source: palm/trunk/SOURCE/time_integration.f90 @ 3875

Last change on this file since 3875 was 3875, checked in by knoop, 2 years ago

Implemented wtm_actions and moved respective module code into it

  • Property svn:keywords set to Id
File size: 74.9 KB
Line 
1!> @file time_integration.f90
2!------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
17! Copyright 1997-2019 Leibniz Universitaet Hannover
18!------------------------------------------------------------------------------!
19!
20! Current revisions:
21! ------------------
22!
23!
24! Former revisions:
25! -----------------
26! $Id: time_integration.f90 3875 2019-04-08 17:35:12Z knoop $
27! Moved wtm_forces to module_interface_actions
28!
29! 3872 2019-04-08 15:03:06Z knoop
30! Modifications made for salsa:
31! - Call salsa_emission_update at each time step but do the checks within
32!   salsa_emission_update (i.e. skip_time_do_salsa >= time_since_reference_point
33!   and next_aero_emission_update <= time_since_reference_point ).
34! - Renamed nbins --> nbins_aerosol, ncc_tot --> ncomponents_mass and
35!   ngast --> ngases_salsa and loop indices b, c and sg to ib, ic and ig
36! - Apply nesting for salsa variables
37! - Removed cpu_log calls speciffic for salsa.
38!
39! 3833 2019-03-28 15:04:04Z forkel
40! added USE chem_gasphase_mod, replaced nspec by nvar since fixed compounds are not integrated
41!
42! 3820 2019-03-27 11:53:41Z forkel
43! renamed do_emiss to emissions_anthropogenic (ecc)
44!
45!
46! 3774 2019-03-04 10:52:49Z moh.hefny
47! rephrase if statement to avoid unallocated array in case of
48! nesting_offline is false (crashing during debug mode)
49!
50! 3761 2019-02-25 15:31:42Z raasch $
51! module section re-formatted and openacc required variables moved to separate section,
52! re-formatting to 100 char line width
53!
54! 3745 2019-02-15 18:57:56Z suehring
55! Call indoor model after first timestep
56!
57! 3744 2019-02-15 18:38:58Z suehring
58! - Moved call of bio_calculate_thermal_index_maps from biometeorology module to
59! time_integration to make sure averaged input is updated before calculating.
60!
61! 3739 2019-02-13 08:05:17Z dom_dwd_user
62! Removed everything related to "time_bio_results" as this is never used.
63!
64! 3724 2019-02-06 16:28:23Z kanani
65! Correct double-used log_point_s unit
66!
67! 3719 2019-02-06 13:10:18Z kanani
68! - removed wind_turbine cpu measurement, since same time is measured inside
69!   wtm_forces subroutine as special measures
70! - moved the numerous vnest cpulog to special measures
71! - extended radiation cpulog over entire radiation part,
72!   moved radiation_interactions cpulog to special measures
73! - moved some cpu_log calls to this routine for better overview
74!
75! 3705 2019-01-29 19:56:39Z suehring
76! Data output for virtual measurements added
77!
78! 3704 2019-01-29 19:51:41Z suehring
79! Rename subroutines for surface-data output
80!
81! 3647 2019-01-02 14:10:44Z kanani
82! Bugfix: add time_since_reference_point to IF clause for data_output calls
83! (otherwise skip_time_* values don't come into affect with dt_do* = 0.0).
84! Clean up indoor_model and biometeorology model call.
85!
86! 3646 2018-12-28 17:58:49Z kanani
87! Bugfix: use time_since_reference_point instead of simulated_time where
88! required (relevant when using wall/soil spinup)
89!
90! 3634 2018-12-18 12:31:28Z knoop
91! OpenACC port for SPEC
92!
93! 3597 2018-12-04 08:40:18Z maronga
94! Removed call to calculation of near air (10 cm) potential temperature (now in
95! surface layer fluxes)
96!
97! 3589 2018-11-30 15:09:51Z suehring
98! Move the control parameter "salsa" from salsa_mod to control_parameters
99! (M. Kurppa)
100!
101! 3582 2018-11-29 19:16:36Z suehring
102! dom_dwd_user, Schrempf:
103! Changes due to merge of uv exposure model into biometeorology_mod.
104!
105! 3525 2018-11-14 16:06:14Z kanani
106! Changes related to clean-up of biometeorology (dom_dwd_user)
107!
108! 3524 2018-11-14 13:36:44Z raasch
109! unused variables removed
110!
111! 3484 2018-11-02 14:41:25Z hellstea
112! pmci_ensure_nest_mass_conservation is premanently removed
113!
114! 3473 2018-10-30 20:50:15Z suehring
115! new module for virtual measurements introduced
116!
117! 3472 2018-10-30 20:43:50Z suehring
118! Add indoor model (kanani, srissman, tlang)
119!
120! 3467 2018-10-30 19:05:21Z suehring
121! Implementation of a new aerosol module salsa.
122!
123! 3448 2018-10-29 18:14:31Z kanani
124! Add biometeorology
125!
126! 3421 2018-10-24 18:39:32Z gronemeier
127! Surface data output
128!
129! 3418 2018-10-24 16:07:39Z kanani
130! call to material_heat_model now with check if spinup runs (rvtils)
131!
132! 3378 2018-10-19 12:34:59Z kanani
133! merge from radiation branch (r3362) into trunk
134! (moh.hefny):
135! Bugfix in the if statement to call radiation_interaction
136!
137! 3347 2018-10-15 14:21:08Z suehring
138! - offline nesting separated from large-scale forcing module
139! - changes for synthetic turbulence generator
140!
141! 3343 2018-10-15 10:38:52Z suehring
142! - Formatting, clean-up, comments (kanani)
143! - Added CALL to chem_emissions_setup (Russo)
144! - Code added for decycling chemistry (basit)
145!
146! 3294 2018-10-01 02:37:10Z raasch
147! changes concerning modularization of ocean option
148!
149! 3274 2018-09-24 15:42:55Z knoop
150! Modularization of all bulk cloud physics code components
151!
152! 3241 2018-09-12 15:02:00Z raasch
153! unused variables removed
154!
155! 3198 2018-08-15 09:23:10Z sward
156! Added multi_agent_system_end; defined start time for MAS relative to
157! time_since_reference_point
158!
159! 3183 2018-07-27 14:25:55Z suehring
160! Replace simulated_time by time_since_reference_point in COSMO nesting mode.
161! Rename subroutines and variables in COSMO nesting mode
162!
163! 3182 2018-07-27 13:36:03Z suehring
164! Added multi agent system
165!
166! 3042 2018-05-25 10:44:37Z schwenkel
167! Changed the name specific humidity to mixing ratio
168!
169! 3040 2018-05-25 10:22:08Z schwenkel
170! Fixed bug in IF statement
171! Ensure that the time when calling the radiation to be the time step of the
172! pre-calculated time when first calculate the positions of the sun
173!
174! 3004 2018-04-27 12:33:25Z Giersch
175! First call of flow_statistics has been removed. It is already called in
176! run_control itself
177!
178! 2984 2018-04-18 11:51:30Z hellstea
179! CALL pmci_ensure_nest_mass_conservation is removed (so far only commented out)
180! as seemingly unnecessary.
181!
182! 2941 2018-04-03 11:54:58Z kanani
183! Deduct spinup_time from RUN_CONTROL output of main 3d run
184! (use time_since_reference_point instead of simulated_time)
185!
186! 2938 2018-03-27 15:52:42Z suehring
187! Nesting of dissipation rate in case of RANS mode and TKE-e closure is applied
188!
189! 2936 2018-03-27 14:49:27Z suehring
190! Little formatting adjustment.
191!
192! 2817 2018-02-19 16:32:21Z knoop
193! Preliminary gust module interface implemented
194!
195! 2801 2018-02-14 16:01:55Z thiele
196! Changed lpm from subroutine to module.
197! Introduce particle transfer in nested models.
198!
199! 2776 2018-01-31 10:44:42Z Giersch
200! Variable use_synthetic_turbulence_generator has been abbreviated
201!
202! 2773 2018-01-30 14:12:54Z suehring
203! - Nesting for chemical species
204!
205! 2766 2018-01-22 17:17:47Z kanani
206! Removed preprocessor directive __chem
207!
208! 2718 2018-01-02 08:49:38Z maronga
209! Corrected "Former revisions" section
210!
211! 2696 2017-12-14 17:12:51Z kanani
212! - Change in file header (GPL part)
213! - Implementation of uv exposure model (FK)
214! - Moved vnest_boundary_conds_khkm from tcm_diffusivities to here (TG)
215! - renamed diffusivities to tcm_diffusivities (TG)
216! - implement prognostic equation for diss (TG)
217! - Moved/commented CALL to chem_emissions (FK)
218! - Added CALL to chem_emissions (FK)
219! - Implementation of chemistry module (FK)
220! - Calls for setting boundary conditions in USM and LSM (MS)
221! - Large-scale forcing with larger-scale models implemented (MS)
222! - Rename usm_radiation into radiation_interactions; merge with branch
223!   radiation (MS)
224! - added call for usm_green_heat_model for green building surfaces (RvT)
225! - added call for usm_temperature_near_surface for use in indoor model (RvT)
226!
227! 2617 2017-11-16 12:47:24Z suehring
228! Bugfix, assure that the reference state does not become zero.
229!
230! 2563 2017-10-19 15:36:10Z Giersch
231! Variable wind_turbine moved to module control_parameters
232!
233! 2365 2017-08-21 14:59:59Z kanani
234! Vertical grid nesting implemented (SadiqHuq)
235!
236! 2320 2017-07-21 12:47:43Z suehring
237! Set bottom boundary conditions after nesting interpolation and anterpolation
238!
239! 2299 2017-06-29 10:14:38Z maronga
240! Call of soil model adjusted
241!
242! 2292 2017-06-20 09:51:42Z schwenkel
243! Implementation of new microphysic scheme: cloud_scheme = 'morrison'
244! includes two more prognostic equations for cloud drop concentration (nc) 
245! and cloud water content (qc).
246!
247! 2271 2017-06-09 12:34:55Z sward
248! Start timestep message changed
249!
250! 2259 2017-06-08 09:09:11Z gronemeier
251! Implemented synthetic turbulence generator
252!
253! 2233 2017-05-30 18:08:54Z suehring
254!
255! 2232 2017-05-30 17:47:52Z suehring
256! Adjustments to new topography and surface concept
257! Modify passed parameters for disturb_field
258!
259! 2178 2017-03-17 11:07:39Z hellstea
260! Setting perturbations at all times near inflow boundary is removed
261! in case of nested boundaries
262!
