source: palm/trunk/SOURCE/time_integration.f90 @ 4132

Last change on this file since 4132 was 4126, checked in by gronemeier, 5 years ago

renaming in biometeorology_mod, adding of example cases for biometeorolgy

  • Property svn:keywords set to Id
File size: 80.7 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4126 2019-07-30 11:09:11Z suehring $
27! renamed routine to calculate uv exposure
28!
29! 4111 2019-07-22 18:16:57Z suehring
30! advc_flags_1 / advc_flags_2 renamed to advc_flags_m / advc_flags_s
31!
32! 4069 2019-07-01 14:05:51Z Giersch
33! Masked output running index mid has been introduced as a local variable to
34! avoid runtime error (Loop variable has been modified) in time_integration
35!
36! 4064 2019-07-01 05:33:33Z gronemeier
37! Moved call to radiation module out of intermediate time loop
38!
39! 4048 2019-06-21 21:00:21Z knoop
40! Moved production_e_init call into turbulence_closure_mod
41!
42! 4047 2019-06-21 18:58:09Z knoop
43! Added remainings of swap_timelevel upon its dissolution
44!
45! 4043 2019-06-18 16:59:00Z schwenkel
46! Further LPM modularization
47!
48! 4039 2019-06-18 10:32:41Z suehring
49! Rename subroutines in module for diagnostic quantities
50!
51! 4029 2019-06-14 14:04:35Z raasch
52! exchange of ghost points and boundary conditions separated for chemical species and SALSA module,
53! bugfix: decycling of chemistry species after nesting data transfer
54!
55! 4022 2019-06-12 11:52:39Z suehring
56! Call synthetic turbulence generator at last RK3 substep right after boundary
57! conditions are updated in offline nesting in order to assure that
58! perturbations are always imposed
59!
60! 4017 2019-06-06 12:16:46Z schwenkel
61! Mass (volume) flux correction included to ensure global mass conservation for child domains.
62!
63! 3994 2019-05-22 18:08:09Z suehring
64! output of turbulence intensity added
65!
66! 3988 2019-05-22 11:32:37Z kanani
67! Implement steerable output interval for virtual measurements
68!
69! 3968 2019-05-13 11:04:01Z suehring
70! replace nspec_out with n_matched_vars
71!
72! 3929 2019-04-24 12:52:08Z banzhafs
73! Reverse changes back from revision 3878: use chem_boundary_conds instead of
74! chem_boundary_conds_decycle
75!
76!
77! 3885 2019-04-11 11:29:34Z kanani
78! Changes related to global restructuring of location messages and introduction
79! of additional debug messages
80!
81! 3879 2019-04-08 20:25:23Z knoop
82! Moved wtm_forces to module_interface_actions
83!
84! 3872 2019-04-08 15:03:06Z knoop
85! Modifications made for salsa:
86! - Call salsa_emission_update at each time step but do the checks within
87!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
88!   and next_aero_emission_update <= time_since_reference_point ).
89! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
90!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
91! - Apply nesting for salsa variables
92! - Removed cpu_log calls speciffic for salsa.
93!
94! 3833 2019-03-28 15:04:04Z forkel
95! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
96!
97! 3820 2019-03-27 11:53:41Z forkel
98! renamed do_emiss to emissions_anthropogenic (ecc)
99!
100!
101! 3774 2019-03-04 10:52:49Z moh.hefny
102! rephrase if statement to avoid unallocated array in case of
103! nesting_offline is false (crashing during debug mode)
104!
105! 3761 2019-02-25 15:31:42Z raasch $
106! module section re-formatted and openacc required variables moved to separate section,
107! re-formatting to 100 char line width
108!
109! 3745 2019-02-15 18:57:56Z suehring
110! Call indoor model after first timestep
111!
112! 3744 2019-02-15 18:38:58Z suehring
113! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
114! time_integration to make sure averaged input is updated before calculating.
115!
116! 3739 2019-02-13 08:05:17Z dom_dwd_user
117! Removed everything related to "time_bio_results" as this is never used.
118!
119! 3724 2019-02-06 16:28:23Z kanani
120! Correct double-used log_point_s unit
121!
122! 3719 2019-02-06 13:10:18Z kanani
123! - removed wind_turbine cpu measurement, since same time is measured inside
124!   wtm_forces subroutine as special measures
125! - moved the numerous vnest cpulog to special measures
126! - extended radiation cpulog over entire radiation part,
127!   moved radiation_interactions cpulog to special measures
128! - moved some cpu_log calls to this routine for better overview
129!
130! 3705 2019-01-29 19:56:39Z suehring
131! Data output for virtual measurements added
132!
133! 3704 2019-01-29 19:51:41Z suehring
134! Rename subroutines for surface-data output
135!
136! 3647 2019-01-02 14:10:44Z kanani
137! Bugfix: add time_since_reference_point to IF clause for data_output calls
138! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
139! Clean up indoor_model and biometeorology model call.
140!
141! 3646 2018-12-28 17:58:49Z kanani
142! Bugfix: use time_since_reference_point instead of simulated_time where
143! required (relevant when using wall/soil spinup)
144!
145! 3634 2018-12-18 12:31:28Z knoop
146! OpenACC port for SPEC
147!
148! 3597 2018-12-04 08:40:18Z maronga
149! Removed call to calculation of near air (10 cm) potential temperature (now in
150! surface layer fluxes)
151!
152! 3589 2018-11-30 15:09:51Z suehring
153! Move the control parameter "salsa" from salsa_mod to control_parameters
154! (M. Kurppa)
155!
156! 3582 2018-11-29 19:16:36Z suehring
157! dom_dwd_user, Schrempf:
158! Changes due to merge of uv exposure model into biometeorology_mod.
159!
160! 3525 2018-11-14 16:06:14Z kanani
161! Changes related to clean-up of biometeorology (dom_dwd_user)
162!
163! 3524 2018-11-14 13:36:44Z raasch
164! unused variables removed
165!
166! 3484 2018-11-02 14:41:25Z hellstea
167! pmci_ensure_nest_mass_conservation is premanently removed
168!
169! 3473 2018-10-30 20:50:15Z suehring
170! new module for virtual measurements introduced
171!
172! 3472 2018-10-30 20:43:50Z suehring
173! Add indoor model (kanani, srissman, tlang)
174!
175! 3467 2018-10-30 19:05:21Z suehring
176! Implementation of a new aerosol module salsa.
177!
178! 3448 2018-10-29 18:14:31Z kanani
179! Add biometeorology
180!
181! 3421 2018-10-24 18:39:32Z gronemeier
182! Surface data output
183!
184! 3418 2018-10-24 16:07:39Z kanani
185! call to material_heat_model now with check if spinup runs (rvtils)
186!
187! 3378 2018-10-19 12:34:59Z kanani
188! merge from radiation branch (r3362) into trunk
189! (moh.hefny):
190! Bugfix in the if statement to call radiation_interaction
191!
192! 3347 2018-10-15 14:21:08Z suehring
193! - offline nesting separated from large-scale forcing module
194! - changes for synthetic turbulence generator
195!
196! 3343 2018-10-15 10:38:52Z suehring
197! - Formatting, clean-up, comments (kanani)
198! - Added CALL to chem_emissions_setup (Russo)
199! - Code added for decycling chemistry (basit)
200!
201! 3294 2018-10-01 02:37:10Z raasch
202! changes concerning modularization of ocean option
203!
204! 3274 2018-09-24 15:42:55Z knoop
205! Modularization of all bulk cloud physics code components
206!
207! 3241 2018-09-12 15:02:00Z raasch
208! unused variables removed
209!
210! 3198 2018-08-15 09:23:10Z sward
211! Added multi_agent_system_end; defined start time for MAS relative to
212! time_since_reference_point
213!
