source: palm/trunk/SOURCE/time_integration.f90 @ 3992

Last change on this file since 3992 was 3988, checked in by kanani, 5 years ago

enable steering of output interval for virtual measurements

  • Property svn:keywords set to Id
File size: 76.4 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3988 2019-05-22 11:32:37Z suehring $
27! Implement steerable output interval for virtual measurements
28!
29! 3968 2019-05-13 11:04:01Z suehring
30! replace nspec_out with n_matched_vars
31!
32! 3929 2019-04-24 12:52:08Z banzhafs
33! Reverse changes back from revision 3878: use chem_boundary_conds instead of
34! chem_boundary_conds_decycle
35!
36!
37! 3885 2019-04-11 11:29:34Z kanani
38! Changes related to global restructuring of location messages and introduction
39! of additional debug messages
40!
41! 3879 2019-04-08 20:25:23Z knoop
42! Moved wtm_forces to module_interface_actions
43!
44! 3872 2019-04-08 15:03:06Z knoop
45! Modifications made for salsa:
46! - Call salsa_emission_update at each time step but do the checks within
47!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
48!   and next_aero_emission_update <= time_since_reference_point ).
49! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
50!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
51! - Apply nesting for salsa variables
52! - Removed cpu_log calls speciffic for salsa.
53!
54! 3833 2019-03-28 15:04:04Z forkel
55! added USE chem_gasphase_mod, replaced nspec by nspec since fixed compounds are not integrated
56!
57! 3820 2019-03-27 11:53:41Z forkel
58! renamed do_emiss to emissions_anthropogenic (ecc)
59!
60!
61! 3774 2019-03-04 10:52:49Z moh.hefny
62! rephrase if statement to avoid unallocated array in case of
63! nesting_offline is false (crashing during debug mode)
64!
65! 3761 2019-02-25 15:31:42Z raasch $
66! module section re-formatted and openacc required variables moved to separate section,
67! re-formatting to 100 char line width
68!
69! 3745 2019-02-15 18:57:56Z suehring
70! Call indoor model after first timestep
71!
72! 3744 2019-02-15 18:38:58Z suehring
73! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
74! time_integration to make sure averaged input is updated before calculating.
75!
76! 3739 2019-02-13 08:05:17Z dom_dwd_user
77! Removed everything related to "time_bio_results" as this is never used.
78!
79! 3724 2019-02-06 16:28:23Z kanani
80! Correct double-used log_point_s unit
81!
82! 3719 2019-02-06 13:10:18Z kanani
83! - removed wind_turbine cpu measurement, since same time is measured inside
84!   wtm_forces subroutine as special measures
85! - moved the numerous vnest cpulog to special measures
86! - extended radiation cpulog over entire radiation part,
87!   moved radiation_interactions cpulog to special measures
88! - moved some cpu_log calls to this routine for better overview
89!
90! 3705 2019-01-29 19:56:39Z suehring
91! Data output for virtual measurements added
92!
93! 3704 2019-01-29 19:51:41Z suehring
94! Rename subroutines for surface-data output
95!
96! 3647 2019-01-02 14:10:44Z kanani
97! Bugfix: add time_since_reference_point to IF clause for data_output calls
98! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
99! Clean up indoor_model and biometeorology model call.
100!
101! 3646 2018-12-28 17:58:49Z kanani
102! Bugfix: use time_since_reference_point instead of simulated_time where
103! required (relevant when using wall/soil spinup)
104!
105! 3634 2018-12-18 12:31:28Z knoop
106! OpenACC port for SPEC
107!
108! 3597 2018-12-04 08:40:18Z maronga
109! Removed call to calculation of near air (10 cm) potential temperature (now in
110! surface layer fluxes)
111!
112! 3589 2018-11-30 15:09:51Z suehring
113! Move the control parameter "salsa" from salsa_mod to control_parameters
114! (M. Kurppa)
115!
116! 3582 2018-11-29 19:16:36Z suehring
117! dom_dwd_user, Schrempf:
118! Changes due to merge of uv exposure model into biometeorology_mod.
119!
120! 3525 2018-11-14 16:06:14Z kanani
121! Changes related to clean-up of biometeorology (dom_dwd_user)
122!
123! 3524 2018-11-14 13:36:44Z raasch
124! unused variables removed
125!
126! 3484 2018-11-02 14:41:25Z hellstea
127! pmci_ensure_nest_mass_conservation is premanently removed
128!
129! 3473 2018-10-30 20:50:15Z suehring
130! new module for virtual measurements introduced
131!
132! 3472 2018-10-30 20:43:50Z suehring
133! Add indoor model (kanani, srissman, tlang)
134!
135! 3467 2018-10-30 19:05:21Z suehring
136! Implementation of a new aerosol module salsa.
137!
138! 3448 2018-10-29 18:14:31Z kanani
139! Add biometeorology
140!
141! 3421 2018-10-24 18:39:32Z gronemeier
142! Surface data output
143!
144! 3418 2018-10-24 16:07:39Z kanani
145! call to material_heat_model now with check if spinup runs (rvtils)
146!
147! 3378 2018-10-19 12:34:59Z kanani
148! merge from radiation branch (r3362) into trunk
149! (moh.hefny):
150! Bugfix in the if statement to call radiation_interaction
151!
152! 3347 2018-10-15 14:21:08Z suehring
153! - offline nesting separated from large-scale forcing module
154! - changes for synthetic turbulence generator
155!
156! 3343 2018-10-15 10:38:52Z suehring
157! - Formatting, clean-up, comments (kanani)
158! - Added CALL to chem_emissions_setup (Russo)
159! - Code added for decycling chemistry (basit)
160!
161! 3294 2018-10-01 02:37:10Z raasch
162! changes concerning modularization of ocean option
163!
164! 3274 2018-09-24 15:42:55Z knoop
165! Modularization of all bulk cloud physics code components
166!
167! 3241 2018-09-12 15:02:00Z raasch
168! unused variables removed
169!
170! 3198 2018-08-15 09:23:10Z sward
171! Added multi_agent_system_end; defined start time for MAS relative to
172! time_since_reference_point
173!
174! 3183 2018-07-27 14:25:55Z suehring
175! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
176! Rename subroutines and variables in COSMO nesting mode
177!
178! 3182 2018-07-27 13:36:03Z suehring
179! Added multi agent system
180!
181! 3042 2018-05-25 10:44:37Z schwenkel
182! Changed the name specific humidity to mixing ratio
183!
184! 3040 2018-05-25 10:22:08Z schwenkel
185! Fixed bug in IF statement
186! Ensure that the time when calling the radiation to be the time step of the
187! pre-calculated time when first calculate the positions of the sun
188!
189! 3004 2018-04-27 12:33:25Z Giersch
190! First call of flow_statistics has been removed. It is already called in
191! run_control itself
192!
193! 2984 2018-04-18 11:51:30Z hellstea
194! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
195! as seemingly unnecessary.
196!
197! 2941 2018-04-03 11:54:58Z kanani
198! Deduct spinup_time from RUN_CONTROL output of main 3d run
199! (use time_since_reference_point instead of simulated_time)
200!
201! 2938 2018-03-27 15:52:42Z suehring
202! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
203!
204! 2936 2018-03-27 14:49:27Z suehring
205! Little formatting adjustment.