263! 2174 2017-03-13 08:18:57Z maronga
264! Added support for nesting with cloud microphysics
265!
266! 2118 2017-01-17 16:38:49Z raasch
267! OpenACC directives and related code removed
268!
269! 2050 2016-11-08 15:00:55Z gronemeier
270! Implement turbulent outflow condition
271!
272! 2031 2016-10-21 15:11:58Z knoop
273! renamed variable rho to rho_ocean
274!
275! 2011 2016-09-19 17:29:57Z kanani
276! Flag urban_surface is now defined in module control_parameters,
277! removed commented CALLs of global_min_max.
278!
279! 2007 2016-08-24 15:47:17Z kanani
280! Added CALLs for new urban surface model
281!
282! 2000 2016-08-20 18:09:15Z knoop
283! Forced header and separation lines into 80 columns
284!
285! 1976 2016-07-27 13:28:04Z maronga
286! Simplified calls to radiation model
287!
288! 1960 2016-07-12 16:34:24Z suehring
289! Separate humidity and passive scalar
290!
291! 1957 2016-07-07 10:43:48Z suehring
292! flight module added
293!
294! 1919 2016-05-27 14:51:23Z raasch
295! Initial version of purely vertical nesting introduced.
296!
297! 1918 2016-05-27 14:35:57Z raasch
298! determination of time step moved to the end of the time step loop,
299! the first time step is now always calculated before the time step loop (i.e.
300! also in case of restart runs)
301!
302! 1914 2016-05-26 14:44:07Z witha
303! Added call for wind turbine model
304!
305! 1878 2016-04-19 12:30:36Z hellstea
306! Synchronization for nested runs rewritten
307!
308! 1853 2016-04-11 09:00:35Z maronga
309! Adjusted for use with radiation_scheme = constant
310!
311! 1849 2016-04-08 11:33:18Z hoffmann
312! Adapted for modularization of microphysics
313!
314! 1833 2016-04-07 14:23:03Z raasch
315! spectrum renamed spectra_mod, spectra related variables moved to spectra_mod
316!
317! 1831 2016-04-07 13:15:51Z hoffmann
318! turbulence renamed collision_turbulence
319!
320! 1822 2016-04-07 07:49:42Z hoffmann
321! icloud_scheme replaced by microphysics_*
322!
323! 1808 2016-04-05 19:44:00Z raasch
324! output message in case unscheduled radiation calls removed
325!
326! 1797 2016-03-21 16:50:28Z raasch
327! introduction of different datatransfer modes
328!
329! 1791 2016-03-11 10:41:25Z raasch
330! call of pmci_update_new removed
331!
332! 1786 2016-03-08 05:49:27Z raasch
333! +module spectrum
334!
335! 1783 2016-03-06 18:36:17Z raasch
336! switch back of netcdf data format for mask output moved to the mask output
337! routine
338!
339! 1781 2016-03-03 15:12:23Z raasch
340! some pmc calls removed at the beginning (before timeloop),
341! pmc initialization moved to the main program
342!
343! 1764 2016-02-28 12:45:19Z raasch
344! PMC_ACTIVE flags removed,
345! bugfix: nest synchronization after first call of timestep
346!
347! 1762 2016-02-25 12:31:13Z hellstea
348! Introduction of nested domain feature
349!
350! 1736 2015-12-04 08:56:33Z raasch
351! no perturbations added to total domain if energy limit has been set zero
352!
353! 1691 2015-10-26 16:17:44Z maronga
354! Added option for spin-ups without land surface and radiation models. Moved calls
355! for radiation and lan surface schemes.
356!
357! 1682 2015-10-07 23:56:08Z knoop
358! Code annotations made doxygen readable
359!
360! 1671 2015-09-25 03:29:37Z raasch
361! bugfix: ghostpoint exchange for array diss in case that sgs velocities are used
362! for particles
363!
364! 1585 2015-04-30 07:05:52Z maronga
365! Moved call of radiation scheme. Added support for RRTM
366!
367! 1551 2015-03-03 14:18:16Z maronga
368! Added interface for different radiation schemes.
369!
370! 1496 2014-12-02 17:25:50Z maronga
371! Added calls for the land surface model and radiation scheme
372!
373! 1402 2014-05-09 14:25:13Z raasch
374! location messages modified
375!
376! 1384 2014-05-02 14:31:06Z raasch
377! location messages added
378!
379! 1380 2014-04-28 12:40:45Z heinze
380! CALL of nudge_ref added
381! bc_pt_t_val and bc_q_t_val are updated in case nudging is used
382!
383! 1365 2014-04-22 15:03:56Z boeske
384! Reset sums_ls_l to zero at each timestep
385! +sums_ls_l
386! Calculation of reference state (previously in subroutine calc_mean_profile)
387
388! 1342 2014-03-26 17:04:47Z kanani
389! REAL constants defined as wp-kind
390!
391! 1320 2014-03-20 08:40:49Z raasch
392! ONLY-attribute added to USE-statements,
393! kind-parameters added to all INTEGER and REAL declaration statements,
394! kinds are defined in new module kinds,
395! old module precision_kind is removed,
396! revision history before 2012 removed,
397! comment fields (!:) to be used for variable explanations added to
398! all variable declaration statements
399! 1318 2014-03-17 13:35:16Z raasch
400! module interfaces removed
401!
402! 1308 2014-03-13 14:58:42Z fricke
403! +netcdf_data_format_save
404! For masked data, parallel netcdf output is not tested so far, hence
405! netcdf_data_format is switched back to non-paralell output.
406!
407! 1276 2014-01-15 13:40:41Z heinze
408! Use LSF_DATA also in case of Dirichlet bottom boundary condition for scalars
409!
410! 1257 2013-11-08 15:18:40Z raasch
411! acc-update-host directive for timestep removed
412!
413! 1241 2013-10-30 11:36:58Z heinze
414! Generalize calc_mean_profile for wider use
415! Determine shf and qsws in dependence on data from LSF_DATA
416! Determine ug and vg in dependence on data from LSF_DATA
417! 1221 2013-09-10 08:59:13Z raasch
418! host update of arrays before timestep is called
419!
420! 1179 2013-06-14 05:57:58Z raasch
421! mean profiles for reference state are only calculated if required,
422! small bugfix for background communication
423!
424! 1171 2013-05-30 11:27:45Z raasch
425! split of prognostic_equations deactivated (comment lines), for the time being
426!
427! 1128 2013-04-12 06:19:32Z raasch
428! asynchronous transfer of ghost point data realized for acc-optimized version:
429! prognostic_equations are first called two times for those points required for
430! the left-right and north-south exchange, respectively, and then for the
431! remaining points,
432! those parts requiring global communication moved from prognostic_equations to
433! here
434!
435! 1115 2013-03-26 18:16:16Z hoffmann
436! calculation of qr and nr is restricted to precipitation
437!
438! 1113 2013-03-10 02:48:14Z raasch
439! GPU-porting of boundary conditions,
440! openACC directives updated
441! formal parameter removed from routine boundary_conds
442!
443! 1111 2013-03-08 23:54:10Z raasch
444! +internal timestep counter for cpu statistics added,
445! openACC directives updated
446!
447! 1092 2013-02-02 11:24:22Z raasch
448! unused variables removed
449!
450! 1065 2012-11-22 17:42:36Z hoffmann
451! exchange of diss (dissipation rate) in case of turbulence = .TRUE. added
452!
453! 1053 2012-11-13 17:11:03Z hoffmann
454! exchange of ghost points for nr, qr added
455!
456! 1036 2012-10-22 13:43:42Z raasch
457! code put under GPL (PALM 3.9)
458!
459! 1019 2012-09-28 06:46:45Z raasch
460! non-optimized version of prognostic_equations removed
461!
462! 1015 2012-09-27 09:23:24Z raasch
463! +call of prognostic_equations_acc
464!
465! 1001 2012-09-13 14:08:46Z raasch
466! all actions concerning leapfrog- and upstream-spline-scheme removed
467!
468! 849 2012-03-15 10:35:09Z raasch
469! advec_particles renamed lpm, first_call_advec_particles renamed first_call_lpm
470!
471! 825 2012-02-19 03:03:44Z raasch
472! wang_collision_kernel renamed wang_kernel
473!
474! Revision 1.1  1997/08/11 06:19:04  raasch
475! Initial revision
476!
477!
478! Description:
479! ------------
480!> Integration in time of the model equations, statistical analysis and graphic
481!> output
482!------------------------------------------------------------------------------!