214! 3183 2018-07-27 14:25:55Z suehring
215! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
216! Rename subroutines and variables in COSMO nesting mode
217!
218! 3182 2018-07-27 13:36:03Z suehring
219! Added multi agent system
220!
221! 3042 2018-05-25 10:44:37Z schwenkel
222! Changed the name specific humidity to mixing ratio
223!
224! 3040 2018-05-25 10:22:08Z schwenkel
225! Fixed bug in IF statement
226! Ensure that the time when calling the radiation to be the time step of the
227! pre-calculated time when first calculate the positions of the sun
228!
229! 3004 2018-04-27 12:33:25Z Giersch
230! First call of flow_statistics has been removed. It is already called in
231! run_control itself
232!
233! 2984 2018-04-18 11:51:30Z hellstea
234! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
235! as seemingly unnecessary.
236!
237! 2941 2018-04-03 11:54:58Z kanani
238! Deduct spinup_time from RUN_CONTROL output of main 3d run
239! (use time_since_reference_point instead of simulated_time)
240!
241! 2938 2018-03-27 15:52:42Z suehring
242! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
243!
244! 2936 2018-03-27 14:49:27Z suehring
245! Little formatting adjustment.
246!
247! 2817 2018-02-19 16:32:21Z knoop
248! Preliminary gust module interface implemented
249!
250! 2801 2018-02-14 16:01:55Z thiele
251! Changed lpm from subroutine to module.
252! Introduce particle transfer in nested models.
253!
254! 2776 2018-01-31 10:44:42Z Giersch
255! Variable use_synthetic_turbulence_generator has been abbreviated
256!
257! 2773 2018-01-30 14:12:54Z suehring
258! - Nesting for chemical species
259!
260! 2766 2018-01-22 17:17:47Z kanani
261! Removed preprocessor directive __chem
262!
263! 2718 2018-01-02 08:49:38Z maronga
264! Corrected "Former revisions" section
265!
266! 2696 2017-12-14 17:12:51Z kanani
267! - Change in file header (GPL part)
268! - Implementation of uv exposure model (FK)
269! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
270! - renamed diffusivities to tcm_diffusivities (TG)
271! - implement prognostic equation for diss (TG)
272! - Moved/commented CALL to chem_emissions (FK)
273! - Added CALL to chem_emissions (FK)
274! - Implementation of chemistry module (FK)
275! - Calls for setting boundary conditions in USM and LSM (MS)
276! - Large-scale forcing with larger-scale models implemented (MS)
277! - Rename usm_radiation into radiation_interactions; merge with branch
278!   radiation (MS)
279! - added call for usm_green_heat_model for green building surfaces (RvT)
280! - added call for usm_temperature_near_surface for use in indoor model (RvT)
281!
282! 2617 2017-11-16 12:47:24Z suehring
283! Bugfix, assure that the reference state does not become zero.
284!
285! 2563 2017-10-19 15:36:10Z Giersch
286! Variable wind_turbine moved to module control_parameters
287!
288! 2365 2017-08-21 14:59:59Z kanani
289! Vertical grid nesting implemented (SadiqHuq)
290!
291! 2320 2017-07-21 12:47:43Z suehring
292! Set bottom boundary conditions after nesting interpolation and anterpolation
293!
294! 2299 2017-06-29 10:14:38Z maronga
295! Call of soil model adjusted
296!
297! 2292 2017-06-20 09:51:42Z schwenkel
298! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
299! includes two more prognostic equations for cloud drop concentration (nc) 
300! and cloud water content (qc).
301!
302! 2271 2017-06-09 12:34:55Z sward
303! Start timestep message changed
304!
305! 2259 2017-06-08 09:09:11Z gronemeier
306! Implemented synthetic turbulence generator
307!
308! 2233 2017-05-30 18:08:54Z suehring
309!
310! 2232 2017-05-30 17:47:52Z suehring
311! Adjustments to new topography and surface concept
312! Modify passed parameters for disturb_field
313!
314! 2178 2017-03-17 11:07:39Z hellstea
315! Setting perturbations at all times near inflow boundary is removed
316! in case of nested boundaries
317!
318! 2174 2017-03-13 08:18:57Z maronga
319! Added support for nesting with cloud microphysics
320!
321! 2118 2017-01-17 16:38:49Z raasch
322! OpenACC directives and related code removed
323!
324! 2050 2016-11-08 15:00:55Z gronemeier
325! Implement turbulent outflow condition
326!
327! 2031 2016-10-21 15:11:58Z knoop
328! renamed variable rho to rho_ocean
329!
330! 2011 2016-09-19 17:29:57Z kanani
331! Flag urban_surface is now defined in module control_parameters,
332! removed commented CALLs of global_min_max.
333!
334! 2007 2016-08-24 15:47:17Z kanani
335! Added CALLs for new urban surface model
336!
337! 2000 2016-08-20 18:09:15Z knoop
338! Forced header and separation lines into 80 columns
339!
340! 1976 2016-07-27 13:28:04Z maronga
341! Simplified calls to radiation model
342!
343! 1960 2016-07-12 16:34:24Z suehring
344! Separate humidity and passive scalar
345!
346! 1957 2016-07-07 10:43:48Z suehring
347! flight module added
348!
349! 1919 2016-05-27 14:51:23Z raasch
350! Initial version of purely vertical nesting introduced.
351!
352! 1918 2016-05-27 14:35:57Z raasch
353! determination of time step moved to the end of the time step loop,
354! the first time step is now always calculated before the time step loop (i.e.
355! also in case of restart runs)
356!
357! 1914 2016-05-26 14:44:07Z witha
358! Added call for wind turbine model
359!
360! 1878 2016-04-19 12:30:36Z hellstea
361! Synchronization for nested runs rewritten
362!
363! 1853 2016-04-11 09:00:35Z maronga
364! Adjusted for use with radiation_scheme = constant
365!
366! 1849 2016-04-08 11:33:18Z hoffmann
367! Adapted for modularization of microphysics
368!
369! 1833 2016-04-07 14:23:03Z raasch
370! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
371!
372! 1831 2016-04-07 13:15:51Z hoffmann
373! turbulence renamed collision_turbulence
374!
375! 1822 2016-04-07 07:49:42Z hoffmann
376! icloud_scheme replaced by microphysics_*
377!
378! 1808 2016-04-05 19:44:00Z raasch
379! output message in case unscheduled radiation calls removed
380!
381! 1797 2016-03-21 16:50:28Z raasch
382! introduction of different datatransfer modes
383!
384! 1791 2016-03-11 10:41:25Z raasch
385! call of pmci_update_new removed
386!
387! 1786 2016-03-08 05:49:27Z raasch
388! +module spectrum
389!
390! 1783 2016-03-06 18:36:17Z raasch
391! switch back of netcdf data format for mask output moved to the mask output
392! routine
393!
394! 1781 2016-03-03 15:12:23Z raasch
395! some pmc calls removed at the beginning (before timeloop),
396! pmc initialization moved to the main program
397!
398! 1764 2016-02-28 12:45:19Z raasch
399! PMC_ACTIVE flags removed,
400! bugfix: nest synchronization after first call of timestep
401!
402! 1762 2016-02-25 12:31:13Z hellstea
403! Introduction of nested domain feature
404!
405! 1736 2015-12-04 08:56:33Z raasch
406! no perturbations added to total domain if energy limit has been set zero
407!
408! 1691 2015-10-26 16:17:44Z maronga
409! Added option for spin-ups without land surface and radiation models. Moved calls
410! for radiation and lan surface schemes.
411!
412! 1682 2015-10-07 23:56:08Z knoop
413! Code annotations made doxygen readable
414!
415! 1671 2015-09-25 03:29:37Z raasch
416! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
417! for particles
418!
419! 1585 2015-04-30 07:05:52Z maronga
420! Moved call of radiation scheme. Added support for RRTM
421!