206!
207! 2817 2018-02-19 16:32:21Z knoop
208! Preliminary gust module interface implemented
209!
210! 2801 2018-02-14 16:01:55Z thiele
211! Changed lpm from subroutine to module.
212! Introduce particle transfer in nested models.
213!
214! 2776 2018-01-31 10:44:42Z Giersch
215! Variable use_synthetic_turbulence_generator has been abbreviated
216!
217! 2773 2018-01-30 14:12:54Z suehring
218! - Nesting for chemical species
219!
220! 2766 2018-01-22 17:17:47Z kanani
221! Removed preprocessor directive __chem
222!
223! 2718 2018-01-02 08:49:38Z maronga
224! Corrected "Former revisions" section
225!
226! 2696 2017-12-14 17:12:51Z kanani
227! - Change in file header (GPL part)
228! - Implementation of uv exposure model (FK)
229! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
230! - renamed diffusivities to tcm_diffusivities (TG)
231! - implement prognostic equation for diss (TG)
232! - Moved/commented CALL to chem_emissions (FK)
233! - Added CALL to chem_emissions (FK)
234! - Implementation of chemistry module (FK)
235! - Calls for setting boundary conditions in USM and LSM (MS)
236! - Large-scale forcing with larger-scale models implemented (MS)
237! - Rename usm_radiation into radiation_interactions; merge with branch
238!   radiation (MS)
239! - added call for usm_green_heat_model for green building surfaces (RvT)
240! - added call for usm_temperature_near_surface for use in indoor model (RvT)
241!
242! 2617 2017-11-16 12:47:24Z suehring
243! Bugfix, assure that the reference state does not become zero.
244!
245! 2563 2017-10-19 15:36:10Z Giersch
246! Variable wind_turbine moved to module control_parameters
247!
248! 2365 2017-08-21 14:59:59Z kanani
249! Vertical grid nesting implemented (SadiqHuq)
250!
251! 2320 2017-07-21 12:47:43Z suehring
252! Set bottom boundary conditions after nesting interpolation and anterpolation
253!
254! 2299 2017-06-29 10:14:38Z maronga
255! Call of soil model adjusted
256!
257! 2292 2017-06-20 09:51:42Z schwenkel
258! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
259! includes two more prognostic equations for cloud drop concentration (nc) 
260! and cloud water content (qc).
261!
262! 2271 2017-06-09 12:34:55Z sward
263! Start timestep message changed
264!
265! 2259 2017-06-08 09:09:11Z gronemeier
266! Implemented synthetic turbulence generator
267!
268! 2233 2017-05-30 18:08:54Z suehring
269!
270! 2232 2017-05-30 17:47:52Z suehring
271! Adjustments to new topography and surface concept
272! Modify passed parameters for disturb_field
273!
274! 2178 2017-03-17 11:07:39Z hellstea
275! Setting perturbations at all times near inflow boundary is removed
276! in case of nested boundaries
277!
278! 2174 2017-03-13 08:18:57Z maronga
279! Added support for nesting with cloud microphysics
280!
281! 2118 2017-01-17 16:38:49Z raasch
282! OpenACC directives and related code removed
283!
284! 2050 2016-11-08 15:00:55Z gronemeier
285! Implement turbulent outflow condition
286!
287! 2031 2016-10-21 15:11:58Z knoop
288! renamed variable rho to rho_ocean
289!
290! 2011 2016-09-19 17:29:57Z kanani
291! Flag urban_surface is now defined in module control_parameters,
292! removed commented CALLs of global_min_max.
293!
294! 2007 2016-08-24 15:47:17Z kanani
295! Added CALLs for new urban surface model
296!
297! 2000 2016-08-20 18:09:15Z knoop
298! Forced header and separation lines into 80 columns
299!
300! 1976 2016-07-27 13:28:04Z maronga
301! Simplified calls to radiation model
302!
303! 1960 2016-07-12 16:34:24Z suehring
304! Separate humidity and passive scalar
305!
306! 1957 2016-07-07 10:43:48Z suehring
307! flight module added
308!
309! 1919 2016-05-27 14:51:23Z raasch
310! Initial version of purely vertical nesting introduced.
311!
312! 1918 2016-05-27 14:35:57Z raasch
313! determination of time step moved to the end of the time step loop,
314! the first time step is now always calculated before the time step loop (i.e.
315! also in case of restart runs)
316!
317! 1914 2016-05-26 14:44:07Z witha
318! Added call for wind turbine model
319!
320! 1878 2016-04-19 12:30:36Z hellstea
321! Synchronization for nested runs rewritten
322!
323! 1853 2016-04-11 09:00:35Z maronga
324! Adjusted for use with radiation_scheme = constant
325!
326! 1849 2016-04-08 11:33:18Z hoffmann
327! Adapted for modularization of microphysics
328!
329! 1833 2016-04-07 14:23:03Z raasch
330! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
331!
332! 1831 2016-04-07 13:15:51Z hoffmann
333! turbulence renamed collision_turbulence
334!
335! 1822 2016-04-07 07:49:42Z hoffmann
336! icloud_scheme replaced by microphysics_*
337!
338! 1808 2016-04-05 19:44:00Z raasch
339! output message in case unscheduled radiation calls removed
340!
341! 1797 2016-03-21 16:50:28Z raasch
342! introduction of different datatransfer modes
343!
344! 1791 2016-03-11 10:41:25Z raasch
345! call of pmci_update_new removed
346!
347! 1786 2016-03-08 05:49:27Z raasch
348! +module spectrum
349!
350! 1783 2016-03-06 18:36:17Z raasch
351! switch back of netcdf data format for mask output moved to the mask output
352! routine
353!
354! 1781 2016-03-03 15:12:23Z raasch
355! some pmc calls removed at the beginning (before timeloop),
356! pmc initialization moved to the main program
357!
358! 1764 2016-02-28 12:45:19Z raasch
359! PMC_ACTIVE flags removed,
360! bugfix: nest synchronization after first call of timestep
361!
362! 1762 2016-02-25 12:31:13Z hellstea
363! Introduction of nested domain feature
364!
365! 1736 2015-12-04 08:56:33Z raasch
366! no perturbations added to total domain if energy limit has been set zero
367!
368! 1691 2015-10-26 16:17:44Z maronga
369! Added option for spin-ups without land surface and radiation models. Moved calls
370! for radiation and lan surface schemes.
371!
372! 1682 2015-10-07 23:56:08Z knoop
373! Code annotations made doxygen readable
374!
375! 1671 2015-09-25 03:29:37Z raasch
376! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
377! for particles
378!
379! 1585 2015-04-30 07:05:52Z maronga
380! Moved call of radiation scheme. Added support for RRTM
381!
382! 1551 2015-03-03 14:18:16Z maronga
383! Added interface for different radiation schemes.
384!
385! 1496 2014-12-02 17:25:50Z maronga
386! Added calls for the land surface model and radiation scheme
387!
388! 1402 2014-05-09 14:25:13Z raasch
389! location messages modified
390!
391! 1384 2014-05-02 14:31:06Z raasch
392! location messages added
393!
394! 1380 2014-04-28 12:40:45Z heinze
395! CALL of nudge_ref added
396! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
397!
