source: palm/trunk/SOURCE/time_integration.f90 @ 4045

Last change on this file since 4045 was 4043, checked in by schwenkel, 5 years ago

further modularization of lpm and delete min_nr_particle

  • Property svn:keywords set to Id
File size: 79.7 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 4043 2019-06-18 16:59:00Z raasch $
27! Further LPM modularization
28!
29! 4039 2019-06-18 10:32:41Z suehring
30! Rename subroutines in module for diagnostic quantities
31!
32! 4029 2019-06-14 14:04:35Z raasch
33! exchange of ghost points and boundary conditions separated for chemical species and SALSA module,
34! bugfix: decycling of chemistry species after nesting data transfer
35!
36! 4022 2019-06-12 11:52:39Z suehring
37! Call synthetic turbulence generator at last RK3 substep right after boundary
38! conditions are updated in offline nesting in order to assure that
39! perturbations are always imposed
40!
41! 4017 2019-06-06 12:16:46Z schwenkel
42! Mass (volume) flux correction included to ensure global mass conservation for child domains.
43!
44! 3994 2019-05-22 18:08:09Z suehring
45! output of turbulence intensity added
46!
47! 3988 2019-05-22 11:32:37Z kanani
48! Implement steerable output interval for virtual measurements
49!
50! 3968 2019-05-13 11:04:01Z suehring
51! replace nspec_out with n_matched_vars
52!
53! 3929 2019-04-24 12:52:08Z banzhafs
54! Reverse changes back from revision 3878: use chem_boundary_conds instead of
55! chem_boundary_conds_decycle
56!
57!
58! 3885 2019-04-11 11:29:34Z kanani
59! Changes related to global restructuring of location messages and introduction
60! of additional debug messages
61!
62! 3879 2019-04-08 20:25:23Z knoop
63! Moved wtm_forces to module_interface_actions
64!
65! 3872 2019-04-08 15:03:06Z knoop
66! Modifications made for salsa:
67! - Call salsa_emission_update at each time step but do the checks within
68!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
69!   and next_aero_emission_update <= time_since_reference_point ).
70! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
71!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
72! - Apply nesting for salsa variables
73! - Removed cpu_log calls speciffic for salsa.
74!
75! 3833 2019-03-28 15:04:04Z forkel
76! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
77!
78! 3820 2019-03-27 11:53:41Z forkel
79! renamed do_emiss to emissions_anthropogenic (ecc)
80!
81!
82! 3774 2019-03-04 10:52:49Z moh.hefny
83! rephrase if statement to avoid unallocated array in case of
84! nesting_offline is false (crashing during debug mode)
85!
86! 3761 2019-02-25 15:31:42Z raasch $
87! module section re-formatted and openacc required variables moved to separate section,
88! re-formatting to 100 char line width
89!
90! 3745 2019-02-15 18:57:56Z suehring
91! Call indoor model after first timestep
92!
93! 3744 2019-02-15 18:38:58Z suehring
94! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
95! time_integration to make sure averaged input is updated before calculating.
96!
97! 3739 2019-02-13 08:05:17Z dom_dwd_user
98! Removed everything related to "time_bio_results" as this is never used.
99!
100! 3724 2019-02-06 16:28:23Z kanani
101! Correct double-used log_point_s unit
102!
103! 3719 2019-02-06 13:10:18Z kanani
104! - removed wind_turbine cpu measurement, since same time is measured inside
105!   wtm_forces subroutine as special measures
106! - moved the numerous vnest cpulog to special measures
107! - extended radiation cpulog over entire radiation part,
108!   moved radiation_interactions cpulog to special measures
109! - moved some cpu_log calls to this routine for better overview
110!
111! 3705 2019-01-29 19:56:39Z suehring
112! Data output for virtual measurements added
113!
114! 3704 2019-01-29 19:51:41Z suehring
115! Rename subroutines for surface-data output
116!
117! 3647 2019-01-02 14:10:44Z kanani
118! Bugfix: add time_since_reference_point to IF clause for data_output calls
119! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
120! Clean up indoor_model and biometeorology model call.
121!
122! 3646 2018-12-28 17:58:49Z kanani
123! Bugfix: use time_since_reference_point instead of simulated_time where
124! required (relevant when using wall/soil spinup)
125!
126! 3634 2018-12-18 12:31:28Z knoop
127! OpenACC port for SPEC
128!
129! 3597 2018-12-04 08:40:18Z maronga
130! Removed call to calculation of near air (10 cm) potential temperature (now in
131! surface layer fluxes)
132!
133! 3589 2018-11-30 15:09:51Z suehring
134! Move the control parameter "salsa" from salsa_mod to control_parameters
135! (M. Kurppa)
136!
137! 3582 2018-11-29 19:16:36Z suehring
138! dom_dwd_user, Schrempf:
139! Changes due to merge of uv exposure model into biometeorology_mod.
140!
141! 3525 2018-11-14 16:06:14Z kanani
142! Changes related to clean-up of biometeorology (dom_dwd_user)
143!
144! 3524 2018-11-14 13:36:44Z raasch
145! unused variables removed
146!
147! 3484 2018-11-02 14:41:25Z hellstea
148! pmci_ensure_nest_mass_conservation is premanently removed
149!
150! 3473 2018-10-30 20:50:15Z suehring
151! new module for virtual measurements introduced
152!
153! 3472 2018-10-30 20:43:50Z suehring
154! Add indoor model (kanani, srissman, tlang)
155!
156! 3467 2018-10-30 19:05:21Z suehring
157! Implementation of a new aerosol module salsa.
158!
159! 3448 2018-10-29 18:14:31Z kanani
160! Add biometeorology
161!
162! 3421 2018-10-24 18:39:32Z gronemeier
163! Surface data output
164!
165! 3418 2018-10-24 16:07:39Z kanani
166! call to material_heat_model now with check if spinup runs (rvtils)
167!
168! 3378 2018-10-19 12:34:59Z kanani
169! merge from radiation branch (r3362) into trunk
170! (moh.hefny):
171! Bugfix in the if statement to call radiation_interaction
172!
173! 3347 2018-10-15 14:21:08Z suehring
174! - offline nesting separated from large-scale forcing module
175! - changes for synthetic turbulence generator
176!
177! 3343 2018-10-15 10:38:52Z suehring
178! - Formatting, clean-up, comments (kanani)
179! - Added CALL to chem_emissions_setup (Russo)
180! - Code added for decycling chemistry (basit)
181!
182! 3294 2018-10-01 02:37:10Z raasch
183! changes concerning modularization of ocean option
184!
185! 3274 2018-09-24 15:42:55Z knoop
186! Modularization of all bulk cloud physics code components
187!
188! 3241 2018-09-12 15:02:00Z raasch
189! unused variables removed
190!
191! 3198 2018-08-15 09:23:10Z sward
192! Added multi_agent_system_end; defined start time for MAS relative to
193! time_since_reference_point
194!
195! 3183 2018-07-27 14:25:55Z suehring
196! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
197! Rename subroutines and variables in COSMO nesting mode
198!
199! 3182 2018-07-27 13:36:03Z suehring
200! Added multi agent system
201!
202! 3042 2018-05-25 10:44:37Z schwenkel
203! Changed the name specific humidity to mixing ratio
204!
205! 3040 2018-05-25 10:22:08Z schwenkel
206! Fixed bug in IF statement
207! Ensure that the time when calling the radiation to be the time step of the
208! pre-calculated time when first calculate the positions of the sun
209!
210! 3004 2018-04-27 12:33:25Z Giersch
211! First call of flow_statistics has been removed. It is already called in
212! run_control itself
213!