422! 1551 2015-03-03 14:18:16Z maronga
423! Added interface for different radiation schemes.
424!
425! 1496 2014-12-02 17:25:50Z maronga
426! Added calls for the land surface model and radiation scheme
427!
428! 1402 2014-05-09 14:25:13Z raasch
429! location messages modified
430!
431! 1384 2014-05-02 14:31:06Z raasch
432! location messages added
433!
434! 1380 2014-04-28 12:40:45Z heinze
435! CALL of nudge_ref added
436! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
437!
438! 1365 2014-04-22 15:03:56Z boeske
439! Reset sums_ls_l to zero at each timestep
440! +sums_ls_l
441! Calculation of reference state (previously in subroutine calc_mean_profile)
442
443! 1342 2014-03-26 17:04:47Z kanani
444! REAL constants defined as wp-kind
445!
446! 1320 2014-03-20 08:40:49Z raasch
447! ONLY-attribute added to USE-statements,
448! kind-parameters added to all INTEGER and REAL declaration statements,
449! kinds are defined in new module kinds,
450! old module precision_kind is removed,
451! revision history before 2012 removed,
452! comment fields (!:) to be used for variable explanations added to
453! all variable declaration statements
454! 1318 2014-03-17 13:35:16Z raasch
455! module interfaces removed
456!
457! 1308 2014-03-13 14:58:42Z fricke
458! +netcdf_data_format_save
459! For masked data, parallel netcdf output is not tested so far, hence
460! netcdf_data_format is switched back to non-paralell output.
461!
462! 1276 2014-01-15 13:40:41Z heinze
463! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
464!
465! 1257 2013-11-08 15:18:40Z raasch
466! acc-update-host directive for timestep removed
467!
468! 1241 2013-10-30 11:36:58Z heinze
469! Generalize calc_mean_profile for wider use
470! Determine shf and qsws in dependence on data from LSF_DATA
471! Determine ug and vg in dependence on data from LSF_DATA
472! 1221 2013-09-10 08:59:13Z raasch
473! host update of arrays before timestep is called
474!
475! 1179 2013-06-14 05:57:58Z raasch
476! mean profiles for reference state are only calculated if required,
477! small bugfix for background communication
478!
479! 1171 2013-05-30 11:27:45Z raasch
480! split of prognostic_equations deactivated (comment lines), for the time being
481!
482! 1128 2013-04-12 06:19:32Z raasch
483! asynchronous transfer of ghost point data realized for acc-optimized version:
484! prognostic_equations are first called two times for those points required for
485! the left-right and north-south exchange, respectively, and then for the
486! remaining points,
487! those parts requiring global communication moved from prognostic_equations to
488! here
489!
490! 1115 2013-03-26 18:16:16Z hoffmann
491! calculation of qr and nr is restricted to precipitation
492!
493! 1113 2013-03-10 02:48:14Z raasch
494! GPU-porting of boundary conditions,
495! openACC directives updated
496! formal parameter removed from routine boundary_conds
497!
498! 1111 2013-03-08 23:54:10Z raasch
499! +internal timestep counter for cpu statistics added,
500! openACC directives updated
501!
502! 1092 2013-02-02 11:24:22Z raasch
503! unused variables removed
504!
505! 1065 2012-11-22 17:42:36Z hoffmann
506! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
507!
508! 1053 2012-11-13 17:11:03Z hoffmann
509! exchange of ghost points for nr, qr added
510!
511! 1036 2012-10-22 13:43:42Z raasch
512! code put under GPL (PALM 3.9)
513!
514! 1019 2012-09-28 06:46:45Z raasch
515! non-optimized version of prognostic_equations removed
516!
517! 1015 2012-09-27 09:23:24Z raasch
518! +call of prognostic_equations_acc
519!
520! 1001 2012-09-13 14:08:46Z raasch
521! all actions concerning leapfrog- and upstream-spline-scheme removed
522!
523! 849 2012-03-15 10:35:09Z raasch
524! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
525!
526! 825 2012-02-19 03:03:44Z raasch
527! wang_collision_kernel renamed wang_kernel
528!
529! Revision 1.1  1997/08/11 06:19:04  raasch
530! Initial revision
531!
532!
533! Description:
534! ------------
535!> Integration in time of the model equations, statistical analysis and graphic
536!> output
537!------------------------------------------------------------------------------!
538 SUBROUTINE time_integration
539 
540
541    USE advec_ws,                                                                                  &
542        ONLY:  ws_statistics
543
544    USE arrays_3d,                                                                                 &
545        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
546               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
547               tend, u, u_p, v, vpt, v_p, w, w_p
548
549    USE biometeorology_mod,                                                                        &
550        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, bio_calculate_uv_exposure,       &
551               uv_exposure
552
553    USE bulk_cloud_model_mod,                                                                      &
554        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
555              microphysics_morrison, microphysics_seifert
556
557    USE calc_mean_profile_mod,                                                                     &
558        ONLY:  calc_mean_profile
559
560    USE chem_emissions_mod,                                                                        &
561        ONLY:  chem_emissions_setup
562
563    USE chem_gasphase_mod,                                                                         &
564        ONLY:  nvar
565
566    USE chem_modules,                                                                              &
567        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
568
569    USE chemistry_model_mod,                                                                       &
570        ONLY:  chem_boundary_conds
571
572    USE control_parameters,                                                                        &
573        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
574               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
575               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
576               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
577               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
578               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
579               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
580               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
581               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
582               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
583               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
584               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
585               multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,         &
586               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
587               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
588               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
589               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
590               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
591               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
592               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
593               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
594               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
595               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
596               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
597               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca, timestep_count
598
599    USE cpulog,                                                                                    &
600        ONLY:  cpu_log, log_point, log_point_s
601
602    USE date_and_time_mod,                                                                         &
603        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
604
605    USE diagnostic_output_quantities_mod,                                                          &
606        ONLY:  doq_calculate,                                                                      &
607               timestep_number_at_prev_calc
608
609    USE flight_mod,                                                                                &
610        ONLY:  flight_measurement
611
612    USE indices,                                                                                   &
613        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
614
615    USE indoor_model_mod,                                                                          &
616        ONLY:  dt_indoor, im_main_heatcool, time_indoor
617
618    USE interfaces
619
620    USE kinds
621
622    USE land_surface_model_mod,                                                                    &
623        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
624
625    USE lagrangian_particle_model_mod,                                                             &
626        ONLY:  lpm_data_output_ptseries, lpm_interaction_droplets_ptq
627
628    USE lsf_nudging_mod,                                                                           &
629        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
630
631    USE module_interface,                                                                          &
632        ONLY:  module_interface_actions, module_interface_swap_timelevel
633
634    USE multi_agent_system_mod,                                                                    &
635        ONLY:  agents_active, multi_agent_system
636
637    USE nesting_offl_mod,                                                                          &
638        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
639
640    USE netcdf_data_input_mod,                                                                     &
641        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
642
643    USE ocean_mod,                                                                                 &
644        ONLY:  prho_reference
645
646    USE particle_attributes,                                                                       &
647        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
648
649    USE pegrid
650
651    USE pmc_interface,                                                                             &
652        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
653        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical,           &
654        pmci_set_swaplevel
655
656    USE progress_bar,                                                                              &
657        ONLY:  finish_progress_bar, output_progress_bar
658
659    USE prognostic_equations_mod,                                                                  &
660        ONLY:  prognostic_equations_cache, prognostic_equations_vector
661
662    USE radiation_model_mod,                                                                       &
663        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
664              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
665
666    USE salsa_mod,                                                                                 &
667        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
668              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
669              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
670
671    USE spectra_mod,                                                                               &
672        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
673
674    USE statistics,                                                                                &
675        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
676
677
678    USE surface_layer_fluxes_mod,                                                                  &
679        ONLY:  surface_layer_fluxes
680
681    USE surface_data_output_mod,                                                                   &
682        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
683               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
684               skip_time_dosurf_av, time_dosurf, time_dosurf_av
685
686    USE surface_mod,                                                                               &
687        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
688
689    USE synthetic_turbulence_generator_mod,                                                        &
690        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
691               time_stg_adjust, time_stg_call, use_syn_turb_gen
692
693    USE turbulence_closure_mod,                                                                    &
694        ONLY:  tcm_diffusivities
695
696    USE urban_surface_mod,                                                                         &
697        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
698               usm_surface_energy_balance, usm_green_heat_model
699
700    USE vertical_nesting_mod,                                                                      &
701        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
702               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
703               vnest_start_time
704
705    USE virtual_measurement_mod,                                                                   &
706        ONLY:  dt_virtual_measurement,                                                             &
707               time_virtual_measurement,                                                           &
708               vm_data_output,                                                                     &
709               vm_sampling,                                                                        &
710               vm_time_start
711
712
713#if defined( _OPENACC )
714    USE arrays_3d,                                                             &
715        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
716               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
717               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
718               v_stokes_zu, zu
719
720    USE control_parameters,                                                                        &
721        ONLY:  tsc
722
723    USE indices,                                                                                   &
724        ONLY:  advc_flags_m, advc_flags_s, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
725
726    USE statistics,                                                                                &
727        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
728               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
729               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
730               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
731
732    USE surface_mod,                                                                               &
733        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
734#endif
735
736
737    IMPLICIT NONE
738
739    CHARACTER (LEN=9) ::  time_to_string   !<
740
741    INTEGER(iwp) ::  ib        !< index for aerosol size bins
742    INTEGER(iwp) ::  ic        !< index for aerosol mass bins
743    INTEGER(iwp) ::  icc       !< additional index for aerosol mass bins
744    INTEGER(iwp) ::  ig        !< index for salsa gases
745    INTEGER(iwp) ::  lsp
746    INTEGER(iwp) ::  lsp_usr   !<
747    INTEGER(iwp) ::  mid       !< masked output running index
748    INTEGER(iwp) ::  n         !< loop counter for chemistry species
749
750    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
751                            !< steering of run control output interval
752    REAL(wp) ::  time_since_reference_point_save  !< original value of
753                                                  !< time_since_reference_point
754
755
756!