398! 1365 2014-04-22 15:03:56Z boeske
399! Reset sums_ls_l to zero at each timestep
400! +sums_ls_l
401! Calculation of reference state (previously in subroutine calc_mean_profile)
402
403! 1342 2014-03-26 17:04:47Z kanani
404! REAL constants defined as wp-kind
405!
406! 1320 2014-03-20 08:40:49Z raasch
407! ONLY-attribute added to USE-statements,
408! kind-parameters added to all INTEGER and REAL declaration statements,
409! kinds are defined in new module kinds,
410! old module precision_kind is removed,
411! revision history before 2012 removed,
412! comment fields (!:) to be used for variable explanations added to
413! all variable declaration statements
414! 1318 2014-03-17 13:35:16Z raasch
415! module interfaces removed
416!
417! 1308 2014-03-13 14:58:42Z fricke
418! +netcdf_data_format_save
419! For masked data, parallel netcdf output is not tested so far, hence
420! netcdf_data_format is switched back to non-paralell output.
421!
422! 1276 2014-01-15 13:40:41Z heinze
423! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
424!
425! 1257 2013-11-08 15:18:40Z raasch
426! acc-update-host directive for timestep removed
427!
428! 1241 2013-10-30 11:36:58Z heinze
429! Generalize calc_mean_profile for wider use
430! Determine shf and qsws in dependence on data from LSF_DATA
431! Determine ug and vg in dependence on data from LSF_DATA
432! 1221 2013-09-10 08:59:13Z raasch
433! host update of arrays before timestep is called
434!
435! 1179 2013-06-14 05:57:58Z raasch
436! mean profiles for reference state are only calculated if required,
437! small bugfix for background communication
438!
439! 1171 2013-05-30 11:27:45Z raasch
440! split of prognostic_equations deactivated (comment lines), for the time being
441!
442! 1128 2013-04-12 06:19:32Z raasch
443! asynchronous transfer of ghost point data realized for acc-optimized version:
444! prognostic_equations are first called two times for those points required for
445! the left-right and north-south exchange, respectively, and then for the
446! remaining points,
447! those parts requiring global communication moved from prognostic_equations to
448! here
449!
450! 1115 2013-03-26 18:16:16Z hoffmann
451! calculation of qr and nr is restricted to precipitation
452!
453! 1113 2013-03-10 02:48:14Z raasch
454! GPU-porting of boundary conditions,
455! openACC directives updated
456! formal parameter removed from routine boundary_conds
457!
458! 1111 2013-03-08 23:54:10Z raasch
459! +internal timestep counter for cpu statistics added,
460! openACC directives updated
461!
462! 1092 2013-02-02 11:24:22Z raasch
463! unused variables removed
464!
465! 1065 2012-11-22 17:42:36Z hoffmann
466! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
467!
468! 1053 2012-11-13 17:11:03Z hoffmann
469! exchange of ghost points for nr, qr added
470!
471! 1036 2012-10-22 13:43:42Z raasch
472! code put under GPL (PALM 3.9)
473!
474! 1019 2012-09-28 06:46:45Z raasch
475! non-optimized version of prognostic_equations removed
476!
477! 1015 2012-09-27 09:23:24Z raasch
478! +call of prognostic_equations_acc
479!
480! 1001 2012-09-13 14:08:46Z raasch
481! all actions concerning leapfrog- and upstream-spline-scheme removed
482!
483! 849 2012-03-15 10:35:09Z raasch
484! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
485!
486! 825 2012-02-19 03:03:44Z raasch
487! wang_collision_kernel renamed wang_kernel
488!
489! Revision 1.1  1997/08/11 06:19:04  raasch
490! Initial revision
491!
492!
493! Description:
494! ------------
495!> Integration in time of the model equations, statistical analysis and graphic
496!> output
497!------------------------------------------------------------------------------!
498 SUBROUTINE time_integration
499 
500
501    USE advec_ws,                                                                                  &
502        ONLY:  ws_statistics
503
504    USE arrays_3d,                                                                                 &
505        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
506               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
507               tend, u, u_p, v, vpt, v_p, w, w_p
508
509    USE biometeorology_mod,                                                                        &
510        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
511
512    USE bulk_cloud_model_mod,                                                                      &
513        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
514              microphysics_morrison, microphysics_seifert
515
516    USE calc_mean_profile_mod,                                                                     &
517        ONLY:  calc_mean_profile
518
519    USE chem_emissions_mod,                                                                        &
520        ONLY:  chem_emissions_setup
521
522    USE chem_gasphase_mod,                                                                         &
523        ONLY:  nvar
524
525    USE chem_modules,                                                                              &
526        ONLY:  bc_cs_t_val, chem_species, cs_name, emissions_anthropogenic, n_matched_vars
527
528    USE chemistry_model_mod,                                                                       &
529        ONLY:  chem_boundary_conds
530
531    USE control_parameters,                                                                        &
532        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
533               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
534               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
535               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
536               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
537               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
538               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
539               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
540               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
541               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
542               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
543               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
544               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
545               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
546               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
547               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
548               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
549               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
550               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
551               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
552               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
553               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
554               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
555               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
556               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
557
558    USE cpulog,                                                                                    &
559        ONLY:  cpu_log, log_point, log_point_s
560
561    USE date_and_time_mod,                                                                         &
562        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
563
564    USE flight_mod,                                                                                &
565        ONLY:  flight_measurement
566
567    USE indices,                                                                                   &
568        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
569
570    USE indoor_model_mod,                                                                          &
571        ONLY:  dt_indoor, im_main_heatcool, time_indoor
572
573    USE interaction_droplets_ptq_mod,                                                              &
574        ONLY:  interaction_droplets_ptq
575
576    USE interfaces
577
578    USE kinds
579
580    USE land_surface_model_mod,                                                                    &
581        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
582
583    USE lpm_mod,                                                                                   &
584        ONLY:  lpm
585
586    USE lsf_nudging_mod,                                                                           &
587        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
588
589    USE module_interface,                                                                          &
590        ONLY:  module_interface_actions
591
592    USE multi_agent_system_mod,                                                                    &
593        ONLY:  agents_active, multi_agent_system
594
595    USE nesting_offl_mod,                                                                          &
596        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
597
598    USE netcdf_data_input_mod,                                                                     &
599        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
600
601    USE ocean_mod,                                                                                 &
602        ONLY:  prho_reference
603
604    USE particle_attributes,                                                                       &
605        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
606
607    USE pegrid
608
609    USE pmc_interface,                                                                             &
610        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
611
612    USE progress_bar,                                                                              &
613        ONLY:  finish_progress_bar, output_progress_bar
614
615    USE prognostic_equations_mod,                                                                  &
616        ONLY:  prognostic_equations_cache, prognostic_equations_vector
617
618    USE radiation_model_mod,                                                                       &
619        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
620              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
621
622    USE salsa_mod,                                                                                 &
623        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
624              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
625              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
626
627    USE spectra_mod,                                                                               &
628        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
629
630    USE statistics,                                                                                &
631        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
632
633
634    USE surface_layer_fluxes_mod,                                                                  &
635        ONLY:  surface_layer_fluxes
636
637    USE surface_data_output_mod,                                                                   &
638        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
639               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
640               skip_time_dosurf_av, time_dosurf, time_dosurf_av
641
642    USE surface_mod,                                                                               &
643        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
644
645    USE synthetic_turbulence_generator_mod,                                                        &
646        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
647               time_stg_adjust, time_stg_call, use_syn_turb_gen
648
649    USE turbulence_closure_mod,                                                                    &
650        ONLY:  tcm_diffusivities, production_e_init
651
652    USE urban_surface_mod,                                                                         &
653        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
654               usm_surface_energy_balance, usm_green_heat_model
655
656    USE vertical_nesting_mod,                                                                      &
657        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
658               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
659               vnest_start_time
660
661    USE virtual_measurement_mod,                                                                   &
662        ONLY:  dt_virtual_measurement,                                                             &
663               time_virtual_measurement,                                                           &
664               vm_data_output,                                                                     &
665               vm_sampling,                                                                        &
666               vm_time_start
667
668
669#if defined( _OPENACC )
670    USE arrays_3d,                                                             &
671        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
672               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
673               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
674               v_stokes_zu, zu
675
676    USE control_parameters,                                                                        &
677        ONLY:  tsc
678
679    USE indices,                                                                                   &
680        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
681
682    USE statistics,                                                                                &
683        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
684               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
685               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
686               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
687
688    USE surface_mod,                                                                               &
689        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
690#endif
691
692
693    IMPLICIT NONE
694
695    CHARACTER (LEN=9) ::  time_to_string   !<
696
697    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
698    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
699    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
700    INTEGER(iwp)      ::  ig        !< index for salsa gases
701    INTEGER(iwp)      ::  lsp
702    INTEGER(iwp)      ::  lsp_usr   !<
703    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
704
705    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
706                            !< steering of run control output interval
707    REAL(wp) ::  time_since_reference_point_save  !< original value of
708                                                  !< time_since_reference_point
709
710
711!