214! 2984 2018-04-18 11:51:30Z hellstea
215! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
216! as seemingly unnecessary.
217!
218! 2941 2018-04-03 11:54:58Z kanani
219! Deduct spinup_time from RUN_CONTROL output of main 3d run
220! (use time_since_reference_point instead of simulated_time)
221!
222! 2938 2018-03-27 15:52:42Z suehring
223! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
224!
225! 2936 2018-03-27 14:49:27Z suehring
226! Little formatting adjustment.
227!
228! 2817 2018-02-19 16:32:21Z knoop
229! Preliminary gust module interface implemented
230!
231! 2801 2018-02-14 16:01:55Z thiele
232! Changed lpm from subroutine to module.
233! Introduce particle transfer in nested models.
234!
235! 2776 2018-01-31 10:44:42Z Giersch
236! Variable use_synthetic_turbulence_generator has been abbreviated
237!
238! 2773 2018-01-30 14:12:54Z suehring
239! - Nesting for chemical species
240!
241! 2766 2018-01-22 17:17:47Z kanani
242! Removed preprocessor directive __chem
243!
244! 2718 2018-01-02 08:49:38Z maronga
245! Corrected "Former revisions" section
246!
247! 2696 2017-12-14 17:12:51Z kanani
248! - Change in file header (GPL part)
249! - Implementation of uv exposure model (FK)
250! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
251! - renamed diffusivities to tcm_diffusivities (TG)
252! - implement prognostic equation for diss (TG)
253! - Moved/commented CALL to chem_emissions (FK)
254! - Added CALL to chem_emissions (FK)
255! - Implementation of chemistry module (FK)
256! - Calls for setting boundary conditions in USM and LSM (MS)
257! - Large-scale forcing with larger-scale models implemented (MS)
258! - Rename usm_radiation into radiation_interactions; merge with branch
259!   radiation (MS)
260! - added call for usm_green_heat_model for green building surfaces (RvT)
261! - added call for usm_temperature_near_surface for use in indoor model (RvT)
262!
263! 2617 2017-11-16 12:47:24Z suehring
264! Bugfix, assure that the reference state does not become zero.
265!
266! 2563 2017-10-19 15:36:10Z Giersch
267! Variable wind_turbine moved to module control_parameters
268!
269! 2365 2017-08-21 14:59:59Z kanani
270! Vertical grid nesting implemented (SadiqHuq)
271!
272! 2320 2017-07-21 12:47:43Z suehring
273! Set bottom boundary conditions after nesting interpolation and anterpolation
274!
275! 2299 2017-06-29 10:14:38Z maronga
276! Call of soil model adjusted
277!
278! 2292 2017-06-20 09:51:42Z schwenkel
279! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
280! includes two more prognostic equations for cloud drop concentration (nc) 
281! and cloud water content (qc).
282!
283! 2271 2017-06-09 12:34:55Z sward
284! Start timestep message changed
285!
286! 2259 2017-06-08 09:09:11Z gronemeier
287! Implemented synthetic turbulence generator
288!
289! 2233 2017-05-30 18:08:54Z suehring
290!
291! 2232 2017-05-30 17:47:52Z suehring
292! Adjustments to new topography and surface concept
293! Modify passed parameters for disturb_field
294!
295! 2178 2017-03-17 11:07:39Z hellstea
296! Setting perturbations at all times near inflow boundary is removed
297! in case of nested boundaries
298!
299! 2174 2017-03-13 08:18:57Z maronga
300! Added support for nesting with cloud microphysics
301!
302! 2118 2017-01-17 16:38:49Z raasch
303! OpenACC directives and related code removed
304!
305! 2050 2016-11-08 15:00:55Z gronemeier
306! Implement turbulent outflow condition
307!
308! 2031 2016-10-21 15:11:58Z knoop
309! renamed variable rho to rho_ocean
310!
311! 2011 2016-09-19 17:29:57Z kanani
312! Flag urban_surface is now defined in module control_parameters,
313! removed commented CALLs of global_min_max.
314!
315! 2007 2016-08-24 15:47:17Z kanani
316! Added CALLs for new urban surface model
317!
318! 2000 2016-08-20 18:09:15Z knoop
319! Forced header and separation lines into 80 columns
320!
321! 1976 2016-07-27 13:28:04Z maronga
322! Simplified calls to radiation model
323!
324! 1960 2016-07-12 16:34:24Z suehring
325! Separate humidity and passive scalar
326!
327! 1957 2016-07-07 10:43:48Z suehring
328! flight module added
329!
330! 1919 2016-05-27 14:51:23Z raasch
331! Initial version of purely vertical nesting introduced.
332!
333! 1918 2016-05-27 14:35:57Z raasch
334! determination of time step moved to the end of the time step loop,
335! the first time step is now always calculated before the time step loop (i.e.
336! also in case of restart runs)
337!
338! 1914 2016-05-26 14:44:07Z witha
339! Added call for wind turbine model
340!
341! 1878 2016-04-19 12:30:36Z hellstea
342! Synchronization for nested runs rewritten
343!
344! 1853 2016-04-11 09:00:35Z maronga
345! Adjusted for use with radiation_scheme = constant
346!
347! 1849 2016-04-08 11:33:18Z hoffmann
348! Adapted for modularization of microphysics
349!
350! 1833 2016-04-07 14:23:03Z raasch
351! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
352!
353! 1831 2016-04-07 13:15:51Z hoffmann
354! turbulence renamed collision_turbulence
355!
356! 1822 2016-04-07 07:49:42Z hoffmann
357! icloud_scheme replaced by microphysics_*
358!
359! 1808 2016-04-05 19:44:00Z raasch
360! output message in case unscheduled radiation calls removed
361!
362! 1797 2016-03-21 16:50:28Z raasch
363! introduction of different datatransfer modes
364!
365! 1791 2016-03-11 10:41:25Z raasch
366! call of pmci_update_new removed
367!
368! 1786 2016-03-08 05:49:27Z raasch
369! +module spectrum
370!
371! 1783 2016-03-06 18:36:17Z raasch
372! switch back of netcdf data format for mask output moved to the mask output
373! routine
374!
375! 1781 2016-03-03 15:12:23Z raasch
376! some pmc calls removed at the beginning (before timeloop),
377! pmc initialization moved to the main program
378!
379! 1764 2016-02-28 12:45:19Z raasch
380! PMC_ACTIVE flags removed,
381! bugfix: nest synchronization after first call of timestep
382!
383! 1762 2016-02-25 12:31:13Z hellstea
384! Introduction of nested domain feature
385!
386! 1736 2015-12-04 08:56:33Z raasch
387! no perturbations added to total domain if energy limit has been set zero
388!
389! 1691 2015-10-26 16:17:44Z maronga
390! Added option for spin-ups without land surface and radiation models. Moved calls
391! for radiation and lan surface schemes.
392!
393! 1682 2015-10-07 23:56:08Z knoop
394! Code annotations made doxygen readable
395!
396! 1671 2015-09-25 03:29:37Z raasch
397! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
398! for particles
399!
400! 1585 2015-04-30 07:05:52Z maronga
401! Moved call of radiation scheme. Added support for RRTM
402!
403! 1551 2015-03-03 14:18:16Z maronga
404! Added interface for different radiation schemes.
405!
406! 1496 2014-12-02 17:25:50Z maronga
407! Added calls for the land surface model and radiation scheme
408!
409! 1402 2014-05-09 14:25:13Z raasch
410! location messages modified
411!
412! 1384 2014-05-02 14:31:06Z raasch
413! location messages added
414!
415! 1380 2014-04-28 12:40:45Z heinze
416! CALL of nudge_ref added
417! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
418!