757!-- Copy data from arrays_3d
758!$ACC DATA &
759!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
760!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
761!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
762!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
763!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
764!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
765!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
766!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
767!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
768
769!$ACC DATA &
770!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
771!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
772!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
773!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
774!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
775!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
776!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
777!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
778!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
779!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
780!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
781
782!$ACC DATA &
783!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
784!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
785!$ACC COPYIN(zu(nzb:nzt+1)) &
786!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
787!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
788!$ACC COPYIN(ddzw(1:nzt+1)) &
789!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
790!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
791!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
792!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
793!$ACC COPYIN(ref_state(0:nz+1)) &
794!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
795!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
796!$ACC COPYIN(pt_init(0:nz+1)) &
797!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
798
799!
800!-- Copy data from control_parameters
801!$ACC DATA &
802!$ACC COPYIN(tsc(1:5))
803
804!
805!-- Copy data from indices
806!$ACC DATA &
807!$ACC COPYIN(advc_flags_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
808!$ACC COPYIN(advc_flags_s(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
809!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
810
811!
812!-- Copy data from surface_mod
813!$ACC DATA &
814!$ACC COPYIN(bc_h(0:1)) &
815!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
816!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
817!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
818!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
819!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
820!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
821
822!
823!-- Copy data from statistics
824!$ACC DATA &
825!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
826!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
827!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
828!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
829!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
830!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
831!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
832!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
833!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
834!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
835!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
836!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
837!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
838!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
839!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
840!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
841!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
842!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
843!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
844
845#if defined( _OPENACC )
846    CALL enter_surface_arrays
847#endif
848
849!
850!-- At beginning determine the first time step
851    CALL timestep
852!
853!-- Synchronize the timestep in case of nested run.
854    IF ( nested_run )  THEN
855!
856!--    Synchronization by unifying the time step.
857!--    Global minimum of all time-steps is used for all.
858       CALL pmci_synchronize
859    ENDIF
860
861!
862!-- Determine and print out the run control quantities before the first time
863!-- step of this run. For the initial run, some statistics (e.g. divergence)
864!-- need to be determined first --> CALL flow_statistics at the beginning of
865!-- run_control
866    CALL run_control
867!
868!-- Data exchange between coupled models in case that a call has been omitted
869!-- at the end of the previous run of a job chain.
870    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
871!
872!--    In case of model termination initiated by the local model the coupler
873!--    must not be called because this would again cause an MPI hang.
874       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
875          CALL surface_coupler
876          time_coupling = time_coupling - dt_coupling
877       ENDDO
878       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
879          time_coupling = time_since_reference_point
880       ENDIF
881    ENDIF
882
883    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
884
885!
886!-- Start of the time loop
887    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
888
889       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
890!
891!--    Vertical nesting: initialize fine grid
892       IF ( vnested ) THEN
893          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
894             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
895             CALL vnest_init_fine
896             vnest_init = .TRUE.
897             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
898          ENDIF
899       ENDIF
900!
901!--    Determine ug, vg and w_subs in dependence on data from external file
902!--    LSF_DATA
903       IF ( large_scale_forcing .AND. lsf_vert )  THEN
904           CALL ls_forcing_vert ( simulated_time )
905           sums_ls_l = 0.0_wp
906       ENDIF
907
908!
909!--    Set pt_init and q_init to the current profiles taken from
910!--    NUDGING_DATA
911       IF ( nudging )  THEN
912           CALL nudge_ref ( simulated_time )
913!
914!--        Store temperature gradient at the top boundary for possible Neumann
915!--        boundary condition
916           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
917           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
918           IF ( air_chemistry )  THEN
919              DO  lsp = 1, nvar
920                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
921                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
922                               / dzu(nzt+1)
923              ENDDO
924           ENDIF
925           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
926              DO  ib = 1, nbins_aerosol
927                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
928                               dzu(nzt+1)
929                 DO  ic = 1, ncomponents_mass
930                    icc = ( ic - 1 ) * nbins_aerosol + ib
931                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
932                                  dzu(nzt+1)
933                 ENDDO
934              ENDDO
935              IF ( .NOT. salsa_gases_from_chem )  THEN
936                 DO  ig = 1, ngases_salsa
937                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
938                                  dzu(nzt+1)
939                 ENDDO
940              ENDIF
941           ENDIF
942       ENDIF
943!
944!--    If forcing by larger-scale models is applied, check if new data
945!--    at domain boundaries need to be read.
946       IF ( nesting_offline ) THEN
947          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
948               CALL netcdf_data_input_offline_nesting
949       ENDIF
950
951!
952!--    Execute all other module actions routunes
953       CALL module_interface_actions( 'before_timestep' )
954       
955!
956!--    Start of intermediate step loop
957       intermediate_timestep_count = 0
958       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
959
960          intermediate_timestep_count = intermediate_timestep_count + 1
961
962!
963!--       Set the steering factors for the prognostic equations which depend
964!--       on the timestep scheme
965          CALL timestep_scheme_steering
966
967!
968!--       Calculate those variables needed in the tendency terms which need
969!--       global communication
970          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
971          THEN
972!
973!--          Horizontally averaged profiles to be used as reference state in
974!--          buoyancy terms (WARNING: only the respective last call of
975!--          calc_mean_profile defines the reference state!)