483 SUBROUTINE time_integration
484 
485
486    USE advec_ws,                                                                                  &
487        ONLY:  ws_statistics
488
489    USE arrays_3d,                                                                                 &
490        ONLY:  diss, diss_p, dzu, e, e_p, nc, nc_p, nr, nr_p, prho, pt, pt_p, pt_init, q_init, q,  &
491               qc, qc_p, ql, ql_c, ql_v, ql_vp, qr, qr_p, q_p, ref_state, rho_ocean, s, s_p, sa_p, &
492               tend, u, u_p, v, vpt, v_p, w, w_p
493
494    USE biometeorology_mod,                                                                        &
495        ONLY:  bio_calculate_thermal_index_maps, thermal_comfort, uvem_calc_exposure, uv_exposure
496
497    USE bulk_cloud_model_mod,                                                                      &
498        ONLY: bulk_cloud_model, calc_liquid_water_content, collision_turbulence,                   &
499              microphysics_morrison, microphysics_seifert
500
501    USE calc_mean_profile_mod,                                                                     &
502        ONLY:  calc_mean_profile
503
504    USE chem_emissions_mod,                                                                        &
505        ONLY:  chem_emissions_setup
506
507    USE chem_gasphase_mod,                                                                         &
508        ONLY:  nvar
509
510    USE chem_modules,                                                                              &
511        ONLY:  bc_cs_t_val, cs_name, emissions_anthropogenic, nspec_out
512
513    USE chemistry_model_mod,                                                                       &
514        ONLY:  chem_boundary_conds, chem_species
515
516    USE control_parameters,                                                                        &
517        ONLY:  advected_distance_x, advected_distance_y, air_chemistry, average_count_3d,          &
518               averaging_interval, averaging_interval_pr, bc_lr_cyc, bc_ns_cyc, bc_pt_t_val,       &
519               bc_q_t_val, biometeorology, call_psolver_at_all_substeps,  child_domain,            &
520               cloud_droplets, constant_flux_layer, constant_heatflux, create_disturbances,        &
521               dopr_n, constant_diffusion, coupling_mode, coupling_start_time,                     &
522               current_timestep_number, disturbance_created, disturbance_energy_limit, dist_range, &
523               do_sum, dt_3d, dt_averaging_input, dt_averaging_input_pr, dt_coupling,              &
524               dt_data_output_av, dt_disturb, dt_do2d_xy, dt_do2d_xz, dt_do2d_yz, dt_do3d,         &
525               dt_domask,dt_dopts, dt_dopr, dt_dopr_listing, dt_dots, dt_dvrp, dt_run_control,     &
526               end_time, first_call_lpm, first_call_mas, galilei_transformation, humidity,         &
527               indoor_model, intermediate_timestep_count, intermediate_timestep_count_max,         &
528               land_surface, large_scale_forcing, loop_optimization, lsf_surf, lsf_vert, masks,    &
529               mid, multi_agent_system_end, multi_agent_system_start, nesting_offline, neutral,    &
530               nr_timesteps_this_run, nudging, ocean_mode, passive_scalar, pt_reference,           &
531               pt_slope_offset, random_heatflux, rans_mode, rans_tke_e, run_coupled, salsa,        &
532               simulated_time, simulated_time_chr, skip_time_do2d_xy, skip_time_do2d_xz,           &
533               skip_time_do2d_yz, skip_time_do3d, skip_time_domask, skip_time_dopr,                &
534               skip_time_data_output_av, sloping_surface, stop_dt, surface_output,                 &
535               terminate_coupled, terminate_run, timestep_scheme, time_coupling, time_do2d_xy,     &
536               time_do2d_xz, time_do2d_yz, time_do3d, time_domask, time_dopr, time_dopr_av,        &
537               time_dopr_listing, time_dopts, time_dosp, time_dosp_av, time_dots, time_do_av,      &
538               time_do_sla, time_disturb, time_dvrp, time_run_control, time_since_reference_point, &
539               turbulent_inflow, turbulent_outflow, urban_surface,                                 &
540               use_initial_profile_as_reference, use_single_reference_value, u_gtrans, v_gtrans,   &
541               virtual_flight, virtual_measurement, ws_scheme_mom, ws_scheme_sca
542
543    USE cpulog,                                                                                    &
544        ONLY:  cpu_log, log_point, log_point_s
545
546    USE date_and_time_mod,                                                                         &
547        ONLY:  calc_date_and_time, hour_call_emis, hour_of_year
548
549    USE flight_mod,                                                                                &
550        ONLY:  flight_measurement
551
552    USE indices,                                                                                   &
553        ONLY:  nbgp, nx, nxl, nxlg, nxr, nxrg, nzb, nzt
554
555    USE indoor_model_mod,                                                                          &
556        ONLY:  dt_indoor, im_main_heatcool, time_indoor
557
558    USE interaction_droplets_ptq_mod,                                                              &
559        ONLY:  interaction_droplets_ptq
560
561    USE interfaces
562
563    USE kinds
564
565    USE land_surface_model_mod,                                                                    &
566        ONLY:  lsm_boundary_condition, lsm_energy_balance, lsm_soil_model, skip_time_do_lsm
567
568    USE lpm_mod,                                                                                   &
569        ONLY:  lpm
570
571    USE lsf_nudging_mod,                                                                           &
572        ONLY:  calc_tnudge, ls_forcing_surf, ls_forcing_vert, nudge_ref
573
574    USE module_interface,                                                                          &
575        ONLY:  module_interface_actions
576
577    USE multi_agent_system_mod,                                                                    &
578        ONLY:  agents_active, multi_agent_system
579
580    USE nesting_offl_mod,                                                                          &
581        ONLY:  nesting_offl_bc, nesting_offl_mass_conservation
582
583    USE netcdf_data_input_mod,                                                                     &
584        ONLY:  chem_emis, chem_emis_att, nest_offl, netcdf_data_input_offline_nesting
585
586    USE ocean_mod,                                                                                 &
587        ONLY:  prho_reference
588
589    USE particle_attributes,                                                                       &
590        ONLY:  particle_advection, particle_advection_start, use_sgs_for_particles, wang_kernel
591
592    USE pegrid
593
594    USE pmc_interface,                                                                             &
595        ONLY:  nested_run, nesting_mode, pmci_boundary_conds, pmci_datatrans, pmci_synchronize
596
597    USE progress_bar,                                                                              &
598        ONLY:  finish_progress_bar, output_progress_bar
599
600    USE prognostic_equations_mod,                                                                  &
601        ONLY:  prognostic_equations_cache, prognostic_equations_vector
602
603    USE radiation_model_mod,                                                                       &
604        ONLY: dt_radiation, force_radiation_call, radiation, radiation_control,                    &
605              radiation_interaction, radiation_interactions, skip_time_do_radiation, time_radiation
606
607    USE salsa_mod,                                                                                 &
608        ONLY: aerosol_number, aerosol_mass, bc_am_t_val, bc_an_t_val, bc_gt_t_val,                 &
609              nbins_aerosol, ncomponents_mass, ngases_salsa, salsa_boundary_conds,                 &
610              salsa_emission_update, salsa_gas, salsa_gases_from_chem, skip_time_do_salsa
611
612    USE spectra_mod,                                                                               &
613        ONLY: average_count_sp, averaging_interval_sp, calc_spectra, dt_dosp, skip_time_dosp
614
615    USE statistics,                                                                                &
616        ONLY:  flow_statistics_called, hom, pr_palm, sums_ls_l
617
618
619    USE surface_layer_fluxes_mod,                                                                  &
620        ONLY:  surface_layer_fluxes
621
622    USE surface_data_output_mod,                                                                   &
623        ONLY:  average_count_surf, averaging_interval_surf, dt_dosurf, dt_dosurf_av,               &
624               surface_data_output, surface_data_output_averaging, skip_time_dosurf,               &
625               skip_time_dosurf_av, time_dosurf, time_dosurf_av
626
627    USE surface_mod,                                                                               &
628        ONLY:  surf_def_h, surf_lsm_h, surf_usm_h
629
630    USE synthetic_turbulence_generator_mod,                                                        &
631        ONLY:  dt_stg_call, dt_stg_adjust, parametrize_inflow_turbulence, stg_adjust, stg_main,    &
632               time_stg_adjust, time_stg_call, use_syn_turb_gen
633
634    USE turbulence_closure_mod,                                                                    &
635        ONLY:  tcm_diffusivities, production_e_init
636
637    USE urban_surface_mod,                                                                         &
638        ONLY:  usm_boundary_condition, usm_material_heat_model, usm_material_model,                &
639               usm_surface_energy_balance, usm_green_heat_model
640
641    USE vertical_nesting_mod,                                                                      &
642        ONLY:  vnested, vnest_anterpolate, vnest_anterpolate_e, vnest_boundary_conds,              &
643               vnest_boundary_conds_khkm, vnest_deallocate, vnest_init, vnest_init_fine,           &
644               vnest_start_time
645
646    USE virtual_measurement_mod,                                                                   &
647        ONLY:  vm_data_output, vm_sampling, vm_time_start
648
649
650#if defined( _OPENACC )
651    USE arrays_3d,                                                             &
652        ONLY:  d, dd2zu, ddzu, ddzw, drho_air, drho_air_zw, dzw, heatflux_output_conversion, kh,   &
653               km, momentumflux_output_conversion, p, ptdf_x, ptdf_y, rdf, rdf_sc, rho_air,        &
654               rho_air_zw, te_m, tpt_m, tu_m, tv_m, tw_m, ug, u_init, u_stokes_zu, vg, v_init,     &
655               v_stokes_zu, zu
656
657    USE control_parameters,                                                                        &
658        ONLY:  tsc
659
660    USE indices,                                                                                   &
661        ONLY:  advc_flags_1, advc_flags_2, nyn, nyng, nys, nysg, nz, nzb_max, wall_flags_0
662
663    USE statistics,                                                                                &
664        ONLY:  rmask, statistic_regions, sums_l, sums_l_l, sums_us2_ws_l,                          &
665               sums_wsus_ws_l, sums_vs2_ws_l, sums_wsvs_ws_l, sums_ws2_ws_l, sums_wspts_ws_l,      &
666               sums_wsqs_ws_l, sums_wssas_ws_l, sums_wsqcs_ws_l, sums_wsqrs_ws_l, sums_wsncs_ws_l, &
667               sums_wsnrs_ws_l, sums_wsss_ws_l, weight_substep, sums_salsa_ws_l
668
669    USE surface_mod,                                                                               &
670        ONLY:  bc_h, enter_surface_arrays, exit_surface_arrays
671#endif
672
673
674    IMPLICIT NONE
675
676    CHARACTER (LEN=9) ::  time_to_string   !<
677
678    INTEGER(iwp)      ::  ib        !< index for aerosol size bins
679    INTEGER(iwp)      ::  ic        !< index for aerosol mass bins
680    INTEGER(iwp)      ::  icc       !< additional index for aerosol mass bins
681    INTEGER(iwp)      ::  ig        !< index for salsa gases
682    INTEGER(iwp)      ::  lsp
683    INTEGER(iwp)      ::  lsp_usr   !<
684    INTEGER(iwp)      ::  n         !< loop counter for chemistry species
685
686    REAL(wp) ::  dt_3d_old  !< temporary storage of timestep to be used for
687                            !< steering of run control output interval
688    REAL(wp) ::  time_since_reference_point_save  !< original value of
689                                                  !< time_since_reference_point
690
691
692!
693!-- Copy data from arrays_3d
694!$ACC DATA &
695!$ACC COPY(d(nzb+1:nzt,nys:nyn,nxl:nxr)) &
696!$ACC COPY(e(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
697!$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
698!$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
699!$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
700!$ACC COPY(kh(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
701!$ACC COPY(km(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
702!$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
703!$ACC COPY(pt(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
704
705!$ACC DATA &
706!$ACC COPY(e_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
707!$ACC COPY(u_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
708!$ACC COPY(v_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
709!$ACC COPY(w_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
710!$ACC COPY(pt_p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
711!$ACC COPY(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
712!$ACC COPY(te_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
713!$ACC COPY(tu_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
714!$ACC COPY(tv_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
715!$ACC COPY(tw_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
716!$ACC COPY(tpt_m(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
717
718!$ACC DATA &
719!$ACC COPYIN(rho_air(nzb:nzt+1), drho_air(nzb:nzt+1)) &
720!$ACC COPYIN(rho_air_zw(nzb:nzt+1), drho_air_zw(nzb:nzt+1)) &
721!$ACC COPYIN(zu(nzb:nzt+1)) &
722!$ACC COPYIN(dzu(1:nzt+1), dzw(1:nzt+1)) &
723!$ACC COPYIN(ddzu(1:nzt+1), dd2zu(1:nzt)) &
724!$ACC COPYIN(ddzw(1:nzt+1)) &
725!$ACC COPYIN(heatflux_output_conversion(nzb:nzt+1)) &
726!$ACC COPYIN(momentumflux_output_conversion(nzb:nzt+1)) &
727!$ACC COPYIN(rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt)) &
728!$ACC COPYIN(ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng)) &
729!$ACC COPYIN(ref_state(0:nz+1)) &
730!$ACC COPYIN(u_init(0:nz+1), v_init(0:nz+1)) &
731!$ACC COPYIN(u_stokes_zu(nzb:nzt+1), v_stokes_zu(nzb:nzt+1)) &
732!$ACC COPYIN(pt_init(0:nz+1)) &
733!$ACC COPYIN(ug(0:nz+1), vg(0:nz+1))
734
735!
