry out statistical analysis and output at the requested output times. |
---|
| 386 | !-- The MOD function is used for calculating the output time counters (like |
---|
| 387 | !-- time_dopr) in order to regard a possible decrease of the output time |
---|
| 388 | !-- interval in case of restart runs |
---|
| 389 | |
---|
| 390 | ! |
---|
| 391 | !-- Set a flag indicating that so far no statistics have been created |
---|
| 392 | !-- for this time step |
---|
| 393 | flow_statistics_called = .FALSE. |
---|
| 394 | |
---|
| 395 | ! |
---|
| 396 | !-- If required, call flow_statistics for averaging in time |
---|
| 397 | IF ( averaging_interval_pr /= 0.0_wp .AND. & |
---|
| 398 | ( dt_dopr - time_dopr ) <= averaging_interval_pr .AND. & |
---|
| 399 | simulated_time >= skip_time_dopr ) THEN |
---|
[2723] | 400 | time_dopr_av = time_dopr_av + dt_3d |
---|
[2296] | 401 | IF ( time_dopr_av >= dt_averaging_input_pr ) THEN |
---|
| 402 | do_sum = .TRUE. |
---|
| 403 | time_dopr_av = MOD( time_dopr_av, & |
---|
[2723] | 404 | MAX( dt_averaging_input_pr, dt_3d ) ) |
---|
[2296] | 405 | ENDIF |
---|
| 406 | ENDIF |
---|
| 407 | IF ( do_sum ) CALL flow_statistics |
---|
| 408 | |
---|
| 409 | ! |
---|
| 410 | !-- Output of profiles |
---|
| 411 | IF ( time_dopr >= dt_dopr ) THEN |
---|
| 412 | IF ( dopr_n /= 0 ) CALL data_output_profiles |
---|
[2723] | 413 | time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) ) |
---|
[2296] | 414 | time_dopr_av = 0.0_wp ! due to averaging (see above) |
---|
| 415 | ENDIF |
---|
| 416 | |
---|
| 417 | ! |
---|
| 418 | !-- Output of time series |
---|
| 419 | IF ( time_dots >= dt_dots ) THEN |
---|
| 420 | CALL data_output_tseries |
---|
[2723] | 421 | time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) ) |
---|
[2296] | 422 | ENDIF |
---|
| 423 | |
---|
[2723] | 424 | ! |
---|
| 425 | !-- 2d-data output (cross-sections) |
---|
| 426 | IF ( time_do2d_xy >= dt_do2d_xy ) THEN |
---|
| 427 | CALL data_output_2d( 'xy', 0 ) |
---|
| 428 | time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) ) |
---|
| 429 | ENDIF |
---|
| 430 | |
---|
| 431 | ! |
---|
| 432 | !-- 3d-data output (volume data) |
---|
| 433 | IF ( time_do3d >= dt_do3d ) THEN |
---|
| 434 | CALL data_output_3d( 0 ) |
---|
| 435 | time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) ) |
---|
| 436 | ENDIF |
---|
| 437 | |
---|
| 438 | |
---|
[2296] | 439 | ENDIF |
---|
| 440 | |
---|
| 441 | ! |
---|
| 442 | !-- Computation and output of run control parameters. |
---|
| 443 | !-- This is also done whenever perturbations have been imposed |
---|
[2299] | 444 | ! IF ( time_run_control >= dt_run_control .OR. & |
---|
| 445 | ! timestep_scheme(1:5) /= 'runge' .OR. disturbance_created ) & |
---|
| 446 | ! THEN |
---|
| 447 | ! CALL run_control |
---|
| 448 | ! IF ( time_run_control >= dt_run_control ) THEN |
---|
| 449 | ! time_run_control = MOD( time_run_control, & |
---|
[2723] | 450 | ! MAX( dt_run_control, dt_3d ) ) |
---|
[2299] | 451 | ! ENDIF |
---|
| 452 | ! ENDIF |
---|
[2296] | 453 | |
---|
| 454 | CALL cpu_log( log_point_s(15), 'timesteps spinup', 'stop' ) |
---|
| 455 | |
---|
[2299] | 456 | |
---|
| 457 | ! |
---|
| 458 | !-- Run control output |
---|
[2296] | 459 | IF ( myid == 0 ) THEN |
---|
[2299] | 460 | ! |
---|
| 461 | !-- If necessary, write header |
---|
| 462 | IF ( .NOT. run_control_header_spinup ) THEN |
---|
| 463 | CALL check_open( 15 ) |
---|