976             IF ( .NOT. neutral )  THEN
977                CALL calc_mean_profile( pt, 4 )
978                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
979             ENDIF
980             IF ( ocean_mode )  THEN
981                CALL calc_mean_profile( rho_ocean, 64 )
982                ref_state(:)  = hom(:,1,64,0)
983             ENDIF
984             IF ( humidity )  THEN
985                CALL calc_mean_profile( vpt, 44 )
986                ref_state(:)  = hom(:,1,44,0)
987             ENDIF
988!
989!--          Assure that ref_state does not become zero at any level
990!--          ( might be the case if a vertical level is completely occupied
991!--            with topography ).
992             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
993          ENDIF
994
995          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
996          THEN
997             CALL ws_statistics
998          ENDIF
999!
1000!--       In case of nudging calculate current nudging time scale and horizontal
1001!--       means of u, v, pt and q
1002          IF ( nudging )  THEN
1003             CALL calc_tnudge( simulated_time )
1004             CALL calc_mean_profile( u, 1 )
1005             CALL calc_mean_profile( v, 2 )
1006             CALL calc_mean_profile( pt, 4 )
1007             CALL calc_mean_profile( q, 41 )
1008          ENDIF
1009!
1010!--       Execute all other module actions routunes
1011          CALL module_interface_actions( 'before_prognostic_equations' )
1012!
1013!--       Solve the prognostic equations. A fast cache optimized version with
1014!--       only one single loop is used in case of Piascek-Williams advection
1015!--       scheme. NEC vector machines use a different version, because
1016!--       in the other versions a good vectorization is prohibited due to
1017!--       inlining problems.
1018          IF ( loop_optimization == 'cache' )  THEN
1019             CALL prognostic_equations_cache
1020          ELSEIF ( loop_optimization == 'vector' )  THEN
1021             CALL prognostic_equations_vector
1022          ENDIF
1023
1024!
1025!--       Particle transport/physics with the Lagrangian particle model
1026!--       (only once during intermediate steps, because it uses an Euler-step)
1027!--       ### particle model should be moved before prognostic_equations, in order
1028!--       to regard droplet interactions directly
1029          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
1030               .AND.  intermediate_timestep_count == 1 )                                           &
1031          THEN
1032             CALL module_interface_actions( 'after_prognostic_equations' )
1033             first_call_lpm = .FALSE.
1034          ENDIF
1035
1036!
1037!--       Interaction of droplets with temperature and mixing ratio.
1038!--       Droplet condensation and evaporation is calculated within
1039!--       advec_particles.
1040          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
1041          THEN
1042             CALL lpm_interaction_droplets_ptq
1043          ENDIF
1044
1045!
1046!--       Movement of agents in multi agent system
1047          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1048               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1049               intermediate_timestep_count == 1 )                                                  &
1050          THEN
1051             CALL multi_agent_system
1052             first_call_mas = .FALSE.
1053          ENDIF
1054
1055!
1056!--       Exchange of ghost points (lateral boundary conditions)
1057          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1058
1059          CALL exchange_horiz( u_p, nbgp )
1060          CALL exchange_horiz( v_p, nbgp )
1061          CALL exchange_horiz( w_p, nbgp )
1062          CALL exchange_horiz( pt_p, nbgp )
1063          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1064          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1065               .OR.  use_sgs_for_particles )  THEN
1066             IF ( rans_tke_e )  THEN
1067                CALL exchange_horiz( diss_p, nbgp )
1068             ELSE
1069                CALL exchange_horiz( diss, nbgp )
1070             ENDIF
1071          ENDIF
1072          IF ( ocean_mode )  THEN
1073             CALL exchange_horiz( sa_p, nbgp )
1074             CALL exchange_horiz( rho_ocean, nbgp )
1075             CALL exchange_horiz( prho, nbgp )
1076          ENDIF
1077          IF ( humidity )  THEN
1078             CALL exchange_horiz( q_p, nbgp )
1079             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1080                CALL exchange_horiz( qc_p, nbgp )
1081                CALL exchange_horiz( nc_p, nbgp )
1082             ENDIF
1083             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1084                CALL exchange_horiz( qr_p, nbgp )
1085                CALL exchange_horiz( nr_p, nbgp )
1086             ENDIF
1087          ENDIF
1088          IF ( cloud_droplets )  THEN
1089             CALL exchange_horiz( ql, nbgp )
1090             CALL exchange_horiz( ql_c, nbgp )
1091             CALL exchange_horiz( ql_v, nbgp )
1092             CALL exchange_horiz( ql_vp, nbgp )
1093          ENDIF
1094          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1095          IF ( air_chemistry )  THEN
1096             DO  lsp = 1, nvar
1097                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1098             ENDDO
1099          ENDIF
1100
1101          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1102             DO  ib = 1, nbins_aerosol
1103                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1104                DO  ic = 1, ncomponents_mass
1105                   icc = ( ic - 1 ) * nbins_aerosol + ib
1106                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1107                ENDDO
1108             ENDDO
1109             IF ( .NOT. salsa_gases_from_chem )  THEN
1110                DO  ig = 1, ngases_salsa
1111                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1112                ENDDO
1113             ENDIF
1114          ENDIF
1115          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1116
1117!
1118!--       Boundary conditions for the prognostic quantities (except of the
1119!--       velocities at the outflow in case of a non-cyclic lateral wall)
1120          CALL boundary_conds
1121
1122!
1123!--       Boundary conditions for prognostic quantitites of other modules:
1124!--       Here, only decycling is carried out
1125          IF ( air_chemistry )  THEN
1126
1127             DO  lsp = 1, nvar
1128                lsp_usr = 1
1129                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1130                   IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1131                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1132                                                chem_species(lsp)%conc_pr_init )
1133                   ENDIF
1134                   lsp_usr = lsp_usr + 1
1135                ENDDO
1136             ENDDO
1137
1138          ENDIF
1139
1140          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1141
1142             DO  ib = 1, nbins_aerosol
1143                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1144                DO  ic = 1, ncomponents_mass
1145                   icc = ( ic - 1 ) * nbins_aerosol + ib
1146                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1147                ENDDO
1148             ENDDO
1149             IF ( .NOT. salsa_gases_from_chem )  THEN
1150                DO  ig = 1, ngases_salsa
1151                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1152                ENDDO
1153             ENDIF
1154
1155          ENDIF
1156
1157!
1158!--       Incrementing timestep counter
1159          timestep_count = timestep_count + 1
1160
1161          CALL cpu_log( log_point(28), 'swap_timelevel', 'start' )
1162!
1163!--       Set the swap level for all modules
1164          CALL module_interface_swap_timelevel( MOD( timestep_count, 2) )
1165!
1166!--       Set the swap level for steering the pmc data transfer
1167          IF ( nested_run )  CALL pmci_set_swaplevel( MOD( timestep_count, 2) + 1 )  !> @todo: why the +1 ?
1168
1169          CALL cpu_log( log_point(28), 'swap_timelevel', 'stop' )
1170
1171!
1172!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1173          IF ( vnest_init ) THEN
1174             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1175             CALL vnest_anterpolate
1176             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1177          ENDIF
1178
1179          IF ( nested_run )  THEN
1180
1181             CALL cpu_log( log_point(60), 'nesting', 'start' )
1182!
1183!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1184!--          and pmci_child_datatrans are called inside the wrapper
1185!--          subroutine pmci_datatrans according to the control parameters
1186!--          nesting_mode and nesting_datatransfer_mode.
1187!--          TO_DO: why is nesting_mode given as a parameter here?
1188             CALL pmci_datatrans( nesting_mode )
1189
1190             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1191
1192                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'start' )
1193!