736!-- Copy data from control_parameters
737!$ACC DATA &
738!$ACC COPYIN(tsc(1:5))
739
740!
741!-- Copy data from indices
742!$ACC DATA &
743!$ACC COPYIN(advc_flags_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
744!$ACC COPYIN(advc_flags_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) &
745!$ACC COPYIN(wall_flags_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg))
746
747!
748!-- Copy data from surface_mod
749!$ACC DATA &
750!$ACC COPYIN(bc_h(0:1)) &
751!$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) &
752!$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) &
753!$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) &
754!$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) &
755!$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) &
756!$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns))
757
758!
759!-- Copy data from statistics
760!$ACC DATA &
761!$ACC COPYIN(hom(0:nz+1,1:2,1:4,0)) &
762!$ACC COPYIN(rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions)) &
763!$ACC COPYIN(weight_substep(1:intermediate_timestep_count_max)) &
764!$ACC COPY(sums_l(nzb:nzt+1,1:pr_palm,0)) &
765!$ACC COPY(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
766!$ACC COPY(sums_us2_ws_l(nzb:nzt+1,0)) &
767!$ACC COPY(sums_wsus_ws_l(nzb:nzt+1,0)) &
768!$ACC COPY(sums_vs2_ws_l(nzb:nzt+1,0)) &
769!$ACC COPY(sums_wsvs_ws_l(nzb:nzt+1,0)) &
770!$ACC COPY(sums_ws2_ws_l(nzb:nzt+1,0)) &
771!$ACC COPY(sums_wspts_ws_l(nzb:nzt+1,0)) &
772!$ACC COPY(sums_wssas_ws_l(nzb:nzt+1,0)) &
773!$ACC COPY(sums_wsqs_ws_l(nzb:nzt+1,0)) &
774!$ACC COPY(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
775!$ACC COPY(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
776!$ACC COPY(sums_wsncs_ws_l(nzb:nzt+1,0)) &
777!$ACC COPY(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
778!$ACC COPY(sums_wsss_ws_l(nzb:nzt+1,0)) &
779!$ACC COPY(sums_salsa_ws_l(nzb:nzt+1,0))
780
781#if defined( _OPENACC )
782    CALL enter_surface_arrays
783#endif
784
785!
786!-- At beginning determine the first time step
787    CALL timestep
788!
789!-- Synchronize the timestep in case of nested run.
790    IF ( nested_run )  THEN
791!
792!--    Synchronization by unifying the time step.
793!--    Global minimum of all time-steps is used for all.
794       CALL pmci_synchronize
795    ENDIF
796
797!
798!-- Determine and print out the run control quantities before the first time
799!-- step of this run. For the initial run, some statistics (e.g. divergence)
800!-- need to be determined first --> CALL flow_statistics at the beginning of
801!-- run_control
802    CALL run_control
803!
804!-- Data exchange between coupled models in case that a call has been omitted
805!-- at the end of the previous run of a job chain.
806    IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND. .NOT. vnested )  THEN
807!
808!--    In case of model termination initiated by the local model the coupler
809!--    must not be called because this would again cause an MPI hang.
810       DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
811          CALL surface_coupler
812          time_coupling = time_coupling - dt_coupling
813       ENDDO
814       IF (time_coupling == 0.0_wp  .AND.  time_since_reference_point < dt_coupling )  THEN
815          time_coupling = time_since_reference_point
816       ENDIF
817    ENDIF
818
819#if defined( __dvrp_graphics )
820!
821!-- Time measurement with dvrp software 
822    CALL DVRP_LOG_EVENT( 2, current_timestep_number )
823#endif
824
825    CALL location_message( 'starting timestep-sequence', .TRUE. )
826
827!
828!-- Start of the time loop
829    DO  WHILE ( simulated_time < end_time  .AND.  .NOT. stop_dt  .AND. .NOT. terminate_run )
830
831       CALL cpu_log( log_point_s(10), 'timesteps', 'start' )
832!
833!--    Vertical nesting: initialize fine grid
834       IF ( vnested ) THEN
835          IF ( .NOT. vnest_init  .AND.  simulated_time >= vnest_start_time )  THEN
836             CALL cpu_log( log_point_s(22), 'vnest_init', 'start' )
837             CALL vnest_init_fine
838             vnest_init = .TRUE.
839             CALL cpu_log( log_point_s(22), 'vnest_init', 'stop' )
840          ENDIF
841       ENDIF
842!
843!--    Determine ug, vg and w_subs in dependence on data from external file
844!--    LSF_DATA
845       IF ( large_scale_forcing .AND. lsf_vert )  THEN
846           CALL ls_forcing_vert ( simulated_time )
847           sums_ls_l = 0.0_wp
848       ENDIF
849
850!
851!--    Set pt_init and q_init to the current profiles taken from
852!--    NUDGING_DATA
853       IF ( nudging )  THEN
854           CALL nudge_ref ( simulated_time )
855!
856!--        Store temperature gradient at the top boundary for possible Neumann
857!--        boundary condition
858           bc_pt_t_val = ( pt_init(nzt+1) - pt_init(nzt) ) / dzu(nzt+1)
859           bc_q_t_val  = ( q_init(nzt+1) - q_init(nzt) ) / dzu(nzt+1)
860           IF ( air_chemistry )  THEN
861              DO  lsp = 1, nvar
862                 bc_cs_t_val = (  chem_species(lsp)%conc_pr_init(nzt+1)                            &
863                                - chem_species(lsp)%conc_pr_init(nzt) )                            &
864                               / dzu(nzt+1)
865              ENDDO
866           ENDIF
867           IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
868              DO  ib = 1, nbins_aerosol
869                 bc_an_t_val = ( aerosol_number(ib)%init(nzt+1) - aerosol_number(ib)%init(nzt) ) / &
870                               dzu(nzt+1)
871                 DO  ic = 1, ncomponents_mass
872                    icc = ( ic - 1 ) * nbins_aerosol + ib
873                    bc_am_t_val = ( aerosol_mass(icc)%init(nzt+1) - aerosol_mass(icc)%init(nzt) ) /&
874                                  dzu(nzt+1)
875                 ENDDO
876              ENDDO
877              IF ( .NOT. salsa_gases_from_chem )  THEN
878                 DO  ig = 1, ngases_salsa
879                    bc_gt_t_val = ( salsa_gas(ig)%init(nzt+1) - salsa_gas(ig)%init(nzt) ) /        &
880                                  dzu(nzt+1)
881                 ENDDO
882              ENDIF
883           ENDIF
884       ENDIF
885!
886!--    If forcing by larger-scale models is applied, check if new data
887!--    at domain boundaries need to be read.
888       IF ( nesting_offline ) THEN
889          IF ( nest_offl%time(nest_offl%tind_p) <= time_since_reference_point ) &
890               CALL netcdf_data_input_offline_nesting
891       ENDIF
892
893!
894!--    Execute alle other module actions routunes
895       CALL module_interface_actions( 'before_timestep' )
896       
897!
898!--    Start of intermediate step loop
899       intermediate_timestep_count = 0
900       DO  WHILE ( intermediate_timestep_count < intermediate_timestep_count_max )
901
902          intermediate_timestep_count = intermediate_timestep_count + 1
903
904!
905!--       Set the steering factors for the prognostic equations which depend
906!--       on the timestep scheme
907          CALL timestep_scheme_steering
908
909!
910!--       Calculate those variables needed in the tendency terms which need
911!--       global communication
912          IF ( .NOT. use_single_reference_value  .AND.  .NOT. use_initial_profile_as_reference )   &
913          THEN
914!
915!--          Horizontally averaged profiles to be used as reference state in
916!--          buoyancy terms (WARNING: only the respective last call of
917!--          calc_mean_profile defines the reference state!)
918             IF ( .NOT. neutral )  THEN
919                CALL calc_mean_profile( pt, 4 )
920                ref_state(:)  = hom(:,1,4,0) ! this is used in the buoyancy term
921             ENDIF
922             IF ( ocean_mode )  THEN
923                CALL calc_mean_profile( rho_ocean, 64 )
924                ref_state(:)  = hom(:,1,64,0)
925             ENDIF
926             IF ( humidity )  THEN
927                CALL calc_mean_profile( vpt, 44 )
928                ref_state(:)  = hom(:,1,44,0)
929             ENDIF
930!
931!--          Assure that ref_state does not become zero at any level
932!--          ( might be the case if a vertical level is completely occupied
933!--            with topography ).
934             ref_state = MERGE( MAXVAL(ref_state), ref_state, ref_state == 0.0_wp )
935          ENDIF
936
937          IF ( .NOT. constant_diffusion )  CALL production_e_init
938          IF ( ( ws_scheme_mom .OR. ws_scheme_sca )  .AND.  intermediate_timestep_count == 1 )     &
939          THEN
940             CALL ws_statistics
941          ENDIF
942!
943!--       In case of nudging calculate current nudging time scale and horizontal
944!--       means of u, v, pt and q
945          IF ( nudging )  THEN
946             CALL calc_tnudge( simulated_time )
947             CALL calc_mean_profile( u, 1 )
948             CALL calc_mean_profile( v, 2 )
949             CALL calc_mean_profile( pt, 4 )
950             CALL calc_mean_profile( q, 41 )
951          ENDIF
952
953!
954!--       Solve the prognostic equations. A fast cache optimized version with
955!--       only one single loop is used in case of Piascek-Williams advection
956!--       scheme. NEC vector machines use a different version, because
957!--       in the other versions a good vectorization is prohibited due to
958!--       inlining problems.