419! 1365 2014-04-22 15:03:56Z boeske
420! Reset sums_ls_l to zero at each timestep
421! +sums_ls_l
422! Calculation of reference state (previously in subroutine calc_mean_profile)
423
424! 1342 2014-03-26 17:04:47Z kanani
425! REAL constants defined as wp-kind
426!
427! 1320 2014-03-20 08:40:49Z raasch
428! ONLY-attribute added to USE-statements,
429! kind-parameters added to all INTEGER and REAL declaration statements,
430! kinds are defined in new module kinds,
431! old module precision_kind is removed,
432! revision history before 2012 removed,
433! comment fields (!:) to be used for variable explanations added to
434! all variable declaration statements
435! 1318 2014-03-17 13:35:16Z raasch
436! module interfaces removed
437!
438! 1308 2014-03-13 14:58:42Z fricke
439! +netcdf_data_format_save
440! For masked data, parallel netcdf output is not tested so far, hence
441! netcdf_data_format is switched back to non-paralell output.
442!
443! 1276 2014-01-15 13:40:41Z heinze
444! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
445!
446! 1257 2013-11-08 15:18:40Z raasch
447! acc-update-host directive for timestep removed
448!
449! 1241 2013-10-30 11:36:58Z heinze
450! Generalize calc_mean_profile for wider use
451! Determine shf and qsws in dependence on data from LSF_DATA
452! Determine ug and vg in dependence on data from LSF_DATA
453! 1221 2013-09-10 08:59:13Z raasch
454! host update of arrays before timestep is called
455!
456! 1179 2013-06-14 05:57:58Z raasch
457! mean profiles for reference state are only calculated if required,
458! small bugfix for background communication
459!
460! 1171 2013-05-30 11:27:45Z raasch
461! split of prognostic_equations deactivated (comment lines), for the time being
462!
463! 1128 2013-04-12 06:19:32Z raasch
464! asynchronous transfer of ghost point data realized for acc-optimized version:
465! prognostic_equations are first called two times for those points required for
466! the left-right and north-south exchange, respectively, and then for the
467! remaining points,
468! those parts requiring global communication moved from prognostic_equations to
469! here
470!
471! 1115 2013-03-26 18:16:16Z hoffmann
472! calculation of qr and nr is restricted to precipitation
473!
474! 1113 2013-03-10 02:48:14Z raasch
475! GPU-porting of boundary conditions,
476! openACC directives updated
477! formal parameter removed from routine boundary_conds
478!
479! 1111 2013-03-08 23:54:10Z raasch
480! +internal timestep counter for cpu statistics added,
481! openACC directives updated
482!
483! 1092 2013-02-02 11:24:22Z raasch
484! unused variables removed
485!
486! 1065 2012-11-22 17:42:36Z hoffmann
487! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
488!
489! 1053 2012-11-13 17:11:03Z hoffmann
490! exchange of ghost points for nr, qr added
491!
492! 1036 2012-10-22 13:43:42Z raasch
493! code put under GPL (PALM 3.9)
494!
495! 1019 2012-09-28 06:46:45Z raasch
496! non-optimized version of prognostic_equations removed
497!
498! 1015 2012-09-27 09:23:24Z raasch
499! +call of prognostic_equations_acc
500!
501! 1001 2012-09-13 14:08:46Z raasch
502! all actions concerning leapfrog- and upstream-spline-scheme removed
503!
504! 849 2012-03-15 10:35:09Z raasch
505! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
506!
507! 825 2012-02-19 03:03:44Z raasch
508! wang_collision_kernel renamed wang_kernel
509!
510! Revision 1.1  1997/08/11 06:19:04  raasch
511! Initial revision
512!
513!
514! Description:
515! ------------
516!> Integration in time of the model equations, statistical analysis and graphic
517!> output
518!------------------------------------------------------------------------------!
519 SUBROUTINE time_integration
520 
521
522    USE advec_ws,                                                                                  &
523        ONLY:  ws_statistics
524
525    USE arrays_3d,                                                                                 &
526        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
527               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
528               tend, u, u_p, v, vpt, v_p, w, w_p
529
530    USE biometeorology_mod,                                                                        &
531        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
532
533    USE bulk_cloud_model_mod,                                                                      &
534        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
535              microphysics_morrison, microphysics_seifert
536
537    USE calc_mean_profile_mod,                                                                     &
538        ONLY:  calc_mean_profile
539
540    USE chem_emissions_mod,                                                                        &
541        ONLY:  chem_emissions_setup
542
543    USE chem_gasphase_mod,                                                                         &
544        ONLY:  nvar
545
546    USE chem_modules,                                                                              &
547        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
548
549    USE chemistry_model_mod,                                                                       &
550        ONLY:  chem_boundary_conds
551
552    USE control_parameters,                                                                        &
553        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
554               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
555               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
556               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
557               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
558               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
559               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
560               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
561               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_run_control,              &
562               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
563               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
564               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
565               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
566               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
567               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
568               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
569               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
570               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
571               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
572               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
573               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
574               time_do_sla, time_disturb, time_run_control, time_since_reference_point,            &
575               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
576               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
577               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
578
579    USE cpulog,                                                                                    &
580        ONLY:  cpu_log, log_point, log_point_s
581
582    USE date_and_time_mod,                                                                         &
583        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
584
585    USE diagnostic_output_quantities_mod,                                                          &
586        ONLY:  doq_calculate,                                                                      &
587               timestep_number_at_prev_calc
588
589    USE flight_mod,                                                                                &
590        ONLY:  flight_measurement
591
592    USE indices,                                                                                   &
593        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
594
595    USE indoor_model_mod,                                                                          &
596        ONLY:  dt_indoor, im_main_heatcool, time_indoor
597
598    USE interfaces
599
600    USE kinds
601
602    USE land_surface_model_mod,                                                                    &
603        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
604
605    USE lagrangian_particle_model_mod,                                                             &
606        ONLY:  lpm_data_output_ptseries, lpm_interaction_droplets_ptq
607
608    USE lsf_nudging_mod,                                                                           &
609        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
610
611    USE module_interface,                                                                          &
612        ONLY:  module_interface_actions
613
614    USE multi_agent_system_mod,                                                                    &
615        ONLY:  agents_active, multi_agent_system
616
617    USE nesting_offl_mod,                                                                          &
618        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
619
620    USE netcdf_data_input_mod,                                                                     &
621        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
622
623    USE ocean_mod,                                                                                 &
624        ONLY:  prho_reference
625
626    USE particle_attributes,                                                                       &
627        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
628
629    USE pegrid
630
631    USE pmc_interface,                                                                             &
632        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize,    &
633        pmci_ensure_nest_mass_conservation, pmci_ensure_nest_mass_conservation_vertical
634
635    USE progress_bar,                                                                              &
636        ONLY:  finish_progress_bar, output_progress_bar
637
638    USE prognostic_equations_mod,                                                                  &
639        ONLY:  prognostic_equations_cache, prognostic_equations_vector
640
641    USE radiation_model_mod,                                                                       &
642        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
643              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
644
645    USE salsa_mod,                                                                                 &
646        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
647              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
648              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
649
650    USE spectra_mod,                                                                               &
651        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
652
653    USE statistics,                                                                                &
654        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
655
656
657    USE surface_layer_fluxes_mod,                                                                  &
658        ONLY:  surface_layer_fluxes
659
660    USE surface_data_output_mod,                                                                   &
661        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
662               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
663               skip_time_dosurf_av, time_dosurf, time_dosurf_av
664
665    USE surface_mod,                                                                               &
666        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
667
668    USE synthetic_turbulence_generator_mod,                                                        &
669        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
670               time_stg_adjust, time_stg_call, use_syn_turb_gen
671
672    USE turbulence_closure_mod,                                                                    &
673        ONLY:  tcm_diffusivities, production_e_init
674
675    USE urban_surface_mod,                                                                         &
676        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
677               usm_surface_energy_balance, usm_green_heat_model
678
679    USE vertical_nesting_mod,                                                                      &
680        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
681               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
682               vnest_start_time
683
684    USE virtual_measurement_mod,                                                                   &
685        ONLY:  dt_virtual_measurement,                                                             &
686               time_virtual_measurement,                                                           &
687               vm_data_output,                                                                     &
688               vm_sampling,                                                                        &
689               vm_time_start
690
691
692#if defined( _OPENACC )
693    USE arrays_3d,                                                             &
694        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
695               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
696               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
697               v_stokes_zu, zu
698
699    USE control_parameters,                                                                        &
700        ONLY:  tsc
701
702    USE indices,                                                                                   &
703        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
704
705    USE statistics,                                                                                &
706        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
707               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
708               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
709               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
710
711    USE surface_mod,                                                                               &
712        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
713#endif
714
715
716    IMPLICIT NONE
717
718    CHARACTER (LEN=9) ::  time_to_string   !<
719
720    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
721    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
722    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
723    INTEGER(iwp)      ::  ig        !< index for salsa gases
724    INTEGER(iwp)      ::  lsp
725    INTEGER(iwp)      ::  lsp_usr   !<
726    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
727
728    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
729                            !< steering of run control output interval
730    REAL(wp) ::  time_since_reference_point_save  !< original value of
731                                                  !< time_since_reference_point
732
733
734!