1194!--             Exchange_horiz is needed for all parent-domains after the
1195!--             anterpolation
1196                CALL exchange_horiz( u, nbgp )
1197                CALL exchange_horiz( v, nbgp )
1198                CALL exchange_horiz( w, nbgp )
1199                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1200
1201                IF ( humidity )  THEN
1202
1203                   CALL exchange_horiz( q, nbgp )
1204
1205                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1206                       CALL exchange_horiz( qc, nbgp )
1207                       CALL exchange_horiz( nc, nbgp )
1208                   ENDIF
1209                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1210                       CALL exchange_horiz( qr, nbgp )
1211                       CALL exchange_horiz( nr, nbgp )
1212                   ENDIF
1213
1214                ENDIF
1215
1216                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1217
1218                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1219
1220                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1221                   CALL exchange_horiz( diss, nbgp )
1222                ENDIF
1223
1224                IF ( air_chemistry )  THEN
1225                   DO  n = 1, nvar
1226                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1227                   ENDDO
1228                ENDIF
1229
1230                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1231                   DO  ib = 1, nbins_aerosol
1232                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1233                      DO  ic = 1, ncomponents_mass
1234                         icc = ( ic - 1 ) * nbins_aerosol + ib
1235                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1236                      ENDDO
1237                   ENDDO
1238                   IF ( .NOT. salsa_gases_from_chem )  THEN
1239                      DO  ig = 1, ngases_salsa
1240                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1241                      ENDDO
1242                   ENDIF
1243                ENDIF
1244                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'stop' )
1245
1246             ENDIF
1247
1248!
1249!--          Set boundary conditions again after interpolation and anterpolation.
1250             CALL pmci_boundary_conds
1251
1252!
1253!--          Set chemistry boundary conditions (decycling)
1254             IF ( air_chemistry )  THEN
1255                DO  lsp = 1, nvar
1256                   lsp_usr = 1
1257                   DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1258                      IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1259                         CALL chem_boundary_conds( chem_species(lsp)%conc,                         &
1260                                                   chem_species(lsp)%conc_pr_init )
1261                      ENDIF
1262                      lsp_usr = lsp_usr + 1
1263                   ENDDO
1264                ENDDO
1265             ENDIF
1266
1267!
1268!--          Set SALSA boundary conditions (decycling)
1269             IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1270                DO  ib = 1, nbins_aerosol
1271                   CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1272                   DO  ic = 1, ncomponents_mass
1273                      icc = ( ic - 1 ) * nbins_aerosol + ib
1274                      CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1275                   ENDDO
1276                ENDDO
1277                IF ( .NOT. salsa_gases_from_chem )  THEN
1278                   DO  ig = 1, ngases_salsa
1279                      CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1280                   ENDDO
1281                ENDIF
1282             ENDIF
1283
1284             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1285
1286          ENDIF
1287
1288!
1289!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1290!--       when a sloping surface is used
1291          IF ( sloping_surface )  THEN
1292             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1293             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1294          ENDIF
1295
1296!
1297!--       Impose a turbulent inflow using the recycling method
1298          IF ( turbulent_inflow )  CALL inflow_turbulence
1299
1300!
1301!--       Set values at outflow boundary using the special outflow condition
1302          IF ( turbulent_outflow )  CALL outflow_turbulence
1303
1304!
1305!--       Impose a random perturbation on the horizontal velocity field
1306          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1307               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1308               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1309          THEN
1310             time_disturb = time_disturb + dt_3d
1311             IF ( time_disturb >= dt_disturb )  THEN
1312                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1313                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1314                   CALL disturb_field( 'u', tend, u )
1315                   CALL disturb_field( 'v', tend, v )
1316                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1317                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1318                THEN
1319!
1320!--                Runs with a non-cyclic lateral wall need perturbations
1321!--                near the inflow throughout the whole simulation
1322                   dist_range = 1
1323                   CALL disturb_field( 'u', tend, u )
1324                   CALL disturb_field( 'v', tend, v )
1325                   dist_range = 0
1326                ENDIF
1327                time_disturb = time_disturb - dt_disturb
1328             ENDIF
1329          ENDIF
1330
1331!
1332!--       Map forcing data derived from larger scale model onto domain
1333!--       boundaries.
1334          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1335                                       intermediate_timestep_count_max  )                          &
1336             CALL nesting_offl_bc
1337!
1338!--       Impose a turbulent inflow using synthetic generated turbulence.
1339          IF ( use_syn_turb_gen  .AND.                                                             &
1340               intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1341             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1342             CALL stg_main
1343             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1344          ENDIF
1345!
1346!--       Ensure mass conservation. This need to be done after imposing
1347!--       synthetic turbulence and top boundary condition for pressure is set to
1348!--       Neumann conditions.
1349!--       Is this also required in case of Dirichlet?
1350          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1351!
1352!--       Reduce the velocity divergence via the equation for perturbation
1353!--       pressure.
1354          IF ( intermediate_timestep_count == 1  .OR. &
1355                call_psolver_at_all_substeps )  THEN
1356
1357             IF (  vnest_init ) THEN
1358!
1359!--             Compute pressure in the CG, interpolate top boundary conditions
1360!--             to the FG and then compute pressure in the FG
1361                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1362
1363                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1364                CALL vnest_boundary_conds
1365                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1366 
1367                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1368
1369!--             Anterpolate TKE, satisfy Germano Identity
1370                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1371                CALL vnest_anterpolate_e
1372                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1373
1374             ELSE
1375!               
1376!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1377                IF ( child_domain )  THEN
1378                   IF ( nesting_mode == 'vertical' )  THEN
1379                      CALL pmci_ensure_nest_mass_conservation_vertical
1380                   ELSE
1381                      CALL pmci_ensure_nest_mass_conservation
1382                   ENDIF
1383                ENDIF
1384               
1385                CALL pres
1386
1387             ENDIF
1388
1389          ENDIF
1390
1391!
1392!--       If required, compute liquid water content
1393          IF ( bulk_cloud_model )  THEN
1394             CALL calc_liquid_water_content
1395          ENDIF
1396!
1397!--       If required, compute virtual potential temperature
1398          IF ( humidity )  THEN
1399             CALL compute_vpt 
1400          ENDIF 
1401
1402!
1403!--       Compute the diffusion quantities
1404          IF ( .NOT. constant_diffusion )  THEN
1405
1406!
1407!--          Determine surface fluxes shf and qsws and surface values
1408!--          pt_surface and q_surface in dependence on data from external
1409!--          file LSF_DATA respectively
1410             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1411                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1412             THEN
1413                CALL ls_forcing_surf( simulated_time )
1414             ENDIF
1415
1416!
1417!--          First the vertical (and horizontal) fluxes in the surface
1418!--          (constant flux) layer are computed
1419             IF ( constant_flux_layer )  THEN
1420                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1421                CALL surface_layer_fluxes
1422                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1423             ENDIF
1424!
1425!--          If required, solve the energy balance for the surface and run soil
1426!--          model. Call for horizontal as well as vertical surfaces
1427             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1428
1429                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1430!
1431!--             Call for horizontal upward-facing surfaces
1432                CALL lsm_energy_balance( .TRUE., -1 )
1433                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1434!
1435!--             Call for northward-facing surfaces
1436                CALL lsm_energy_balance( .FALSE., 0 )
1437                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1438!
1439!--             Call for southward-facing surfaces
1440                CALL lsm_energy_balance( .FALSE., 1 )
1441                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1442!
1443!--             Call for eastward-facing surfaces
1444                CALL lsm_energy_balance( .FALSE., 2 )
1445                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1446!
1447!--             Call for westward-facing surfaces
1448                CALL lsm_energy_balance( .FALSE., 3 )
1449                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1450               
1451!
1452!--             At the end, set boundary conditons for potential temperature
1453!--             and humidity after running the land-surface model. This
1454!--             might be important for the nesting, where arrays are transfered.
1455                CALL lsm_boundary_condition
1456
1457               
1458                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1459             ENDIF
1460!
1461!--          If required, solve the energy balance for urban surfaces and run
1462!--          the material heat model
1463             IF (urban_surface) THEN
1464                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1465               
1466                CALL usm_surface_energy_balance( .FALSE. )
1467                IF ( usm_material_model )  THEN
1468                   CALL usm_green_heat_model
1469                   CALL usm_material_heat_model ( .FALSE. )
1470                ENDIF
1471
1472!