959          IF ( loop_optimization == 'cache' )  THEN
960             CALL prognostic_equations_cache
961          ELSEIF ( loop_optimization == 'vector' )  THEN
962             CALL prognostic_equations_vector
963          ENDIF
964
965!
966!--       Particle transport/physics with the Lagrangian particle model
967!--       (only once during intermediate steps, because it uses an Euler-step)
968!--       ### particle model should be moved before prognostic_equations, in order
969!--       to regard droplet interactions directly
970          IF ( particle_advection  .AND.  time_since_reference_point >= particle_advection_start   &
971               .AND.  intermediate_timestep_count == 1 )                                           &
972          THEN
973             CALL lpm
974             first_call_lpm = .FALSE.
975          ENDIF
976
977!
978!--       Interaction of droplets with temperature and mixing ratio.
979!--       Droplet condensation and evaporation is calculated within
980!--       advec_particles.
981          IF ( cloud_droplets  .AND.  intermediate_timestep_count == intermediate_timestep_count_max ) &
982          THEN
983             CALL interaction_droplets_ptq
984          ENDIF
985
986!
987!--       Movement of agents in multi agent system
988          IF ( agents_active  .AND.  time_since_reference_point >= multi_agent_system_start  .AND. &
989               time_since_reference_point <= multi_agent_system_end  .AND.                         &
990               intermediate_timestep_count == 1 )                                                  &
991          THEN
992             CALL multi_agent_system
993             first_call_mas = .FALSE.
994          ENDIF
995
996!
997!--       Exchange of ghost points (lateral boundary conditions)
998          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'start' )
999
1000          CALL exchange_horiz( u_p, nbgp )
1001          CALL exchange_horiz( v_p, nbgp )
1002          CALL exchange_horiz( w_p, nbgp )
1003          CALL exchange_horiz( pt_p, nbgp )
1004          IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e_p, nbgp )
1005          IF ( rans_tke_e  .OR.  wang_kernel  .OR.  collision_turbulence                           &
1006               .OR.  use_sgs_for_particles )  THEN
1007             IF ( rans_tke_e )  THEN
1008                CALL exchange_horiz( diss_p, nbgp )
1009             ELSE
1010                CALL exchange_horiz( diss, nbgp )
1011             ENDIF
1012          ENDIF
1013          IF ( ocean_mode )  THEN
1014             CALL exchange_horiz( sa_p, nbgp )
1015             CALL exchange_horiz( rho_ocean, nbgp )
1016             CALL exchange_horiz( prho, nbgp )
1017          ENDIF
1018          IF ( humidity )  THEN
1019             CALL exchange_horiz( q_p, nbgp )
1020             IF ( bulk_cloud_model .AND. microphysics_morrison )  THEN
1021                CALL exchange_horiz( qc_p, nbgp )
1022                CALL exchange_horiz( nc_p, nbgp )
1023             ENDIF
1024             IF ( bulk_cloud_model .AND. microphysics_seifert )  THEN
1025                CALL exchange_horiz( qr_p, nbgp )
1026                CALL exchange_horiz( nr_p, nbgp )
1027             ENDIF
1028          ENDIF
1029          IF ( cloud_droplets )  THEN
1030             CALL exchange_horiz( ql, nbgp )
1031             CALL exchange_horiz( ql_c, nbgp )
1032             CALL exchange_horiz( ql_v, nbgp )
1033             CALL exchange_horiz( ql_vp, nbgp )
1034          ENDIF
1035          IF ( passive_scalar )  CALL exchange_horiz( s_p, nbgp )
1036          IF ( air_chemistry )  THEN
1037             DO  lsp = 1, nvar
1038                CALL exchange_horiz( chem_species(lsp)%conc_p, nbgp )
1039!
1040!--             kanani: Push chem_boundary_conds after CALL boundary_conds
1041                lsp_usr = 1
1042                DO WHILE ( TRIM( cs_name( lsp_usr ) ) /= 'novalue' )
1043                   IF ( TRIM(chem_species(lsp)%name) == TRIM(cs_name(lsp_usr)) )  THEN
1044                      CALL chem_boundary_conds( chem_species(lsp)%conc_p,                          &
1045                                                chem_species(lsp)%conc_pr_init )
1046                   ENDIF
1047                   lsp_usr = lsp_usr + 1
1048                ENDDO
1049             ENDDO
1050          ENDIF
1051
1052          IF ( salsa  .AND.  time_since_reference_point >= skip_time_do_salsa )  THEN
1053!
1054!--          Exchange ghost points and decycle boundary concentrations if needed
1055             DO  ib = 1, nbins_aerosol
1056                CALL exchange_horiz( aerosol_number(ib)%conc_p, nbgp )
1057                CALL salsa_boundary_conds( aerosol_number(ib)%conc_p, aerosol_number(ib)%init )
1058                DO  ic = 1, ncomponents_mass
1059                   icc = ( ic - 1 ) * nbins_aerosol + ib
1060                   CALL exchange_horiz( aerosol_mass(icc)%conc_p, nbgp )
1061                   CALL salsa_boundary_conds( aerosol_mass(icc)%conc_p, aerosol_mass(icc)%init )
1062                ENDDO
1063             ENDDO
1064             IF ( .NOT. salsa_gases_from_chem )  THEN
1065                DO  ig = 1, ngases_salsa
1066                   CALL exchange_horiz( salsa_gas(ig)%conc_p, nbgp )
1067                   CALL salsa_boundary_conds( salsa_gas(ig)%conc_p, salsa_gas(ig)%init )
1068                ENDDO
1069             ENDIF
1070          ENDIF
1071          CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1072
1073!
1074!--       Boundary conditions for the prognostic quantities (except of the
1075!--       velocities at the outflow in case of a non-cyclic lateral wall)
1076          CALL boundary_conds
1077!
1078!--       Swap the time levels in preparation for the next time step.
1079          CALL swap_timelevel
1080
1081!
1082!--       Vertical nesting: Interpolate fine grid data to the coarse grid
1083          IF ( vnest_init ) THEN
1084             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'start' )
1085             CALL vnest_anterpolate
1086             CALL cpu_log( log_point_s(37), 'vnest_anterpolate', 'stop' )
1087          ENDIF
1088
1089          IF ( nested_run )  THEN
1090
1091             CALL cpu_log( log_point(60), 'nesting', 'start' )
1092!
1093!--          Domain nesting. The data transfer subroutines pmci_parent_datatrans
1094!--          and pmci_child_datatrans are called inside the wrapper
1095!--          subroutine pmci_datatrans according to the control parameters
1096!--          nesting_mode and nesting_datatransfer_mode.
1097!--          TO_DO: why is nesting_mode given as a parameter here?
1098             CALL pmci_datatrans( nesting_mode )
1099
1100             IF ( TRIM( nesting_mode ) == 'two-way' .OR.  nesting_mode == 'vertical' )  THEN
1101!
1102!--             Exchange_horiz is needed for all parent-domains after the
1103!--             anterpolation
1104                CALL exchange_horiz( u, nbgp )
1105                CALL exchange_horiz( v, nbgp )
1106                CALL exchange_horiz( w, nbgp )
1107                IF ( .NOT. neutral )  CALL exchange_horiz( pt, nbgp )
1108
1109                IF ( humidity )  THEN
1110
1111                   CALL exchange_horiz( q, nbgp )
1112
1113                   IF ( bulk_cloud_model  .AND.  microphysics_morrison )  THEN
1114                       CALL exchange_horiz( qc, nbgp )
1115                       CALL exchange_horiz( nc, nbgp )
1116                   ENDIF
1117                   IF ( bulk_cloud_model  .AND.  microphysics_seifert )  THEN
1118                       CALL exchange_horiz( qr, nbgp )
1119                       CALL exchange_horiz( nr, nbgp )
1120                   ENDIF
1121
1122                ENDIF
1123
1124                IF ( passive_scalar )  CALL exchange_horiz( s, nbgp ) 
1125
1126                IF ( .NOT. constant_diffusion )  CALL exchange_horiz( e, nbgp )
1127
1128                IF ( .NOT. constant_diffusion  .AND.  rans_mode  .AND.  rans_tke_e )  THEN
1129                   CALL exchange_horiz( diss, nbgp )
1130                ENDIF
1131
1132                IF ( air_chemistry )  THEN
1133                   DO  n = 1, nvar     
1134                      CALL exchange_horiz( chem_species(n)%conc, nbgp ) 
1135                   ENDDO
1136                ENDIF
1137
1138                IF ( salsa  .AND. time_since_reference_point >= skip_time_do_salsa )  THEN
1139                   DO  ib = 1, nbins_aerosol
1140                      CALL exchange_horiz( aerosol_number(ib)%conc, nbgp )
1141                      CALL salsa_boundary_conds( aerosol_number(ib)%conc, aerosol_number(ib)%init )
1142                      DO  ic = 1, ncomponents_mass
1143                         icc = ( ic - 1 ) * nbins_aerosol + ib
1144                         CALL exchange_horiz( aerosol_mass(icc)%conc, nbgp )
1145                         CALL salsa_boundary_conds( aerosol_mass(icc)%conc, aerosol_mass(icc)%init )
1146                      ENDDO
1147                   ENDDO
1148                   IF ( .NOT. salsa_gases_from_chem )  THEN
1149                      DO  ig = 1, ngases_salsa
1150                         CALL exchange_horiz( salsa_gas(ig)%conc, nbgp )
1151                         CALL salsa_boundary_conds( salsa_gas(ig)%conc, salsa_gas(ig)%init )
1152                      ENDDO
1153                   ENDIF
1154                ENDIF
1155                CALL cpu_log( log_point(26), 'exchange-horiz-progn', 'stop' )
1156
1157             ENDIF
1158!
1159!--          Set boundary conditions again after interpolation and anterpolation.
1160             CALL pmci_boundary_conds
1161
1162             CALL cpu_log( log_point(60), 'nesting', 'stop' )
1163
1164          ENDIF
1165
1166!
1167!--       Temperature offset must be imposed at cyclic boundaries in x-direction
1168!--       when a sloping surface is used
1169          IF ( sloping_surface )  THEN
1170             IF ( nxl ==  0 )  pt(:,:,nxlg:nxl-1) = pt(:,:,nxlg:nxl-1) - pt_slope_offset
1171             IF ( nxr == nx )  pt(:,:,nxr+1:nxrg) = pt(:,:,nxr+1:nxrg) + pt_slope_offset
1172          ENDIF
1173
1174!