735!-- Copy data from arrays_3d
736!$ACC DATA &
737!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
738!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
739!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
740!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
741!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
742!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
743!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
744!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
745!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
746
747!$ACC DATA &
748!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
749!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
750!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
751!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
752!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
753!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
754!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
755!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
756!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
757!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
758!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
759
760!$ACC DATA &
761!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
762!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
763!$ACC COPYIN(zu(nzb:nzt+1)) &
764!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
765!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
766!$ACC COPYIN(ddzw(1:nzt+1)) &
767!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
768!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
769!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
770!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
771!$ACC COPYIN(ref_state(0:nz+1)) &
772!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
773!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
774!$ACC COPYIN(pt_init(0:nz+1)) &
775!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
776
777!
778!-- Copy data from control_parameters
779!$ACC DATA &
780!$ACC COPYIN(tsc(1:5))
781
782!
783!-- Copy data from indices
784!$ACC DATA &
785!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
786!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
787!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
788
789!
790!-- Copy data from surface_mod
791!$ACC DATA &
792!$ACC COPYIN(bc_h(0:1)) &
793!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
794!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
795!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
796!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
797!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
798!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
799
800!
801!-- Copy data from statistics
802!$ACC DATA &
803!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
804!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
805!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
806!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
807!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
808!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
809!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
810!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
811!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
812!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
813!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
814!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
815!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
816!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
817!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
818!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
819!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
820!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
821!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
822
823#if defined( _OPENACC )
824    CALL enter_surface_arrays
825#endif
826
827!
828!-- At beginning determine the first time step
829    CALL timestep
830!
831!-- Synchronize the timestep in case of nested run.
832    IF ( nested_run )  THEN
833!
834!--    Synchronization by unifying the time step.
835!--    Global minimum of all time-steps is used for all.
836       CALL pmci_synchronize
837    ENDIF
838
839!
840!-- Determine and print out the run control quantities before the first time
841!-- step of this run. For the initial run, some statistics (e.g. divergence)
842!-- need to be determined first --> CALL flow_statistics at the beginning of
843!-- run_control
844    CALL run_control
845!
846!-- Data exchange between coupled models in case that a call has been omitted
847!-- at the end of the previous run of a job chain.
848    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
849!
850!--    In case of model termination initiated by the local model the coupler
851!--    must not be called because this would again cause an MPI hang.
852       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
853          CALL surface_coupler
854          time_coupling = time_coupling - dt_coupling
855       ENDDO
856       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
857          time_coupling = time_since_reference_point
858       ENDIF
859    ENDIF
860
861    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
862
863!
864!-- Start of the time loop
865    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
866
867       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
868!
869!--    Vertical nesting: initialize fine grid
870       IF ( vnested ) THEN
871          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
872             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
873             CALL vnest_init_fine
874             vnest_init = .TRUE.
875             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
876          ENDIF
877       ENDIF
878!
879!--    Determine ug, vg and w_subs in dependence on data from external file
880!--    LSF_DATA
881       IF ( large_scale_forcing .AND. lsf_vert )  THEN
882           CALL ls_forcing_vert ( simulated_time )
883           sums_ls_l = 0.0_wp
884       ENDIF
885
886!
887!--    Set pt_init and q_init to the current profiles taken from
888!--    NUDGING_DATA
889       IF ( nudging )  THEN
890           CALL nudge_ref ( simulated_time )
891!
892!--        Store temperature gradient at the top boundary for possible Neumann
893!--        boundary condition
894           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
895           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
896           IF ( air_chemistry )  THEN
897              DO  lsp = 1, nvar
898                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
899                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
900                               / dzu(nzt+1)
901              ENDDO
902           ENDIF
903           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
904              DO  ib = 1, nbins_aerosol
905                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
906                               dzu(nzt+1)
907                 DO  ic = 1, ncomponents_mass
908                    icc = ( ic - 1 ) * nbins_aerosol + ib
909                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
910                                  dzu(nzt+1)
911                 ENDDO
912              ENDDO
913              IF ( .NOT. salsa_gases_from_chem )  THEN
914                 DO  ig = 1, ngases_salsa
915                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
916                                  dzu(nzt+1)
917                 ENDDO
918              ENDIF
919           ENDIF
920       ENDIF
921!
922!--    If forcing by larger-scale models is applied, check if new data
923!--    at domain boundaries need to be read.
924       IF ( nesting_offline ) THEN
925          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
926               CALL netcdf_data_input_offline_nesting
927       ENDIF
928
929!
930!--    Execute all other module actions routunes
931       CALL module_interface_actions( 'before_timestep' )
932       
933!
934!--    Start of intermediate step loop
935       intermediate_timestep_count = 0
936       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
937
938          intermediate_timestep_count = intermediate_timestep_count + 1
939
940!
941!--       Set the steering factors for the prognostic equations which depend
942!--       on the timestep scheme
943          CALL timestep_scheme_steering
944
945!
946!--       Calculate those variables needed in the tendency terms which need
947!--       global communication
948          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
949          THEN
950!
951!--          Horizontally averaged profiles to be used as reference state in
952!--          buoyancy terms (WARNING: only the respective last call of
953!--          calc_mean_profile defines the reference state!)
954             IF ( .NOT. neutral )  THEN
955                CALL calc_mean_profile( pt, 4 )
956                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
957             ENDIF
958             IF ( ocean_mode )  THEN
959                CALL calc_mean_profile( rho_ocean, 64 )
960                ref_state(:)  = hom(:,1,64,0)
961             ENDIF
962             IF ( humidity )  THEN
963                CALL calc_mean_profile( vpt, 44 )
964                ref_state(:)  = hom(:,1,44,0)
965             ENDIF
966!
967!--          Assure that ref_state does not become zero at any level
968!--          ( might be the case if a vertical level is completely occupied
969!--            with topography ).
970             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
971          ENDIF
972
973          IF ( .NOT. constant_diffusion )  CALL production_e_init
974          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
975          THEN
976             CALL ws_statistics
977          ENDIF
978!