712!-- Copy data from arrays_3d
713!$ACC DATA &
714!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
715!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
716!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
717!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
718!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
719!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
720!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
721!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
722!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
723
724!$ACC DATA &
725!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
726!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
727!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
728!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
729!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
730!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
731!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
732!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
733!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
734!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
735!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
736
737!$ACC DATA &
738!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
739!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
740!$ACC COPYIN(zu(nzb:nzt+1)) &
741!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
742!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
743!$ACC COPYIN(ddzw(1:nzt+1)) &
744!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
745!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
746!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
747!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
748!$ACC COPYIN(ref_state(0:nz+1)) &
749!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
750!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
751!$ACC COPYIN(pt_init(0:nz+1)) &
752!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
753
754!
755!-- Copy data from control_parameters
756!$ACC DATA &
757!$ACC COPYIN(tsc(1:5))
758
759!
760!-- Copy data from indices
761!$ACC DATA &
762!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
763!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
764!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
765
766!
767!-- Copy data from surface_mod
768!$ACC DATA &
769!$ACC COPYIN(bc_h(0:1)) &
770!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
771!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
772!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
773!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
774!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
775!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
776
777!
778!-- Copy data from statistics
779!$ACC DATA &
780!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
781!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
782!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
783!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
784!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
785!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
786!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
787!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
788!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
789!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
790!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
791!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
792!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
793!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
794!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
795!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
796!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
797!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
798!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
799
800#if defined( _OPENACC )
801    CALL enter_surface_arrays
802#endif
803
804!
805!-- At beginning determine the first time step
806    CALL timestep
807!
808!-- Synchronize the timestep in case of nested run.
809    IF ( nested_run )  THEN
810!
811!--    Synchronization by unifying the time step.
812!--    Global minimum of all time-steps is used for all.
813       CALL pmci_synchronize
814    ENDIF
815
816!
817!-- Determine and print out the run control quantities before the first time
818!-- step of this run. For the initial run, some statistics (e.g. divergence)
819!-- need to be determined first --> CALL flow_statistics at the beginning of
820!-- run_control
821    CALL run_control
822!
823!-- Data exchange between coupled models in case that a call has been omitted
824!-- at the end of the previous run of a job chain.
825    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
826!
827!--    In case of model termination initiated by the local model the coupler
828!--    must not be called because this would again cause an MPI hang.
829       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
830          CALL surface_coupler
831          time_coupling = time_coupling - dt_coupling
832       ENDDO
833       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
834          time_coupling = time_since_reference_point
835       ENDIF
836    ENDIF
837
838#if defined( __dvrp_graphics )
839!
840!-- Time measurement with dvrp software 
841    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
842#endif
843
844    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'start' )
845
846!
847!-- Start of the time loop
848    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
849
850       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
851!
852!--    Vertical nesting: initialize fine grid
853       IF ( vnested ) THEN
854          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
855             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
856             CALL vnest_init_fine
857             vnest_init = .TRUE.
858             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
859          ENDIF
860       ENDIF
861!
862!--    Determine ug, vg and w_subs in dependence on data from external file
863!--    LSF_DATA
864       IF ( large_scale_forcing .AND. lsf_vert )  THEN
865           CALL ls_forcing_vert ( simulated_time )
866           sums_ls_l = 0.0_wp
867       ENDIF
868
869!
870!--    Set pt_init and q_init to the current profiles taken from
871!--    NUDGING_DATA
872       IF ( nudging )  THEN
873           CALL nudge_ref ( simulated_time )
874!
875!--        Store temperature gradient at the top boundary for possible Neumann
876!--        boundary condition
877           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
878           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
879           IF ( air_chemistry )  THEN
880              DO  lsp = 1, nvar
881                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
882                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
883                               / dzu(nzt+1)
884              ENDDO
885           ENDIF
886           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
887              DO  ib = 1, nbins_aerosol
888                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
889                               dzu(nzt+1)
890                 DO  ic = 1, ncomponents_mass
891                    icc = ( ic - 1 ) * nbins_aerosol + ib
892                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
893                                  dzu(nzt+1)
894                 ENDDO
895              ENDDO
896              IF ( .NOT. salsa_gases_from_chem )  THEN
897                 DO  ig = 1, ngases_salsa
898                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
899                                  dzu(nzt+1)
900                 ENDDO
901              ENDIF
902           ENDIF
903       ENDIF
904!
905!--    If forcing by larger-scale models is applied, check if new data
906!--    at domain boundaries need to be read.
907       IF ( nesting_offline ) THEN
908          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
909               CALL netcdf_data_input_offline_nesting
910       ENDIF
911
912!
913!--    Execute all other module actions routunes
914       CALL module_interface_actions( 'before_timestep' )
915       
916!
917!--    Start of intermediate step loop
918       intermediate_timestep_count = 0
919       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
920
921          intermediate_timestep_count = intermediate_timestep_count + 1
922
923!
924!--       Set the steering factors for the prognostic equations which depend
925!--       on the timestep scheme
926          CALL timestep_scheme_steering
927
928!
929!--       Calculate those variables needed in the tendency terms which need
930!--       global communication
931          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
932          THEN
933!
934!--          Horizontally averaged profiles to be used as reference state in
935!--          buoyancy terms (WARNING: only the respective last call of
936!--          calc_mean_profile defines the reference state!)