1175!--       Impose a turbulent inflow using the recycling method
1176          IF ( turbulent_inflow )  CALL inflow_turbulence
1177
1178!
1179!--       Set values at outflow boundary using the special outflow condition
1180          IF ( turbulent_outflow )  CALL outflow_turbulence
1181
1182!
1183!--       Impose a random perturbation on the horizontal velocity field
1184          IF ( create_disturbances  .AND.  ( call_psolver_at_all_substeps  .AND.                   &
1185               intermediate_timestep_count == intermediate_timestep_count_max )                    &
1186               .OR. ( .NOT. call_psolver_at_all_substeps  .AND.  intermediate_timestep_count == 1 ) ) &
1187          THEN
1188             time_disturb = time_disturb + dt_3d
1189             IF ( time_disturb >= dt_disturb )  THEN
1190                IF ( disturbance_energy_limit /= 0.0_wp  .AND.                                     &
1191                     hom(nzb+5,1,pr_palm,0) < disturbance_energy_limit )  THEN
1192                   CALL disturb_field( 'u', tend, u )
1193                   CALL disturb_field( 'v', tend, v )
1194                ELSEIF ( ( .NOT. bc_lr_cyc  .OR.  .NOT. bc_ns_cyc )                                &
1195                         .AND. .NOT. child_domain  .AND.  .NOT.  nesting_offline )                 &
1196                THEN
1197!
1198!--                Runs with a non-cyclic lateral wall need perturbations
1199!--                near the inflow throughout the whole simulation
1200                   dist_range = 1
1201                   CALL disturb_field( 'u', tend, u )
1202                   CALL disturb_field( 'v', tend, v )
1203                   dist_range = 0
1204                ENDIF
1205                time_disturb = time_disturb - dt_disturb
1206             ENDIF
1207          ENDIF
1208
1209!
1210!--       Map forcing data derived from larger scale model onto domain
1211!--       boundaries.
1212          IF ( nesting_offline  .AND.  intermediate_timestep_count ==                              &
1213                                       intermediate_timestep_count_max  )                          &
1214             CALL nesting_offl_bc
1215!
1216!--       Impose a turbulent inflow using synthetic generated turbulence,
1217!--       only once per time step.
1218          IF ( use_syn_turb_gen  .AND.  time_stg_call >= dt_stg_call  .AND.                        &
1219             intermediate_timestep_count == intermediate_timestep_count_max )  THEN
1220             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1221             CALL stg_main
1222             CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1223          ENDIF
1224!
1225!--       Ensure mass conservation. This need to be done after imposing
1226!--       synthetic turbulence and top boundary condition for pressure is set to
1227!--       Neumann conditions.
1228!--       Is this also required in case of Dirichlet?
1229          IF ( nesting_offline )  CALL nesting_offl_mass_conservation
1230!
1231!--       Reduce the velocity divergence via the equation for perturbation
1232!--       pressure.
1233          IF ( intermediate_timestep_count == 1  .OR. &
1234                call_psolver_at_all_substeps )  THEN
1235
1236             IF (  vnest_init ) THEN
1237!
1238!--             Compute pressure in the CG, interpolate top boundary conditions
1239!--             to the FG and then compute pressure in the FG
1240                IF ( coupling_mode == 'vnested_crse' )  CALL pres
1241
1242                CALL cpu_log( log_point_s(30), 'vnest_bc', 'start' )
1243                CALL vnest_boundary_conds
1244                CALL cpu_log( log_point_s(30), 'vnest_bc', 'stop' )
1245 
1246                IF ( coupling_mode == 'vnested_fine' )  CALL pres
1247
1248!--             Anterpolate TKE, satisfy Germano Identity
1249                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'start' )
1250                CALL vnest_anterpolate_e
1251                CALL cpu_log( log_point_s(28), 'vnest_anter_e', 'stop' )
1252
1253             ELSE
1254
1255                CALL pres
1256
1257             ENDIF
1258
1259          ENDIF
1260
1261!
1262!--       If required, compute liquid water content
1263          IF ( bulk_cloud_model )  THEN
1264             CALL calc_liquid_water_content
1265          ENDIF
1266!
1267!--       If required, compute virtual potential temperature
1268          IF ( humidity )  THEN
1269             CALL compute_vpt
1270          ENDIF
1271
1272!
1273!--       Compute the diffusion quantities
1274          IF ( .NOT. constant_diffusion )  THEN
1275
1276!
1277!--          Determine surface fluxes shf and qsws and surface values
1278!--          pt_surface and q_surface in dependence on data from external
1279!--          file LSF_DATA respectively
1280             IF ( ( large_scale_forcing .AND. lsf_surf ) .AND.                                     &
1281                 intermediate_timestep_count == intermediate_timestep_count_max )                  &
1282             THEN
1283                CALL ls_forcing_surf( simulated_time )
1284             ENDIF
1285
1286!
1287!--          First the vertical (and horizontal) fluxes in the surface
1288!--          (constant flux) layer are computed
1289             IF ( constant_flux_layer )  THEN
1290                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'start' )
1291                CALL surface_layer_fluxes
1292                CALL cpu_log( log_point(19), 'surface_layer_fluxes', 'stop' )
1293             ENDIF
1294!
1295!--          If required, solve the energy balance for the surface and run soil
1296!--          model. Call for horizontal as well as vertical surfaces
1297             IF ( land_surface .AND. time_since_reference_point >= skip_time_do_lsm)  THEN
1298
1299                CALL cpu_log( log_point(54), 'land_surface', 'start' )
1300!
1301!--             Call for horizontal upward-facing surfaces
1302                CALL lsm_energy_balance( .TRUE., -1 )
1303                CALL lsm_soil_model( .TRUE., -1, .TRUE. )
1304!
1305!--             Call for northward-facing surfaces
1306                CALL lsm_energy_balance( .FALSE., 0 )
1307                CALL lsm_soil_model( .FALSE., 0, .TRUE. )
1308!
1309!--             Call for southward-facing surfaces
1310                CALL lsm_energy_balance( .FALSE., 1 )
1311                CALL lsm_soil_model( .FALSE., 1, .TRUE. )
1312!
1313!--             Call for eastward-facing surfaces
1314                CALL lsm_energy_balance( .FALSE., 2 )
1315                CALL lsm_soil_model( .FALSE., 2, .TRUE. )
1316!
1317!--             Call for westward-facing surfaces
1318                CALL lsm_energy_balance( .FALSE., 3 )
1319                CALL lsm_soil_model( .FALSE., 3, .TRUE. )
1320               
1321!
1322!--             At the end, set boundary conditons for potential temperature
1323!--             and humidity after running the land-surface model. This
1324!--             might be important for the nesting, where arrays are transfered.
1325                CALL lsm_boundary_condition
1326
1327               
1328                CALL cpu_log( log_point(54), 'land_surface', 'stop' )
1329             ENDIF
1330!
1331!--          If required, solve the energy balance for urban surfaces and run
1332!--          the material heat model
1333             IF (urban_surface) THEN
1334                CALL cpu_log( log_point(74), 'urban_surface', 'start' )
1335               
1336                CALL usm_surface_energy_balance( .FALSE. )
1337                IF ( usm_material_model )  THEN
1338                   CALL usm_green_heat_model
1339                   CALL usm_material_heat_model ( .FALSE. )
1340                ENDIF
1341
1342!
1343!--             At the end, set boundary conditons for potential temperature
1344!--             and humidity after running the urban-surface model. This
1345!--             might be important for the nesting, where arrays are transfered.
1346                CALL usm_boundary_condition
1347
1348                CALL cpu_log( log_point(74), 'urban_surface', 'stop' )
1349             ENDIF
1350!
1351!--          Compute the diffusion coefficients
1352             CALL cpu_log( log_point(17), 'diffusivities', 'start' )
1353             IF ( .NOT. humidity ) THEN
1354                IF ( ocean_mode )  THEN
1355                   CALL tcm_diffusivities( prho, prho_reference )
1356                ELSE
1357                   CALL tcm_diffusivities( pt, pt_reference )
1358                ENDIF
1359             ELSE
1360                CALL tcm_diffusivities( vpt, pt_reference )
1361             ENDIF
1362             CALL cpu_log( log_point(17), 'diffusivities', 'stop' )
1363!
1364!--          Vertical nesting: set fine grid eddy viscosity top boundary condition
1365             IF ( vnest_init )  CALL vnest_boundary_conds_khkm
1366
1367          ENDIF
1368
1369!
1370!--       If required, calculate radiative fluxes and heating rates
1371          IF ( radiation  .AND.  intermediate_timestep_count == intermediate_timestep_count_max    &
1372               .AND. time_since_reference_point > skip_time_do_radiation )  THEN
1373
1374               time_radiation = time_radiation + dt_3d
1375
1376             IF ( time_radiation >= dt_radiation  .OR.  force_radiation_call )  THEN
1377
1378                CALL cpu_log( log_point(50), 'radiation', 'start' )
1379
1380                IF ( .NOT. force_radiation_call )  THEN
1381                   time_radiation = time_radiation - dt_radiation
1382                ENDIF
1383
1384!
1385!--             Adjust the current time to the time step of the radiation model.
1386!--             Needed since radiation is pre-calculated and stored only on apparent
1387!--             solar positions
1388                time_since_reference_point_save = time_since_reference_point
1389                time_since_reference_point = REAL( FLOOR( time_since_reference_point /             &
1390                                                          dt_radiation), wp ) * dt_radiation
1391
1392                CALL radiation_control
1393
1394                IF ( ( urban_surface  .OR.  land_surface )  .AND.  radiation_interactions )  THEN
1395                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'start' )
1396                   CALL radiation_interaction
1397                   CALL cpu_log( log_point_s(46), 'radiation_interaction', 'stop' )
1398                ENDIF
1399   
1400!
1401!--             Return the current time to its original value
1402                time_since_reference_point = time_since_reference_point_save
1403
1404                CALL cpu_log( log_point(50), 'radiation', 'stop' )
1405
1406             ENDIF
1407          ENDIF
1408
1409       ENDDO   ! Intermediate step loop
1410
1411!
1412!--    Will be used at some point by flow_statistics.