| 464 | WRITE ( 15, 100 ) |
---|
| 465 | run_control_header_spinup = .TRUE. |
---|
| 466 | ENDIF |
---|
| 467 | ! |
---|
| 468 | !-- Write some general information about the spinup in run control file |
---|
[2723] | 469 | WRITE ( 15, 101 ) current_timestep_number_spinup, simulated_time_chr, dt_3d, pt_spinup |
---|
[2299] | 470 | ! |
---|
| 471 | !-- Write buffer contents to disc immediately |
---|
| 472 | FLUSH( 15 ) |
---|
[2296] | 473 | ENDIF |
---|
| 474 | |
---|
[2299] | 475 | |
---|
| 476 | |
---|
[2296] | 477 | ENDDO ! time loop |
---|
| 478 | |
---|
| 479 | ! |
---|
[2728] | 480 | !-- Write back saved arrays to the 3D arrays |
---|
| 481 | pt = pt_save |
---|
| 482 | pt_p = pt_save |
---|
| 483 | u = u_save |
---|
| 484 | v = v_save |
---|
[2296] | 485 | |
---|
[2723] | 486 | ! |
---|
| 487 | !-- Reset time step |
---|
| 488 | dt_3d = dt_save |
---|
| 489 | |
---|
[2296] | 490 | DEALLOCATE(pt_save) |
---|
[2728] | 491 | DEALLOCATE(u_save) |
---|
| 492 | DEALLOCATE(v_save) |
---|
[2296] | 493 | |
---|
[2299] | 494 | CALL location_message( 'finished spinup-sequence', .TRUE. ) |
---|
[2296] | 495 | |
---|
[2299] | 496 | |
---|
| 497 | ! |
---|
| 498 | !-- Formats |
---|
| 499 | 100 FORMAT (///'Spinup control output:'/ & |
---|
[2723] | 500 | '--------------------------------'// & |
---|
| 501 | 'ITER. HH:MM:SS DT PT(z_MO)'/ & |
---|
| 502 | '--------------------------------') |
---|
[2299] | 503 | 101 FORMAT (I5,2X,A9,1X,F6.2,3X,F6.2,2X,F6.2) |
---|
| 504 | |
---|
| 505 | CONTAINS |
---|
| 506 | |
---|
| 507 | ! |
---|
| 508 | !-- Returns the cosine of the solar zenith angle at a given time. This routine |
---|
| 509 | !-- is similar to that for calculation zenith (see radiation_model_mod.f90) |
---|
| 510 | FUNCTION solar_angle( local_time ) |
---|
| 511 | |
---|
| 512 | USE constants, & |
---|
[2544] | 513 | ONLY: pi |
---|
| 514 | |
---|
[2299] | 515 | USE kinds |
---|
| 516 | |
---|
| 517 | USE radiation_model_mod, & |
---|
[2544] | 518 | ONLY: decl_1, decl_2, decl_3, lat, lon |
---|
[2299] | 519 | |
---|
| 520 | IMPLICIT NONE |
---|
| 521 | |
---|
| 522 | |
---|
| 523 | REAL(wp) :: solar_angle !< cosine of the solar zenith angle |
---|
| 524 | |
---|
| 525 | REAL(wp) :: day !< day of the year |
---|
| 526 | REAL(wp) :: declination !< solar declination angle |
---|
| 527 | REAL(wp) :: hour_angle !< solar hour angle |
---|
| 528 | REAL(wp) :: time_utc !< current time in UTC |
---|
| 529 | REAL(wp), INTENT(IN) :: local_time |
---|
| 530 | ! |
---|
| 531 | !-- Calculate current day and time based on the initial values and simulation |
---|
| 532 | !-- time |
---|
| 533 | |
---|
[2544] | 534 | day = day_of_year_init + INT(FLOOR( local_time / 86400.0_wp ), KIND=iwp) |
---|
[2299] | 535 | time_utc = MOD(local_time, 86400.0_wp) |
---|
| 536 | |
---|
| 537 | |
---|
| 538 | ! |
---|
| 539 | !-- Calculate solar declination and hour angle |
---|
| 540 | declination = ASIN( decl_1 * SIN(decl_2 * REAL(day, KIND=wp) - decl_3) ) |
---|
| 541 | hour_angle = 2.0_wp * pi * (time_utc / 86400.0_wp) + lon - pi |
---|
| 542 | |
---|
| 543 | ! |
---|
| 544 | !-- Calculate cosine of solar zenith angle |
---|
| 545 | solar_angle = SIN(lat) * SIN(declination) + COS(lat) * COS(declination) & |
---|
| 546 | * COS(hour_angle) |
---|
| 547 | |
---|
| 548 | |
---|
| 549 | END FUNCTION solar_angle |
---|
| 550 | |
---|
| 551 | |
---|
[2296] | 552 | END SUBROUTINE time_integration_spinup |
---|