937             IF ( .NOT. neutral )  THEN
938                CALL calc_mean_profile( pt, 4 )
939                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
940             ENDIF
941             IF ( ocean_mode )  THEN
942                CALL calc_mean_profile( rho_ocean, 64 )
943                ref_state(:)  = hom(:,1,64,0)
944             ENDIF
945             IF ( humidity )  THEN
946                CALL calc_mean_profile( vpt, 44 )
947                ref_state(:)  = hom(:,1,44,0)
948             ENDIF
949!
950!--          Assure that ref_state does not become zero at any level
951!--          ( might be the case if a vertical level is completely occupied
952!--            with topography ).
953             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
954          ENDIF
955
956          IF ( .NOT. constant_diffusion )  CALL production_e_init
957          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
958          THEN
959             CALL ws_statistics
960          ENDIF
961!
962!--       In case of nudging calculate current nudging time scale and horizontal
963!--       means of u, v, pt and q
964          IF ( nudging )  THEN
965             CALL calc_tnudge( simulated_time )
966             CALL calc_mean_profile( u, 1 )
967             CALL calc_mean_profile( v, 2 )
968             CALL calc_mean_profile( pt, 4 )
969             CALL calc_mean_profile( q, 41 )
970          ENDIF
971!
972!--       Execute all other module actions routunes
973          CALL module_interface_actions( 'before_prognostic_equations' )
974!
975!--       Solve the prognostic equations. A fast cache optimized version with
976!--       only one single loop is used in case of Piascek-Williams advection
977!--       scheme. NEC vector machines use a different version, because
978!--       in the other versions a good vectorization is prohibited due to
979!--       inlining problems.
980          IF ( loop_optimization == 'cache' )  THEN
981             CALL prognostic_equations_cache
982          ELSEIF ( loop_optimization == 'vector' )  THEN
983             CALL prognostic_equations_vector
984          ENDIF
985
986!
987!--       Particle transport/physics with the Lagrangian particle model
988!--       (only once during intermediate steps, because it uses an Euler-step)
989!--       ### particle model should be moved before prognostic_equations, in order
990!--       to regard droplet interactions directly
991          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
992               .AND.  intermediate_timestep_count == 1 )                                           &
993          THEN
994             CALL lpm
995             first_call_lpm = .FALSE.
996          ENDIF
997
998!
999!--       Interaction of droplets with temperature and mixing ratio.
1000!--       Droplet condensation and evaporation is calculated within
1001!--       advec_particles.
1002          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
1003          THEN
1004             CALL interaction_droplets_ptq
1005          ENDIF
1006
1007!
1008!--       Movement of agents in multi agent system
1009          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
1010               time_since_reference_point <= multi_agent_system_end  .AND.                         &
1011               intermediate_timestep_count == 1 )                                                  &
1012          THEN
1013             CALL multi_agent_system
1014             first_call_mas = .FALSE.
1015          ENDIF
1016
1017!
1018!--       Exchange of ghost points (lateral boundary conditions)
1019          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
1020
1021          CALL exchange_horiz( u_p, nbgp )
1022          CALL exchange_horiz( v_p, nbgp )
1023          CALL exchange_horiz( w_p, nbgp )
1024          CALL exchange_horiz( pt_p, nbgp )
1025          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1026          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1027               .OR.  use_sgs_for_particles )  THEN
1028             IF ( rans_tke_e )  THEN
1029                CALL exchange_horiz( diss_p, nbgp )
1030             ELSE
1031                CALL exchange_horiz( diss, nbgp )
1032             ENDIF
1033          ENDIF
1034          IF ( ocean_mode )  THEN
1035             CALL exchange_horiz( sa_p, nbgp )
1036             CALL exchange_horiz( rho_ocean, nbgp )
1037             CALL exchange_horiz( prho, nbgp )
1038          ENDIF
1039          IF ( humidity )  THEN
1040             CALL exchange_horiz( q_p, nbgp )
1041             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1042                CALL exchange_horiz( qc_p, nbgp )
1043                CALL exchange_horiz( nc_p, nbgp )
1044             ENDIF
1045             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1046                CALL exchange_horiz( qr_p, nbgp )
1047                CALL exchange_horiz( nr_p, nbgp )
1048             ENDIF
1049          ENDIF
1050          IF ( cloud_droplets )  THEN
1051             CALL exchange_horiz( ql, nbgp )
1052             CALL exchange_horiz( ql_c, nbgp )
1053             CALL exchange_horiz( ql_v, nbgp )
1054             CALL exchange_horiz( ql_vp, nbgp )
1055          ENDIF
1056          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1057          IF ( air_chemistry )  THEN
1058             DO  lsp = 1, nvar
1059                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1060!
1061!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1062                lsp_usr = 1
1063                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1064                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1065                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1066                                                chem_species(lsp)%conc_pr_init )
1067                   ENDIF
1068                   lsp_usr = lsp_usr + 1
1069                ENDDO
1070             ENDDO
1071          ENDIF
1072
1073          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1074!
1075!--          Exchange ghost points and decycle boundary concentrations if needed
1076             DO  ib = 1, nbins_aerosol
1077                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1078                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1079                DO  ic = 1, ncomponents_mass
1080                   icc = ( ic - 1 ) * nbins_aerosol + ib
1081                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1082                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1083                ENDDO
1084             ENDDO
1085             IF ( .NOT. salsa_gases_from_chem )  THEN
1086                DO  ig = 1, ngases_salsa
1087                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1088                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1089                ENDDO
1090             ENDIF
1091          ENDIF
1092          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1093
1094!
1095!--       Boundary conditions for the prognostic quantities (except of the
1096!--       velocities at the outflow in case of a non-cyclic lateral wall)
1097          CALL boundary_conds
1098!
1099!--       Swap the time levels in preparation for the next time step.
1100          CALL swap_timelevel
1101
1102!
1103!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1104          IF ( vnest_init ) THEN
1105             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1106             CALL vnest_anterpolate
1107             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1108          ENDIF
1109
1110          IF ( nested_run )  THEN
1111
1112             CALL cpu_log( log_point(60), 'nesting', 'start' )
1113!
1114!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1115!--          and pmci_child_datatrans are called inside the wrapper
1116!--          subroutine pmci_datatrans according to the control parameters
1117!--          nesting_mode and nesting_datatransfer_mode.
1118!--          TO_DO: why is nesting_mode given as a parameter here?
1119             CALL pmci_datatrans( nesting_mode )
1120
1121             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1122!
1123!--             Exchange_horiz is needed for all parent-domains after the
1124!--             anterpolation
1125                CALL exchange_horiz( u, nbgp )
1126                CALL exchange_horiz( v, nbgp )
1127                CALL exchange_horiz( w, nbgp )
1128                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1129
1130                IF ( humidity )  THEN
1131
1132                   CALL exchange_horiz( q, nbgp )
1133
1134                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1135                       CALL exchange_horiz( qc, nbgp )
1136                       CALL exchange_horiz( nc, nbgp )
1137                   ENDIF
1138                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1139                       CALL exchange_horiz( qr, nbgp )
1140                       CALL exchange_horiz( nr, nbgp )
1141                   ENDIF
1142
1143                ENDIF
1144
1145                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1146
1147                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1148
1149                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1150                   CALL exchange_horiz( diss, nbgp )
1151                ENDIF
1152
1153                IF ( air_chemistry )  THEN
1154                   DO  n = 1, nvar
1155                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1156                   ENDDO
1157                ENDIF
1158
1159                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1160                   DO  ib = 1, nbins_aerosol
1161                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1162                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1163                      DO  ic = 1, ncomponents_mass
1164                         icc = ( ic - 1 ) * nbins_aerosol + ib
1165                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1166                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1167                      ENDDO
1168                   ENDDO
1169                   IF ( .NOT. salsa_gases_from_chem )  THEN
1170                      DO  ig = 1, ngases_salsa
1171                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1172                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1173                      ENDDO
1174                   ENDIF
1175                ENDIF
1176                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1177
1178             ENDIF
1179!