1473!--             At the end, set boundary conditons for potential temperature
1474!--             and humidity after running the urban-surface model. This
1475!--             might be important for the nesting, where arrays are transfered.
1476                CALL usm_boundary_condition
1477
1478                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1479             ENDIF
1480!
1481!--          Compute the diffusion coefficients
1482             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1483             IF ( .NOT. humidity ) THEN
1484                IF ( ocean_mode )  THEN
1485                   CALL tcm_diffusivities( prho, prho_reference )
1486                ELSE
1487                   CALL tcm_diffusivities( pt, pt_reference )
1488                ENDIF
1489             ELSE
1490                CALL tcm_diffusivities( vpt, pt_reference )
1491             ENDIF
1492             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1493!
1494!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1495             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1496
1497          ENDIF
1498
1499       ENDDO   ! Intermediate step loop
1500
1501!
1502!--    Will be used at some point by flow_statistics.
1503       !$ACC UPDATE &
1504       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1505       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1506       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1507       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1508       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1509       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1510       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1511       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1512       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1513       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1514       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1515       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1516       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1517       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1518       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1519
1520!
1521!--    If required, calculate radiative fluxes and heating rates
1522       IF ( radiation  .AND.  time_since_reference_point > skip_time_do_radiation )  THEN
1523
1524          time_radiation = time_radiation + dt_3d
1525
1526          IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1527
1528             CALL cpu_log( log_point(50), 'radiation', 'start' )
1529
1530             IF ( .NOT. force_radiation_call )  THEN
1531                time_radiation = time_radiation - dt_radiation
1532             ENDIF
1533
1534!
1535!--          Adjust the current time to the time step of the radiation model.
1536!--          Needed since radiation is pre-calculated and stored only on apparent
1537!--          solar positions
1538             time_since_reference_point_save = time_since_reference_point
1539             time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1540                                                       dt_radiation ), wp ) * dt_radiation
1541
1542             CALL radiation_control
1543
1544             IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1545                CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1546                CALL radiation_interaction
1547                CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1548             ENDIF
1549 
1550!
1551!--          Return the current time to its original value
1552             time_since_reference_point = time_since_reference_point_save
1553
1554             CALL cpu_log( log_point(50), 'radiation', 'stop' )
1555
1556          ENDIF
1557       ENDIF
1558
1559!
1560!--    If required, consider chemical emissions
1561       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1562!
1563!--       Update the time --> kanani: revise location of this CALL
1564          CALL calc_date_and_time
1565!
1566!--       Call emission routine only once an hour
1567          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1568             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
1569             hour_call_emis = hour_of_year
1570          ENDIF
1571       ENDIF
1572!
1573!--    If required, consider aerosol emissions for the salsa model
1574       IF ( salsa )  THEN
1575!
1576!--       Call emission routine to update emissions if needed
1577          CALL salsa_emission_update
1578
1579       ENDIF
1580!
1581!--    If required, calculate indoor temperature, waste heat, heat flux
1582!--    through wall, etc.
1583!--    dt_indoor steers the frequency of the indoor model calculations.
1584!--    Note, at first timestep indoor model is called, in order to provide
1585!--    a waste heat flux.
1586       IF ( indoor_model )  THEN
1587
1588          time_indoor = time_indoor + dt_3d
1589
1590          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1591
1592             time_indoor = time_indoor - dt_indoor
1593
1594             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1595             CALL im_main_heatcool
1596             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1597
1598          ENDIF
1599       ENDIF
1600!
1601!--    Increase simulation time and output times
1602       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1603       current_timestep_number    = current_timestep_number + 1
1604       simulated_time             = simulated_time   + dt_3d
1605       time_since_reference_point = simulated_time - coupling_start_time
1606       simulated_time_chr         = time_to_string( time_since_reference_point )
1607
1608
1609
1610
1611       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1612          time_do_av         = time_do_av       + dt_3d
1613       ENDIF
1614       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1615          time_do2d_xy       = time_do2d_xy     + dt_3d
1616       ENDIF
1617       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1618          time_do2d_xz       = time_do2d_xz     + dt_3d
1619       ENDIF
1620       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1621          time_do2d_yz       = time_do2d_yz     + dt_3d
1622       ENDIF
1623       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1624          time_do3d          = time_do3d        + dt_3d
1625       ENDIF
1626       DO  mid = 1, masks
1627          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1628             time_domask(mid)= time_domask(mid) + dt_3d
1629          ENDIF
1630       ENDDO
1631       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1632          time_dosp       = time_dosp        + dt_3d
1633       ENDIF
1634       time_dots          = time_dots        + dt_3d
1635       IF ( .NOT. first_call_lpm )  THEN
1636          time_dopts      = time_dopts       + dt_3d
1637       ENDIF
1638       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1639          time_dopr       = time_dopr        + dt_3d
1640       ENDIF
1641       time_dopr_listing  = time_dopr_listing + dt_3d
1642       time_run_control   = time_run_control + dt_3d
1643!
1644!--    Increment time-counter for surface output
1645       IF ( surface_output )  THEN
1646          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1647             time_dosurf    = time_dosurf + dt_3d
1648          ENDIF
1649          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1650             time_dosurf_av = time_dosurf_av + dt_3d
1651          ENDIF
1652       ENDIF
1653!
1654!--    Increment time-counter for virtual measurements
1655       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1656          time_virtual_measurement = time_virtual_measurement + dt_3d
1657       ENDIF
1658!
1659!--    In case of synthetic turbulence generation and parametrized turbulence
1660!--    information, update the time counter and if required, adjust the
1661!--    STG to new atmospheric conditions.
1662       IF ( use_syn_turb_gen  )  THEN
1663          IF ( parametrize_inflow_turbulence )  THEN
1664             time_stg_adjust = time_stg_adjust + dt_3d
1665             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1666                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1667                CALL stg_adjust
1668                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1669             ENDIF
1670          ENDIF
1671          time_stg_call = time_stg_call + dt_3d
1672       ENDIF
1673
1674!
1675!--    Data exchange between coupled models
1676       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1677          time_coupling = time_coupling + dt_3d
1678
1679!
1680!--       In case of model termination initiated by the local model
1681!--       (terminate_coupled > 0), the coupler must be skipped because it would
1682!--       cause an MPI intercomminucation hang.
1683!--       If necessary, the coupler will be called at the beginning of the
1684!--       next restart run.
1685          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1686             CALL surface_coupler
1687             time_coupling = time_coupling - dt_coupling
1688          ENDDO
1689       ENDIF
1690
1691!
1692!--    Biometeorology calculation of stationary thermal indices
1693!--    Todo (kanani): biometeorology needs own time_... treatment.
1694!--                   It might be that time_do2d_xy differs from time_do3d,
1695!--                   and then we might get trouble with the biomet output,
1696!--                   because we can have 2d and/or 3d biomet output!!
1697       IF ( biometeorology                                                                         &
1698            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1699                  .OR.                                                                             &
1700            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1701                    ) )  THEN
1702!
1703!--       If required, do thermal comfort calculations
1704          IF ( thermal_comfort )  THEN
1705             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1706          ENDIF
1707!
1708!--       If required, do UV exposure calculations
1709          IF ( uv_exposure )  THEN
1710             CALL bio_calculate_uv_exposure
1711          ENDIF
1712       ENDIF
1713
1714!
1715!--    Execute alle other module actions routunes
1716       CALL module_interface_actions( 'after_integration' )
1717
1718!
1719!--    If Galilei transformation is used, determine the distance that the
1720!--    model has moved so far
1721       IF ( galilei_transformation )  THEN
1722          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1723          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1724       ENDIF
1725
1726!