979!--       In case of nudging calculate current nudging time scale and horizontal
980!--       means of u, v, pt and q
981          IF ( nudging )  THEN
982             CALL calc_tnudge( simulated_time )
983             CALL calc_mean_profile( u, 1 )
984             CALL calc_mean_profile( v, 2 )
985             CALL calc_mean_profile( pt, 4 )
986             CALL calc_mean_profile( q, 41 )
987          ENDIF
988!
989!--       Execute all other module actions routunes
990          CALL module_interface_actions( 'before_prognostic_equations' )
991!
992!--       Solve the prognostic equations. A fast cache optimized version with
993!--       only one single loop is used in case of Piascek-Williams advection
994!--       scheme. NEC vector machines use a different version, because
995!--       in the other versions a good vectorization is prohibited due to
996!--       inlining problems.
997          IF ( loop_optimization == 'cache' )  THEN
998             CALL prognostic_equations_cache
999          ELSEIF ( loop_optimization == 'vector' )  THEN
1000             CALL prognostic_equations_vector
1001          ENDIF
1002
1003!
1004!--       Particle transport/physics with the Lagrangian particle model
1005!--       (only once during intermediate steps, because it uses an Euler-step)
1006!--       ### particle model should be moved before prognostic_equations, in order
1007!--       to regard droplet interactions directly
1008          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
1009               .AND.  intermediate_timestep_count == 1 )                                           &
1010          THEN
1011             CALL module_interface_actions( 'after_prognostic_equations' )
1012             first_call_lpm = .FALSE.
1013          ENDIF
1014
1015!
1016!--       Interaction of droplets with temperature and mixing ratio.
1017!--       Droplet condensation and evaporation is calculated within
1018!--       advec_particles.
1019          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
1020          THEN
1021             CALL lpm_interaction_droplets_ptq
1022          ENDIF
1023
1024!
1025!--       Movement of agents in multi agent system
1026          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1027               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1028               intermediate_timestep_count == 1 )                                                  &
1029          THEN
1030             CALL multi_agent_system
1031             first_call_mas = .FALSE.
1032          ENDIF
1033
1034!
1035!--       Exchange of ghost points (lateral boundary conditions)
1036          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1037
1038          CALL exchange_horiz( u_p, nbgp )
1039          CALL exchange_horiz( v_p, nbgp )
1040          CALL exchange_horiz( w_p, nbgp )
1041          CALL exchange_horiz( pt_p, nbgp )
1042          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1043          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1044               .OR.  use_sgs_for_particles )  THEN
1045             IF ( rans_tke_e )  THEN
1046                CALL exchange_horiz( diss_p, nbgp )
1047             ELSE
1048                CALL exchange_horiz( diss, nbgp )
1049             ENDIF
1050          ENDIF
1051          IF ( ocean_mode )  THEN
1052             CALL exchange_horiz( sa_p, nbgp )
1053             CALL exchange_horiz( rho_ocean, nbgp )
1054             CALL exchange_horiz( prho, nbgp )
1055          ENDIF
1056          IF ( humidity )  THEN
1057             CALL exchange_horiz( q_p, nbgp )
1058             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1059                CALL exchange_horiz( qc_p, nbgp )
1060                CALL exchange_horiz( nc_p, nbgp )
1061             ENDIF
1062             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1063                CALL exchange_horiz( qr_p, nbgp )
1064                CALL exchange_horiz( nr_p, nbgp )
1065             ENDIF
1066          ENDIF
1067          IF ( cloud_droplets )  THEN
1068             CALL exchange_horiz( ql, nbgp )
1069             CALL exchange_horiz( ql_c, nbgp )
1070             CALL exchange_horiz( ql_v, nbgp )
1071             CALL exchange_horiz( ql_vp, nbgp )
1072          ENDIF
1073          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1074          IF ( air_chemistry )  THEN
1075             DO  lsp = 1, nvar
1076                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1077             ENDDO
1078          ENDIF
1079
1080          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1081             DO  ib = 1, nbins_aerosol
1082                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1083                DO  ic = 1, ncomponents_mass
1084                   icc = ( ic - 1 ) * nbins_aerosol + ib
1085                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1086                ENDDO
1087             ENDDO
1088             IF ( .NOT. salsa_gases_from_chem )  THEN
1089                DO  ig = 1, ngases_salsa
1090                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1091                ENDDO
1092             ENDIF
1093          ENDIF
1094          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1095
1096!
1097!--       Boundary conditions for the prognostic quantities (except of the
1098!--       velocities at the outflow in case of a non-cyclic lateral wall)
1099          CALL boundary_conds
1100
1101!
1102!--       Boundary conditions for prognostic quantitites of other modules:
1103!--       Here, only decycling is carried out
1104          IF ( air_chemistry )  THEN
1105
1106             DO  lsp = 1, nvar
1107                lsp_usr = 1
1108                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1109                   IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1110                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1111                                                chem_species(lsp)%conc_pr_init )
1112                   ENDIF
1113                   lsp_usr = lsp_usr + 1
1114                ENDDO
1115             ENDDO
1116
1117          ENDIF
1118
1119          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1120
1121             DO  ib = 1, nbins_aerosol
1122                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1123                DO  ic = 1, ncomponents_mass
1124                   icc = ( ic - 1 ) * nbins_aerosol + ib
1125                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1126                ENDDO
1127             ENDDO
1128             IF ( .NOT. salsa_gases_from_chem )  THEN
1129                DO  ig = 1, ngases_salsa
1130                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1131                ENDDO
1132             ENDIF
1133
1134          ENDIF
1135
1136!
1137!--       Swap the time levels in preparation for the next time step.
1138          CALL swap_timelevel
1139
1140!
1141!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1142          IF ( vnest_init ) THEN
1143             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1144             CALL vnest_anterpolate
1145             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1146          ENDIF
1147
1148          IF ( nested_run )  THEN
1149
1150             CALL cpu_log( log_point(60), 'nesting', 'start' )
1151!
1152!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1153!--          and pmci_child_datatrans are called inside the wrapper
1154!--          subroutine pmci_datatrans according to the control parameters
1155!--          nesting_mode and nesting_datatransfer_mode.
1156!--          TO_DO: why is nesting_mode given as a parameter here?
1157             CALL pmci_datatrans( nesting_mode )
1158
1159             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1160
1161                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'start' )
1162!
1163!--             Exchange_horiz is needed for all parent-domains after the
1164!--             anterpolation
1165                CALL exchange_horiz( u, nbgp )
1166                CALL exchange_horiz( v, nbgp )
1167                CALL exchange_horiz( w, nbgp )
1168                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1169
1170                IF ( humidity )  THEN
1171
1172                   CALL exchange_horiz( q, nbgp )
1173
1174                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1175                       CALL exchange_horiz( qc, nbgp )
1176                       CALL exchange_horiz( nc, nbgp )
1177                   ENDIF
1178                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1179                       CALL exchange_horiz( qr, nbgp )
1180                       CALL exchange_horiz( nr, nbgp )
1181                   ENDIF
1182
1183                ENDIF
1184
1185                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1186
1187                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1188
1189                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1190                   CALL exchange_horiz( diss, nbgp )
1191                ENDIF
1192
1193                IF ( air_chemistry )  THEN
1194                   DO  n = 1, nvar
1195                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1196                   ENDDO
1197                ENDIF
1198
1199                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1200                   DO  ib = 1, nbins_aerosol
1201                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1202                      DO  ic = 1, ncomponents_mass
1203                         icc = ( ic - 1 ) * nbins_aerosol + ib
1204                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1205                      ENDDO
1206                   ENDDO
1207                   IF ( .NOT. salsa_gases_from_chem )  THEN
1208                      DO  ig = 1, ngases_salsa
1209                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1210                      ENDDO
1211                   ENDIF
1212                ENDIF
1213                CALL cpu_log( log_point_s(92), 'exchange-horiz-nest', 'stop' )
1214
1215             ENDIF
1216
1217!