1180!--          Set boundary conditions again after interpolation and anterpolation.
1181             CALL pmci_boundary_conds
1182
1183             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1184
1185          ENDIF
1186
1187!
1188!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1189!--       when a sloping surface is used
1190          IF ( sloping_surface )  THEN
1191             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1192             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1193          ENDIF
1194
1195!
1196!--       Impose a turbulent inflow using the recycling method
1197          IF ( turbulent_inflow )  CALL inflow_turbulence
1198
1199!
1200!--       Set values at outflow boundary using the special outflow condition
1201          IF ( turbulent_outflow )  CALL outflow_turbulence
1202
1203!
1204!--       Impose a random perturbation on the horizontal velocity field
1205          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1206               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1207               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1208          THEN
1209             time_disturb = time_disturb + dt_3d
1210             IF ( time_disturb >= dt_disturb )  THEN
1211                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1212                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1213                   CALL disturb_field( 'u', tend, u )
1214                   CALL disturb_field( 'v', tend, v )
1215                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1216                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1217                THEN
1218!
1219!--                Runs with a non-cyclic lateral wall need perturbations
1220!--                near the inflow throughout the whole simulation
1221                   dist_range = 1
1222                   CALL disturb_field( 'u', tend, u )
1223                   CALL disturb_field( 'v', tend, v )
1224                   dist_range = 0
1225                ENDIF
1226                time_disturb = time_disturb - dt_disturb
1227             ENDIF
1228          ENDIF
1229
1230!
1231!--       Map forcing data derived from larger scale model onto domain
1232!--       boundaries.
1233          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1234                                       intermediate_timestep_count_max  )                          &
1235             CALL nesting_offl_bc
1236!
1237!--       Impose a turbulent inflow using synthetic generated turbulence,
1238!--       only once per time step.
1239          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1240             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1241             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1242             CALL stg_main
1243             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1244          ENDIF
1245!
1246!--       Ensure mass conservation. This need to be done after imposing
1247!--       synthetic turbulence and top boundary condition for pressure is set to
1248!--       Neumann conditions.
1249!--       Is this also required in case of Dirichlet?
1250          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1251!
1252!--       Reduce the velocity divergence via the equation for perturbation
1253!--       pressure.
1254          IF ( intermediate_timestep_count == 1  .OR. &
1255                call_psolver_at_all_substeps )  THEN
1256
1257             IF (  vnest_init ) THEN
1258!
1259!--             Compute pressure in the CG, interpolate top boundary conditions
1260!--             to the FG and then compute pressure in the FG
1261                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1262
1263                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1264                CALL vnest_boundary_conds
1265                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1266 
1267                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1268
1269!--             Anterpolate TKE, satisfy Germano Identity
1270                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1271                CALL vnest_anterpolate_e
1272                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1273
1274             ELSE
1275
1276                CALL pres
1277
1278             ENDIF
1279
1280          ENDIF
1281
1282!
1283!--       If required, compute liquid water content
1284          IF ( bulk_cloud_model )  THEN
1285             CALL calc_liquid_water_content
1286          ENDIF
1287!
1288!--       If required, compute virtual potential temperature
1289          IF ( humidity )  THEN
1290             CALL compute_vpt 
1291          ENDIF 
1292
1293!
1294!--       Compute the diffusion quantities
1295          IF ( .NOT. constant_diffusion )  THEN
1296
1297!
1298!--          Determine surface fluxes shf and qsws and surface values
1299!--          pt_surface and q_surface in dependence on data from external
1300!--          file LSF_DATA respectively
1301             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1302                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1303             THEN
1304                CALL ls_forcing_surf( simulated_time )
1305             ENDIF
1306
1307!
1308!--          First the vertical (and horizontal) fluxes in the surface
1309!--          (constant flux) layer are computed
1310             IF ( constant_flux_layer )  THEN
1311                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1312                CALL surface_layer_fluxes
1313                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1314             ENDIF
1315!
1316!--          If required, solve the energy balance for the surface and run soil
1317!--          model. Call for horizontal as well as vertical surfaces
1318             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1319
1320                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1321!
1322!--             Call for horizontal upward-facing surfaces
1323                CALL lsm_energy_balance( .TRUE., -1 )
1324                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1325!
1326!--             Call for northward-facing surfaces
1327                CALL lsm_energy_balance( .FALSE., 0 )
1328                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1329!
1330!--             Call for southward-facing surfaces
1331                CALL lsm_energy_balance( .FALSE., 1 )
1332                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1333!
1334!--             Call for eastward-facing surfaces
1335                CALL lsm_energy_balance( .FALSE., 2 )
1336                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1337!
1338!--             Call for westward-facing surfaces
1339                CALL lsm_energy_balance( .FALSE., 3 )
1340                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1341               
1342!
1343!--             At the end, set boundary conditons for potential temperature
1344!--             and humidity after running the land-surface model. This
1345!--             might be important for the nesting, where arrays are transfered.
1346                CALL lsm_boundary_condition
1347
1348               
1349                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1350             ENDIF
1351!
1352!--          If required, solve the energy balance for urban surfaces and run
1353!--          the material heat model
1354             IF (urban_surface) THEN
1355                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1356               
1357                CALL usm_surface_energy_balance( .FALSE. )
1358                IF ( usm_material_model )  THEN
1359                   CALL usm_green_heat_model
1360                   CALL usm_material_heat_model ( .FALSE. )
1361                ENDIF
1362
1363!
1364!--             At the end, set boundary conditons for potential temperature
1365!--             and humidity after running the urban-surface model. This
1366!--             might be important for the nesting, where arrays are transfered.
1367                CALL usm_boundary_condition
1368
1369                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1370             ENDIF
1371!
1372!--          Compute the diffusion coefficients
1373             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1374             IF ( .NOT. humidity ) THEN
1375                IF ( ocean_mode )  THEN
1376                   CALL tcm_diffusivities( prho, prho_reference )
1377                ELSE
1378                   CALL tcm_diffusivities( pt, pt_reference )
1379                ENDIF
1380             ELSE
1381                CALL tcm_diffusivities( vpt, pt_reference )
1382             ENDIF
1383             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1384!
1385!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1386             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1387
1388          ENDIF
1389
1390!
1391!--       If required, calculate radiative fluxes and heating rates
1392          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1393               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1394
1395               time_radiation = time_radiation + dt_3d
1396
1397             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1398
1399                CALL cpu_log( log_point(50), 'radiation', 'start' )
1400
1401                IF ( .NOT. force_radiation_call )  THEN
1402                   time_radiation = time_radiation - dt_radiation
1403                ENDIF
1404
1405!
1406!--             Adjust the current time to the time step of the radiation model.