1727!--    Check, if restart is necessary (because cpu-time is expiring or
1728!--    because it is forced by user) and set stop flag
1729!--    This call is skipped if the remote model has already initiated a restart.
1730       IF ( .NOT. terminate_run )  CALL check_for_restart
1731
1732!
1733!--    Carry out statistical analysis and output at the requested output times.
1734!--    The MOD function is used for calculating the output time counters (like
1735!--    time_dopr) in order to regard a possible decrease of the output time
1736!--    interval in case of restart runs
1737
1738!
1739!--    Set a flag indicating that so far no statistics have been created
1740!--    for this time step
1741       flow_statistics_called = .FALSE.
1742
1743!
1744!--    If required, call flow_statistics for averaging in time
1745       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1746            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1747            time_since_reference_point >= skip_time_dopr )  THEN
1748          time_dopr_av = time_dopr_av + dt_3d
1749          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1750             do_sum = .TRUE.
1751             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1752          ENDIF
1753       ENDIF
1754       IF ( do_sum )  CALL flow_statistics
1755
1756!
1757!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1758       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1759            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1760            time_since_reference_point >= skip_time_data_output_av )                               &
1761       THEN
1762          time_do_sla = time_do_sla + dt_3d
1763          IF ( time_do_sla >= dt_averaging_input )  THEN
1764             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1765                CALL doq_calculate
1766
1767             CALL sum_up_3d_data
1768             average_count_3d = average_count_3d + 1
1769             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1770          ENDIF
1771       ENDIF
1772!
1773!--    Average surface data
1774       IF ( surface_output )  THEN
1775          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1776                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1777                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1778             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1779                CALL surface_data_output_averaging
1780                average_count_surf = average_count_surf + 1
1781             ENDIF
1782          ENDIF
1783       ENDIF
1784
1785!
1786!--    Calculate spectra for time averaging
1787       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1788            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1789          time_dosp_av = time_dosp_av + dt_3d
1790          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1791             CALL calc_spectra
1792             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1793          ENDIF
1794       ENDIF
1795
1796!
1797!--    Call flight module and output data
1798       IF ( virtual_flight )  THEN
1799          CALL flight_measurement
1800          CALL data_output_flight
1801       ENDIF
1802!
1803!--    Take virtual measurements
1804       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1805                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
1806          CALL vm_sampling
1807          CALL vm_data_output
1808          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1809                                          MAX( dt_virtual_measurement, dt_3d ) )
1810       ENDIF
1811!
1812!--    Profile output (ASCII) on file
1813       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1814          CALL print_1d
1815          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1816       ENDIF
1817
1818!
1819!--    Graphic output for PROFIL
1820       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1821          IF ( dopr_n /= 0 )  CALL data_output_profiles
1822          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1823          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1824       ENDIF
1825
1826!
1827!--    Graphic output for time series
1828       IF ( time_dots >= dt_dots )  THEN
1829          CALL data_output_tseries
1830          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1831       ENDIF
1832
1833!
1834!--    Output of spectra (formatted for use with PROFIL), in case of no
1835!--    time averaging, spectra has to be calculated before
1836       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1837          IF ( average_count_sp == 0 )  CALL calc_spectra
1838          CALL data_output_spectra
1839          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1840       ENDIF
1841
1842!
1843!--    2d-data output (cross-sections)
1844       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1845          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1846             CALL doq_calculate
1847
1848          CALL data_output_2d( 'xy', 0 )
1849          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1850       ENDIF
1851       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1852          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1853
1854             CALL doq_calculate
1855          CALL data_output_2d( 'xz', 0 )
1856          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1857       ENDIF
1858       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1859          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1860             CALL doq_calculate
1861
1862          CALL data_output_2d( 'yz', 0 )
1863          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1864       ENDIF
1865
1866!
1867!--    3d-data output (volume data)
1868       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1869          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1870             CALL doq_calculate
1871
1872          CALL data_output_3d( 0 )
1873          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1874       ENDIF
1875
1876!
1877!--    Masked data output
1878       DO  mid = 1, masks
1879          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1880               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1881             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1882                CALL doq_calculate
1883
1884             CALL data_output_mask( 0, mid )
1885             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1886          ENDIF
1887       ENDDO
1888
1889!
1890!--    Output of time-averaged 2d/3d/masked data
1891       IF ( time_do_av >= dt_data_output_av                                                        &
1892            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1893          CALL average_3d_data
1894!
1895!--       Udate thermal comfort indices based on updated averaged input
1896          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1897             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1898          ENDIF
1899          CALL data_output_2d( 'xy', 1 )
1900          CALL data_output_2d( 'xz', 1 )
1901          CALL data_output_2d( 'yz', 1 )
1902          CALL data_output_3d( 1 )
1903          DO  mid = 1, masks
1904             CALL data_output_mask( 1, mid )
1905          ENDDO
1906          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1907       ENDIF
1908!
1909!--    Output of surface data, instantaneous and averaged data
1910       IF ( surface_output )  THEN
1911          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1912             CALL surface_data_output( 0 )
1913             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1914          ENDIF
1915          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1916             CALL surface_data_output( 1 )
1917             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1918          ENDIF
1919       ENDIF
1920
1921!
1922!--    Output of particle time series
1923       IF ( particle_advection )  THEN
1924          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1925               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1926                 first_call_lpm ) )  THEN
1927             CALL lpm_data_output_ptseries
1928             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1929          ENDIF
1930       ENDIF
1931
1932!
1933!--    If required, set the heat flux for the next time step to a random value
1934       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1935          IF ( surf_def_h(0)%ns >= 1 )  THEN
1936             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1937             CALL disturb_heatflux( surf_def_h(0) )
1938             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1939          ENDIF
1940          IF ( surf_lsm_h%ns    >= 1 )  THEN
1941             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1942             CALL disturb_heatflux( surf_lsm_h    )
1943             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1944          ENDIF
1945          IF ( surf_usm_h%ns    >= 1 )  THEN
1946             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1947             CALL disturb_heatflux( surf_usm_h    )
1948             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1949          ENDIF
1950       ENDIF
1951
1952!
1953!--    Execute alle other module actions routunes
1954       CALL module_interface_actions( 'after_timestep' )
1955
1956!
1957!--    Determine size of next time step. Save timestep dt_3d because it is
1958!--    newly calculated in routine timestep, but required further below for
1959!--    steering the run control output interval
1960       dt_3d_old = dt_3d
1961       CALL timestep
1962
1963!
1964!--    Synchronize the timestep in case of nested run.
1965       IF ( nested_run )  THEN
1966!
1967!--       Synchronize by unifying the time step.
1968!--       Global minimum of all time-steps is used for all.
1969          CALL pmci_synchronize
1970       ENDIF
1971
1972!
1973!--    Computation and output of run control parameters.
1974!--    This is also done whenever perturbations have been imposed
1975       IF ( time_run_control >= dt_run_control  .OR.                                               &
1976            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1977       THEN
1978          CALL run_control
1979          IF ( time_run_control >= dt_run_control )  THEN
1980             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1981          ENDIF
1982       ENDIF
1983
1984!
1985!--    Output elapsed simulated time in form of a progress bar on stdout
1986       IF ( myid == 0 )  CALL output_progress_bar
1987
1988       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1989
1990
1991    ENDDO   ! time loop
1992
1993#if defined( _OPENACC )
1994    CALL exit_surface_arrays
1995#endif
1996!$ACC END DATA
1997!$ACC END DATA
1998!$ACC END DATA
1999!$ACC END DATA
2000!$ACC END DATA
2001!$ACC END DATA
2002!$ACC END DATA
2003
2004!
2005!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
2006    IF ( vnest_init )  CALL vnest_deallocate
2007
2008    IF ( myid == 0 )  CALL finish_progress_bar
2009
2010    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
2011
2012 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.