1218!--          Set boundary conditions again after interpolation and anterpolation.
1219             CALL pmci_boundary_conds
1220
1221!
1222!--          Set chemistry boundary conditions (decycling)
1223             IF ( air_chemistry )  THEN
1224                DO  lsp = 1, nvar
1225                   lsp_usr = 1
1226                   DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1227                      IF ( TRIM( chem_species(lsp)%name ) == TRIM( cs_name(lsp_usr) ) )  THEN
1228                         CALL chem_boundary_conds( chem_species(lsp)%conc,                         &
1229                                                   chem_species(lsp)%conc_pr_init )
1230                      ENDIF
1231                      lsp_usr = lsp_usr + 1
1232                   ENDDO
1233                ENDDO
1234             ENDIF
1235
1236!
1237!--          Set SALSA boundary conditions (decycling)
1238             IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1239                DO  ib = 1, nbins_aerosol
1240                   CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1241                   DO  ic = 1, ncomponents_mass
1242                      icc = ( ic - 1 ) * nbins_aerosol + ib
1243                      CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1244                   ENDDO
1245                ENDDO
1246                IF ( .NOT. salsa_gases_from_chem )  THEN
1247                   DO  ig = 1, ngases_salsa
1248                      CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1249                   ENDDO
1250                ENDIF
1251             ENDIF
1252
1253             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1254
1255          ENDIF
1256
1257!
1258!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1259!--       when a sloping surface is used
1260          IF ( sloping_surface )  THEN
1261             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1262             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1263          ENDIF
1264
1265!
1266!--       Impose a turbulent inflow using the recycling method
1267          IF ( turbulent_inflow )  CALL inflow_turbulence
1268
1269!
1270!--       Set values at outflow boundary using the special outflow condition
1271          IF ( turbulent_outflow )  CALL outflow_turbulence
1272
1273!
1274!--       Impose a random perturbation on the horizontal velocity field
1275          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1276               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1277               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1278          THEN
1279             time_disturb = time_disturb + dt_3d
1280             IF ( time_disturb >= dt_disturb )  THEN
1281                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1282                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1283                   CALL disturb_field( 'u', tend, u )
1284                   CALL disturb_field( 'v', tend, v )
1285                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1286                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1287                THEN
1288!
1289!--                Runs with a non-cyclic lateral wall need perturbations
1290!--                near the inflow throughout the whole simulation
1291                   dist_range = 1
1292                   CALL disturb_field( 'u', tend, u )
1293                   CALL disturb_field( 'v', tend, v )
1294                   dist_range = 0
1295                ENDIF
1296                time_disturb = time_disturb - dt_disturb
1297             ENDIF
1298          ENDIF
1299
1300!
1301!--       Map forcing data derived from larger scale model onto domain
1302!--       boundaries.
1303          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1304                                       intermediate_timestep_count_max  )                          &
1305             CALL nesting_offl_bc
1306!
1307!--       Impose a turbulent inflow using synthetic generated turbulence.
1308          IF ( use_syn_turb_gen  .AND.                                                             &
1309               intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1310             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1311             CALL stg_main
1312             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1313          ENDIF
1314!
1315!--       Ensure mass conservation. This need to be done after imposing
1316!--       synthetic turbulence and top boundary condition for pressure is set to
1317!--       Neumann conditions.
1318!--       Is this also required in case of Dirichlet?
1319          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1320!
1321!--       Reduce the velocity divergence via the equation for perturbation
1322!--       pressure.
1323          IF ( intermediate_timestep_count == 1  .OR. &
1324                call_psolver_at_all_substeps )  THEN
1325
1326             IF (  vnest_init ) THEN
1327!
1328!--             Compute pressure in the CG, interpolate top boundary conditions
1329!--             to the FG and then compute pressure in the FG
1330                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1331
1332                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1333                CALL vnest_boundary_conds
1334                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1335 
1336                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1337
1338!--             Anterpolate TKE, satisfy Germano Identity
1339                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1340                CALL vnest_anterpolate_e
1341                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1342
1343             ELSE
1344!               
1345!--             Mass (volume) flux correction to ensure global mass conservation for child domains.
1346                IF ( child_domain )  THEN
1347                   IF ( nesting_mode == 'vertical' )  THEN
1348                      CALL pmci_ensure_nest_mass_conservation_vertical
1349                   ELSE
1350                      CALL pmci_ensure_nest_mass_conservation
1351                   ENDIF
1352                ENDIF
1353               
1354                CALL pres
1355
1356             ENDIF
1357
1358          ENDIF
1359
1360!
1361!--       If required, compute liquid water content
1362          IF ( bulk_cloud_model )  THEN
1363             CALL calc_liquid_water_content
1364          ENDIF
1365!
1366!--       If required, compute virtual potential temperature
1367          IF ( humidity )  THEN
1368             CALL compute_vpt 
1369          ENDIF 
1370
1371!
1372!--       Compute the diffusion quantities
1373          IF ( .NOT. constant_diffusion )  THEN
1374
1375!
1376!--          Determine surface fluxes shf and qsws and surface values
1377!--          pt_surface and q_surface in dependence on data from external
1378!--          file LSF_DATA respectively
1379             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1380                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1381             THEN
1382                CALL ls_forcing_surf( simulated_time )
1383             ENDIF
1384
1385!
1386!--          First the vertical (and horizontal) fluxes in the surface
1387!--          (constant flux) layer are computed
1388             IF ( constant_flux_layer )  THEN
1389                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1390                CALL surface_layer_fluxes
1391                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1392             ENDIF
1393!
1394!--          If required, solve the energy balance for the surface and run soil
1395!--          model. Call for horizontal as well as vertical surfaces
1396             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1397
1398                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1399!
1400!--             Call for horizontal upward-facing surfaces
1401                CALL lsm_energy_balance( .TRUE., -1 )
1402                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1403!
1404!--             Call for northward-facing surfaces
1405                CALL lsm_energy_balance( .FALSE., 0 )
1406                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1407!
1408!--             Call for southward-facing surfaces
1409                CALL lsm_energy_balance( .FALSE., 1 )
1410                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1411!
1412!--             Call for eastward-facing surfaces
1413                CALL lsm_energy_balance( .FALSE., 2 )
1414                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1415!
1416!--             Call for westward-facing surfaces
1417                CALL lsm_energy_balance( .FALSE., 3 )
1418                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1419               
1420!
1421!--             At the end, set boundary conditons for potential temperature
1422!--             and humidity after running the land-surface model. This
1423!--             might be important for the nesting, where arrays are transfered.
1424                CALL lsm_boundary_condition
1425
1426               
1427                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1428             ENDIF
1429!
1430!--          If required, solve the energy balance for urban surfaces and run
1431!--          the material heat model
1432             IF (urban_surface) THEN
1433                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1434               
1435                CALL usm_surface_energy_balance( .FALSE. )
1436                IF ( usm_material_model )  THEN
1437                   CALL usm_green_heat_model
1438                   CALL usm_material_heat_model ( .FALSE. )
1439                ENDIF
1440
1441!
1442!--             At the end, set boundary conditons for potential temperature
1443!--             and humidity after running the urban-surface model. This
1444!--             might be important for the nesting, where arrays are transfered.