1407!--             Needed since radiation is pre-calculated and stored only on apparent
1408!--             solar positions
1409                time_since_reference_point_save = time_since_reference_point
1410                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1411                                                          dt_radiation), wp ) * dt_radiation
1412
1413                CALL radiation_control
1414
1415                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1416                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1417                   CALL radiation_interaction
1418                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1419                ENDIF
1420   
1421!
1422!--             Return the current time to its original value
1423                time_since_reference_point = time_since_reference_point_save
1424
1425                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1426
1427             ENDIF
1428          ENDIF
1429
1430       ENDDO   ! Intermediate step loop
1431
1432!
1433!--    Will be used at some point by flow_statistics.
1434       !$ACC UPDATE &
1435       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1436       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1437       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1438       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1439       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1440       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1441       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1442       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1443       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1444       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1445       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1446       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1447       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1448       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1449       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1450
1451!
1452!--    If required, consider chemical emissions
1453       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1454!
1455!--       Update the time --> kanani: revise location of this CALL
1456          CALL calc_date_and_time
1457!
1458!--       Call emission routine only once an hour
1459          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1460             CALL chem_emissions_setup( chem_emis_att, chem_emis, n_matched_vars )
1461             hour_call_emis = hour_of_year
1462          ENDIF
1463       ENDIF
1464!
1465!--    If required, consider aerosol emissions for the salsa model
1466       IF ( salsa )  THEN
1467!
1468!--       Call emission routine to update emissions if needed
1469          CALL salsa_emission_update
1470
1471       ENDIF
1472!
1473!--    If required, calculate indoor temperature, waste heat, heat flux
1474!--    through wall, etc.
1475!--    dt_indoor steers the frequency of the indoor model calculations.
1476!--    Note, at first timestep indoor model is called, in order to provide
1477!--    a waste heat flux.
1478       IF ( indoor_model )  THEN
1479
1480          time_indoor = time_indoor + dt_3d
1481
1482          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1483
1484             time_indoor = time_indoor - dt_indoor
1485
1486             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1487             CALL im_main_heatcool
1488             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1489
1490          ENDIF
1491       ENDIF
1492!
1493!--    Increase simulation time and output times
1494       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1495       current_timestep_number    = current_timestep_number + 1
1496       simulated_time             = simulated_time   + dt_3d
1497       time_since_reference_point = simulated_time - coupling_start_time
1498       simulated_time_chr         = time_to_string( time_since_reference_point )
1499
1500
1501
1502
1503       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1504          time_do_av         = time_do_av       + dt_3d
1505       ENDIF
1506       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1507          time_do2d_xy       = time_do2d_xy     + dt_3d
1508       ENDIF
1509       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1510          time_do2d_xz       = time_do2d_xz     + dt_3d
1511       ENDIF
1512       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1513          time_do2d_yz       = time_do2d_yz     + dt_3d
1514       ENDIF
1515       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1516          time_do3d          = time_do3d        + dt_3d
1517       ENDIF
1518       DO  mid = 1, masks
1519          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1520             time_domask(mid)= time_domask(mid) + dt_3d
1521          ENDIF
1522       ENDDO
1523       time_dvrp          = time_dvrp        + dt_3d
1524       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1525          time_dosp       = time_dosp        + dt_3d
1526       ENDIF
1527       time_dots          = time_dots        + dt_3d
1528       IF ( .NOT. first_call_lpm )  THEN
1529          time_dopts      = time_dopts       + dt_3d
1530       ENDIF
1531       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1532          time_dopr       = time_dopr        + dt_3d
1533       ENDIF
1534       time_dopr_listing  = time_dopr_listing + dt_3d
1535       time_run_control   = time_run_control + dt_3d
1536!
1537!--    Increment time-counter for surface output
1538       IF ( surface_output )  THEN
1539          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1540             time_dosurf    = time_dosurf + dt_3d
1541          ENDIF
1542          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1543             time_dosurf_av = time_dosurf_av + dt_3d
1544          ENDIF
1545       ENDIF
1546!
1547!--    Increment time-counter for virtual measurements
1548       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1549          time_virtual_measurement = time_virtual_measurement + dt_3d
1550       ENDIF
1551!
1552!--    In case of synthetic turbulence generation and parametrized turbulence
1553!--    information, update the time counter and if required, adjust the
1554!--    STG to new atmospheric conditions.
1555       IF ( use_syn_turb_gen  )  THEN
1556          IF ( parametrize_inflow_turbulence )  THEN
1557             time_stg_adjust = time_stg_adjust + dt_3d
1558             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1559                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1560                CALL stg_adjust
1561                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1562             ENDIF
1563          ENDIF
1564          time_stg_call = time_stg_call + dt_3d
1565       ENDIF
1566
1567!
1568!--    Data exchange between coupled models
1569       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1570          time_coupling = time_coupling + dt_3d
1571
1572!
1573!--       In case of model termination initiated by the local model
1574!--       (terminate_coupled > 0), the coupler must be skipped because it would
1575!--       cause an MPI intercomminucation hang.
1576!--       If necessary, the coupler will be called at the beginning of the
1577!--       next restart run.
1578          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1579             CALL surface_coupler
1580             time_coupling = time_coupling - dt_coupling
1581          ENDDO
1582       ENDIF
1583
1584!
1585!--    Biometeorology calculation of stationary thermal indices
1586!--    Todo (kanani): biometeorology needs own time_... treatment.
1587!--                   It might be that time_do2d_xy differs from time_do3d,
1588!--                   and then we might get trouble with the biomet output,
1589!--                   because we can have 2d and/or 3d biomet output!!
1590       IF ( biometeorology                                                                         &
1591            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1592                  .OR.                                                                             &
1593            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1594                    ) )  THEN
1595!
1596!--       If required, do thermal comfort calculations
1597          IF ( thermal_comfort )  THEN
1598             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1599          ENDIF
1600!
1601!--       If required, do UV exposure calculations
1602          IF ( uv_exposure )  THEN
1603             CALL uvem_calc_exposure
1604          ENDIF
1605       ENDIF
1606
1607!
1608!--    Execute alle other module actions routunes
1609       CALL module_interface_actions( 'after_integration' )
1610
1611!
1612!--    If Galilei transformation is used, determine the distance that the
1613!--    model has moved so far
1614       IF ( galilei_transformation )  THEN
1615          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1616          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1617       ENDIF
1618
1619!
1620!--    Check, if restart is necessary (because cpu-time is expiring or
1621!--    because it is forced by user) and set stop flag
1622!--    This call is skipped if the remote model has already initiated a restart.
1623       IF ( .NOT. terminate_run )  CALL check_for_restart
1624
1625!
1626!--    Carry out statistical analysis and output at the requested output times.
1627!--    The MOD function is used for calculating the output time counters (like
1628!--    time_dopr) in order to regard a possible decrease of the output time
1629!--    interval in case of restart runs
1630
1631!
1632!--    Set a flag indicating that so far no statistics have been created
1633!--    for this time step
1634       flow_statistics_called = .FALSE.
1635
1636!
1637!--    If required, call flow_statistics for averaging in time
1638       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1639            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1640            time_since_reference_point >= skip_time_dopr )  THEN
1641          time_dopr_av = time_dopr_av + dt_3d
1642          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1643             do_sum = .TRUE.
1644             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1645          ENDIF
1646       ENDIF
1647       IF ( do_sum )  CALL flow_statistics
1648
1649!