1413       !$ACC UPDATE &
1414       !$ACC HOST(sums_l_l(nzb:nzt+1,0:statistic_regions,0)) &
1415       !$ACC HOST(sums_us2_ws_l(nzb:nzt+1,0)) &
1416       !$ACC HOST(sums_wsus_ws_l(nzb:nzt+1,0)) &
1417       !$ACC HOST(sums_vs2_ws_l(nzb:nzt+1,0)) &
1418       !$ACC HOST(sums_wsvs_ws_l(nzb:nzt+1,0)) &
1419       !$ACC HOST(sums_ws2_ws_l(nzb:nzt+1,0)) &
1420       !$ACC HOST(sums_wspts_ws_l(nzb:nzt+1,0)) &
1421       !$ACC HOST(sums_wssas_ws_l(nzb:nzt+1,0)) &
1422       !$ACC HOST(sums_wsqs_ws_l(nzb:nzt+1,0)) &
1423       !$ACC HOST(sums_wsqcs_ws_l(nzb:nzt+1,0)) &
1424       !$ACC HOST(sums_wsqrs_ws_l(nzb:nzt+1,0)) &
1425       !$ACC HOST(sums_wsncs_ws_l(nzb:nzt+1,0)) &
1426       !$ACC HOST(sums_wsnrs_ws_l(nzb:nzt+1,0)) &
1427       !$ACC HOST(sums_wsss_ws_l(nzb:nzt+1,0)) &
1428       !$ACC HOST(sums_salsa_ws_l(nzb:nzt+1,0))
1429
1430!
1431!--    If required, consider chemical emissions
1432       IF ( air_chemistry  .AND.  emissions_anthropogenic )  THEN
1433!
1434!--       Update the time --> kanani: revise location of this CALL
1435          CALL calc_date_and_time
1436!
1437!--       Call emission routine only once an hour
1438          IF (hour_of_year  .GT.  hour_call_emis )  THEN
1439             CALL chem_emissions_setup( chem_emis_att, chem_emis, nspec_out )
1440             hour_call_emis = hour_of_year
1441          ENDIF
1442       ENDIF
1443!
1444!--    If required, consider aerosol emissions for the salsa model
1445       IF ( salsa )  THEN
1446!
1447!--       Call emission routine to update emissions if needed
1448          CALL salsa_emission_update
1449
1450       ENDIF
1451!
1452!--    If required, calculate indoor temperature, waste heat, heat flux
1453!--    through wall, etc.
1454!--    dt_indoor steers the frequency of the indoor model calculations.
1455!--    Note, at first timestep indoor model is called, in order to provide
1456!--    a waste heat flux.
1457       IF ( indoor_model )  THEN
1458
1459          time_indoor = time_indoor + dt_3d
1460
1461          IF ( time_indoor >= dt_indoor  .OR.  current_timestep_number == 0 )  THEN
1462
1463             time_indoor = time_indoor - dt_indoor
1464
1465             CALL cpu_log( log_point(76), 'indoor_model', 'start' )
1466             CALL im_main_heatcool
1467             CALL cpu_log( log_point(76), 'indoor_model', 'stop' )
1468
1469          ENDIF
1470       ENDIF
1471!
1472!--    Increase simulation time and output times
1473       nr_timesteps_this_run      = nr_timesteps_this_run + 1
1474       current_timestep_number    = current_timestep_number + 1
1475       simulated_time             = simulated_time   + dt_3d
1476       time_since_reference_point = simulated_time - coupling_start_time
1477       simulated_time_chr         = time_to_string( time_since_reference_point )
1478
1479
1480
1481
1482       IF ( time_since_reference_point >= skip_time_data_output_av )  THEN
1483          time_do_av         = time_do_av       + dt_3d
1484       ENDIF
1485       IF ( time_since_reference_point >= skip_time_do2d_xy )  THEN
1486          time_do2d_xy       = time_do2d_xy     + dt_3d
1487       ENDIF
1488       IF ( time_since_reference_point >= skip_time_do2d_xz )  THEN
1489          time_do2d_xz       = time_do2d_xz     + dt_3d
1490       ENDIF
1491       IF ( time_since_reference_point >= skip_time_do2d_yz )  THEN
1492          time_do2d_yz       = time_do2d_yz     + dt_3d
1493       ENDIF
1494       IF ( time_since_reference_point >= skip_time_do3d    )  THEN
1495          time_do3d          = time_do3d        + dt_3d
1496       ENDIF
1497       DO  mid = 1, masks
1498          IF ( time_since_reference_point >= skip_time_domask(mid) )  THEN
1499             time_domask(mid)= time_domask(mid) + dt_3d
1500          ENDIF
1501       ENDDO
1502       time_dvrp          = time_dvrp        + dt_3d
1503       IF ( time_since_reference_point >= skip_time_dosp )  THEN
1504          time_dosp       = time_dosp        + dt_3d
1505       ENDIF
1506       time_dots          = time_dots        + dt_3d
1507       IF ( .NOT. first_call_lpm )  THEN
1508          time_dopts      = time_dopts       + dt_3d
1509       ENDIF
1510       IF ( time_since_reference_point >= skip_time_dopr )  THEN
1511          time_dopr       = time_dopr        + dt_3d
1512       ENDIF
1513       time_dopr_listing  = time_dopr_listing + dt_3d
1514       time_run_control   = time_run_control + dt_3d
1515!
1516!--    Increment time-counter for surface output
1517       IF ( surface_output )  THEN
1518          IF ( time_since_reference_point >= skip_time_dosurf )  THEN
1519             time_dosurf    = time_dosurf + dt_3d
1520          ENDIF
1521          IF ( time_since_reference_point >= skip_time_dosurf_av )  THEN
1522             time_dosurf_av = time_dosurf_av + dt_3d
1523          ENDIF
1524       ENDIF
1525!
1526!--    In case of synthetic turbulence generation and parametrized turbulence
1527!--    information, update the time counter and if required, adjust the
1528!--    STG to new atmospheric conditions.
1529       IF ( use_syn_turb_gen  )  THEN
1530          IF ( parametrize_inflow_turbulence )  THEN
1531             time_stg_adjust = time_stg_adjust + dt_3d
1532             IF ( time_stg_adjust >= dt_stg_adjust )  THEN
1533                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'start' )
1534                CALL stg_adjust
1535                CALL cpu_log( log_point(57), 'synthetic_turbulence_gen', 'stop' )
1536             ENDIF
1537          ENDIF
1538          time_stg_call = time_stg_call + dt_3d
1539       ENDIF
1540
1541!
1542!--    Data exchange between coupled models
1543       IF ( coupling_mode /= 'uncoupled'  .AND.  run_coupled  .AND.  .NOT. vnested )  THEN
1544          time_coupling = time_coupling + dt_3d
1545
1546!
1547!--       In case of model termination initiated by the local model
1548!--       (terminate_coupled > 0), the coupler must be skipped because it would
1549!--       cause an MPI intercomminucation hang.
1550!--       If necessary, the coupler will be called at the beginning of the
1551!--       next restart run.
1552          DO WHILE ( time_coupling >= dt_coupling  .AND.  terminate_coupled == 0 )
1553             CALL surface_coupler
1554             time_coupling = time_coupling - dt_coupling
1555          ENDDO
1556       ENDIF
1557
1558!
1559!--    Biometeorology calculation of stationary thermal indices
1560!--    Todo (kanani): biometeorology needs own time_... treatment.
1561!--                   It might be that time_do2d_xy differs from time_do3d,
1562!--                   and then we might get trouble with the biomet output,
1563!--                   because we can have 2d and/or 3d biomet output!!
1564       IF ( biometeorology                                                                         &
1565            .AND. ( ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  &
1566                  .OR.                                                                             &
1567            ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy ) &
1568                    ) )  THEN
1569!
1570!--       If required, do thermal comfort calculations
1571          IF ( thermal_comfort )  THEN
1572             CALL bio_calculate_thermal_index_maps ( .FALSE. )
1573          ENDIF
1574!
1575!--       If required, do UV exposure calculations
1576          IF ( uv_exposure )  THEN
1577             CALL uvem_calc_exposure
1578          ENDIF
1579       ENDIF
1580
1581!
1582!--    Execute alle other module actions routunes
1583       CALL module_interface_actions( 'after_integration' )
1584
1585!
1586!--    If Galilei transformation is used, determine the distance that the
1587!--    model has moved so far
1588       IF ( galilei_transformation )  THEN
1589          advected_distance_x = advected_distance_x + u_gtrans * dt_3d
1590          advected_distance_y = advected_distance_y + v_gtrans * dt_3d
1591       ENDIF
1592
1593!
1594!--    Check, if restart is necessary (because cpu-time is expiring or
1595!--    because it is forced by user) and set stop flag
1596!--    This call is skipped if the remote model has already initiated a restart.
1597       IF ( .NOT. terminate_run )  CALL check_for_restart
1598
1599!
1600!--    Carry out statistical analysis and output at the requested output times.
1601!--    The MOD function is used for calculating the output time counters (like
1602!--    time_dopr) in order to regard a possible decrease of the output time
1603!--    interval in case of restart runs
1604
1605!
1606!--    Set a flag indicating that so far no statistics have been created
1607!--    for this time step
1608       flow_statistics_called = .FALSE.
1609
1610!
1611!--    If required, call flow_statistics for averaging in time
1612       IF ( averaging_interval_pr /= 0.0_wp  .AND.                                                 &
1613            ( dt_dopr - time_dopr ) <= averaging_interval_pr  .AND.                                &
1614            time_since_reference_point >= skip_time_dopr )  THEN
1615          time_dopr_av = time_dopr_av + dt_3d
1616          IF ( time_dopr_av >= dt_averaging_input_pr )  THEN
1617             do_sum = .TRUE.
1618             time_dopr_av = MOD( time_dopr_av, MAX( dt_averaging_input_pr, dt_3d ) )
1619          ENDIF
1620       ENDIF
1621       IF ( do_sum )  CALL flow_statistics
1622
1623!
1624!--    Sum-up 3d-arrays for later output of time-averaged 2d/3d/masked data
1625       IF ( averaging_interval /= 0.0_wp  .AND.                                                    &
1626            ( dt_data_output_av - time_do_av ) <= averaging_interval  .AND.                        &
1627            time_since_reference_point >= skip_time_data_output_av )                               &
1628       THEN
1629          time_do_sla = time_do_sla + dt_3d
1630          IF ( time_do_sla >= dt_averaging_input )  THEN
1631             CALL sum_up_3d_data
1632             average_count_3d = average_count_3d + 1
1633             time_do_sla = MOD( time_do_sla, MAX( dt_averaging_input, dt_3d ) )
1634          ENDIF
1635       ENDIF
1636!
1637!--    Average surface data
1638       IF ( surface_output )  THEN
1639          IF ( averaging_interval_surf /= 0.0_wp                                                   &
1640                .AND.  ( dt_dosurf_av - time_dosurf_av ) <= averaging_interval_surf                &
1641                .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1642             IF ( time_dosurf_av >= dt_averaging_input )  THEN       
1643                CALL surface_data_output_averaging
1644                average_count_surf = average_count_surf + 1
1645             ENDIF
1646          ENDIF
1647       ENDIF
1648
1649!