1445                CALL usm_boundary_condition
1446
1447                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1448             ENDIF
1449!
1450!--          Compute the diffusion coefficients
1451             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1452             IF ( .NOT. humidity ) THEN
1453                IF ( ocean_mode )  THEN
1454                   CALL tcm_diffusivities( prho, prho_reference )
1455                ELSE
1456                   CALL tcm_diffusivities( pt, pt_reference )
1457                ENDIF
1458             ELSE
1459                CALL tcm_diffusivities( vpt, pt_reference )
1460             ENDIF
1461             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1462!
1463!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1464             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1465
1466          ENDIF
1467
1468!
1469!--       If required, calculate radiative fluxes and heating rates
1470          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1471               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1472
1473               time_radiation = time_radiation + dt_3d
1474
1475             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1476
1477                CALL cpu_log( log_point(50), 'radiation', 'start' )
1478
1479                IF ( .NOT. force_radiation_call )  THEN
1480                   time_radiation = time_radiation - dt_radiation
1481                ENDIF
1482
1483!
1484!--             Adjust the current time to the time step of the radiation model.
1485!--             Needed since radiation is pre-calculated and stored only on apparent
1486!--             solar positions
1487                time_since_reference_point_save = time_since_reference_point
1488                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1489                                                          dt_radiation), wp ) * dt_radiation
1490
1491                CALL radiation_control
1492
1493                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1494                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1495                   CALL radiation_interaction
1496                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1497                ENDIF
1498   
1499!
1500!--             Return the current time to its original value
1501                time_since_reference_point = time_since_reference_point_save
1502
1503                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1504
1505             ENDIF
1506          ENDIF
1507
1508       ENDDO   ! Intermediate step loop
1509
1510!
1511!--    Will be used at some point by flow_statistics.
1512       !$ACC UPDATE &
1513       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1514       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1515       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1516       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1517       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1518       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1519       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1520       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1521       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1522       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1523       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1524       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1525       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1526       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1527       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1528
1529!
1530!--    If required, consider chemical emissions
1531       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1532!
1533!--       Update the time --> kanani: revise location of this CALL
1534          CALL calc_date_and_time
1535!
1536!--       Call emission routine only once an hour
1537          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1538             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
1539             hour_call_emis = hour_of_year
1540          ENDIF
1541       ENDIF
1542!
1543!--    If required, consider aerosol emissions for the salsa model
1544       IF ( salsa )  THEN
1545!
1546!--       Call emission routine to update emissions if needed
1547          CALL salsa_emission_update
1548
1549       ENDIF
1550!
1551!--    If required, calculate indoor temperature, waste heat, heat flux
1552!--    through wall, etc.
1553!--    dt_indoor steers the frequency of the indoor model calculations.
1554!--    Note, at first timestep indoor model is called, in order to provide
1555!--    a waste heat flux.
1556       IF ( indoor_model )  THEN
1557
1558          time_indoor = time_indoor + dt_3d
1559
1560          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1561
1562             time_indoor = time_indoor - dt_indoor
1563
1564             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1565             CALL im_main_heatcool
1566             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1567
1568          ENDIF
1569       ENDIF
1570!
1571!--    Increase simulation time and output times
1572       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1573       current_timestep_number    = current_timestep_number + 1
1574       simulated_time             = simulated_time   + dt_3d
1575       time_since_reference_point = simulated_time - coupling_start_time
1576       simulated_time_chr         = time_to_string( time_since_reference_point )
1577
1578
1579
1580
1581       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1582          time_do_av         = time_do_av       + dt_3d
1583       ENDIF
1584       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1585          time_do2d_xy       = time_do2d_xy     + dt_3d
1586       ENDIF
1587       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1588          time_do2d_xz       = time_do2d_xz     + dt_3d
1589       ENDIF
1590       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1591          time_do2d_yz       = time_do2d_yz     + dt_3d
1592       ENDIF
1593       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1594          time_do3d          = time_do3d        + dt_3d
1595       ENDIF
1596       DO  mid = 1, masks
1597          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1598             time_domask(mid)= time_domask(mid) + dt_3d
1599          ENDIF
1600       ENDDO
1601       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1602          time_dosp       = time_dosp        + dt_3d
1603       ENDIF
1604       time_dots          = time_dots        + dt_3d
1605       IF ( .NOT. first_call_lpm )  THEN
1606          time_dopts      = time_dopts       + dt_3d
1607       ENDIF
1608       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1609          time_dopr       = time_dopr        + dt_3d
1610       ENDIF
1611       time_dopr_listing  = time_dopr_listing + dt_3d
1612       time_run_control   = time_run_control + dt_3d
1613!
1614!--    Increment time-counter for surface output
1615       IF ( surface_output )  THEN
1616          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1617             time_dosurf    = time_dosurf + dt_3d
1618          ENDIF
1619          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1620             time_dosurf_av = time_dosurf_av + dt_3d
1621          ENDIF
1622       ENDIF
1623!
1624!--    Increment time-counter for virtual measurements
1625       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1626          time_virtual_measurement = time_virtual_measurement + dt_3d
1627       ENDIF
1628!
1629!--    In case of synthetic turbulence generation and parametrized turbulence
1630!--    information, update the time counter and if required, adjust the
1631!--    STG to new atmospheric conditions.
1632       IF ( use_syn_turb_gen  )  THEN
1633          IF ( parametrize_inflow_turbulence )  THEN
1634             time_stg_adjust = time_stg_adjust + dt_3d
1635             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1636                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1637                CALL stg_adjust
1638                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1639             ENDIF
1640          ENDIF
1641          time_stg_call = time_stg_call + dt_3d
1642       ENDIF
1643
1644!
1645!--    Data exchange between coupled models
1646       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1647          time_coupling = time_coupling + dt_3d
1648
1649!
1650!--       In case of model termination initiated by the local model
1651!--       (terminate_coupled > 0), the coupler must be skipped because it would
1652!--       cause an MPI intercomminucation hang.
1653!--       If necessary, the coupler will be called at the beginning of the
1654!--       next restart run.
1655          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1656             CALL surface_coupler
1657             time_coupling = time_coupling - dt_coupling
1658          ENDDO
1659       ENDIF
1660
1661!
1662!--    Biometeorology calculation of stationary thermal indices
1663!--    Todo (kanani): biometeorology needs own time_... treatment.
1664!--                   It might be that time_do2d_xy differs from time_do3d,
1665!--                   and then we might get trouble with the biomet output,
1666!--                   because we can have 2d and/or 3d biomet output!!
1667       IF ( biometeorology                                                                         &
1668            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1669                  .OR.                                                                             &
1670            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1671                    ) )  THEN
1672!
1673!--       If required, do thermal comfort calculations
1674          IF ( thermal_comfort )  THEN
1675             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1676          ENDIF
1677!
1678!--       If required, do UV exposure calculations
1679          IF ( uv_exposure )  THEN
1680             CALL uvem_calc_exposure
1681          ENDIF
1682       ENDIF
1683
1684!
1685!--    Execute alle other module actions routunes
1686       CALL module_interface_actions( 'after_integration' )
1687
1688!
1689!--    If Galilei transformation is used, determine the distance that the
1690!--    model has moved so far
1691       IF ( galilei_transformation )  THEN
1692          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1693          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1694       ENDIF
1695
1696!
1697!--    Check, if restart is necessary (because cpu-time is expiring or
1698!--    because it is forced by user) and set stop flag
1699!--    This call is skipped if the remote model has already initiated a restart.
1700       IF ( .NOT. terminate_run )  CALL check_for_restart
1701
1702!
1703!--    Carry out statistical analysis and output at the requested output times.