1650!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1651       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1652            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1653            time_since_reference_point >= skip_time_data_output_av )                               &
1654       THEN
1655          time_do_sla = time_do_sla + dt_3d
1656          IF ( time_do_sla >= dt_averaging_input )  THEN
1657             CALL sum_up_3d_data
1658             average_count_3d = average_count_3d + 1
1659             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1660          ENDIF
1661       ENDIF
1662!
1663!--    Average surface data
1664       IF ( surface_output )  THEN
1665          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1666                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1667                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1668             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1669                CALL surface_data_output_averaging
1670                average_count_surf = average_count_surf + 1
1671             ENDIF
1672          ENDIF
1673       ENDIF
1674
1675!
1676!--    Calculate spectra for time averaging
1677       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1678            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1679          time_dosp_av = time_dosp_av + dt_3d
1680          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1681             CALL calc_spectra
1682             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1683          ENDIF
1684       ENDIF
1685
1686!
1687!--    Call flight module and output data
1688       IF ( virtual_flight )  THEN
1689          CALL flight_measurement
1690          CALL data_output_flight
1691       ENDIF
1692!
1693!--    Take virtual measurements
1694       IF ( virtual_measurement  .AND.  time_virtual_measurement >= dt_virtual_measurement         &
1695                                 .AND.  vm_time_start <= time_since_reference_point )  THEN
1696          CALL vm_sampling
1697          CALL vm_data_output
1698          time_virtual_measurement = MOD(      time_virtual_measurement,                           &
1699                                          MAX( dt_virtual_measurement, dt_3d ) )
1700       ENDIF
1701!
1702!--    Profile output (ASCII) on file
1703       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1704          CALL print_1d
1705          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1706       ENDIF
1707
1708!
1709!--    Graphic output for PROFIL
1710       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1711          IF ( dopr_n /= 0 )  CALL data_output_profiles
1712          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1713          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1714       ENDIF
1715
1716!
1717!--    Graphic output for time series
1718       IF ( time_dots >= dt_dots )  THEN
1719          CALL data_output_tseries
1720          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1721       ENDIF
1722
1723!
1724!--    Output of spectra (formatted for use with PROFIL), in case of no
1725!--    time averaging, spectra has to be calculated before
1726       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1727          IF ( average_count_sp == 0 )  CALL calc_spectra
1728          CALL data_output_spectra
1729          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1730       ENDIF
1731
1732!
1733!--    2d-data output (cross-sections)
1734       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1735          CALL data_output_2d( 'xy', 0 )
1736          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1737       ENDIF
1738       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1739          CALL data_output_2d( 'xz', 0 )
1740          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1741       ENDIF
1742       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1743          CALL data_output_2d( 'yz', 0 )
1744          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1745       ENDIF
1746
1747!
1748!--    3d-data output (volume data)
1749       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1750          CALL data_output_3d( 0 )
1751          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1752       ENDIF
1753
1754!
1755!--    Masked data output
1756       DO  mid = 1, masks
1757          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1758               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1759             CALL data_output_mask( 0 )
1760             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1761          ENDIF
1762       ENDDO
1763
1764!
1765!--    Output of time-averaged 2d/3d/masked data
1766       IF ( time_do_av >= dt_data_output_av                                                        &
1767            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1768          CALL average_3d_data
1769!
1770!--       Udate thermal comfort indices based on updated averaged input
1771          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1772             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1773          ENDIF
1774          CALL data_output_2d( 'xy', 1 )
1775          CALL data_output_2d( 'xz', 1 )
1776          CALL data_output_2d( 'yz', 1 )
1777          CALL data_output_3d( 1 )
1778          DO  mid = 1, masks
1779             CALL data_output_mask( 1 )
1780          ENDDO
1781          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1782       ENDIF
1783!
1784!--    Output of surface data, instantaneous and averaged data
1785       IF ( surface_output )  THEN
1786          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1787             CALL surface_data_output( 0 )
1788             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1789          ENDIF
1790          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1791             CALL surface_data_output( 1 )
1792             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1793          ENDIF
1794       ENDIF
1795
1796!
1797!--    Output of particle time series
1798       IF ( particle_advection )  THEN
1799          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1800               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1801                 first_call_lpm ) )  THEN
1802             CALL data_output_ptseries
1803             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1804          ENDIF
1805       ENDIF
1806
1807!
1808!--    Output of dvrp-graphics (isosurface, particles, slicer)
1809#if defined( __dvrp_graphics )
1810       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1811#endif
1812       IF ( time_dvrp >= dt_dvrp )  THEN
1813          CALL data_output_dvrp
1814          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1815       ENDIF
1816#if defined( __dvrp_graphics )
1817       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1818#endif
1819
1820!
1821!--    If required, set the heat flux for the next time step to a random value
1822       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1823          IF ( surf_def_h(0)%ns >= 1 )  THEN
1824             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1825             CALL disturb_heatflux( surf_def_h(0) )
1826             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1827          ENDIF
1828          IF ( surf_lsm_h%ns    >= 1 )  THEN
1829             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1830             CALL disturb_heatflux( surf_lsm_h    )
1831             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1832          ENDIF
1833          IF ( surf_usm_h%ns    >= 1 )  THEN
1834             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1835             CALL disturb_heatflux( surf_usm_h    )
1836             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1837          ENDIF
1838       ENDIF
1839
1840!
1841!--    Execute alle other module actions routunes
1842       CALL module_interface_actions( 'after_timestep' )
1843
1844!
1845!--    Determine size of next time step. Save timestep dt_3d because it is
1846!--    newly calculated in routine timestep, but required further below for
1847!--    steering the run control output interval
1848       dt_3d_old = dt_3d
1849       CALL timestep
1850
1851!
1852!--    Synchronize the timestep in case of nested run.
1853       IF ( nested_run )  THEN
1854!
1855!--       Synchronize by unifying the time step.
1856!--       Global minimum of all time-steps is used for all.
1857          CALL pmci_synchronize
1858       ENDIF
1859
1860!
1861!--    Computation and output of run control parameters.
1862!--    This is also done whenever perturbations have been imposed
1863       IF ( time_run_control >= dt_run_control  .OR.                                               &
1864            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1865       THEN
1866          CALL run_control
1867          IF ( time_run_control >= dt_run_control )  THEN
1868             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1869          ENDIF
1870       ENDIF
1871
1872!
1873!--    Output elapsed simulated time in form of a progress bar on stdout
1874       IF ( myid == 0 )  CALL output_progress_bar
1875
1876       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1877
1878
1879    ENDDO   ! time loop
1880
1881#if defined( _OPENACC )
1882    CALL exit_surface_arrays
1883#endif
1884!$ACC END DATA
1885!$ACC END DATA
1886!$ACC END DATA
1887!$ACC END DATA
1888!$ACC END DATA
1889!$ACC END DATA
1890!$ACC END DATA
1891
1892!
1893!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1894    IF ( vnest_init )  CALL vnest_deallocate
1895
1896    IF ( myid == 0 )  CALL finish_progress_bar
1897
1898#if defined( __dvrp_graphics )
1899    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1900#endif
1901
1902    CALL location_message( 'atmosphere (and/or ocean) time-stepping', 'finished' )
1903
1904 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.