1650!--    Calculate spectra for time averaging
1651       IF ( averaging_interval_sp /= 0.0_wp  .AND. ( dt_dosp - time_dosp ) <= averaging_interval_sp&
1652            .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1653          time_dosp_av = time_dosp_av + dt_3d
1654          IF ( time_dosp_av >= dt_averaging_input_pr )  THEN
1655             CALL calc_spectra
1656             time_dosp_av = MOD( time_dosp_av, MAX( dt_averaging_input_pr, dt_3d ) )
1657          ENDIF
1658       ENDIF
1659
1660!
1661!--    Call flight module and output data
1662       IF ( virtual_flight )  THEN
1663          CALL flight_measurement
1664          CALL data_output_flight
1665       ENDIF
1666!
1667!--    Take virtual measurements
1668       IF ( virtual_measurement  .AND.  vm_time_start <= time_since_reference_point )  THEN
1669          CALL vm_sampling
1670          CALL vm_data_output
1671       ENDIF
1672
1673!
1674!--    Profile output (ASCII) on file
1675       IF ( time_dopr_listing >= dt_dopr_listing )  THEN
1676          CALL print_1d
1677          time_dopr_listing = MOD( time_dopr_listing, MAX( dt_dopr_listing, dt_3d ) )
1678       ENDIF
1679
1680!
1681!--    Graphic output for PROFIL
1682       IF ( time_dopr >= dt_dopr  .AND.  time_since_reference_point >= skip_time_dopr )  THEN
1683          IF ( dopr_n /= 0 )  CALL data_output_profiles
1684          time_dopr = MOD( time_dopr, MAX( dt_dopr, dt_3d ) )
1685          time_dopr_av = 0.0_wp    ! due to averaging (see above)
1686       ENDIF
1687
1688!
1689!--    Graphic output for time series
1690       IF ( time_dots >= dt_dots )  THEN
1691          CALL data_output_tseries
1692          time_dots = MOD( time_dots, MAX( dt_dots, dt_3d ) )
1693       ENDIF
1694
1695!
1696!--    Output of spectra (formatted for use with PROFIL), in case of no
1697!--    time averaging, spectra has to be calculated before
1698       IF ( time_dosp >= dt_dosp  .AND.  time_since_reference_point >= skip_time_dosp )  THEN
1699          IF ( average_count_sp == 0 )  CALL calc_spectra
1700          CALL data_output_spectra
1701          time_dosp = MOD( time_dosp, MAX( dt_dosp, dt_3d ) )
1702       ENDIF
1703
1704!
1705!--    2d-data output (cross-sections)
1706       IF ( time_do2d_xy >= dt_do2d_xy  .AND.  time_since_reference_point >= skip_time_do2d_xy )  THEN
1707          CALL data_output_2d( 'xy', 0 )
1708          time_do2d_xy = MOD( time_do2d_xy, MAX( dt_do2d_xy, dt_3d ) )
1709       ENDIF
1710       IF ( time_do2d_xz >= dt_do2d_xz  .AND.  time_since_reference_point >= skip_time_do2d_xz )  THEN
1711          CALL data_output_2d( 'xz', 0 )
1712          time_do2d_xz = MOD( time_do2d_xz, MAX( dt_do2d_xz, dt_3d ) )
1713       ENDIF
1714       IF ( time_do2d_yz >= dt_do2d_yz  .AND.  time_since_reference_point >= skip_time_do2d_yz )  THEN
1715          CALL data_output_2d( 'yz', 0 )
1716          time_do2d_yz = MOD( time_do2d_yz, MAX( dt_do2d_yz, dt_3d ) )
1717       ENDIF
1718
1719!
1720!--    3d-data output (volume data)
1721       IF ( time_do3d >= dt_do3d  .AND.  time_since_reference_point >= skip_time_do3d )  THEN
1722          CALL data_output_3d( 0 )
1723          time_do3d = MOD( time_do3d, MAX( dt_do3d, dt_3d ) )
1724       ENDIF
1725
1726!
1727!--    Masked data output
1728       DO  mid = 1, masks
1729          IF ( time_domask(mid) >= dt_domask(mid)                                                  &
1730               .AND.  time_since_reference_point >= skip_time_domask(mid) )  THEN
1731             CALL data_output_mask( 0 )
1732             time_domask(mid) = MOD( time_domask(mid), MAX( dt_domask(mid), dt_3d ) )
1733          ENDIF
1734       ENDDO
1735
1736!
1737!--    Output of time-averaged 2d/3d/masked data
1738       IF ( time_do_av >= dt_data_output_av                                                        &
1739            .AND.  time_since_reference_point >= skip_time_data_output_av )  THEN
1740          CALL average_3d_data
1741!
1742!--       Udate thermal comfort indices based on updated averaged input
1743          IF ( biometeorology  .AND.  thermal_comfort )  THEN
1744             CALL bio_calculate_thermal_index_maps ( .TRUE. )
1745          ENDIF
1746          CALL data_output_2d( 'xy', 1 )
1747          CALL data_output_2d( 'xz', 1 )
1748          CALL data_output_2d( 'yz', 1 )
1749          CALL data_output_3d( 1 )
1750          DO  mid = 1, masks
1751             CALL data_output_mask( 1 )
1752          ENDDO
1753          time_do_av = MOD( time_do_av, MAX( dt_data_output_av, dt_3d ) )
1754       ENDIF
1755!
1756!--    Output of surface data, instantaneous and averaged data
1757       IF ( surface_output )  THEN
1758          IF ( time_dosurf >= dt_dosurf  .AND.  time_since_reference_point >= skip_time_dosurf )  THEN
1759             CALL surface_data_output( 0 )
1760             time_dosurf = MOD( time_dosurf, MAX( dt_dosurf, dt_3d ) )
1761          ENDIF
1762          IF ( time_dosurf_av >= dt_dosurf_av  .AND.  time_since_reference_point >= skip_time_dosurf_av )  THEN
1763             CALL surface_data_output( 1 )
1764             time_dosurf_av = MOD( time_dosurf_av, MAX( dt_dosurf_av, dt_3d ) )
1765          ENDIF
1766       ENDIF
1767
1768!
1769!--    Output of particle time series
1770       IF ( particle_advection )  THEN
1771          IF ( time_dopts >= dt_dopts  .OR.                                                        &
1772               ( time_since_reference_point >= particle_advection_start  .AND.                     &
1773                 first_call_lpm ) )  THEN
1774             CALL data_output_ptseries
1775             time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) )
1776          ENDIF
1777       ENDIF
1778
1779!
1780!--    Output of dvrp-graphics (isosurface, particles, slicer)
1781#if defined( __dvrp_graphics )
1782       CALL DVRP_LOG_EVENT( -2, current_timestep_number-1 )
1783#endif
1784       IF ( time_dvrp >= dt_dvrp )  THEN
1785          CALL data_output_dvrp
1786          time_dvrp = MOD( time_dvrp, MAX( dt_dvrp, dt_3d ) )
1787       ENDIF
1788#if defined( __dvrp_graphics )
1789       CALL DVRP_LOG_EVENT( 2, current_timestep_number )
1790#endif
1791
1792!
1793!--    If required, set the heat flux for the next time step to a random value
1794       IF ( constant_heatflux  .AND.  random_heatflux )  THEN
1795          IF ( surf_def_h(0)%ns >= 1 )  THEN
1796             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1797             CALL disturb_heatflux( surf_def_h(0) )
1798             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1799          ENDIF
1800          IF ( surf_lsm_h%ns    >= 1 )  THEN
1801             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1802             CALL disturb_heatflux( surf_lsm_h    )
1803             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1804          ENDIF
1805          IF ( surf_usm_h%ns    >= 1 )  THEN
1806             CALL cpu_log( log_point(23), 'disturb_heatflux', 'start' )
1807             CALL disturb_heatflux( surf_usm_h    )
1808             CALL cpu_log( log_point(23), 'disturb_heatflux', 'stop' )
1809          ENDIF
1810       ENDIF
1811
1812!
1813!--    Execute alle other module actions routunes
1814       CALL module_interface_actions( 'after_timestep' )
1815
1816!
1817!--    Determine size of next time step. Save timestep dt_3d because it is
1818!--    newly calculated in routine timestep, but required further below for
1819!--    steering the run control output interval
1820       dt_3d_old = dt_3d
1821       CALL timestep
1822
1823!
1824!--    Synchronize the timestep in case of nested run.
1825       IF ( nested_run )  THEN
1826!
1827!--       Synchronize by unifying the time step.
1828!--       Global minimum of all time-steps is used for all.
1829          CALL pmci_synchronize
1830       ENDIF
1831
1832!
1833!--    Computation and output of run control parameters.
1834!--    This is also done whenever perturbations have been imposed
1835       IF ( time_run_control >= dt_run_control  .OR.                                               &
1836            timestep_scheme(1:5) /= 'runge'  .OR.  disturbance_created )                           &
1837       THEN
1838          CALL run_control
1839          IF ( time_run_control >= dt_run_control )  THEN
1840             time_run_control = MOD( time_run_control, MAX( dt_run_control, dt_3d_old ) )
1841          ENDIF
1842       ENDIF
1843
1844!
1845!--    Output elapsed simulated time in form of a progress bar on stdout
1846       IF ( myid == 0 )  CALL output_progress_bar
1847
1848       CALL cpu_log( log_point_s(10), 'timesteps', 'stop' )
1849
1850
1851    ENDDO   ! time loop
1852
1853#if defined( _OPENACC )
1854    CALL exit_surface_arrays
1855#endif
1856!$ACC END DATA
1857!$ACC END DATA
1858!$ACC END DATA
1859!$ACC END DATA
1860!$ACC END DATA
1861!$ACC END DATA
1862!$ACC END DATA
1863
1864!
1865!-- Vertical nesting: Deallocate variables initialized for vertical nesting   
1866    IF ( vnest_init )  CALL vnest_deallocate
1867
1868    IF ( myid == 0 )  CALL finish_progress_bar
1869
1870#if defined( __dvrp_graphics )
1871    CALL DVRP_LOG_EVENT( -2, current_timestep_number )
1872#endif
1873
1874    CALL location_message( 'finished time-stepping', .TRUE. )
1875
1876 END SUBROUTINE time_integration
Note: See TracBrowser for help on using the repository browser.