1704!--    The MOD function is used for calculating the output time counters (like
1705!--    time_dopr) in order to regard a possible decrease of the output time
1706!--    interval in case of restart runs
1707
1708!
1709!--    Set a flag indicating that so far no statistics have been created
1710!--    for this time step
1711       flow_statistics_called = .FALSE.
1712
1713!
1714!--    If required, call flow_statistics for averaging in time
1715       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1716            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1717            time_since_reference_point >= skip_time_dopr )  THEN
1718          time_dopr_av = time_dopr_av + dt_3d
1719          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1720             do_sum = .TRUE.
1721             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1722          ENDIF
1723       ENDIF
1724       IF ( do_sum )  CALL flow_statistics
1725
1726!
1727!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1728       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1729            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1730            time_since_reference_point >= skip_time_data_output_av )                               &
1731       THEN
1732          time_do_sla = time_do_sla + dt_3d
1733          IF ( time_do_sla >= dt_averaging_input )  THEN
1734             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1735                CALL doq_calculate
1736
1737             CALL sum_up_3d_data
1738             average_count_3d = average_count_3d + 1
1739             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1740          ENDIF
1741       ENDIF
1742!
1743!--    Average surface data
1744       IF ( surface_output )  THEN
1745          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1746                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1747                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1748             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1749                CALL surface_data_output_averaging
1750                average_count_surf = average_count_surf + 1
1751             ENDIF
1752          ENDIF
1753       ENDIF
1754
1755!
1756!--    Calculate spectra for time averaging
1757       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1758            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1759          time_dosp_av = time_dosp_av + dt_3d
1760          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1761             CALL calc_spectra
1762             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1763          ENDIF
1764       ENDIF
1765
1766!
1767!--    Call flight module and output data
1768       IF ( virtual_flight )  THEN
1769          CALL flight_measurement
1770          CALL data_output_flight
1771       ENDIF
1772!
1773!--    Take virtual measurements
1774       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1775                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
1776          CALL vm_sampling
1777          CALL vm_data_output
1778          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1779                                          MAX( dt_virtual_measurement, dt_3d ) )
1780       ENDIF
1781!
1782!--    Profile output (ASCII) on file
1783       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1784          CALL print_1d
1785          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1786       ENDIF
1787
1788!
1789!--    Graphic output for PROFIL
1790       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1791          IF ( dopr_n /= 0 )  CALL data_output_profiles
1792          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1793          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1794       ENDIF
1795
1796!
1797!--    Graphic output for time series
1798       IF ( time_dots >= dt_dots )  THEN
1799          CALL data_output_tseries
1800          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1801       ENDIF
1802
1803!
1804!--    Output of spectra (formatted for use with PROFIL), in case of no
1805!--    time averaging, spectra has to be calculated before
1806       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1807          IF ( average_count_sp == 0 )  CALL calc_spectra
1808          CALL data_output_spectra
1809          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1810       ENDIF
1811
1812!
1813!--    2d-data output (cross-sections)
1814       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1815          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1816             CALL doq_calculate
1817
1818          CALL data_output_2d( 'xy', 0 )
1819          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1820       ENDIF
1821       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1822          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1823
1824             CALL doq_calculate
1825          CALL data_output_2d( 'xz', 0 )
1826          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1827       ENDIF
1828       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1829          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1830             CALL doq_calculate
1831
1832          CALL data_output_2d( 'yz', 0 )
1833          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1834       ENDIF
1835
1836!
1837!--    3d-data output (volume data)
1838       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1839          IF ( current_timestep_number > timestep_number_at_prev_calc )                            &
1840             CALL doq_calculate
1841
1842          CALL data_output_3d( 0 )
1843          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1844       ENDIF
1845
1846!
1847!--    Masked data output
1848       DO  mid = 1, masks
1849          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1850               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1851             IF ( current_timestep_number > timestep_number_at_prev_calc )                         &
1852                CALL doq_calculate
1853
1854             CALL data_output_mask( 0 )
1855             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1856          ENDIF
1857       ENDDO
1858
1859!
1860!--    Output of time-averaged 2d/3d/masked data
1861       IF ( time_do_av >= dt_data_output_av                                                        &
1862            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1863          CALL average_3d_data
1864!
1865!--       Udate thermal comfort indices based on updated averaged input
1866          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1867             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1868          ENDIF
1869          CALL data_output_2d( 'xy', 1 )
1870          CALL data_output_2d( 'xz', 1 )
1871          CALL data_output_2d( 'yz', 1 )
1872          CALL data_output_3d( 1 )
1873          DO  mid = 1, masks
1874             CALL data_output_mask( 1 )
1875          ENDDO
1876          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1877       ENDIF
1878!
1879!--    Output of surface data, instantaneous and averaged data
1880       IF ( surface_output )  THEN
1881          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1882             CALL surface_data_output( 0 )
1883             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1884          ENDIF
1885          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1886             CALL surface_data_output( 1 )
1887             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1888          ENDIF
1889       ENDIF
1890
1891!
1892!--    Output of particle time series
1893       IF ( particle_advection )  THEN
1894          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1895               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1896                 first_call_lpm ) )  THEN
1897             CALL lpm_data_output_ptseries
1898             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1899          ENDIF
1900       ENDIF
1901
1902!
1903!--    If required, set the heat flux for the next time step to a random value
1904       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1905          IF ( surf_def_h(0)%ns >= 1 )  THEN
1906             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1907             CALL disturb_heatflux( surf_def_h(0) )
1908             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1909          ENDIF
1910          IF ( surf_lsm_h%ns    >= 1 )  THEN
1911             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1912             CALL disturb_heatflux( surf_lsm_h    )
1913             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1914          ENDIF
1915          IF ( surf_usm_h%ns    >= 1 )  THEN
1916             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1917             CALL disturb_heatflux( surf_usm_h    )
1918             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1919          ENDIF
1920       ENDIF
1921
1922!
1923!--    Execute alle other module actions routunes
1924       CALL module_interface_actions( 'after_timestep' )
1925
1926!
1927!--    Determine size of next time step. Save timestep dt_3d because it is
1928!--    newly calculated in routine timestep, but required further below for
1929!--    steering the run control output interval
1930       dt_3d_old = dt_3d
1931       CALL timestep
1932
1933!
1934!--    Synchronize the timestep in case of nested run.
1935       IF ( nested_run )  THEN
1936!
1937!--       Synchronize by unifying the time step.
1938!--       Global minimum of all time-steps is used for all.
1939          CALL pmci_synchronize
1940       ENDIF
1941
1942!
1943!--    Computation and output of run control parameters.
1944!--    This is also done whenever perturbations have been imposed
1945       IF ( time_run_control >= dt_run_control  .OR.                                               &
1946            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1947       THEN
1948          CALL run_control
1949          IF ( time_run_control >= dt_run_control )  THEN
1950             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1951          ENDIF
1952       ENDIF
1953
1954!
1955!--    Output elapsed simulated time in form of a progress bar on stdout
1956       IF ( myid == 0 )  CALL output_progress_bar
1957
1958       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1959
1960
1961    ENDDO   ! time loop
1962
1963#if defined( _OPENACC )
1964    CALL exit_surface_arrays
1965#endif
1966!$ACC END DATA
1967!$ACC END DATA
1968!$ACC END DATA
1969!$ACC END DATA
1970!$ACC END DATA
1971!$ACC END DATA
1972!$ACC END DATA
1973
1974!
1975!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1976    IF ( vnest_init )  CALL vnest_deallocate
1977
1978    IF ( myid == 0 )  CALL finish_progress_bar
1979
1980    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
1981
1982 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.